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Demonstration of robust and efficient
quantum property learning with shallow
shadows

Hong-Ye Hu 1,5, Andi Gu 1,5, Swarnadeep Majumder2,5, Hang Ren3,
Yipei Zhang3, Derek S. Wang2, Yi-Zhuang You 4 , Zlatko Minev 2 ,
Susanne F. Yelin 1 & Alireza Seif 2

Extracting information efficiently from quantum systems is crucial for quan-
tum information processing. Classical shadows enable predicting many
properties of arbitrary quantum states using few measurements. While ran-
dom single-qubit measurements are experimentally friendly and suitable for
learning low-weight Pauli observables, they perform poorly for nonlocal
observables. Introducing a shallow random quantum circuit before measure-
ments improves sample efficiency for high-weight Pauli observables and low-
rank properties. However, in practice, these circuits can be noisy and bias the
measurement results. Here, we propose the robust shallow shadows, which
employs Bayesian inference to learn and mitigate noise in postprocessing.
We analyze noise effects on sample complexity and the optimal circuit depth.
We provide theoretical guarantees for the success of error mitigation under a
wide class of noise processes. Experimental validation on a superconducting
quantum processor confirms the advantage of our method, even in the pre-
sence of realistic noise, over single-qubit measurements for predicting diverse
state properties, such as fidelity and entanglement entropy. Our protocol thus
offers a scalable, robust, and sample-efficient method for quantum state
characterization on near-term quantum devices.

Classical shadow tomography1 has emerged as a useful technique for
efficiently characterizing quantum states with fewmeasurements. This
method leverages randomizedmeasurements2,3 to construct a classical
approximation or “shadow” of a quantum state, enabling the estima-
tion of various state properties without the need for costly protocols
such as full-state tomography4–6. This method is particularly attractive
because it allows experimentalists to ‘measure first and ask questions
later’3: the samedataset canbeusedmultiple times to learn awide class
of state properties. As such, classical shadow tomography and its
variations7–17,17–36 have found applications in a broad spectrum of

quantum information tasks, including state verification37,38, device
benchmarking39–44, Hamiltonian learning45–49, error mitigation50–53, and
quantum machine learning54–57.

However, classical shadows are not a panacea: a poor choice of
randomizedmeasurement scheme can result in poor performance. For
instance, although random Pauli measurements are experimentally
friendly and performwell for recovering low-weight Pauli observables,
they are known to require high sample complexities for predicting
non-local Pauli observables and low-rank global observables such as
fidelity1. On the other hand, schemes that use fully global random
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twirling (i.e., global random Clifford unitaries) are well-suited for low-
rank global observables, yet they are experimentally infeasible due to
the long circuit depths required to implement a global twirling unitary.
These limitations have motivated the exploration of alternative ran-
domized measurement schemes that maintain experimental feasi-
bility, yet achieve improved sample complexity scaling on a broader
class of observables. To list just a few, these alternative schemes
include Hamiltonian-driven systems11,27,32, locally scrambled quantum
dynamics12,13,18, and shallow quantum circuits14,15. Among these, mea-
surement schemes using random finite-depth quantum circuits refer-
red to as shallow shadows, have been shown to have considerably
lower sample complexities for predicting non-local and low-rank
observables.

While classical shadow tomography has been successfully
demonstrated experimentally using random Pauli measurements42,58–61,
the shallow shadows protocol—which offers theoretical advantages for
certain observables—has never been experimentally validated on real
quantum devices. This is important because these devices are noisy:
until now, it has remained unclear whether and to what degree the
benefits of shallow shadows can persist even under the presence of
noise. Indeed, a blind application of existing theoretical protocols,
without accounting for the effects of noise, will produce biased results
in real experiments.

In this work, we introduce the robust shallow shadows protocol,
which is designed to be robust against the inherent noise in quantum
systems. More specifically, our protocol aims to accurately predict a
broad spectrum of quantum state properties from a single set of ran-
domized measurements conducted on noisy, shallow quantum cir-
cuits. Our research advances the theoretical understanding of the
shallow shadows protocol in three key ways. First, we introduce a
robust shallow shadows protocol that produces unbiased classical
shadows, enabling the efficient and noise-resilient prediction of many
quantum state properties. This protocol requires only a simple cali-
bration experiment and minimal assumptions. We also bound the
sample complexity of the calibration and demonstrated that our
method generalizes the robust classical shadow approach based on
random Pauli or Clifford measurements. Second, we prove that
incorporating a stochastic Pauli noise model in post-processing
effectively captures time-independent experimental noise, and by
combining this with Bayesian learning, we reduce the calibration

sample overhead. Third, we explore the bias-variance tradeoff, show-
ing that noise prevents the system from reaching the optimal noiseless
circuit depth identified in ref. 62. We quantify how this optimal depth
decreases with increasing noise strength.

We apply these theoretical insights to conduct classical shadow
experiments42,58–61 beyond Pauli measurements using 18 qubits on a
127-qubit superconducting quantum processor. We investigate three
randomized measurement schemes using random brickwork circuits
with d 2 0, 2, 4f g layers of twirled CNOT gates (see Fig. 1a). The case
d =0 serves as a benchmark, representing conventional noise-robust
randomized Paulimeasurements,while the other two schemes employ
shallow random circuits of increasing depth of entangling gates. We
test these schemes on application states such as the cluster state and
the Affleck-Kennedy-Lieb-Tasaki (AKLT) resource state. Our analysis
reveals two key findings. First, our robust protocol consistently pro-
duces accurate predictions for various physical observables across
different circuit depths, demonstrating the success of our noise-
resilient classical shadow approach. Second, we quantify the experi-
mental sample complexity of the robust shallow shadows protocol.
Comparing error-mitigated shallow randomcircuits to error-mitigated
randomPaulimeasurements (both using our noise-robust framework),
we find that shallow shadows reduce the sample complexity by up to
five times for observables like fidelity and non-local Paulis. These
improvements not only align with theoretical predictions but also
persist in the presence of noise. Together, these results validate our
theoretical framework and highlight the practical advantages of our
protocol in enhancing the efficiency and robustness of quantum state
learning.

Results
Preliminaries
We begin by reviewing the framework of randomized measure-
ments and classical shadows. Each randomized measurement
scheme is defined by an ensemble of unitary operators E. A ran-
dom unitary Ui is then sampled uniformly at random from E and
applied to the state ρ, the evolved state is measured on a com-
putational basis, and the measurement outcome jbii is recorded.
This evolve-and-measure scheme is repeated K times, choosing a
new random unitary Ui each time. This forms the randomized
measurement dataset D= Ui, jbii

� �K
i = 1. The aim is then to predict a

Fig. 1 | A schematic overview of the robust shallow shadowprotocol. aWe show
an example of our randomized measurement scheme for a shallow circuit with
d = 2, which is a brickwork circuit comprised of twirled two-qubit gates. As shown
b these twirled gates are CNOT gates sandwiched by single-qubit randomCliffords.
Our noisemodel is the sparse Pauli-Lindbladmodel74, which captures realistic noise
effects such as qubit crosstalk. Upon twirling via single-qubit random Clifford
gates, the effective noise channel simplifies from a full Pauli-Lindblad map (which

has nine two-body terms on each edge and three one-body terms for each node) to
the one illustrated in (c), which has only one parameter for each edge and one
parameter for each node. The left half a shows the dataset collection process for
both calibration and application states, and the right half shows our data post-
processing method. We use a Bayesian inference algorithm to estimate the noise
parameters λ of the quantum device and use this to error mitigate our estimates of
many different observables, ranging from fidelity to entanglement entropy.
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large number of properties of ρ, all using the same dataset D, a
goal that we call multitasking.

