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Disuvlfur Monoxide III. Its Infraréd f'“

- Spectrum and Thermodynamic Functionsﬁ;yv”*‘

B Uldis.Blukis* and Rollie J. Myers

°

- Inorganic Materials Research Division,
Lawrence Radiation Laboratory . "
and Department of Chemistry, University of California _—
. Berkeley, California .

'Abstract

A study of the infrared spectrum of frozen films of<820 has led to

‘a complete infrared assigmment including the bending frequency at 388 - IR

em™'. The thermodynamic functions (F° - H )/T and (H° - H )/T for

gaseous 5,0 are tabulated from 273.15 - 3,000 °K. . Estimates of the standard'f*Tﬁv

" enthalpy of formatlon for gaseous § O are given and 1ts thermodynamic

2
stability is discussed.

R o ‘ , . oo L : S
Present Address: Department of Chemistry, City University of New York,
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Introduction

Now that disulfur monoxide, SQO, is a well established molecular

"'»species,l its chemical and physical properties can be studied.: Current ‘

.

- (lé)z” I. D. J. Meschi and R. J. Myers, J. Am. Chem. Soc. 78 6220

.] .
| (1956). | - L
(1) IL. D. J. Meschi!_and. R. J. Myers, J. Molec. Spec. 3, 405 (1959).

~ work 1s being done on its chemical'reactions.el'This paper is concerned

: (2) P. W. Schenk and R. Steudel, Angew. Chem. 75, 793 ('19_63); P. W.

Schenk and W. Holst, Z. anorg. allgem: chem. 319, 337 (1963).

with its thermodynamic properties and an assignment of its vibration

' spectrum. A previous determination of the standard ehbhalpyfof for-

3

‘mation of S,0 has been obtained from ionization potentials,~ but since

2

(3) R. Hagemam, Compt. Rend. 255, 1102 (1962)s .. =

f this is only ean approximate minimum value, other possible values will

be discussed.;i‘



e Do study the decompos1tion of S

:bands were identlcal, within our resolution, to the 679 and 1165 em

. found by Jones

-

Experimenﬁel
The samples of SQO,!containing'abcut 50% SQQ; were prepared by.the |

usual discharge method.l* For our infrared sﬁudies the samples were

sprayed on a salt window cooled to 77 K in a low temperature cell.h

i

. (4) E. D. Becker and G. C. Pimentel, J. Chem. Phys. 25, 22l (1956).

2O several spectra were taken after the

‘ window had been allowed to warm to 100°K and to 280°K, but the spectra
 were always teken after the window was cooled back to 77°K. These
‘spectra were takeﬁ geveral years ago on a modified ?erkin-Elmer model 12C

' fsingle beam instrument utilizing either KBr or CsI optics. - The wave

length scale ih the CsI region was determined from the watér’bands thet

. appeared in the background of the single beam instrument. S

Infrared Results

In the region from 600 - :1.’400‘cm"l two bands were observed'in the
frozen films which could be aécribed to SQO. The frequencies of these o

? in the gas phase. The 1165 cm L band is clcseutq an.-

| (5) A. V. Jones, J. Chem. 'Phys.._ 18, 1263 (19_50_)-’.:. o

“l'Sog gbsorptiqn6 and. the two coﬁld;né&er[be entirely resclved;' The 'f_-"'*

. (6) R. N. Wlener and E. R Nixon, J. Chem.»Phys. 25 175 (1956), P.‘ {%75

Giguére and M Falk, 4Can. J. Chem. 3& 1833 (1956) |
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679 cmml ebsorption ds completely free of SO absorption. When'the salt o
window was warmed to 100°K the 5,0 bands at 1165 and 579 om-t decreasedi’i'“ ,
greatly. After warming to 280°K the 679 cm "1 pana could not be’ observed :fﬂﬁf

but an absorption of about one-third original intensity remained at -

1130 cm l._ These observations are consistent with diffusion of 820 in - .

an S0, matrix at lOO K followed by decomposition into 802 and sulfur

2

Since the band near llOO cm -1 can be ascribed to an' 8-0 stretch, it is fi‘f]ffjfs, :

Uiclear,.as observed by Schenk,? that some oxygen remains bonded to the‘f

. (7) P. W. Schenk, Z. anorg. allgem: chem 248, 297 (l9hl)-”.

produced sulfur at temperatures as high as 280°K.

