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Abstract

A molecular-scale investigation of water’s response to interfaces: towards rational design

of water-mediated interactions

by

Jacob I. Monroe

Understanding and manipulating the behavior of water is a crucial component of

designing materials at interfaces (i.e. for use in membranes, filters, chromatographic

columns, etc.) as well as materials based on self-assembling molecules (i.e. micelles,

hydrogels, etc.). It has long been known that water plays a significant role in mediating

surface adsorption as well as interactions between biomolecules, but effective strategies to

modify this behavior based on atomistic physical intuition has been lacking. Many past

efforts have focused on unrealistic, toy systems in order to develop an extensive theory

of water behavior in idealized inhomogeneous environments. Here I put this theory to

the test in realistic yet simple and well-controlled molecular simulations, beginning the

process of identifying practical extensions to inform the design of real materials.

To isolate and understand key water physics, I investigate ever-important hydrophobic

interactions and explore the thermodynamic information contained within water’s struc-

tural response to hydrophobes. Specifically, consideration of the behavior of three-body

angle distributions, which relate to the tetrahedral structure of water, allows for the

construction of simple thermodynamic models for adsorption and solvation. I show that,

in general, the success of such thermodynamic models may be attributed to fundamen-

tal connections between perturbations to water structure and the relative entropy of a

solvation process, which includes indirect thermodynamic contributions associated with

solvent restructuring.
ix



In proteins and other biological settings, hydrophobic regions do not occur in isolation,

but instead are part of heterogeneous interfaces involving a variety of chemical groups. To

study the role of chemical patterning in inducing unique water behavior at such surfaces,

I present methods coupling a genetic algorithm to molecular dynamics simulations to

optimize arbitrary surface properties through the reorganization of functional groups.

Water mobility near an interface is optimized in this way, ultimately revealing novel

relationships between water dynamics, structure, and thermodynamics. I also use this

algorithm to discover interfacial chemical patterns that repel or attract a diverse set of

small-molecule solutes, as might be necessary to prevent fouling during water purification

processes or selectively capture desirable products during chromatography. Overall, I

extend our current knowledge of water’s molecular-scale response to both solutes and

macroscopic interfaces, effectively expanding the design space for interfacial materials in

terms of these atomistic-level insights.
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4.4 (a) 2D radial distribution functions for SAM hydrophilic groups show
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from visualization of surface structures. . . . . . . . . . . . . . . . . . . . 107
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4.6 (a) Hydration water diffusivity correlates with the excess chemical potential
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maximum diffusivity ones. (b) The logarithm of water diffusivity correlates
with the orientational contribution to the one-body intensive entropy. . . 110

4.7 Spatial variations as a function of distance from the mean interface (water
density at 0.3 of its bulk value) are shown for water density, hard-sphere
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4.8 Minimum and maximum diffusivity LJ surfaces from the genetic algorithm
optimization, as well as LJ surfaces with the optimum patterns from SAM
surfaces (values for these surfaces with super-attractive particles are shown
in parentheses). Lateral diffusivities are averaged over 8 independent runs.
The central column shows the P-value for the hypothesis that the minimum
value is greater than the maximum using Welch’s t-test, which in all cases
shows that there are no statistical differences between the minimum and
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5.1 Schematic demonstrating the functioning of the genetic algorithm coupled
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5.2 While the solvation free energies at all interfaces studied are correlated
with bulk solvation free energies for all solutes, they are not correlated with
binding affinities. Thus, solute hydrophobicity/hydrophilicity as measured
by solvation free energies is not a good metric for solute binding affinity. 136

5.3 Potentials of mean force are shown for all solutes studied at methylated
(left) and hydroxylated (right) interfaces. The distance from the interface
is calculated from the solute heavy-atom centroid to the fixed sulfur atoms
of the SAM chains. All PMF values are relative to the bulk solvation free
energies of solutes, which are shown as points at the furthest distances
from the interface sampled. Error bars are those reported by pymbar.68 . 138

5.4 Contributions to binding free energies as described in the text and defined in
Equations 5.3 and 5.4 are shown for the methylated (top) and hydroxylated
(bottom) SAM surfaces. Summing the ∆∆Grep and ∆∆Gattr terms yields
the change in LJ interactions ∆∆GLJ . The repulsive component, which
involves creating a cavity in which the solute may be inserted, is the
predominant thermodynamic driving force for a solute’s preference for the
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5.5 The progress of the genetic algorithm is shown for minimization (decreasing
regions) and maximization (increasing regions) of the affinity of methane.
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MD and the linear regression model, respectively, were used to determine
solvation free energies. The points for the linear regression model are based
only its final version – that trained from results of all MD simulations,
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5.7 Genetic algorithm optimization successfully identifies patterns that optimize
the selectivity of an interface for methanol (2) compared to methane (1).
Note that a minimization of methanol selectivity is a maximization of
methane selectivity and vice versa. The optimization procedure is the same
as that shown in Figure 5.5 but MD simulations are run for both methane
and methanol for each surface pattern and the difference in interfacial
solvation free energy between the two solutes is optimized. . . . . . . . . 151
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5.9 Changes from bulk water structure of three-body angle distributions for
water oxygens within first solvation shells of bare surfaces with no solutes
(a), solutes in bulk (b), and solutes near methylated (c) and hydroxylated
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of expected peaks for liquid systems with LJ particles (63.4◦), ideal gas
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A.1 Highest percentage RMSD clusters are shown for peptides in solution and
with the pulling atom, restrained or free, near the simulated SAM surface.
Differences do not appear with the release of restraints, though in many
cases the GS part of the chain extends more readily into solution. For 3
and 4 leucines, at least one leucine is left dangling into solution, regardless
of restraints, due to constraints introduced by backbone connectivity.
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A.2 Two-dimensional free energy surfaces in intrapeptide hydrogen bond (oxy-
gen acceptor to hydrogen donor distance cutoff of 2.1 Å and donor-H-
acceptor angle cutoff of 150◦) and radius of gyration space are shown for
all simulated peptides. Heat maps in the first column show results for the
peptide restrained to be near the surface, in the second for the peptide
free on the surface, and in the third for the peptide in solution. Each
plot has been shifted in reference to its point of lowest free energy, with
the scale at right in kBT . In the case of the peptide restrained on the
surface, re-weighting to account for the energy of the restraint has not
been performed. Such re-weighting results in negligible changes to the free
energy surfaces shown in the first column. In general, peptides explore a
wide range of configuration space, though this space is reduced for peptides
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A.3 Similar to Figure A.2, but with total SASA per atom (top) or hydrophobic
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A.4 Radius of gyration for each peptide restrained on the surface, free of
restraints but on the surface, and in solution. From the large jumps in Rg,
it is clear that the peptide frequently folds and unfolds, indicating a lack of
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above, but further indicates that the wide regions of stability in SASA, Rg,
and hydrogen bond space are due to peptide disorder rather than lack of
equilibration. Autorrelation times are shown at the top left corner of each
figure. Note that simulation times for peptides in solution are 90 ns, while
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A.5 For the (GS)5 peptide, various quantities are shown throughout the slow-
pulling process. Black curves are averages over configurations from in-
dividual trajectories falling within pulling coordinate (z-axis) bins of 1
Å width. Red curves are averages over all trajectories, or black curves.
The minimum z-coordinate refers to the atom in the peptide closest to
the SAM surface, with a pull-off event defined as the time at which this
value exceeds 21 Å. Peptide z-extension refers to the z-separation between
the pulled atom and the first backbone atom in a leucine residue (or the
backbone atom preceding the C-terminal cap in (GS)5). Rg refers to the
peptide radius of gyration. Shell waters are defined as waters within 5 Å
from exposed peptide atoms. Total SASA/atom is the per-atom solvent
accessible surface area for the entire peptide, while SASAhyd is the solvent
accessible surface area of only leucine residues. Numbers of hydrogen
bonds (distance cutoff of 2.1 Å between heavy atoms and hydrogen bonded
hydrogens, and donor-H-acceptor angle cutoff of 150◦) are shown between
the peptide and water, as well as between backbone atoms in the peptide.
Force and work curves are additionally shown at the bottom. . . . . . . . 182

A.6 Metrics shown for the (GS)3L4 peptide, slow-pulling simulations. From
Figure A.5 to Figure A.6, distinct qualitative differences in many of the
curves reveal a starkly different pull-off mechanism with the addition of
leucine residues. Mainly, the radius of gyration develops a clear maximum
that corresponds to a force peak around full extension of the peptide. . . 183