To predict these properties, the dataset must first be classically
postprocessed. The first step of this is to calculate the back evolution
of the collapsed state jbii by Ui to construct the associated classical
snapshot σ̂i =U

y
i jbiihbjiUi. This is possible when there are efficient

classical algorithms for simulating Uy
i ; for instance, there are well-

known algorithms for calculating σ̂i when it is a Clifford circuit63,
matchgate circuit64,65, or finite-timeHamiltonian evolution66,67. The full
set of classical snapshots canbeviewed as a set of classical ‘shadows’of
the underlying quantum state ρ; although a single snapshot is not
enough to fully specify the state, the full set of snapshots together
proves sufficient, as we show below. The linearity of quantum
mechanics implies that the expectation (over both random choices of
the unitary U and randommeasurement outcomes jbi) of the classical
snapshot is related to the original state ρ through a linear map M:
E½σ̂�=M½ρ�. The precise details of this map are determined by the
unitary ensemble E. Importantly, when E forms a tomographically
complete ensemble, M is an invertible map, so we can write
ρ=E½M�1ðσ̂Þ�, and of course any observable of ρ obeys
TrðρOÞ=E½TrðM�1ðσ̂ÞOÞ�. This forms the basis of randomized mea-
surement schemes: we can estimateE½TrðM�1ðσ̂ÞOÞ�with an empirical
average over our dataset D, hence allowing us to estimate TrðρOÞ.
Notably, the dataset D was not tailored to a particular observable O,
hence we can repeat the same classical postprocessing procedure to
predict a large set of L observables Ol j l = 1, . . . , L

� �
simultaneously.

This flexibility extends beyond linear observables: since ρ =E½M�1½σ̂��
it follows that ~ρð2Þ � 1

KðK�1Þ
P

i≠jM�1½σ̂i� �M�1½σ̂j� is an unbiased esti-
mator for ρ⊗2. Remarkably, this means that the datasetD, constructed
using only single-copy measurements of ρ, can be used to learn non-
linear properties of ρ: for instance, the purity can be estimated using
the observable O = SWAP and evaluating TrðO~ρð2ÞÞ. However, the most
useful property of classical shadows is that the sample complexity of
achieving this multitasking has been shown1 to be
OðlogL �maxi Oi

�� ��2
sh =ϵ

2Þ, which scales logarithmically in L instead of
linearly. A critical component of this scaling is the shadow norm
Oi

�� ��2
sh of the operator Oi, which depends on the details of the unitary

ensemble.
The shadow map M and its inverse can be efficiently calculated

for a large family of unitary ensembles called locally scrambled unitary
ensembles, where the unitary ensemble satisfies the local-basis invar-
iance condition11 (see Supplementary Note 1). Locally-scrambled uni-
tary ensembles are easily realized experimentally: for example, as
shown in Fig. 1b, any two-qubit gate sandwiched by random single-
qubit Clifford gates satisfies the local-basis invariance condition. This
procedure is also called single-qubit twirling68–70. In the following, we
will call these sandwiched two-qubit gates twirled gates for short. If the
randomized quantum circuit is composed of twirled gates, as shown in
Fig. 1a, then ref. 13 shows that M is diagonal in the Pauli basis. This
means that M½P�=ωðPÞP for any Pauli P, where ωðPÞ �
EU�E ½h0jUPUyj0i2� is called the Pauli weight. Here and throughout, we
use j0i shorthand for the n-qubit product state j0i�n. This implies that

E½σ̂�=M½ρ�= 1

2N
X
P2PN

ωðPÞTrðρPÞP;

ρ=M�1½E½σ̂��= 1

2N
X
P2PN

ω�1ðPÞTrðE½σ̂�PÞP
ð1Þ

where PN is the N-qubit Pauli group. We note that the local basis
invariance of the unitary ensemble E effectively erases any information
about the local basis for P. This means that ω(P) does not depend on
the exact characters in the Pauli string P: if the position of all non-
identity operators is the same for two Pauli operators, they share the

same value of Pauli weights. Therefore, despite the fact that there
are 4N different Pauli operators, there are only 2N distinct Pauli weights.
As we show later, this fact makes it natural to use a ‘particle-hole’ basis
for locally scrambled unitary ensembles. Although there are still
exponentially many Pauli weights, in the next section and Methods
section, we will show they can all be efficiently represented (i.e., using
polynomial classical resources) with a simple tensor network
representation.

So far, we have assumed that the state ρ can be evolved by U
perfectly. However, real quantum circuits have noise, in which case the
actual evolution will differ from the ideal unitary U. The actual evolu-
tion can be described by a channel CU, λ½ρ�, where λ parameterizes the
noise in the evolution. For unitary ensembles in which the set of uni-
taries U forms a group, such as those formed by the Clifford group or
tensor products of single-qubit Clifford gates (i.e., random Pauli
measurements), the noisy measurement channel takes a simple form
when expressed in the Pauli basis7,71,72:

Mλ, Clifford½P�= f P +
ð1� f Þ
2N

TrðPÞI

Mλ, Pauli½P�= �N
i = 1

f iPi +
ð1� f iÞ

2
TrðPiÞI

� �
,

ð2Þ

where P =�N
i = 1Pi is a Pauli string, the tensor product of Pauli

operators on each qubit, and f, fi are noise-dependent parameters.
These expressions allow for efficient noise characterization and
mitigation7,53.

However, for more general unitary ensembles, such as those
involving shallow quantum circuits (which do not form a group), the
form of the noisy measurement channel is not immediately apparent.
For shallow quantum circuits that satisfy the local-basis invariance
condition, we show the measurement channel is still diagonal in the
Pauli basis: Mλ½P�=ωλðPÞP. The noisy Pauli weights are

ωλðPÞ= E
U�E

½h0jUPUyj0ih0jCU, λ½P�j0i�: ð3Þ

For a derivation of this, see Supplementary Note 1. Compared with
Eq. (2), we see noisy Pauli weights are generalizations of noise para-
meters fi and f when using noisy shallow circuits.

Bias-variance tradeoff
Understanding the bias-variance tradeoff is crucial for optimizing our
robust shallow shadows protocol in practice. As we increase the depth
of our shallow circuits,wegain the ability to estimate a broader class of
observables efficiently. However, this comes at the cost of accumu-
latingmore noise, potentially biasing our results. This tradeoff directly
impacts the choice of optimal circuit depth and the overall perfor-
mance of our protocol.