Since S 0 is a benttriatomicnmlecule 1t should have two stretching: 1d;£uHL
: and one bending frequency. The 1165 and 679 cm X can be readily as- Ry
 signed to the two.stretches and the bend would normally be found at a
‘ f lower frequency( A measurement of'microwave satellite intensitieslb gave;%}f;éj:'
a value. of 370 % 30 et for the lowest frequency vibration for §,0, and'fefff"3“fi

the spectroscopic temperature coefficientimeasurement58 indicate that

(8) E. Kondret'eva and V. Kondrat'ev, J. Phys- Chemeﬁ.S.S;R.-lE, 1528
(1940). N

y

" a single )

o from 388 em” by less than 10 cm 1 'ff.ffr;

20 band was found at 383 2 cm“l in & frozen'fiim at’77°K;-

This band had the same warm=-up characteristics as did the 679 cm -1 ebsorp-

I tion. The bending frequency in the gas phase would be expected to differ "‘g

.
1

l”;iﬁthere 1s a frequency of about 450 em™ . In the r?néevfrom 300 - 450 em™ T i



-h_~
Thermodynamic Functions .

1v On the basie of the infrared measurements in this paper and the

. previous work5 we know without doubt all three fundamental vibratlonal

'L frequenc1es for SQO. The mlcrowave worklb has also supplied the ro-
:tational constants and the symmetry (C ). The thermodymamie:fumctions

H for gaseous SQO on the‘Pasis of a rigid retor{ hermonic.oscillator model

" were calculated from these data and they are listed in Table I.
/ " Thermodynamic Stability

5,0, called "sulfur monoxide” or "8202" in the older 1iterature,

“has been produced in a variety of nonequilibrium systems 8 9 » Possibly

:1(9) R. G. W. Norrish and G- A. Oldershaw, Proc. Roy. Soc. . (London), ___jb
498 (1959); | . |

R G+ W. Norrish and A.<P. Zeelenberg, Proc. Roy. Soc. (London),

A240, 293 (1957); - | ) _

, A L. Myerson, F. R. Taylor, and P. L. H'ansv’c,l_»J‘.‘Chemu' Pnjs.»_e_s,

1309 (1957).

it is present in significent amounts in those high temperetume oxygen-
sulfur equilibriavwhich‘ame rich in sulfﬁr. For a study of the thermo-
_.tdynamic stability of SEO in these and similar systems the standard en~
“.’thalny of formationAAH [QS(rh) +20 2(g) -8 O(g), at O K] is meeded. In

ethe absence of B, direct measurement an estimated AHO would be useful.

Do
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’ An approximate value for AHS can be based on bond energies;5 Thef,f,T

correSponding bond distances end angles in 82, S0, 820, and 802 are

1b, 10:

similar. Furthermore, the bond dLssociation energies Do(S-O) and fff;

| (10) ». A. Glguere, J. Phys.. Chem. 6L, 190 (1960).

i

!

- Do(0S-0) are nearlypequal.ll These observations imply that Do(S-8) andf;,“

| (ll) A1l the thermodynamic data are taken from Table I of this paper

“ and Appendlx 7 of G. N. Lewis, M. Randall, K. S. Pitzer and

“f,L- Brewer, Thermodymamics, McGraw—Hill Book Co., New York 1961.: o
E There is some uncertainty about -the values of 101 and 123.5
*_s Kcal/mole used for the dissoclation energies of 82 sndlSO; respec—'
) tively. See R. Colin, P. Goldfinger and M. Jeunehomme, Nature 187,
108 (1960) also W..D..McGrath and JQ‘F. McGarrey, J Chem. Phys.

37, 157k (1962).

Do(S<0) may be used. to calculate AHB for S,0. Withpthese assumptions

2

a AHS = =34 Kcal/mole is obtelned. From measurements of-ionizetion

;.potentlals, ultraviolet spectrum, and equilibria in sulfur-oxygen system

:r;experimental lower limits for AHO can be established. These limits |
1ndicate that S 0 1s less stable than is Indicated by the ‘bond energy
| calculation." ‘
B Hegemann3 has measured the anpearance potentiels of SO from both
f 802 and.S-O. His measurements give a value of 2% 0 * 0. h e.v. for the -

: energy required to produce SQO + O from SO2 + S. This value gives a




~ iis a lower limit for AHB.

' ‘Photodissociation studies of'SQ'13 and NO

b

CAHY = &1T £ 9 KcaL/mole. Hagemann implies in his'paper-that'this value

0

In his work on the ultraviolet dbsorptionVSPectrum of 820 J'ones5

noted a well defined prediésoéiation 1limit at 3153.8 A in a‘prpgression

| which starts from the ground vibrational state. This value corresponds

to an energy for photo@issociation of 90.5 Keal/mole. If'Sé + O were the

products of this dissociation then a minimum AHS for 5,0 would be -1

" Kcal/mole. This value seems to be rather too high. If SO + S were the

[

;f products then a minimum AHO would be =23 Kcal/mole. These are minimum
values because of the unknown amount‘of excess energy carried off by the
.. products. Excess energy in the form of electronic excitation is un-

' 1ikely because the first ex¢ited states of both the S atom and SO are

0

- sufficiently high12 to give a value for AH® of about O Kcal/mole.