C.1 Radial distribution functions for the LJ water model at various temperatures
and densities (in g/cm3). Vertical dashed lines show the cut-off of 0.34 nm
used to define neighbors for calculating three-body angle distributions in
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C.5 Two-dimensional probability densities in the number of neighbors within the
0.34 nm cutoff and the three-body angles are shown for the lowest-density,
lowest-temperature and highest-density, highest-temperature conditions
for both LJ and TIP4P/2005 water. For the low-density, low-temperature
TIP4P/2005 distribution (top right), the peak at low angles (around 50◦),
is due to rare configurations involving 5 neighbors, where the tetrahedral
peak around 109.5◦ is still prevalent but a neighbor interstitial to this
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C.6 Translational order parameters t and q are computed as described by
Errington and Debenedetti.1 Isotherms in t-q space are shown at far left,
with isotherms as a function of density shown for q and t shown in center
and right, respectively. The low-density structural anomaly boundary
occurs where q exhibits maxima, and the high-density boundary occurs
where t shows minima. In the center and right plots, solid lines are fits of
the points shown to 4th-order Legendre polynomials, which are used to
determine the minima/maxima and the anomaly bounds. In the center
figure at a temperature of 280 K (5th from lowest), it appears that a
maximum has been found; however, the lowest density point actually
represents a decrease in q due to nucleation of voids in the liquid while
it is very close to its metastability bound. Thus, the same q behavior is
exhibited whether the mechanical stability or structural anomaly boundary
is crossed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.7 Tetrahedral order parameters isotherms computed via the definition from
Errington and Debenedetti,1 using 4 nearest neighbors (left) and computed
from the distributions of three-body angles using a fixed distance cut-off
(right). Circles are for TIP4P/2005 water and triangles show LJ water.
When using a fixed cut-off, no maxima in q are observed, except in the
case of the simulation at 0.87 g/cm3 and 280 K where voids are observed
in the metastable liquid. When considering exactly 4 neighbors, some
neighbors are occasionally included that reside outside the first solvation
shell, leading to decreases in q at low densities where there is non-negligible
probability of seeing 3 neighbors within the fixed cut-off instead (Fig. C.5).
At high densities, q is much lower due to inclusion of greater numbers of
neighbors that have angles different from the tetrahedral angle of 109.5◦. 196

C.8 Translational order parameter distributions are shown using a large cutoff
identical to that defined by Errington and Debenedetti1 (left), and a small
cutoff of 0.34 nm equivalent to the neighbor cutoff for computing three-
body angles (right). TIP4P/2005 water is represented by circles while LJ
water is shown with triangles. Though the order parameter is shifted to
different values, the qualitative behavior is almost identical, with minima
of isotherms occurring at effectively the same densities. In this way, either
cutoff definition produces the same result for the high-density structural
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C.9 Various metrics based on the three-body distribution2 are shown for
isotherms versus density. ftetra is the fraction of the distribution that
is tetrahedral as defined by the weight of the distribution between 90.0◦
and 130.0◦. The top right shows the average of the cosine of the three-body
angle within the tetrahedral region defined above. The bottom left shows
the variance of the cosine of three-body angles within the tetrahedral region.
The bottom right presents the entropy of the three-body angle distribution.
Maxima in the three-body angle distribution entropies are suggestive of
the high-density structural anomaly bound. However, no metric seems to
suggest a lower-density bound. . . . . . . . . . . . . . . . . . . . . . . . . 198

C.10 Perturbations of bulk water three-body angle distributions in the second
hydration shell (left) and a shell far enough away to achieve bulk-like
behavior, between 2.4 and 2.6 nm from the colloid center (right). The
magnitude of second-shell perturbations is almost an order of magnitude
smaller than the first shell and the trends are distinct from those observed
in the first shell. Far from the colloid, there is only low-magnitude noise
compared to the reference distribution. . . . . . . . . . . . . . . . . . . . 199

C.11 Perturbations from bulk for three-body angle distributions in the first
hydration shell of WCA colloids are shown as solid lines for LJ, TIP3P,
TIP4P-Ew, and TIP4P/2005 water models (from top to bottom). Small sys-
tems are in darker purple, while larger systems are lighter orange. Dashed
lines represent distributions with applied geometric constraints rather than
physically present colloids. Specifically, spherical shells corresponding to
the same radial range between the hard-sphere radii and RDF first minima
of WCA colloids are defined to select water oxygens in bulk-water simula-
tions, with only waters at positions greater than the radius considered when
computing the distributions. This effectively imposes geometric constraints
without any colloids present. In the case of the LJ fluid, it is notable
that the physical colloids perturb the distribution less than the geometric
constraints. This is because the physical colloids, though purely repulsive,
exhibit a soft interface while the constraints imposed are a perfectly hard
interface defined by the effective hard-sphere radius. . . . . . . . . . . . . 200

C.12 Thermodynamic quantities associated with solvation, normalized to the
average number of three-body angles formed by waters in the first hydration
shell, are shown against projections onto the first two principal components
of perturbations by all colloids. Circles represent WCA colloids, triangles
low-density colloids, and squares high-density colloids. Smaller colloids
are shown with dark purple while large colloids are brighter orange. Only
for the relative entropy do we see evidence of a collapse of the projections
across all colloid types. This collapse breaks down for larger colloid sizes,
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become increasingly significant. . . . . . . . . . . . . . . . . . . . . . . . 201

xxiv



C.13 Fits to the principal-component-based model for the relative entropy (with
cross-terms) are shown for independently fitting to each of the colloid types.
The gray shaded region represents 5% error while the blue-shaded region
represents 20% error. The fits are excellent even at small colloid sizes.
Compared to the fit over all colloids (Fig. 3.8), the individual fits are more
accurate at large colloid sizes. . . . . . . . . . . . . . . . . . . . . . . . . 202

C.14 Three-body relative entropy in the first solvation shell of colloids is shown
against the total solvation relative entropy. For small colloid sizes (smaller
relative entropies), all colloid types fall along the same line. For col-
loids larger than ∼0.5 nm in hard-sphere radius, the behavior becomes
qualitatively different, with slopes for large colloids significantly diverging. 203

D.1 Schematics of 1D Markov models with distinct transition rates that result
in average diffusivities that are additive (top) and non-additive (bottom). 208

E.1 For cristobalite at a fraction of 0.25 of the maximum possible number of
silanol groups, correlations are shown between the measured diffusivity
parallel to the plane of the surface (Dnet on the x-axis of all panels) and
(a) the diffusivity measured below the surface (b) the diffusivity measured
above the surface (c) Dnet itself (d) the measured diffusivity far from the
surface (e) the average simulation temperature (f) the total simulation
pressure (g) the component of simulation pressure perpendicular to the
surface and (h) the equilibrated box dimension perpendicular to the surface.
Black lines are linear regressions to the data with R2 values shown on each
plot. While the average simulation box length perpendicular to the interface
weakly correlates with diffusivity (larger volumes for faster diffusion), this
is due to variation in effective surface hydrophobicity that modulates
interfacial width at constant pressure. For cristobalite surfaces at low
density (here and in Figure E.2), it appears that the total system pressure
(including all Cartesian directions) correlates weakly with the mobility of
hydration water. Noting that the surface area is fixed in the plane of the
interface and not relaxed during constant-pressure equilibration, it is clear
that arrangements of silanol groups can affect the in-plane strain of these
surfaces by changing the bonding pattern. Thus, a weak correlation is
observed between measured diffusivity and total simulation pressure as the
pattern of functional groups in cristobalite is adjusted. . . . . . . . . . . 211

E.2 Same as Figure E.1, but for cristobalite surfaces at a fraction of 0.375 of
the maximum possible number of silanol groups. . . . . . . . . . . . . . . 212

E.3 Same as Figure E.1, but for cristobalite surfaces at a fraction of 0.50 of
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E.4 Same as Figure E.1, but for cristobalite surfaces at a fraction of 0.75 of
the maximum possible number of silanol groups. . . . . . . . . . . . . . . 213

xxv



E.5 Same as Figure E.1, but for the SAM surface at an OH-terminated chain
fraction of 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
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fraction of 0.50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

E.7 Same as Figure E.1, but for the LJ surface at an attractive particle fraction
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correlates with the diffusivity. It should be noted, however, that the range
of Z-pressures observed is the same as for other surface types. With surface
patterning playing little to no role in determining diffusivity for the LJ
surfaces (see main text), system properties that vary with system set-up
and equilibration, like the Z-pressure, are more statistically significant,
whereas these same fluctuations primarily introduce statistical noise to
diffusivities on SAMs or cristobalite. . . . . . . . . . . . . . . . . . . . . 214
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of 0.50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