Since the shadow map is diagonal in the Pauli basis, the expec-
tation of any Pauli P is simply

TrðρPÞ= 1
ωλðPÞ

E½Trðσ̂PÞ�: ð4Þ

Since ∣Trðσ̂PÞ∣≤ 1, the inverse Pauli weight upper bounds the shadow
norm of any Pauli P (i.e., the sample complexity of estimating P):
Pk k2sh ≤ωλðPÞ�1. Therefore, to upper bound the sample complexity, it
suffices to lower bound thePauli weightωλ(P). In thenoiseless case, the
sample complexity scaling of shallow shadows was numerically
investigated in refs. 14,15. A theoretical understanding was given by
ref. 62, where the expectation in Eq. (3) was calculated bymapping the
evolution of P through the circuit to a classical random walk. The
shadow norm depends on this random walk’s final set of configura-
tions. We extend this analysis62 to the noisy case. Our analysis assumes

Article https://doi.org/10.1038/s41467-025-57349-w

Nature Communications |         (2025) 16:2943 3

www.nature.com/naturecommunications


that the noise is single-qubit depolarizing noise with site-independent
strength λ. For a detailed analysis of more general noise models,
including multi-qubit correlations and non-Markovian effects, see
Supplementary Note 2.

As we show, the effect of noise on this random walk is simple.
While we focus our analysis on Pauli operators comprised of k con-
tiguous non-trivial characters (illustrated in Fig. 2a), the qualitative
behaviors—operator spreading, density relaxation, and noise-induced
damping—persist for non-contiguousoperators. Themaindifference is
that non-contiguous operators experience multiple independent
spreading fronts, one from each cluster of non-trivial characters,
leading to faster operator growth but maintaining similar asymptotic
scaling. As depicted, there are three physical processes, and only a
third of these depend on the noise. First, the average density of par-
ticles in the bulk will relax, owing to the fact that twirled two-qubit
gates tend to reduce the weight of high-weight Pauli operators (for
instance, a Haar random two-qubit gatemaps aweight 2 Pauli operator
to a weight 1 Pauli operator with probability 3

5). Second, the domain of
the observable will spread (shown in red) with some butterfly velocity
vB as a result of the entangling two-qubit gateswhich act on the edgeof
the Pauli’s support. Finally, each particle will have a damping factor of
expð�λÞ during the stochastic process due to the depolarizing noise.
The effects of each of these three processes can be bounded, and
combining all of these bounds allows us to obtain an upper bound of
the shadow norm for contiguous Pauli operators, hence bounding the
requisite sample complexity to estimate theseoperators. Thedetails of
the theoretical analysis, as well as a numerical characterization of
phenomenological parameters such as γ and vB can be found in Sup-
plementary Note 4.

Theorem 1. (Sample complexity and optimal circuit depth, informal)
Assuming single-qubit depolarizing noisewith strength λ, for k≫ d≫ 1,
the shadownormof a Pauli operator support over k contiguous sites is
upper bounded by

log3 PkðdÞ
�� ��2

sh ≤ k +dð Þ 3
4
+
expð�γdÞ

t3=2
+

dλ
log 3

� �
, ð5Þ

where d is the circuit depth and expð�γÞ � ð45Þ
2
. The circuit depth d *

that minimizes this upper bound is

d� =
1
γ

log
k

3 log 3+ 4kλ
+ . . .

� �
=

ðkλ≪1Þ
1
γ

log
k

3 log 3
� 4kλ

3 log 3
+ . . .

� �
ð6Þ

where… denotes subleading terms.
Equation (6) shows that the theoretical optimal circuit depth is

shallower for noisy circuits compared to noiseless ones, a fact which
we illustrate in Fig. 2b. Simultaneously, Eq. (5) shows that the noise also
increases the associated sample complexity for estimating Pk. How-
ever, the sample complexity bounds in this theorem are overly pessi-
mistic, and we can do significantly better using a phenomenological
model that we detail in Supplementary Note 4.

The bias-variance tradeoff highlights the need for efficient and
accurate calibration methods. To address this, we develop a Bayesian
inference approach that allowsus to characterize andmitigate thenoise
in our system, striking a balance between the benefits of increased
circuit depth and the challenges posed by accumulated noise.

Efficient calibration with Bayesian inference
Equation (4) implies that an accurate estimate of ωλ(P) is required to
produce accurate estimates of Pauli expectation values. In this section,
we describe an efficient Bayesian inference method to learn the Pauli
weights. We begin with a cruder method: direct inference. Simply by
inverting Eq. (4), we see that if we set ρ = j0ih0j and P to be any Pauli
operator formed of only I and Z operators, we get ωλðPÞ=E½Trðσ̂PÞ�.
We can estimate E½Trðσ̂PÞ� by preparing j0i, evolving under a random
shallow circuit U, and measuring on a computational basis. Theorem
2 shows that this calibration process requires no assumptions on the
structure of noise in the circuit, and is asymptotically unbiased.

Theorem 2. (Informal, Learning noisy Pauli weights) Given ϵ >0, a
number of

R=O ϵ�2 max
∣Pα ∣≤ k

k Pαk4sh
� �

Fig. 2 | Sample complexity in robust shallow shadows (RSS) for Pauli obser-
vables with contiguous support of size k. aWe show a conceptual illustration of
the three physical phenomena influencing sample complexity in the context of a
classical randomwalkmodel: 1) operator spreading with a `butterfly velocity' vB; 2)
particle density relaxation; and 3) noise-induceddampingwith rate e−λ. The hatched
region represents the space-time domain where operator spreading and relaxation
occur: as time progresses (vertically), the initial operator of size k (black dots)
spreads ballistically (diagonal boundaries) while simultaneously relaxing to equi-
librium density (vertical blue line). These phenomena collectively determine the
sample complexity required for accurate observable estimation. bWe illustrate the
qualitative impact of noise on the sample complexity upper bound, illustrating that
increased noise levels lead to a slight increase in the sample complexity upper

boundand a reduction in theoptimal circuit depth. This reduction is approximately
linear in thenoise strength λ, with a proportionality coefficientα. This is anexample
of the trade-offs involved in designing a noise-robust protocol. c We illustrate the
RMS error of reconstructed Paulis inferred using 104 different circuits with
100 shots each, as a function of the support size k. The dashed lines show the RMS
error associated with direct calibration, while the solid lines correspond to the
Bayesian learning protocol. The results demonstrate that Bayesian learning
achieves comparable or better accuracy than direct calibration across all circuit
depths d, while requiring significantly fewer calibration shots. This improved effi-
ciency is particularly evident for larger support sizes, where the Bayesian approach
maintains stable error rates even as k increases.
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sample in the calibration process is enough for the following robust
shallow shadow procedure to estimate any k—local observables to the
following precision

∣TrðρOÞ � bOest∣< ϵ 2
k Ok k1 ð7Þ

with high success probability.
This direct calibration method allows us to learn individual Pauli

weights efficiently. However, for predicting properties involving many
noisy Pauli weights, knowing individual Pauli weights is insufficient. In
practice, we require an efficient way to encode all 2N Pauli weights.
Although this is impossible in general, we can take advantage of certain
structural features of our unitary ensemble: our random unitary
ensemble consists of twirled two-qubit gates arranged in a brickwork
structure. By leveraging this structural assumption, we prove that any
time-independent device noise can be captured by a stochastic Pauli
noise model. The proof idea is similar to the idea behind randomized
compilation73, wherein single-qubit random gates can effectively
change physical noise to stochastic Pauli noise. This result is sum-
marized in Theorem 3, the proof of which is in Supplementary Note 2.

Theorem 3. (Informal, Noise-robust shallow shadow on time-
independent noise) In a noise-robust shallow shadow setting, a sto-
chastic Pauli noise model can be used in the data post-processing to
effectively capture the time-independent noise that happened in the
physical circuit, including coherent errors, provided that the single-
qubit gate errors are small. If the noise parameters are accurately
learned, the predictions given by the robust shallow shadow remain
unbiased.