(12) The %A state of SO is not knownvbuﬁ its energy Shouid be similar
to that found in 02.':”: . : o

SN

N th' have’shown that'the'excess

"(13) P Warnek, F. F. Marmo and J. O. Sulliven, J. Chem. Phys. L0, 1132

- (1964).

~(24) J. W Pitts, J. H. Sherp end S. I. Chan, J. Chem. Phys. Lo, 3655

- (1964). -

'rotaﬁional and;Yibratiohal'énergjﬂof thé'products ¢ah bé Sﬁ;ii;§ﬂ‘if




s

" but the equilibrium

value'reprgsents a rather well established lower limit for AH®.

...7..‘.

The most complé%e study of sulfur-oxygen vapor in equilibrium hasgf:_gg K

been.done by Dewling and Richardsdn.lsv They used silver beads in:~-'

. (15) E. W. Dewing and F. D. Richardson, Trans. Faraday ch.'éi, 679,.‘f“-ifi;§'

(1958).

o
i

. equilibrium with the vapor at 1,000°- 1,500°K. They interpreted their

results in terms of the gas phase equilibrium

S,+280,=kso . (;)

38,+280,=4s0 . (2)

_may,aléo have been signifiéant. If so, then the relationship betweeh 1 3
" - the apparent equilibrium constant calculated by Dewing and Richardéon

‘ (Ka) and those for equilibria (1) and (2) would be

S - T op(s )E
K*¥ = K%+ 3 K" P(sp) (3)

- In their experiments the equilibrium pressure of Sé, P(Sg),_ranged onL&»l

.from 2.9 to 3.9 x lO-3 atm. Therefore, g variation of Ka would not have “‘
:'been detected even if relatively large amounts of 820 weré presént. if.

. we assume that under their experimental conditions equilibrium (2) 1s

dominant then with theihelp of equation (3) we calculate a value of

Aﬂg = =15 KcaL/mole for 820 from Dewing and Richardson's data. This

0

In their silver bead experiments Dewing and Richardson srrived at a
value for the AHG of S0, neglecting equilibrium (2), which can be taken'i
_ as in error by -3 Keal/mole (this iS‘the’largest error consistent with .

_thé accepted vélues of Do(8-8) and Do(S-O) and their érrorél;){  If this =

1. 2
: S
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=3 Kcal/mole error is ascrlbed to equlllbrlum (2) then equation (3) allows
‘one to'calculate a AH = -13 Kcal/mole for SQO. This value is only
‘slightly larger than the -15 Kcal/molezvalue which was based upon the
‘,compleﬁe neglect of equilibrium (1). Sinceiit seems imprcbablel1 that
‘.equilibrium.(l) can be neglected the silver bead data of Dewing and
.:«'Richardson makes the Aﬁa = -13 Kcal/mole a . realistic lower limit fof the
': heat of formation of séo. While the bond'energy and predissociation =

values all indicate a ﬁore negative AHS value for SQO the only‘well
 '”established eqﬁilibrium data ip'sulfur-rich systems shows that 820 can
:e_not be more stable than is allowed by a AHS = =13 Kcal/mole. |

Since SéO can be produced in relatively high yield in‘a number of

-yhigh temperaturevsystems it seems‘possibie’that the actua; value of.AHS
s fairLy'close to the lower limit of 513 Kcal/mole. We are aware of
: only one experiment reported in the literature on which'e»usefui ﬁpper

- limit for AHS of SQO can be based. Schenk16 reported thatvszo“can be

(16) P. W. Schenk, Z. anorg. allgem. chem. 229, 305 (1936).

prepared in 5% yield (based upon 802) by heating SO2 and sulfur vapor
with a Nernst glower. If we assume that Gibbs free energy 1s an :
o appllcable criterion of equlllbrlum in thls case and that the net reactlon

is given by equation (2), then_one can wrlte.}
- 200972 25973 2(s.0)*] (4
AF = AF -RTln[P(OE) , P_(SQ) ,P(SEO) ]_ S ()

A useful upper iiﬁit for AH can be calculated if AF is set ‘equal to zero

 under Schenk's conditioﬁs.ls Schenk does not describe his experimental
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conditions in great detail, but reasonable assumptions (T~2,000°K and
P(SOQ)”? B(s,) > P(szo)h > 10°%?) give a maximum AH = 2 Keal/mole. This
value is also @ reasonable upper limit on the basis of bond energies.

The range that our limits place on the relative importance of SO and |

' 520 in sulfur rich'systems is still rather lafgé. If one assumes that at .

1,000°K P(SOQ) = P(Se)'% 0.5 atm then P(S0) ~ 10'h atm.  If Aﬁs‘for 5,0

is =13 Kcal/mole then in this system P(sgo) ~ 1072 atm, but if Ay =

2 Kcal/mole then'P(séo)'~ 10" atm. Only further experimental data will

be able to remove this uncertainty.
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