E.9 Probability density distributions for the cosine of the tilt angle for SAM
surfaces (the angle between the direction perpendicular to the interface
and the vector between the restrained sulfur atom and the last united
atom before the head group). The top panel shows the distribution for
OH-terminated chains while the bottom for CH_3-terminated ones. Each
color represents an independent simulation, with solid lines correspond-
ing to the minimum-diffusivity surface pattern and dashed lines to the
maximum-diffusivity surface. Variations in tilt angle distributions between
independent simulation runs are larger than any differences observed be-
tween the minimum and maximum diffusivity patterns, implying negligible
changes in average surface structure. Additionally, freezing all but the head-
group atoms of SAM chains results in nearly identical diffusivity ranges
in Figure 4.3 (also see Figure E.12), although the diffusivity is slightly
reduced overall (by 0.014 to 0.032 Å2/ps). The decreases in diffusivity are
more pronounced at higher surface densities and stem from the reduction,
due to chain rigidification, in hydrogen bonding between surface hydroxyls,
increasing the availability of water-surface hydrogen bonds. . . . . . . . . 216

xxvi



E.10 Top-views for the normalized fluctuations in the number of waters within
probes of radius 3.3 Å sitting with their edge at the mean interface of (a)
cristobalite, (b) SAM, and (c) LJ surfaces. The mean interface is defined
as the location at which the average water density is 0.3 of the bulk value
for TIP4P-Ew of 0.0332 Å−3. For LJ surfaces, the middle column considers
the patterns determined by optimization of the SAM surface at the same
density. It is clear that fluctuations are enhanced near larger patches of
more hydrophobic groups on both SAM and LJ surfaces. For cristobalite,
both very small and large fluctuations are observed near hydroxyl groups.
This in turn leads to higher excess chemical potentials for hard-sphere
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imum diffusivity surfaces and the average interfacial height fluctuations
using the method of Willard and Chandler1 to define the instantaneous
interface. Hatched points represent surfaces at hydrophilic fractions of
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maximum diffusivity surfaces. The correlation is enhanced by freezing the
united atoms (non-head-group atoms) of the SAM chains, as shown by the
black versus blue diamond symbols. . . . . . . . . . . . . . . . . . . . . . 219

E.13 Profiles for water density, hard-sphere excess chemical potential, water
diffusivity parallel to the interface, and water dipole re-orientation times
as a function of distance from the mean interface (defined as the point
where water reaches 0.3 of its bulk value). Dipole re-orientation times were
computed by fitting the time decay of the cosine of the angle between the
original dipole moment vector with a stretched exponential, as in the work
of Debenedetti and co-workers.2 The qualitative trends are the same if an
instantaneous interface definition is used instead. In general, hard-sphere
excess chemical potentials are correlated with both lateral diffusivities and
water re-orientation times. However, these spatial correlations seem to
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xxvii



E.14 The natural logarithm of the ratio of lateral diffusivity to its bulk value
is shown as a function of the orientational, translational, and total con-
tributions to hydration water entropy 8 Å from the interface (reported
relative to bulk waters). Filled symbols are minimum diffusivity surfaces
(distributed hydrophilic groups), open symbols are maximum diffusivity
surfaces (clumped hydrophilic groups), and hatched symbols are surfaces
with hydrophilic fractions of 0.0 or 1.0. When all atoms in SAM chains
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gas phase to interacting with the rest of the system via only hard-sphere
repulsions (gray, ∆Grep), and switching hard-sphere interactions to full LJ
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with LJ on. Repulsive free energies as described here are not along with
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G.3 Probability distributions for the number of non-overlapping non-solute
atoms are shown for all solutes in bulk (circles) and at methyl- (squares) and
hydroxyl-terminated (diamonds) SAMs. Gaussian fits to the distributions
used to evaluate the probability at zero non-overlapping atoms are shown
as solid, dashed, and dotted lines, respectively. For distributions in bulk
and at hydrophilic interfaces, Gaussian distributions have been observed
for small solutes for spherical,1 cuboidal,2 and irregular volumes, including
that defined by a single alanine.3 Near hydrophobic surfaces, however, the
Gaussian fits are anticipated to underestimate the weight in the distribution
at low values of N ,2,4, 5 resulting in underestimates of the hard-sphere
solvation free energy at these surfaces. This does not seem to be the case,
however, for values of N below the average, where the Gaussian fit actually
leads to an overestimate of the weight, possibly due to poor sampling of
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G.6 Genetic algorithm optimization of surface patterns to minimize and max-
imize the affinity of capped glycine for a 50:50 methyl- and hydroxyl-
terminated surface. Procedures are identical to the optimization for
methane except that twice as much computational time is utilized for
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tion. Though the results are far less impressive, the algorithm is beginning
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G.7 Radial distribution functions between all solute atoms and water oxygens.
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Chapter 1

Introduction

1.1 Overview

This dissertation represents a unique attempt at understanding the role of water in

mediating interfacial properties and solute-solute interactions, painting a picture for how

nanoscale heterogeneities may be leveraged to modify both proximal water properties and

in turn overall properties of an interface. Designing materials for interfacial applications

meets with several unique challenges compared with standard materials design. The

presence of an interface implies interactions between different materials or phases, with

the interfacial structure and properties of each phase usually significantly different than

their bulk states. Further, the response of each phase to the other, and hence the overall

properties of the interface, may depend subtly on nanoscale heterogeneities in morphology

or chemistry.1–4 Such considerations are especially important for applications in which

solutes are interacting with either an extended interface or each other, as is the case

in chromatography, liquid-phase catalysis, or self-assembling materials. For instance,

self-assembling peptides show great promise as “smart,” environmentally responsive

materials that develop and adapt their structure and interactions on a wide range of
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length-scales.5–8 However, it remains very difficult to predict the properties and behavior

of such materials based on peptide chemistry alone, mainly due to the poorly understood

role of water-mediated interactions.

A rich literature concerning the theory of solvation,9,10 adsorption,11 self-assembly,12

and hydrophobic interactions13–15 can provide some guidance in designing interfacial and

self-assembling materials. However, these theories either include only implicit descriptions

of solvent, which do not fully consider the unique nature of liquid water, or treat only

very simple, idealized solutes. To bridge the gap between theory and applications, we

study a number of realistic yet simple systems. Our observations and suggested extensions

of current theories will greatly assist the future development of computational tools to

rationally design interfacial and self-assembling materials for practical applications.

1.2 Designing interfacial and self-assembling materi-

als

Industrial processes that rely on specific material properties or molecular-scale behavior

at an aqueous interface are ubiquitous. Water purification, filtration, selective membrane

capture, chromatography, aqueous-phase adsorption, and even surface-catalyzed reactions

within flow reactors are all processes that will benefit from a deeper knowledge of the

interplay between material characteristics and water’s interfacial behavior. In water

purification, desirable materials facilitate rapid water transport through a membrane

while also limiting the passage of other solutes and resisting the adhesion of contaminants

to the membrane surface.16,17 A key aspect of optimizing adsorption and chromatographic

processes involves modifying the selectivity of an interface to bind one solute or another,

which is largely dictated by the interfacial thermodynamics and dynamics of water (the

2
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solvent).11 This is well-recognized in biological settings, where water is thought to play

an essential role in driving interactions between biomolecules, as well as regulating the

timescales involved in molecular-level biologic processes.18,19 Similarly, water plays a role

in surface-catalyzed reactive processes by not only modifying the reaction-site environment,

but also in determining the surface concentration of reaction products and mass transport

to and from the interface.

While water’s behavior significantly affects all of the above processes, the specific role

of nanoscale material features in determining water interfacial properties remains largely

a mystery. Investigation of these phenomena is difficult due to the small length-scales

and short timescales that are involved – water structural correlations typically persist

to around 1.0 nm, with rearrangements of configurations, such as hydrogen bonding,

occurring on the order of picoseconds. Measurements of macroscopic properties, such as

contact angles, intrinsically average over nanoscale surface features that interact with

water on its innate molecular length scale, effectively ignoring the role of such features in

modifying water behavior. It is clear from biology, however, that nanoscale variations in

both geometry and chemistry of proteins have a tremendous impact on protein function.18

Mimicking these heterogeneities represents an exciting opportunity in the design of next-

generation interfacial materials. While fabrication and control of such nanoscale features

will be critically important moving forwards, we focus here on building an understanding

of water’s response to such material properties. This will extend the material design space

and direct advancements in manufacturing and synthesis by identifying features that can

be tuned in order to most impactfully manipulate water behavior and hence material

performance.

Closely related to the design of nanoscale features on interfacial materials is the

design of self-assembling materials. Such systems represent the majority of biological

materials, which are built from large networks of interacting proteins, the structure and
3
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properties of which determine the overall material toughness, rigidity, and flexibility.5–8

Examples include materials as diverse as silk20 and the cement that holds barnacles

tightly to surfaces in harsh marine environments.21,22 Exciting efforts are now pursuing

non-naturally occurring, protein-based materials that engineer a protein’s unique chemical

and structural properties for a variety of biological and non-biological applications – this

includes “smart” responses, whereby materials alter their nanostructure and interactions

to effect mechanical and thermodynamic property shifts in response to environmental

cues like temperature, salt concentration, or pH.6,23 Unfortunately, the development of

these systems has been predominantly through trial and error, with very few guiding

principles and few computational tools to support the rational and efficient design of

proteins exhibiting specific material properties.