By integrating this simple stochastic Pauli noise model with
tensor network post-processing and Bayesian learning, we can achieve
more efficient calibration and prediction, enabling the accurate
prediction of a wide range of observables, including quantum fidelity.
In light of Theorem 3, we model the noise channel Λ of an N-qubit
system from the local interactions generated by a Lindbladian
LðρÞ=Pk2Kλk PkρPk � ρ

� �
, where K is a set of Pauli operators that is

defined by the local interactions between qubits. Given that the
interactions are assumed to be geometrically local, the size of K—and
thus the number of noise parameters—scales linearly with N. While
non-local Pauli errors may arise beyond nearest neighbors, this model
has been shown to accurately describe realistic hardware noise, as
demonstrated in ref. 74. Furthermore, in Supplementary Note 2, we
demonstrate that our protocol remains robust even in the presence of
non-local correlated errors. Additionally, we extend Theorem 3 to
other noise models, including non-Markovian noise, as detailed in the
Methods. Specifically, if U represents a single layer of CNOT gates, the
state after this layer evolves as ρ0 = eL½UρUy�. Since L is a sparse Pauli-
Lindbladian, eL enjoys a particularly simple formwhen acting on Pauli
operators:

eL½P�= exp �
X

k;½Pk ,P�≠0
λk

0@ 1AP,

indicating that P acquires a damping factor based on its non-
commuting Lindbladian generators74. We assume different noise
parameters λ for the even and odd layers of CNOT gates, and model
readout errors by absorbing them into the last layer of Pauli-
Lindbladian noise. We note that although the Pauli-Lindbladian model
has 9 two-body terms for each neighboring pair of qubits and 3 on-site
terms for each qubit, the single-qubit twirling in our shallow circuit
ensemble simplifies this noise significantly. The effect of these random
single-qubit gates is to twirl the noise such that each edge, can be
parameterized by three numbers: λPI, λIP, λPP. These represent the local
action of the noise channel on a Pauli operator which has support on

the first qubit, second qubit, or both qubits, respectively. The first two
terms can be interpreted as single-qubit depolarizing noise.

In the post-processing, we aim to infer the ‘effective’ values of the
noise parameters λ. We emphasize that the learned noise parameters
are phenomenological, in the sense that we are concerned with their
values only insofar as they affect the Pauli weightsωλ(P). Indeed, as we
show in Supplementary Note 2, this calibration method works well
even if the device noise is not well-described by the Pauli-Lindblad
model. The reason for this is that the noisy Pauli weights ωλ(P) do not
depend strongly on the particular structure of the device noise, hence
our sparse Pauli-Lindblad ansatz is sufficiently flexible to represent the
noisy Pauli weights of a wide variety of noise models.

To estimate the noise parameters λmore efficiently, we apply the
framework of Bayesian inference. Although the learning framework in
probabilistic error cancellation (PEC)74 can be used for this estimation
as well since the noise is twirled by random single-qubit Clifford gates,
this results in a simplification of the effective noise channel. This
simplification means that it is sufficient to use historical noise data
(learned as part of PEC) as a loose prior and to use Bayesian learning to
‘fine-tune’ this prior. This Bayesian learning method requires less
device time than the direct calibration method and Pauli-Lindblad
learning, as the calibration dataset Dc we use for the parameter esti-
mation is relatively simple. This calibration dataset is obtained by
preparing the j0i�N state and applying our shallow shadows protocol.
Using this data, we construct a likelihood function pðDcjλÞ based on
empirical estimates of Pauli weights. We then use a log-normal prior
distribution p(λ) centered around historical noise data. The posterior
distribution pðλjDcÞ is sampled using Hamiltonian Monte Carlo,
allowing us to infer the effective noise parameters λ. As shown in
Fig. 2c, this Bayesian approach maintains significantly lower RMS
errors compared to direct calibration, particularly for Pauli operators
with larger support size k. While the direct calibration error grows
rapidly with k, our Bayesian method shows remarkable stability,
maintaining consistent error rates across different circuit depths and
operator sizes. For details of this inference method, see Supplemen-
tary Note 2.

To further enhance our protocol’s efficiency, we complement our
Bayesian inference method with a tensor network-based representa-
tion of the noisy Pauli weights. This approach allows us to efficiently
encode all 2N Pauli weights using polynomial classical resources. By
recasting the Pauli weight calculation as an expectation over a random
walk in the space of Pauli operators, we construct a matrix product
operator (MPO) representation of the expectation E½C2½���. This MPO,
when applied to the all-plus state, yields a matrix product state (MPS)
representation of the Pauli weights ωλ(P) with bond dimension expo-
nential in the circuit depth. For our log-depth circuits, this results in a
polynomial-resource classical representation, enabling rapid estima-
tion of a wide range of observables (see Supplementary Note 3 for
details).

The full robust shallow shadow protocol with efficient Bayesian
inference calibration is summarized in Box Box 1.

Experiments
In this section, we demonstrate the effectiveness of our robust shallow
shadows protocol through a series of experiments on a super-
conducting quantum processor. Our goals are twofold: first, to show
that our protocol can accurately recover various quantum state
properties in the presenceof noise, and second, to quantify the sample
complexity advantages of our method compared to traditional
approaches. We investigate three different circuit depths and apply
our protocol to multiple quantum states, including the plus state,
cluster state, and AKLT resource state.

There are a number of choices that an experimentalist is free to
make in Box 1. The first is the choice of the unitary ensemble E. As
shown in the original classical shadow framework1, the details of this
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ensemble can have a drastic impact on sample complexity, depending
on the observables of interest. For instance, ensembles comprised of
single-qubit random Cliffords are well-suited for predicting local
observables, while ensembles comprised of global random Cliffords
are useful for low-rank observables such as fidelity. In this section, we
will provide experimental evidence showing that interpolating
between these two regimes allows us to achieve, in a sense, the best of
both worlds. By using shallow brickwork random Clifford circuits, we
show that an extremely broad class of observables can be measured
with relatively low sample complexity, including both local obser-
vables and low-rank observables such as fidelity. Concretely, we test
three different ensembleswhich consist ofd 2 0, 2, 4f g layers of single-
qubit twirled CNOT gates. The d =0 is simply the random single-qubit
Clifford case initially proposed in ref. 1, also known simply as rando-
mized Pauli measurements. On the other hand, as shown in Fig. 1a,
when d = 2, our circuits contain two layers of twirled CNOT gates (one
even layer and one odd layer), so d = 4 contains four layers of twirled
CNOT gates. The other remaining degrees of freedom in Box 1 are the
size of the dataset D, the application state ρ, and the observables of
interest. For both the calibration and application dataset, we applied
10000 different random unitaries from E and took 100 shots for each
unitary circuit, keeping the random twirling gates fixed across all
100 shots for a given unitary (see Supplementary Note 5 for experi-
mental details).We then applied ourmultitasking protocol on both the
plus state j+ i�18 and a cluster state. The cluster state we choose is
jϕi= QN�1

i= 1 CZi, i + 1j+ i�N , which is a ground state of a symmetry-
protected topological Hamiltonian H = −∑iZi−1XiZi+1. Even though both
are stabilizer states, we emphasize that ourmethoddoesn’t rely on any
special properties of the stabilizer states (later in this section, we will
demonstrate this by applying our protocol to theAKLT resource state).
We show below that, using the same randomized measurement data-
set, we can accurately predict a number of observables for each of
these states, including fidelity, local and non-local Pauli observables,
and subsystem purity.