The concept of self-assembly intrinsically involves the development of an interface,

with peptides or other molecules forming phase-separated or solvated structures on

various length-scales based on driving forces regulated to a large extent by the nature

of the solvent. The central challenge in designing new protein-based materials involves

predicting the strength and nature of protein-protein interactions, specifically those that

are mediated by hydrating water. While direct atomic-scale interactions between proteins

(e.g., electrostatic or van der Waals) are easy to predict, the real challenge is understanding

how water surrounding and between them responds to subtle features at the protein

surface, and in turn directs more complex inter-protein interactions. The most important

yet poorly-understood manifestation of these phenomena is the effective attraction between

hydrophobic regions on proteins, which arises not from any fundamental force between

these groups but instead from the unique properties of liquid water.13–15 As discussed

further below, water is in fact an unusual solvent, with many of its bulk anomalies, such

as its unique tetrahedral structure, still being researched.
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1.3 Water-mediated interactions

Water is instrumental in determining the interfacial properties of a material as well

as in driving solute-solute or solute-surface interactions. This involves perturbations to

water structure due to solute or material characteristics, which necessitates a detailed

understanding of the behavior of this common yet unusual liquid. The majority of

anomalous water properties can be associated with its molecular structure.24 Water is

capable of donating and accepting two hydrogen bonds, resulting in a strong preference

for tetrahedral structure both in the solid and liquid phases. Competition between this

tetrahedrality and a spherically-symmetric, simple-liquid structure results in the presence

of a temperature of maximum density at constant pressure along with other anomalies.24–26

At high temperatures, hydrogen bonding is entropically unfavored, resulting in transition

to the simple-liquid structure with increasing temperature along with an initial increase

in density near the freezing point as the tetrahedral structure begins to break down.

It is this same structuring of liquid water that has historically been used to develop

and interpret theories of solvation, in particular of hydrophobic species.27–29 Modern

views of aqueous solvation of nonpolar solutes emphasize instead the availability of free

space within the liquid.30–32 This quantity contains an intertwined dependence on both

liquid structure and density fluctuations.1–3,33–35 Variations of solvation thermodynamics

with temperature are then associated with the shift in water behavior from tetrahedrally-

dominated to simple-liquid-like,24 which results in differences in both structure and density

fluctuations. With this nuanced view, it has also been established that the nature of

hydrophobic solvation, as well as association, depends on both the size and geometry of

the solute.13,15,36 It has also been demonstrated that the hydrophobicity or hydrophilicity

of an interface depends on the surface geometry,4,37 such as surface roughness or concavity,

as well as the patterning of chemical functional groups at the interface.1,38,39
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This work further explores the role of solute geometry, chemistry, and nanoscale

interfacial patterning on the behavior of nearby water. Deeper connections between

water’s structural response to solutes and interfaces and its thermodynamic and dynamic

properties are established while connecting to the theory described above. We also

consider systems that are not clearly within the scope of previously established theories, in

particular flexible solutes of intermediate size that contain mixtures of both hydrophobic

and polar functional groups. These realistic systems allow for rigorous testing of theory

on systems that can still be probed in great detail on an atomistic level through molecular

dynamics simulations. The insights gleaned from this approach can not only be used to

improve theory, but also as preliminary guidelines for designing materials on a nanoscale.

This represents an additional feature to tune in interfacial materials, with the approaches

presented here also laying the ground-work for designing nanoscale material features

through computation.

1.4 Outline

Following the introduction, this thesis is organized as follows:

• Chapter 2: Scaling of the hydrophobic interaction between short peptides and

extended hydrophobic surfaces

• Chapter 3: Characterization of three-body angle distributions in bulk and solvation

shells of model solutes

• Chapter 4: Computational design of surface chemical patterns to optimize proximal

water mobility

• Chapter 5: Chemically-patterned interfaces for the controlled affinity and selectivity

of small-molecule solutes
6
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• Chapter 6: Conclusions

In Chapter 2, we present a computational study of hydrophobic interactions in realistic

systems that is directly comparable to the experiments of collaborators. Molecular

insights from this study relate peptide affinity for hydrophobic surfaces to water structure.

These relationships are pursued in Chapter 3 in the context of hydrophobic solvation

of a variety of model hydrophobes of varying size and attractive interactions. Chapter

4 examines the effect of surface chemical patterning on water mobility at an interface,

establishing fundamental connections between water thermodynamics and dynamics at

an interface. Finally, Chapter 5 considers the effect of interfacial chemistry, including

chemical patterning, on the surface affinity of a set of chemically diverse solutes. The

effect of interfaces and solutes on nearby water structure is investigated in the context of

driving adsorption.
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Chapter 2

Scaling of the hydrophobic

interaction between short peptides

and extended hydrophobic surfaces

Reproduced in part with permission from:

Stock, P., Monroe, J. I., Utzig, T., Smith, D. J., Shell, M. S., & Valtiner, M. (2017). Unrav-

eling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molec-

ular Dynamics Simulations. ACS Nano, 11(3). https://doi.org/10.1021/acsnano.6b06360

2.1 Introduction

Despite over 30 years of extensive research, discerning the origin, scaling, and even

existence of forces between extended hydrophobic surfaces remains a major experimental

challenge. Direct measurements of the hydrophobic interaction (HI) not relying on in-

ference from macroscopic properties have been notoriously difficult to execute without
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interposing physical forces and processes, such as bridging bubbles and surfactant over-

turning. In their recent review, Ducker and Mastropietro1 identify only five experimental

results at extended hydrophobic interfaces that show convincing evidence for exponen-

tially decaying attractive hydrophobic interactions (HI) in the range of 3-12 Å,2–6 where

reexamination of the large body of remaining literature reveals principal experimental

difficulties.1 Here, we use ‘hydrophobic interaction’ to refer to the total interaction free

energy between solvated hydrophobes and not specifically the water-mediated contribution.

In contrast at small length scales, non-linear optical spectroscopy studies7,8 and diffrac-

tion experiments9 have shown how water orients and fluctuates around uncharged small

hydrophobes, which may be critical to molecular HI forces, even if such forces themselves

have been difficult to measure. Indeed, molecular theory and simulations continue to

clarify the relationship between fluctuating water structure and the hydrophobicity of

isolated solutes and interfaces.10,11

Understanding how HI forces manifest in a molecular context and can be systematically

manipulated, e.g. through variations in amino acid sequence, remains a major unsolved

problem. This is particularly relevant to peptides, which depart from the idealized solutes

often studied in theory as they comprise non-rigid, heterogeneous molecules with both

hydrophobic and hydrophilic groups. For realistic sequences containing a variety of amino

acids, a delicate balance of non-covalent driving forces, including the HI as a significant

contributor, directs peptide aggregation, self-assembly, folding, and binding behaviors.12–14

Several recent single-molecule spectroscopic studies have now probed poly-lysine,15 spider

silk peptides16 or charged/hydrophobic peptide sequences17 with extended hydrophobic

surfaces,18–20 but systematically understanding how the HI scales with the hydrophobic

content in a peptide sequence has yet to be clarified.

Here, we examine the scaling of interactions between a short peptide of mixed hy-

drophilic/hydrophobic character with an extended hydrophobic surface as the peptide
13
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hydrophobic content is adjusted. Related studies on the single-molecule level have focused

on homopolymers21 or homopeptides.19 By mutating a hydrophilic scaffold to increase

the number of hydrophobic residues, we can instead probe the additivity and potential

cooperation or competition between hydrophilic and hydrophobic moieties related to

surface affinity. In this work, fully atomistic nonequilibrium and equilibrium molecu-

lar dynamics (MD) simulations explore the same systems experimentally measured by

collaborators performing single molecule AFM (SM-AFM) procedures.22 In simulations,

as in experiment, we assess the strength of the peptide-surface ineraction by rigorously

applying Jarzynski’s equality23 to determine equilibrium free energy differences. Finally,

we show that these equilibrium free energy differences may be associated with changes in

the equilibrium ensemble of water structure at the level of three-body angular correlations.

2.2 Methods

2.2.1 Simulated system

We constructed surfaces to emulate the properties of the experimental SAM of 11-

carbon alkanethiols on an Au111 surface, as shown in Figure 8. For alkanes of this length,

a rigid, extended structure of each chain is adopted, with a
√

3x
√

3 R30◦ monolayer

structure.24,25 Simulated SAMs are constructed from dodecane chains aligned to this

periodic structure with a nearest neighbor spacing of 4.98 Å. The resulting surfaces

were approximately 60 Å x 60 Å, with 12 and 14 chains in the x and y directions,

respectively. To maintain atomistic resolution and avoid introducing new parameters,

atoms in dodecane chains are assigned standard AMBER force field atom types of “CT”

and “H.” For simplicity, charges are assigned based on the work of Siu, et al.26

We minimize initial structures and then equilibrate surfaces for 200 ps with periodic
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Figure 2.1: The dimensions of the simulation box are initially set to 60 x 60 x 100
Å, with pressure equilibration resulting in an increase of the box height to around
103 Å. The x- and y-coordinates of the system are defined to be in the plane of the
surface, with the z-coordinate normal to the SAM. In all simulations the peptide is
pulled along only the z-coordinate, as shown in the right figure with waters removed.

boundary conditions at 300 K in the NVT ensemble. A position restraint (spring constant

of 10 kcal/mol Å2) fixes one end of each dodecane chain at the correct lattice location.

The resulting surface structure exhibits fully extended chains with an average CH3 density

at the non-fixed chain end of 21 Å2/CH3 and an average chain tilt angle of around 19◦.

This tilt is smaller than the experimentally-reported value of ∼30◦ for chains of a similar

length,24,25,27,28 even considering that the tilt angle distribution is expected to be fairly

broad.27,28 Numerous studies have tried to address simulated tilt angles in alkanethiol

SAMs on Au111 surfaces,27–30 using both united atom27,29,31 and atomistic models,28,30,32

but very often require force-field tuning or significant atomic constraints.33,34 We allowed

the chains to move freely with the assumption that the discrepancy in tilt angles is not

expected to affect the qualitative predictions made in this study, as all peptides will

see a similar hydrophobic surface. From the equilibration trajectory, two-dimensional

radial distribution functions for the chain termini demonstrates a well-ordered structure

as expected.
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The simulated system lacks an explicit gold surface and thus also the van der Waals

(vdW) attractions that could potentially lead to lower predicted free energies. However, a

rough estimate shows that long-range vdW attractions cause the slope in Figure 2.4 to

increase by less than 0.1 kBT/leucine.

A periodic box is defined with dimensions of ∼60x60x100 Å3 (Figure 2.1), which

accommodates an extended peptide length of ∼34 Å and a non-bonded cutoff of 8 Å.

10,000 waters are added via the crystal solvation modules in AMBER. Solvated systems

are energy minimized and then equilibrated with two separate MD simulations: first

heating from 100-300 K over 500 ps at constant volume, then 1 ns of NPT dynamics at 1

bar.

2.2.2 Simulation protocol

Molecular dynamics in all steps are carried out using PMEMD in the AMBER

14 package with explicit TIP3P waters35 and the ff14SB force field.36 Though past

studies have shown that the choice of water model can influence the precise behavior of

hydrophobic phenomena,37,38 here we maintain the TIP3P model to ensure consistency

with the chosen protein force field. Throughout, a 2 fs timestep is employed and SHAKE

and SETTLE are used to constrain all bonds involving hydrogen atoms.39,40 We use a

Langevin thermostat with a collision frequency of 2 ps-1 and an anisotropic Berendsen

barostat.41 Both are weakly coupled and we verify the absence of significant density

variations during nonequilibrium pulling.

In nonequilibrium simulations, the pulling coordinate is defined as the height of the

pulled peptide end (the α-carbon opposite the hydrophobic leucine residues) above the

fixed carbons of the SAM (Figure 2.2). Pulling is performed at rates of 10 Å/ns and 2

Å/ns with a spring constant of 0.251 kcal/molÅ2 (350 pN/nm), using a custom restraint

16



Scaling of peptide-surface hydrophobic interactions Chapter 2

potential in AMBER that pulls only in the z-direction, normal to the surface. To generate

an ensemble of initial conformations for forward pulling runs, we simulate the entire

system for 20 ns at 300 K and 1 bar using a flat-bottom harmonic restraint with spring

constant 0.8 kcal/molÅ2 to keep the peptide end within 18 Å above the bottom of the

surface. A total of 30 configurations for fast-pulling runs, or 60 for slow-pulling, evenly

spaced in time, are chosen from the last 18 ns of this trajectory as seeds for forward

pulling runs, with randomly assigned initial velocities at 300 K.

Initial conformations for the reverse runs (towards the surface) are obtained from

bulk simulations. Each peptide is solvated in a water box that extends at least 20 Å

on each side, then simulated for 100 ns at 300 K and 1 bar. 30 (for fast-pulling) or 60

(for slow-pulling) peptide conformations from the last 90 ns are selected at even time

intervals to be placed 60 Å away from the position of the fixed carbon atoms in the surface.

Before performing reverse pulling runs, the resulting system is solvated and equilibrated

as already described except that the α-carbon positions of the peptide are restrained

during heating and density equilibration to preserve the chosen configuration.

In equilibrium umbrella-sampling simulations, the set-up is similar to that described

above for equilibrating the peptide on the surface. Instead of restraining the pulled alpha

carbon, we instead restrain the center of mass of all leucine residues, or the center of

mass of the isobutane molecule, using a harmonic potential with a spring constant of 2.0

kcal/mol·Å2. Depending on the peptide, 23 to 28 windows from 18.0 to 50.0 Å away

from the fixed carbon atoms of the SAM are used (17 windows 16.0 to 29.0 Å away for

isobutane). For each window, 50 ns (10 ns for isobutane) of simulation time is generated

and subsequently used to compute a PMF, except for (GS)4GL, for which 80 ns was used.

This was necessary to converge the calculations due to large conformational fluctuations

in the unrestrained glycine/serine portion of the peptide.
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2.2.3 Free energy estimates

With the exception of free energies reported from umbrella sampling, all estimates of the

free energy are computed with JE23 using only forward realizations of the nonequilibrium

pulling process. Variances in these free energy changes are estimated using 10,000

bootstrap re-samples of the original data. To analyze umbrella sampling simulations, the

free energy was computed as the difference between the invariant, asymptotic portion

at far distances and the minimum of PMFs generated using the Multistate Bennet’s

Acceptance Ratio (MBAR) algorithm42 implemented in pymbar.43 It should be noted that

these free energy differences are subtly different than those computed via JE in two ways.

First, they represent the free energy for moving the center of mass of leucine residues to a

position far from the surface rather than the alpha carbon opposite these hydrophobic

residues. Second, they do not include the free energy of applying a harmonic restraint, as

the effect of this has been removed from the PMF through MBAR. To address the first,

PMFs computed over both leucine center of mass and pulled alpha carbon indicate that

this free energy difference is similar (Figure 2.5), though significantly more complicated

for the case of the alpha carbon. In the case of the second difference, this contribution is

expected to be small, as mentioned earlier.44

With simulations, it is also possible in principle to make use of reverse pulling

simulations of the peptide towards the surface. Reverse moves tend to improve convergence

of free energy estimates45–47 and allow use of Bennet’s Acceptance Ratio (BAR)48–50

approach, which often improves upon the forward-only JE for an equivalent number of

trajectories.47,51 While this proves true for the simulations at faster pulling rates, poor

convergence of the reverse distributions in slower-pulling simulations proves detrimental

to these estimates. Comparisons of free energy estimates from both JE and BAR, as

well as detailed methodologies to account for statistical and sampling errors in these
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estimators, are discussed later on.

2.3 Results and Discussion

Figure 2.2: Schematic of (a) experimental and (b) computational setting used for
quantifying dynamic hydrophobic interactions between a set of different hydrophobic
peptides (shown in Table 2.1) and an extended hydrophobic surface as a function
of the experimental distance DX and the simulation distance DS, respectively. (c)
Hydrophobic mutations are introduced specifically at the C-terminal tail end of a
hydrophilic (GS)n based scaffold. In experiment (a) a PEG12-diamine-based polymer
linker is used to covalently grafted peptides on a molecularly smooth OH/COOH
terminated self-assembled monolayer on a gold surface (Roughness, σRMS ≤ 2− 3Å).
The contour length of LC = 10 nm is indicated. Gold-coated AFM tips (radius, RAFM
∼ 15 nm) are hydrophobized with a self-assembled monolayer and interactions between
different surface grafted peptide mutations (see Table 2.1) and the hydrophobic tip is
measured. In the simulation experiment the PEG linker is not included and the contour
length of the individual peptides amounts to LC ∼ 3.4 nm. In (b) the N-terminal
peptide end and applied pulling direction is marked with an arrow.

A comparison of our MD systems to the SM-AFM experimental setup is shown in
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Figure 2.2. In experiment, fully designed peptide sequences with varying degrees of

hydrophobicity are end-grafted with their N-terminus to a polyethylene glycol (PEG)

linker, with 12 PEG units and a terminal COOH group (PEG12-COOH), on ultra-smooth

gold surfaces modified with self-assembled monolayers (σ ≈ 3 Å).5,52 In experiments

and our simulations, a hydrophilic (GS)5 model backbone of alternating glycine (G) and

serine (S) amino acids has its C-terminal amino acids selectively mutated with up to 4

consecutively distributed hydrophobic leucine (L) units to adjust the peptide hydrophobic

content (Table 2.1). The extended protein with PEG anchor has an estimated contour

length, LC , of 10 nm. The grafted peptide sequences on the PEG12-linker are brought

into contact with a 1-undecanethiol terminated hydrophobic gold-coated AFM tip, and

single molecule experiment force versus distance characteristics are recorded in so-called

fly-fishing mode.53 In this experimental AFM technique, a tip contacts a surface at random

points and if – in our context - a single grafted peptide adsorbs at the hydrophobic tip

during contact, the formed hydrophobic contact breaks during separation of the tip and

the surface, leading to a specific signature in the force profile.53 The experimental data

is considered reliable and kept for analysis if the measured contour length matches ≈10

nm and the force versus extension curve may be fit well with a worm-like-chain (WLC)

model. This ensures that the measurement is only of the peptide’s interactions with the

hydrophobic tip surface and does not include surface defects or “dirt.”