Figure 3 summarizes our experimental results for the plus state
and cluster state. The top panel shows the inferred overlap between
the experimentally prepared state and the ideal application state. The
hatched bars indicate recovered values without errormitigation, while
the solid bars show inferred values when accounting for noise. To
verify the correctness of our protocol,we also estimated someof these
observables with direct measurement. For instance, the overlap of the
experimentally prepared state with j+ i�18 was calculated by repeat-
edly measuring on the X basis, and the three Pauli observables were
inferred similarly. The directly measured values are still subject to
readout noise. Therefore, we use readout error mitigation75 and use

the mitigated results as the fiducial values (dashed black lines in
Fig. 3a). Both our error-mitigated shadow predictions and these fidu-
cial measurements agree within their respective statistical uncertain-
ties, suggesting neithermethod has significant unmitigated systematic
bias. We note that some error-mitigated estimates (like X1X2X3X4 at
d = 4) slightly exceed the physical bound of 1. This is a known phe-
nomenon in error mitigation: while our protocol guarantees unbiased
estimates, statistical fluctuations combined with error mitigation can
occasionally yield unphysical values. One could enforce physicality
through additional constraints or renormalization, but this would
introduce bias in the estimator. We choose to report the unbiased
estimates directly, as their proximity to physical bounds suggests our
error mitigation is working as intended without over-correction.

We can also use the dataset to predict non-linear properties, such
as subsystem purity Trψ2

A, whereψA is the reduced density matrix of ψ
on subsystem A. This purity is important because it encodes infor-
mation about the entanglement entropyof a state—more specifically, it
is related to the entanglement 2-Rényi entropy via S2 = � log2Trðψ2

AÞ.
The entanglement entropy of a (perfectly prepared) cluster state is
well-known. The degenerate boundary edge modes are broken in the
state preparation for the cluster state, but if we cut the system into two
pieces, this cut will create a degenerate edge mode, which in turn
creates 1 bit of information. That is, we expect that each cut will reduce
purity by a factor 1

2. Tobemore concrete, if a subsystem is createdwith
a single cut (e.g., subsystems 1, 2f g and 1, 2, 3, 4f g), then the theoreti-
cally expected subsystem purity is 1

2. If a subsystem is created with two
cuts (e.g., subsystem 8, 9, 10, 11f g), we expect the subsystem purity to
be 1

4. In Fig. 3, we observe that, indeed, the predicted purity after error
mitigation is close to these theoretical values. The small deviations
away from theoretical values are due to imperfect state preparation: as
shown in Fig. 3, the experimentally prepared cluster state has fidelity
~80%. The performance improvement from shallow shadows varies
across observables. For some local observables like the {1, 2} sub-
system purity, unmitigated d =0 performs as well as error-mitigated
shallow shadows, indicating that shallow circuits provide minimal
advantage for such local quantities. This aligns with theoretical
expectations: random Pauli measurements (d = 0) are already optimal
for local observables, while shallow shadows improve sample com-
plexity primarily for more non-local (e.g., the purity of subsystem
1, 2, 3, 4f g) or low-rank observables.

One of the advantages of applying shallow circuits to classical
shadow tomography is the reduction of sample complexity for both
non-local and low-rank observables. To evidence this claim, we
observe twocompeting effects. First, as shown in Theorem 1, increased
depth is well-suited for non-local observables. It is also well-suited for

BOX 1

noise-robust shallow shadows protocol

1: Fix a locally scrambled unitary ensemble E. The circuits in this ensemble must be at most logarithmic depth.
Calibration

2: Prepare the j0i state with high fidelity and collect a calibration dataset Dc by sampling from the unitary ensemble E.
3: Use Bayesian inference (see Methods) to find a MAP estimate of true noise parameters λ.
4: Construct a representation of the noisy Pauli weights ωλ using the MPS formalism with λ, and variationally find an MPS representation of the

inverse Pauli weights ω�1
λ with gradient descent14,15. Since empirically derived noise parameters are accounted for in ω�1

λ , these inverse Pauli
weights mitigate the effects of experimental noise (e.g., qubit crosstalk, measurement error, etc.).
Application

5: Prepare the application state ρ and collect the dataset D by sampling from the unitary ensemble E.
6: Find an MPS representation (on a Pauli basis) for the observables of interest. Examples of observables that admit an efficient MPS repre-

sentation include any Pauli operator, subsystem purities, and overlaps with respect to MPSs.
7: Infer the values of the observables of interest by contracting the appropriate MPS (see Supplementary Note 3).
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low-rank observables such as fidelity, since we converge to the global
Clifford ensemble (which is optimal for low-rank observables) with
increased depth. This improved suitability reduces the standard
deviation of the inferred values for these observables at larger depths:
this effect is particularly evident for fidelity, as highlighted in Fig. 4.

However, this effect competes against the increasing effects of
noise. As can be seen in Fig. 3, when error mitigation is turned off, the
recovered values become more biased with increasing depth d. This
depth-dependent bias is most pronounced for fidelity because it is a
global observable sensitive to all qubits, accumulating errors from the

Fig. 4 | Since the number of samples required to achieve a certain statistical
error is proportional to the variance (square of the standard deviation) of the
estimator, we use the standard deviation to indicate sample complexity. a The
standard deviation of fidelity predictions decreases with increasing circuit depth,
indicating reduced sample complexity. b The standard deviation for estimating
Pauli operator expectations is plotted as a function of the Pauli weight k. We

observe excellent agreement between experimental data (solid dots with error
bars) and theoretical predictions (solid lines). Notably, shallow circuits (d = 2, 4)
exhibit favorable sample complexity scaling for higher-weight Pauli operators,
outperforming thed =0 scaling (proportional to 3k), aswell as the theoretical upper
bound of 2.28k.

Fig. 3 | We apply RSS to predict multiple quantities including fidelity, Pauli
observables, and subsystempurities.The hatched bars indicate recovered values
without error mitigation, while the solid bars use error mitigation. a We infer the
fidelity of the experimentally prepared plus state j+ i�18 and cluster state jϕi with
respect to the ideal (i.e., perfectly prepared) state. For the plus state, predictions
agree with fiducial values obtained via direct fidelity estimation (i.e., measurement
in the X basis), showcasing the effectiveness of RSS in error mitigation. In contrast,
predictions without error mitigation exhibit a decline in fidelity as circuit depth

increases, underscoring the impact of noise. b Displays the predicted expectation
values of Pauli observables, where RSS predictions maintain consistency and, for
the plus state, agree with fiducial values. c We show different subsystem purity
predictions for a cluster state, illustrating how purity values are contingent upon
the number of cuts within a subsystem. For instance, a subsystem in the bulk
(formed by two cuts) has a theoretical purity of 0.25, whereas a boundary sub-
system, with one cut, has a theoretical purity of 0.5.
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entire circuit. In contrast, local observables like X1X2 are affected only
by errors in their local region, making themmore robust to increasing
circuit depth. As discussed in Section II C, this noise-induced bias can
be corrected using Pauli weights ω�1

λ that have been appropriately
calibrated. However, this comes at the cost of slightly increased var-
iance, which in turn increases the sample complexity. As with the bias,
this increase in sample complexity also grows with depth d.

Using experimental data, we quantitatively study the competition
between these two effects in Fig. 4. Using bootstrap estimates of the
standarddeviationσof our recovered expectation values,we can study
the effects of increased depth on a variety of observables, including
fidelity and a set of Pauli observables with increasing weight. We
observe that for high-weight Pauli observables, the two competing
effects find an optimal tradeoff at d = 2. Although the upper bounds
from Theorem 1 predict a standard deviation ~2.28k at the optimal
depth in an ideal setting (already a significant improvement over σ ~ 3k,
which is the scaling for d =0), we find that in practice, we can domuch
better than this, as evidenced by the d = 2 line compared to 2.28k

dashed line. Our MPS formalism allows us to calculate an exact pre-
diction for the standard deviation of any Pauli observable, shown in
solid lines, demonstrating excellent agreement with the bootstrapped
standard deviations. Turning to fidelity estimation, we see, unlike Pauli
observables, d = 4 is a strict improvement over d = 2. This contrasting
behavior reflects the different scaling shown in Fig. 2b: while Pauli
observables reach optimal sample complexity at moderate depths
before noise degradation dominates, fidelity estimation continues
improving with depth despite increased noise. This is expected, as
random global Clifford shadows are the optimal setting for fidelity
estimation in the noiseless limit1. Regardless, for Pauli observableswith
contiguous support (like those shown here) and fidelity, using a shal-
low depth ensemble with error mitigation is always strictly better than
using a d =0 ensemble. While our experiments focus on contiguous
Pauli strings for simplicity, theoretical analysis suggests similar
advantages hold for non-contiguous strings (see Supplementary
Note 2), though the optimal circuit depth may vary with the Pauli
support pattern.

To further demonstrate the versatility of our protocol, we apply it
to a more complex quantum state: the AKLT resource state. This state
is particularly interesting as it is not a stabilizer state76, unlike the plus
and cluster states we examined earlier. By characterizing this state, we
showcase our protocol’s ability to handle a broader class of quantum

states, including those relevant to quantum simulation and quantum
computational supremacy experiments. Specifically, we applied RSS
with d = 4 to predict the purity of all size 1 and 2 subsystems for the
AKLT resource state on 18 qubits. As shown in Fig. 5b, this state con-
sists of 3 small clusters of AKLT states, which can eventually bemerged
into a 6-qubit AKLT state. The small clusters are knit together into a
single global AKLT state by applying Bell measurements on the edge
qubits of adjacent small AKLT states and applying a correction con-
ditioned on the measurement outcome (this process is known as
applying ‘fusion measurements’). However, in this work, we do not
apply these fusion measurements, as this requires measurement
feedforward, which is experimentally difficult to implement. Instead,
we prepare the AKLT resource state on superconducting qubits and
characterize its entanglement structure prior to fusion measurements
using RSS. In Fig. 5a, we show theoretical and experimentally recov-
ered values for every 1- and 2-qubit subsystem purity of the resource
state. The theoretical predictions assume perfect state preparation
and noiseless evolution, providing an idealized benchmark against
which we can compare our error-mitigated experimental results. The
mean relative error (compared to the theoretically predicted values)
for the recovered purities without error mitigation is 6.4%, while the
meanrelative errorwith errormitigation is 3.2%, further evidencing the
efficacy of our error mitigation method. Notably, the residual differ-
ence between mitigated and unmitigated results is consistently posi-
tive across all subsystems, indicating that our error mitigation
protocol systematically reduces excess entropy introduced by
experimental noise, particularly within the three AKLT clusters. Com-
paring the recovered purities shows excellent agreement with exact
theoretical values: as expected, we clearly see three distinct entangled
clusters in the experimental data, representing each of the local AKLT
states.

Discussion
In this work, we executed an unbiased randomized measurement
experiment that went beyond random Pauli measurements for large
quantum systems. In these experiments, we showed that our robust
shallow shadow protocol can efficiently recover unbiased estimates
for a wide array of observables on unknown quantum states, even in
the presence of noise. While our Bayesian noise characterization
technique is general, we demonstrate its effectiveness using a sparse
Pauli-Lindblad noise model well-suited to the IBM device’s heavy-hex

Fig. 5 | Prediction of subsystem purity in the AKLT resource state using RSS.
a We demonstrate how the RSS method can use a single dataset to concurrently
predict the purity of all subsystems up to two qubits within AKLT resource states.
We show theoretical predictions (left), experimental results with error mitigation
(center), and the residual difference between mitigated and unmitigated results
(right). The residual plot reveals that error mitigation systematically increases the
predicted purities, bringing them closer to theoretical values, with the strongest

corrections appearing in the three distinct AKLT clusters. The values at (i, j)
represent the purity of the reduced density matrix Trðρ2

ijÞ. The AKLT resource state
has three clusters, each representing a smaller AKLT state with two spin-1 particles
before fusion measurement; experimental predictions clearly show this pattern as
well, and closely align with theoretical predictions. b We show a schematic of the
AKLT resource state before fusion measurements are applied to prepare the
AKLT state.
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architecture—other quantum platforms may require different device-
specific noise models. We do this by providing a general noise char-
acterization technique based on Bayesian inference that can account
for realistic noise effects, such as qubit crosstalk and measurement
error. Having characterized the noise on our device, we then intro-
duced an efficient tensor network-based postprocessing technique
that is naturally able to account for the effects of this noise.Weprovide
evidence that this error mitigation technique is effective by demon-
strating that our protocol gives unbiased predictions of low-rank
observables (e.g., fidelity), non-local Pauli observables, and even non-
linear observables (e.g., subsystem purity) for a number of application
states, including the cluster state and the AKLT resource state. Not
only is our protocol able to recover unbiased estimators of these
observables, but we also show that the standard deviation of these
estimators improves with shallow circuits compared to d =0, though
the optimal depth varies by observable type. While fidelity estimates
continue improving throughd = 4, Pauli observables achieveminimum
variance around d = 2 before noise effects begin to dominate. That is,
we show how going beyond random Pauli measurements can give rise
to improved sample complexities. Furthermore, we developed a the-
oretical framework that not only predicted improvements in sample
complexity that agreed well with the empirically observed improve-
ments, but our framework also showed that shallow shadows remain
information-theoretically optimal, even in the presence of noise. Our
new theoretical insights, combinedwith the experimental validation of
our protocol, further underscore the practical relevance and effec-
tiveness of our approach. The success of these experiments not only
validates the theoretical underpinnings of our protocol but also
showcases its potential for real-world quantum computing applica-
tions. Finally, wenote that the framework developed in ref. 77 could be
used to characterize out-of-model errors in our noise model. When
there is a significantmismatch between the effective Pauli noisemodel
and the actual device noise, the Bayesian calibration procedure may
fail, leading to biased predictions. In such cases, the direct calibration
algorithmoutlined inSection IICprovides amodel-agnosticmethod to
estimate the relevant Pauli weights. In Supplementary Note 2, we
evaluate the performance of our local Pauli-Lindbladiannoisemodel in
the presence of additional correlated non-local three-qubit noise.
Across a wide range of strengths for these three-qubit errors, our
framework remains robust, delivering unbiased predictions within
statistical errors. Furthermore, in our experiments, comparisons
between error-mitigated shadow predictions and fiducial values
obtained from other direct measurement schemes show no deviations
beyond statistical uncertainties.