The atomically-detailed simulated system (shown in Figure 2.2B) is designed to closely

approximate both the physical system and the experimental protocols. The N-terminus

of each of the peptides, which in experiment is tethered to a PEG linker and ultimately

a hydrophilic surface, is pulled at constant velocity away from a fixed, periodically

replicated hydrophobic SAM surface approximating the AFM tip. Numerous models of

SAM surfaces,2927,28,30,31 as well as SAM-peptide systems,33,34,54–58 have been proposed

in the literature; here we build the SAM from dodecane molecules with a single end fixed
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Mutation
sequence

Experiment
∆G (kBT )

Simulation
fast-pull
∆G (kBT )

Simulation
slow-pull
∆G (kBT )

Simulation
equilibrium
umbrella
sampling
∆G (kBT )

Three-body
angle model
∆G (kBT ) *

-N(GS)5 Below detection limit 20.9 ± 1.7 7.4 ± 0.5 4.6 ± 0.1 N/A
-N(GS)4GL 7.6 ± 0.8 17.5 ± 3.2 10.3 ± 0.7 8.0 ± 0.1 7.8
-N(GS)4L2 8.8 ± 0.9 22.9 ± 4.6 13.4 ± 2.4 7.9 ± 0.1 10.5

-N(GS)3GL3 12.2 ± 1.1 31.1 ± 2.4 10.5 ± 3.3 11.6 ± 0.1 13.0
-N(GS)3L4 17.9 ± 0.8 33.3 ± 2.1 16.7 ± 1.5 13.1 ± 0.1 14.6

* Errors are not provided for ∆G values from the three-body angle model since this is already an approximate
model utilizing reference probability distributions for which the uncertainties are difficult to rigorously
assess.

Table 2.1: Peptide mutation sequences and summary of experimentally obtained and
simulated interaction free energies with extended hydrophobic surfaces.

at the necessary lattice spacing, with surrounding water explicitly represented. Additional

methodological details are described in the Materials and Methods.

For comparison to simulated results shown later, experimental results (provided by

collaborators) in Figure 2.3A show a master curve with∼80 individual trajectories recorded

during unbinding of the (GS)3L4-sequence (see Table 2.1) from a hydrophobic AFM tip.

The inset in Figure 2.3A shows a typical individual force versus distance curve, with the

distance normalized by the contour length, LC , of the molecular anchor. It should be noted

that due to the density of peptides attached to the hydrophilic surface, not all surface to

hydrophobic tip interactions yield signatures that involve peptide interactions. In fact,

only 3-8% of experimental force profiles indicated successful surface-to-molecule binding

and hence allowed direct dynamic measurement of work-trajectories during unbinding of

single-molecule hydrophobic interactions. Similar master curves were recorded at different

loading rates, as well as for all other peptide sequences. Curves without successful bond

formation show only van der Waals, hydration and electric double layer interactions

that can be fit well with an extended DLVO theory,59,60 while those involving peptide

interactions also require a WLC fit.44

On the basis of the datasets of individual pulling-trajectories, the interaction free
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Figure 2.3: (a) Typical master curve with about 80 individual rupture events measured
between –N–(GS)3LLLL functionalized surface and hydrophobic tip, aligned by the
best worm like-chain fit with a contour length of 10 nm and a persistence length of
0.37 nm. Inset shows a typical individual SM-AFM force distance profile with both
a primary adhesive minimum and a single molecular rupture signature at 60% full
extension of the linker. The fit in the inset shows a fit by an extended DLVO theory.
(b) Normalized histogram of the measured work distribution. The inset in (b) shows a
plot of Jarzynski’s free energy ∆G0 as a function of the number of force trajectories.

energy difference between the bound and unbound states of the different pulled peptides

with the hydrophobic tip surface can be estimated using Jarzynski’s equality (JE):23

e
− ∆G

kBT = 〈e−
−W
kBT 〉 (2.1)

The free energy difference, ∆G, is related to an exponential average of the mechanical

work W over an infinite number of realizations of the same nonequilibrium protocol that

probe the full work distribution. In practice, an estimate for the free energy difference is

given by the same equation using a finite number of realizations n and work values Wi

(i = 1, 2, ..., n) calculated from individual pulling curves,44,61 such that the true difference

is approached as n→∞.

Through Jarzynski averaging, one can hence exactly obtain the equilibrium free

energy difference between the beginning and end states of a non-equilibrium process.
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A definition of these states is important for identifying and assessing the dissipated

work in an experimental setting. In our experiments, the beginning state consists of a

relaxed linker and peptide interacting with an AFM tip in equilibrium, while the end

state corresponds to both the linker and peptide similarly relaxed (i.e., under no tension)

but with the tip far away from the peptide. Thus, the equilibrium free energy difference

between these two equilibrium states consists nearly totally of the contribution from

the hydrophobic peptide-AFM tip interaction. We note that the macroscopic AFM

spring is in zero position before and after the integration starts. Similarly, the harmonic

restraint potential applied to pull the peptide during simulation also starts and ends

in an equilibrium position fluctuating around zero. As a consequence, and as shown in

previous experimental work, integrating the measureable work from t = 0 where the force

F = 0 until post-bond rupture (where F = 0 again), provides an excellent estimate of

surface/molecule44 and intermolecular binding free energies.62

In practice, the experimentally measured work and calculated free energy include

contributions from the PEG tether that are not included in our simulations. As the

peptide/linker system is extended, energy will be stored in the PEG prior to bond

rupture, after which point the tether relaxes back to equilibrium and this stored energy is

dissipated. Thus, the linker will tend to bias work distributions to higher values, further

from equilibrium behavior, and in turn also affect how easily the Jarzynski average can

be converged with a finite number of runs. Differences in linker configurations in tip

contact and withdrawn states may also affect the measured free energy differences. This

contribution is expected to be small and increasingly negative with PEG length as the

linker gains entropy upon full retraction of the AFM tip (beyond bond rupture). Recent

experiments,63 however, have shown that the average measured work and binding free

energy increase with tether length. This confirms that contributions to the equilibrium

free energy difference are essentially undetectable and that bias attributable to dissipative
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work associated with the PEG tether is much more significant. In the experiments that

we compare to, a short linker was used such that biases are essentially negigible from

an experimental point of view.63 Error estimates and bias are discussed in more detail

below, though in the context of simulation results. We also note that Hummer and Szabo

discuss in great detail the physics of extracting specific free energy contributions from

non-equilibrium measurements and their evolution along a pulling coordinate that involves

linker stretching measured by macroscopic spring devices.64,65

Using JE, the interaction free energies for all designed peptide permutations interacting

with the hydrophobic tip or interface for both experiments and nonequilibrium simulations.

In Figure 2.4 the estimated JE interaction free energies are shown for all peptides.

Interestingly, the overall interaction scales approximately linearly with the number of

leucine units, with fits showing that each additional hydrophobic unit contributes 3.4

± 0.4 kBT for consecutive and 3.0 ± 0.4 kBT for non-consecutive leucine mutations

(see again Table 2.1). This falls within the range of values measured by macroscopic

bulk methods for various interacting hydrophobes,66 and is consistent with simulation

dimerization free energies for methane (∼1.2-3.4 kBT ),47,48 cyclohexane (4.6 kBT ),46

and benzene (3.4 kBT ).67

Interestingly, the hydrophobic interaction free energy of 3.0-3.4 kBT per leucine unit

describes all mutation results within experimental uncertainty. Remarkably, the linear

trend of 3.0-3.4 kBT per leucine unit holds true even when hydrophobic units are separated

by a glycine rather than next to each other,22 though the former case is the only one

considered in simulation. This experimental observation suggests that the mutations used

are intrinsically unstructured and interact non-cooperatively with the hydrophobic surface.

Molecular dynamics simulations of the peptides in bulk and at the surface support this

interpretation, showing that none of the consecutive mutations have pronounced formation

of secondary structures (Figures A.1-A.4). In solution, all simulated peptides exhibit
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Figure 2.4: Comparison of experimentally and theoretically estimated interaction
free energies as a function of the number of leucines. The interaction free energy is
referenced to the one leucine case. For the fast-pulling (10 Å/ns) and slow-pulling (2
Å/ns) MD cases, the R2 values for the linear fits are 0.71 and 0.80, respectively. All
other R2 values are greater than 0.90.

similar and somewhat broad distributions for radius of gyration (Rg), solvent-accessible

surface area (SASA), and number of intrapeptide hydrogen bonds that is suggestive of

a diverse structural ensemble. The same distributions do reveal some sequence-specific

signatures when the peptides are near the hydrophobic surface, but they remain broad

and are consistent with unstructured behavior.