We have presented a protocol that maintains the advantages of
classical shadow tomography even in noisy quantum systems. This
noise resilience is particularly important for the many applications of
classical shadows in quantum machine learning, quantum chemistry,
and quantum many-body physics. The randomized measurements
dataset serves as a succinct classical description of a quantum state,
and our robust protocol ensures these measurements remain reliable
on real devices. By predicting many different Pauli observables effi-
ciently, one can do unsupervised learning of conserved quantities,
symmetries, and phases of matter for quantum many-body
systems56,78,79. A similar approach can be used for ansatz-free Hamil-
tonian learning and quantum device benchmarking43,80,81. Measuring
many low-rank observables simultaneously could also lead to new
applications. For example, estimating the low eigenenergy spectrum is
important for quantum many-body physics and quantum chemistry.
Combining the idea of dynamicmode decomposition82 andmeasuring
many low-rank observables simultaneously, one could have a better
convergence rate in predicting eigenenergies83.

To fully realize thesepotential applications and validate the broad
applicability of our approach, future work should focus on extending
these experiments to a wider range of quantum computing platforms

and larger system sizes. While our current results demonstrate the
effectiveness of robust shallow shadows on superconducting qubits,
exploring its performance on other architectures such as trapped ions,
neutral atoms, or photonic systems would be valuable. This cross-
platform validation would not only further confirm the generality of
our approach but also potentially reveal platform-specific optimiza-
tions. Additionally, investigating the scalability of ourmethod to larger
system sizes would be crucial for establishing its utility in future large-
scale quantum applications.

In parallel with these experimental directions, it would be inter-
esting to use modernmachine learning techniques to further improve
the inference and predictions of the proposed method84 and also
improve the sample complexity by tailoring unitary ensembles to
special observables of interest31,35. Lastly, by integrating the tensor
network representation of the quantum noise model85–87 with a robust
shallow shadowdataset, it may be possible tomitigate quantum errors
that occur during quantum simulation through data post-processing.
This approach has the potential to improve the accuracy of quantum
simulations on near-term quantum devices88.

Note added—during the completion of this manuscript, we
became aware of a related but independently developed work taking a
randomized benchmarking approach to mitigate noise in randomized
measurements89.

Methods
Effective noise model
In the following, we summarize various effective noise models,
including both Markovian and non-Markovian cases, after twirling by
single-qubit Clifford gates. Detailed discussions and proofs are pro-
vided in Supplementary Note 2. We assume that single-qubit gates are
either ideal or subject to gate-independent errors. As demonstrated in
Supplementary Note 5, the noise associated with single-qubit gates is
several orders of magnitude smaller than that of two-qubit gates or
measurement operations, supporting the validity of this assumption in
practical scenarios.

Theorem 4. (Noise-robust shallow shadow under time-independent
Markovian noise) In a noise-robust shallow shadow setting, randomly
sampling twirling gates independently in each round tailors the noise
into a time-independent stochastic Pauli model, provided that the
noise on single-qubit gates is gate-independent. This effective noise
model can then be incorporated into data post-processing to mitigate
the effects of time-independent Markovian noise. If the noise para-
meters are accurately learned, the predictions from the robust shallow
shadow remain unbiased.

The key idea behind the proof of this theorem is that inserting
single-qubit twirling gates into the randomized measurement circuit
does not change the ensemble average of the noisy Pauli weight
(Equation (3)), which defines the shadow map. These twirling gates
symmetrize the Markovian noise in a manner similar to randomized
compilation90,91. This result provides the foundation for using the
Pauli-Lindblad noise model to learn an effective noise representation
and mitigate noise effects in robust shallow shadow protocols.
Sometimes, quantum devices may also exhibit non-Markovian noise.
The next theorem highlights the key distinction between Markovian
and non-Markovian noise after twirling: in the latter case, classical
correlations persist across different layers in the Pauli-Lindblad
model92. These correlations can be incorporated into the post-
processing step to further capture non-Markovian effects, using
methods such as autoregressive machine learning models or tensor
networks.

Theorem 5. (Noise-robust shallow shadow under non-Markovian
noise) Consider a quantum channel where non-Markovian noise acts
before and after a unitary operation U. This noise can be expressed in
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the Pauli basis as a general map ρ→∑i,j,k,l χijkl PjU(PiρPk)U†Pl. After
applying single-qubit Clifford twirling, the effective noise model
reduces to a stochastic Pauli noise model with correlated error prob-
abilities across layers, i.e. ρ → ∑i,j pi,j PjU(PiρPi)U†Pj with pi,j = χijij. In a
noise-robust shallow shadow setting, this correlated Pauli noisemodel
can be incorporated into data post-processing to mitigate the effects
of non-Markovian noise. If the noise parameters and the classical
correlations are accurately learned, the predictions from the robust
shallow shadow remain unbiased.

In Fig. 6, we summarize the different effective noise models that
emerge after applying single-qubit twirling.

Bayesian noise learning
The first step of our Bayesian noise learning method is to collect a
calibration datasetDc simply by running the shallow shadows protocol
for a state ρ= j0ih0j�N , which we assume can be prepared with high
fidelity.We then use this dataset to define a likelihood function pðDcjλÞ
for Bayesian inference as follows. We construct an estimator for the
Pauli weights ~ωDc

ðPÞ by inverting Eq. (4):

~ωDc
ðPÞ= 1

jDcjTrðj0ih0jPÞ
XjDcj

i= 1

Trðσ̂iPÞ, ð8Þ

where we always choose P to be some tensor product of identity and Z
operators. Since any Pauli weight depends only on the support of P
(thanks to the local-basis invariance of our ensemble) this subset of
operators is sufficient to capture all Pauli weights. We calculate the
standard deviations σP of these estimators using a standard bootstrap
estimate, by resampling (with replacement) the empirical data 1000
times. The likelihood function is then simply

pðDc j λÞ / exp �
X
P

~ωDc
ðPÞ � ωλðPÞ

	 
2

2σ2
P

0B@
1CA, ð9Þ

where the sum runs over all Paulis P. We design a tensor network
algorithm that efficiently encodes ωλ(P) for all Paulis P given noise
parameters λ as an MPS, which enables the efficient calculation of the
likelihood function (details in Supplementary Note 3). In particular, we
use the Pauli-Lindblad effective noise model, where each layer has
independent noise parameters λ. While this model does not account
for non-Markovian effects, one could, in principle, introduce para-
meterized classical correlations between these noise parameters to
capture non-Markovian behavior. Rather than inferring these

parameters layer by layer, we employ the tensor network method
described in the next section to propagate the noise effects across all
layers to the noisy Pauli weights, allowing us to infer them collectively.
In practice, we choose all Pauli operators that are contiguous Z-strings
up to weight 6 (beyond this weight, empirically recovered Pauli
weights are too small to be resolved to within statistical significance).
The prior p(λ) is given by a log-normal distribution with σ = 2, and
centered around noise parameters ~λ calculated via an independent
inference process, namely that of ref. 74. Together, the two fully
specify the posterior distribution over the noise parameters:

pðλ jDcÞ / pðDc j λÞpðλÞ: ð10Þ

Wecan then sample from this posterior distribution usingHamiltonian
Monte Carlo93,94. Although this method essentially gives us access to
the full posterior distribution, in practice, we typically pick a fixed
value of λwhen inferring observables. Thisfixed value can be chosen in
a number of ways, including by taking the mean or median of the
posterior distribution samples, or simply using a maximum a poster-
iori probability (MAP) estimate (found by maximizing Eq. (10) via
gradient descent).Wefind that eachof these threemethods forfixing λ
produces almost identical results.