These observations strongly suggest a linear model for the peptide-surface interaction

free energy with the number of leucines present:

∆G = nL(∆gL −∆gGS) + ntot∆gGS (2.2)

Here, nL is the number of leucines, ntot is the number of residues excluding caps, and ∆gL

and ∆gGS are the free energies of removing a single leucine or (averaged) glycine/serine

residue from the surface, respectively. Thus, in Figure 2.2, the intercept is given by the

interaction free energy of the scaffold with the surface, and the slope by the difference

in interaction free energy of a leucine residue versus that of the scaffold (Table 2.4).

Similar additivity for the solvation of small hydrophobic monomer units in a homopolymer
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was previously noted by Li and Walker.68 Within experimental uncertainty and in the

context of this model the mutation of a peptide residue from hydrophilic to hydrophobic

has an additive effect on its interaction with a hydrophobic surface, regardless of the

proximity (spaced or adjacent) to other hydrophobic monomers. Thus, experiments did

not detect any cooperativity or anticooperativity between the hydrophobic units, although

it is possible that such effects may be present at a level smaller than the experimental

uncertainty.

Simulation-calculated free energies of peptide removal follow the same approximately

linear trend as in experiments, but are slightly higher than those determined experimentally

and increase with pulling rate (Table 2.1). This is not surprising for at least two reasons:

simulated pulling rates are necessarily orders of magnitude faster than the ∼10-4 Å/ns of

experiments, and the simulations are also limited to fewer pulling runs in each case (60 at

the slowest rate). It is well-known that both factors magnify the statistical bias introduced

by Jarzynski’s equality for finite sample sizes,69 with this bias increasing with pulling rate

and nonequilibrium driving. From Eqn. 2.1, it is evident that this bias originates in the

asymmetric weighting by the exponential of low work values in the averaging procedure;

thorough sampling of the rare trajectories, with work values well below the mean, are thus

necessary for convergence. When the number of runs is limited, as here, our calculations

(Table 2.3) show that a single pulling curve with a low work value skews the free energy

calculations.

To qualitatively assess the bias our simulations, we use the methods presented by Lu

and Kofke70 and Lu and Woolf,71 where the bias in the forward Jarzynski estimate is

given by the integral over the distribution of negated reverse works from negative infinity

to the most likely minimum value of the forward work:

BiasJAR,F = ∆GJAR,F −∆G = − ln
(

1−
∫ min(WF )

− inf
PR(−W )dW

)
(2.3)
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Fast pulling
(v = 10Å/ns)

Slow pulling
(v = 2Å/ns)

Peptide
Jarzynski,
Forward

Jarzynski,
Reverse BAR

Jarzynski,
Forward

Jarzynski,
Reverse BAR

-N(GS)5 19.7 -10.2 4.8 4.0 -2.6 0.7
-N(GS)4GL 15.4 -8.8 3.3 5.2 -3.2 1.0
-N(GS)4L2 17.7 -12.6 2.5 7.3 -6.7 0.32

-N(GS)3GL3 26.6 -14.2 6.2 5.1 -5.1 0.0
-N(GS)3L4 24.3 -13.6 5.3 16.7 -7.6 4.5

Table 2.2: Approximate bias in free energy estimates from each methodology at both
pulling rates. While increasing trends with the number of leucines suggest slopes are
overestimated, the fast-pulling BAR formula yields fairly similar biases, suggesting
less error for this estimate. Note that these estimates of the bias still depend on good
estimates of the work distributions, possibly explaining the large biases estimated for
the forward Jarzynski case at a slower pulling rate.

In the above, ∆GJAR,F represents the free energy as estimated by the application of

Jarzynski’s Equality to forward trajectories and ∆G to the true free energy difference.

We set the upper limit to the lowest sampled forward work for each peptide and use

Gaussian probability density fits, rather than those proposed by Lu and Kofke.70 Since

the minimum observed forward work for each peptide is much greater than the average of

the negated reverse work distribution, the use of a Gaussian is expected to overestimate

bias. Table 2.2 gives estimates for the forward, reverse, and BAR biases, the latter using

the fact that the Bennet’s Acceptance Ratio (BAR) formula is well-approximated by the

average of forward and reverse estimates in the limit of large dissipative work.72 It is clear

that the magnitude of all biases generally increases with the number of leucines at both

fast and slow pulling rates. Thus the net effect of the bias is to increase the effective slope

in Figure 2.4, that is, the free energy per leucine. In experiments, the bias is estimated to

be low and does not seem to affect the slope in Figure 2.4,22 such that the experimental

hydrophobic interaction per leucine appears well approximated in the quoted range from

3-3.4 kBT .

The use of both forward and reverse pulling simulations (towards the surface) with

bidirectional free energy estimators, such as BAR, has also been shown to reduce systematic
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bias in nonequilibrium studies like this.51 The reverse protocol is not possible in experiment

for the present scenario, but we do compute these with simulations. Still, we find that

use of the reverse protocol does not enhance bias or variance, as has been observed

previously,51,70 for systems in which either the forward or reverse work distribution is very

difficult to converge.51,70 Here the BAR formula is also sensitive to rare, negative reverse

work values from trajectories in which the pulling restraint actively fights against the

motion of the peptide as it is attracted towards the surface. Close inspection of Figure

2.6A reveals that these rare trajectories are not well-sampled across all peptides due to

the stochastic nature of the simulations.

Fast pulling
(v = 10Å/ns)

Slow pulling
(v = 2Å/ns)

Peptide
Jarzynski,
Forward

Jarzynski,
Reverse BAR

Jarzynski,
Forward

Jarzynski,
Reverse BAR

-N(GS)5 20.9 ± 1.7 -5.9 ± 1.3 7.5 ± 1.1 7.4 ± 0.5 2.0 ± 0.9 4.5 ± 0.4
-N(GS)4GL 17.5 ± 3.2 -4.3 ± 2.4 6.6 ± 2.0 10.3 ± 0.7 4.9 ± 1.4 7.1 ± 0.8
-N(GS)4L2 22.9 ± 4.6 -6.5 ± 0.6 8.2 ± 2.3 13.4 ± 2.4 2.5 ± 0.6 8.0 ± 1.2

-N(GS)3GL3 31.1 ± 2.4 -6.6 ± 1.5 12.2 ± 1.4 10.5 ± 3.3 4.1 ± 1.6 7.5 ± 1.8
-N(GS)3L4 33.3 ± 2.14 -6.3 ± 0.8 13.5 ± 1.1 16.7 ± 1.5 1.4 ± 0.9 9.1 ± 0.9

Table 2.3: Free energy estimates from Jarzynski’s equality for both forward and
reverse distributions, as well as from BAR. In the fast-pulling case, the reverse work
distributions are similar across all peptides, yielding similar Jarzynski estimates.
However, for the slow-pulling case, relatively few very negative work values result in
widely varying reverse Jarzynski estimates.

For this reason, we find that the combined forward and reverse BAR protocol does not

always lead to improved estimates of free energies (Table 2.3). For fast-pulling simulations,

where errors from both forward and reverse distributions are large, neither direction is

significantly better at predicting the free energy difference, and BAR is beneficial. At

slower pulling speeds, convergence of the forward distribution is more rapid than the

reverse, and the BAR formula is ultimately not helpful. This is immediately suggested

by the idea that faster convergence will occur for the direction for which the conjugate

protocol has the smaller dissipative work.73 Table 2.3 shows that there is large variation
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between peptides for the reverse Jarzynski estimate at slower pulling because rare, negative

work values are not sampled evenly amongst peptides. This translates to BAR estimates

that are extremely sensitive to the presence of these rare events, which are characterized

by the peptide randomly extending its hydrophobic portion to the surface early in the

simulation and in a sense reeling itself in.

To better understand the limitations of the nonequilibrium pulling measurements

and Jarzynski’s equality, we perform comparative equilibrium simulations to calculate

free energy differences. Specifically, we use the umbrella sampling approach in which

the peptide-surface z-distance fluctuations are restrained to a small window using a

harmonic potential. Thermodynamic reweighting techniques (i.e. MBAR) then link

together multiple such simulations, with systematically varying windows, to produce

detailed free energy curves and differences (Figure 2.5). Free energy differences are

computed between a potential of mean force (PMF) curve’s minimum and asymptote at

far distances. Interaction free energies computed from these equilibrium simulations are

generally smaller than those from JE (Table 2.1), as expected, yet yield a slope that is in

good agreement with slower-pulling simulation runs at 2.1 kBT per leucine.