Although our Bayesian inference method makes an explicit
assumption about the structure of the noise, in practice, this
assumption turns out to be fairly weak. The reason is that the exact
details of the noise channel are unimportant; only its effecton the Pauli
weightsωλ(P) is relevant. In Supplementary Fig. 4, we present evidence
that ωλ(P) depends only weakly on the detailed structure of the noise.
To do this, we simulate a highly correlated and non-local noise source,
which acts (with probability p) on random sets of three qubits with a
random Pauli error at each layer of the circuit. Despite the fact that the
sparse Pauli-Lindblad noise model cannot explicitly model this type of
non-local noise, Supplementary Fig. 4 shows that after using our
Bayesian inference method to obtain a phenomenological model for
the noise, we are nevertheless able to recover unbiased estimates of
various Pauli expectation values. In the future, it is also interesting to
investigate the systematic error due to this model violation77.

Tensor network post-processing for robust shallow shadow
We begin with noise-free shallow circuit shadows, where we use the
ideal unitary channel CU ½��=U � Uy for both physical processing and
post-processing. For a system comprising a single qubit, the Pauli

Fig. 6 | Effective channel after twirlingwith single-qubit randomClifford gates.
a Under time-independent Markovian noise, the effective channel is a stochastic
Pauli noise channel with fixed Pauli probabilities, independent across layers. b For
time-dependent Markovian noise, the effective channel is a stochastic Pauli noise

channel, but with time-dependent Pauli probabilities, while different layers remain
independent. c Under non-Markovian noise, the effective channel exhibits sto-
chastic Pauli noise with joint Pauli probabilities correlated across layers.
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weight is given by

ωðPÞ= E
U
Tr j0ih0j�2U�2P�2Uy�2

	 

: ð11Þ

It is important to note that the tensor product of two replicas
differs from that of different qubits. To distinguish between
these cases, we use superscripts (1) and (2) to explicitly denote
replicas and subscripts to denote qubit indices. For instance,
P�2
ð1, 2Þ =X

ð1Þ
1 � X ð2Þ

1 � Y ð1Þ
2 � Y ð1Þ

2 .
To understand the evolution, it is helpful to track the “distribu-

tion" of Pauli operators (induced by our probability distribution P(U)
over unitaries U) as we evolve forward under the random quantum
circuit. For example, after applying one layer of single-qubit random
Haar/Clifford twirling gates, a given Pauli operator, say Z, maps to an
equal superposition of X, Y, and Z. Mathematically, this is expressed as

EU�Haar1
U�2Z�2ðUyÞ�2
h i

=
X ð1Þ � X ð2Þ + Y ð1Þ � Y ð2Þ +Z ð1Þ � Z ð2Þ

3

= � 1
3
I +

2
3
S,

ð12Þ

where I is the identity operator, and S is the swap operator between
two copies.

More generally, for global Haar/Clifford distributions of U, we
have

EU�Haarn
U�2P�2ðUyÞ�2
h i

=
TrðPÞ � 2�n TrðPSÞ

22n � 1

� �
I

+
TrðPSÞ � 2�n TrðPÞ

22n � 1

� �
S:

ð13Þ

For locally scrambled ensembles of U, which do not distinguish
between different Pauli bases, the coefficients of X, Y, and Z are equal.
This makes it convenient to work on the I and S basis. We introduce a
vector notation, jIi and jSi, to denote the identity and swap basis (note
that these are not superoperator notations). Using this notation,
Eq. (12) becomes

EU�Haar1
U�2Z�2ðUyÞ�2
h i

= � 1
3
jIi+ 2

3
jSi= � 1

3
2
3

" #
: ð14Þ

Applying Eq. (13), we can verify that two-qubit random Haar/
Clifford unitaries act as follows:

jIIi ! jIIi
jSSi ! jSSi
jISi ! 2

5 jIIi+ jSSið Þ
jSIi ! 2

5 jIIi + jSSið Þ,

ð15Þ

which we can express in matrix form as

T 12 =

1 2
5

2
5 0

0 0 0 0

0 0 0 0

0 2
5

2
5 1

26664
37775: ð16Þ

We call this action matrix T the transfer matrix. Using transfer
matrices simplifies tracking the distribution of our Pauli operator P
under randomunitary gates. For shallow circuits comprising two-qubit
random Haar unitaries with a brick wall structure, the transformation
becomes a tensor network of nearest-neighbor transfer matrices Ti,i+1.

The final state can be written as

EU U�2P�2ðUyÞ�2
h i

� jΦi= c1jII . . . i+ c2jIS . . . i+ � � � + c2n jSS . . . i:
ð17Þ

Since Tr j0ih0j�2nO
� �

= 1 for any O that is a tensor product of
identities and swaps, the Pauli weight of P simplifies toω(P) =∑ici. This
can be computed by evaluating the inner product h+ jΦi,

where j+ i � 1
1

� ��n

.

When the two-qubit gates are not random Haar/Clifford, the dis-
tribution of Paulis after applying those gates will not be equally dis-
tributed in X, Y, and Z direction. For example, the two-qubit gates in
our experiments are CNOT gates twirled by single-qubit random Clif-
ford gates. Unlike Haar random unitaries, the CNOT gates pick a pre-
ferred direction for Paulis, in the sense that they treat X and Z
differently. Furthermore, our locally correlated Lindbladian noise
model treats different Pauli bases differently. So rather than working
with identity I and SWAP S basis, weworkwith a four-state system,with
basis states being the Paulis jIi, jXi, jY i, jZi. For instance,
jZi � 0 0 0 1


 �T . One should notice that the defined basis is
different from the superoperator basis. Then, the transfer matrix of a
single-qubit twirling gate is

T =

1 0 0 0

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

266664
377775: ð18Þ

The transfer matrix of a CNOT gate is a 16 × 16 matrix defined by

TCNOT½Pi,Pj�=
1 if Pj =CNOT � Pi � CNOT up to somephase

0 otherwise:

�
ð19Þ

Now, we also have a nice way of exactly solving Pauli distributions
through the noise channel, since the noise model is diagonal in the
Pauli basis. For instance, if a qubit has single-qubit error rates λX, λY, λZ,
the transfer matrix of the noise channel for this site is

Λ=diag 1, expð�2ðλY + λZ ÞÞ
�

, expð�2ðλX + λZ Þ, expð�2ðλX + λY ÞÞÞ:
ð20Þ

We can do the same for two-qubit noise, where our channel is then
represented by a diagonal 16 × 16 matrix. At the end, our state jΦi will
be a superposition over all Paulis. The only nonzero contributions to
(3) are those where all the Pauli characters are either I or Z. So, we can
evaluate (3) with h+ jΦi where

j+ i=

1

0

0

1

26664
37775
�n

: ð21Þ

This algorithm has also been implemented with PyClifford95 and
Tensornetwork96.

Data availability
The data supporting this study is available at https://github.com/
hongyehu/ShallowShadowTomography.
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Code availability
The code used in this study is available at https://github.com/
hongyehu/ShallowShadowTomography.
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