Finally, we note that the free energy to separate the hydrophilic (GS)5 scaffold is not

measurable in experiment and so not compared here. Table 2.1 shows that the scaffold

has a ∼3 kBT smaller interaction free energy than the (GS)4GL peptide when calculated

from simulations. Interestingly, the simulation runs at faster pulling rates predict the

scaffold affinity to be large, which is an artifact due to a biasing of the configuration of

(GS)5 near the surface due to the applied restraint (see Appendix A, Figure A.1); the

bias is less significant at slower pulling rates that allow the peptide to well-equilibrate

with the surface. It should also be re-emphasized that, while the presence of a surface

limits the conformational space explored by the peptides compared to fully solvated

configurations, all lack well-defined structures in both states (Figures A.2-A.3). Moreover,
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Figure 2.5: Potentials of mean force from umbrella sampling are shown with reference to
three reaction coordinates: the center of mass of all leucine residues, the alpha-carbon
pulled in non-equilibrium runs, and the peptide center of mass in the direction
perpendicular to the interface, the z-axis. Distances for each coordinate begin at
the SAM surface and are normalized to the peptide contour length. Though the
abscissa for the isobutane case has been truncated for clarity, the PMF minimum is
much sharper in this case. All error bars are those computed by pymbar.43
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all peptides have relatively fast conformational rearrangement times (assessed by the Rg

autocorrelation time) at 0.5-2.0 ns on the surface and slightly longer in solution (Figure

A.4).

While experiments are limited to analyzing interaction free energies and measured

forces, the nonequilibrium simulations, which nearly quantitatively reproduce these

experimental results, suggest a molecular, mechanistic picture of the pull-off process and

in turn various contributions to the work distributions. For example, Figure 2.6B shows

that detachment for (GS)5 is quite different from that of the other peptides; once even a

single leucine is introduced, the peptide extends substantially prior to detachment in order

to maintain leucine residues near the surface. This trend is manifested in peptide pull-off

time and distance, radius of gyration, numbers of shell waters, and solvent-accessible

surface area (Figures A.5-A.6 in Appendix A).

Simulations also show different regimes of the work-distance curves associated with

distinct underlying molecular-mechanistic processes (Figure 2.7): (1) initial perturbation

from a stable surface configuration, (2) low-tension peptide extension, (3) high-tension

extension in which the peptide exhibits WLC behavior, and (4) dragging through solution.

The work for the (GS)5 peptide primarily lies in the first regime, but as leucines are added,

contributions from the high-extension regime grow, reflecting the increased strength of

the peptide-surface interaction. For all leucine-containing peptides, work contributions for

surface perturbation and dragging through solution are roughly equivalent. Interestingly,

this matches the expectation that hydrophobic interactions, and thus surface affinity,

should grow with the number of leucine residues present, with the largest energy barrier

to detachment being the creation of hydrophobic surface areas.

Importantly, the simulations reveal molecular-structural factors associated with the

linear increase in binding free energy with the number of leucines. For example, the bare

scaffold shows an increase in peptide-water and a decrease in intrapeptide hydrogen bonds
31



Scaling of peptide-surface hydrophobic interactions Chapter 2

Figure 2.6: (a) Forward, P (Wfor) (red), and negated reverse, P (−Wrev) (black), work
distributions show that slower pulling rates (2 Å/ns, solid bars) significantly reduce
the hysteresis and spread observed at faster pulling speeds (10 Å/ns, lightly shaded).
At slower pulling rates, many negative work values (positive here, as negated reverse
distributions are shown) are observed during reverse pulling runs. (b) Black dots are
force versus distance profiles from single, typical trajectories and red lines are force
profiles averaged over all trajectories. Inset structures show peptide chains in green
(hydrophilic) and orange (hydrophobic) and pulled atoms (black) at the time of pull-off
for all trajectories of a particular peptide. These structures are sized and aligned such
that they are proportional to the scale on the x-axis.
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Figure 2.7: Contributions to the work are shown from each pulling regime for
slow-pulling runs of the simulated peptides. Pulling regimes correspond to changes in
the slope of the work versus distance curve, and are physically defined as: (1) from
the beginning of the simulation until the pulled atom is off the surface, (2) until the
centers of geometry of one less than the number of non-leucine residues are off the
surface, (3) until the last atom in the peptide is off the surface, and (4) from pull-off
until the end of the simulation. For all events described, the cut-off for being on the
surface was set to a height of 21 Å above the fixed carbons of the dodecane molecules.
Without any leucines, the largest contribution to the work appears in regime 1, or the
perturbation of the peptides configuration on the surface. With addition of leucines,
stronger interactions result in larger contributions to the work after the peptide is
extended (regime 3).
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upon its removal from the surface, but the trend gradually shifts as leucines are added

until it is inverted for the (GS)3L4 case (Figure 2.8). Moreover, the additional hydrophobic

surface area exposed upon detachment from surface into solution generally increases with

the number of leucines, and such that each leucine independently contributes a relatively

equal amount to the total change in hydrophobic surface area. As more are added,

however, the peptide backbone geometry does not permit all leucines to directly contact

the surface, forcing at least one leucine in the (GS)3GL3 and (GS)3L4 cases to remain

partially or fully solvated when the peptide is near to the SAM (see also Figure A.1 for

visual renderings).

In such molecularly-sized systems, it is not expected that the changes in interaction

free energies should follow a macroscopic trend by scaling with the hydrophobic surface

area. Indeed, we find that the effective surface tension, computed as the free energy

change per change in hydrophobic SASA, varies with the number of leucines. Such an

analysis neglects the contributions of the hydrophilic portion of the peptide, but more

importantly ignores well-known differences in the nature of the HI for small and large

hydrophobes.74 Namely, hydration of small hydrophobes (< 1nm) tends to be entropically

unfavorable due to water’s unique cavity fluctuations and scales with cavity volume,

whereas large ones (> 1nm) pay an enthalpic penalty for solvation that scales with

exposed solute surface area.74 Recent efforts have also nuanced these ideas in terms of

water-solute interaction energies,10 solute-local density fluctuations,75 and orientation of

water dipoles.76 However, it is difficult to directly apply these kinds of analyses to the

present peptide-surface systems due to the fluctuating, non-rigid nature of the peptide

conformations and to the statistical accuracy with which the relevant quantities can be

determined in these large, computationally expensive runs.

To seek molecular signatures that may delineate distinct regimes of HI physics, we

thus characterize hydration water structure at the initial and final equilibrium states of
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Figure 2.8: Change in average peptide properties moving from a surface-restrained
state to solution. (a) With increasing leucines, peptides gain fewer peptide-water
and more intramolecular hydrogen bonds in moving from the surface to solution,
consistent with the slight increase in α-helical tendency (Figure A.1 in Appendix A).
(b) Changes in SASA are similar between peptides, while changes in hydrophobic SASA
roughly increase with the number of leucines. Contributions to ∆SASAhyd are broken
down by leucine: LEU1 refers to the leucine closest to the C-terminus of the peptide,
LEU2 the next inwards along the chain, and so on. Note that for (GS)3L4, backbone
constraints prevent all four leucines from simultaneously becoming solvent-shielded in
the surface-associated state (Figure A.1).
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the pulling process (Figure 2.9). Longstanding views have sought to understand HIs in

terms of water’s unique tetrahedral correlations,77–81 and to quantify these, we calculate

distributions of the angle formed by triplets of co-neighboring water molecules within a 5

Å hydration shell of both the peptide and SAM surface. In bulk water this distribution

peaks near the tetrahedral angle (109.5◦), but surfaces and molecules can either induce

enrichment or depletion of tetrahedral, random (∼90◦, ideal gas-like), or icosahedral

(∼60◦, simple-liquid-like) populations.77 As controls for comparison, we characterize

how the extended hydrophobic SAM surface alone perturbs water structure (large-scale

physics), versus how a single solvated isobutane, a leucine side-chain analogue, does the

same (small-scale). We find that the bare SAM enriches the uncorrelated and icosahedral

populations of waters, indicating a reduction in tetrahedral configurations, while the

opposite is true for isobutane.

These reference cases provide context for the interpretation of similar distributions near

interfacial and bulk-solvated peptides. For peptides on the surface, nearby waters exhibit

behavior like those near the surface itself, with very little sequence-specific variation. In this

context, it appears that water near the SAM surface (with or without peptide) exhibits

weaker tetrahedral preference, as expected from large-scale hydrophobicity theory.74

Interestingly, however, when the peptides have been pulled off and into solution, the

tetrahedral population grows and increasingly so with the number of leucines. While a

cluster of one or two leucines should still act as a small hydrophobe in solution, three or

four if grouped together should begin to enter the large-scale regime beyond 1 nm. The

surprising fact that the tetrahedral region of the angle distribution systematically increases

with the number of leucines suggests that each is solvated in an independent fashion from

the remaining, possibly due to geometric restrictions imposed by the backbone. Similar

trends are also observed in the solvation free energies of moderately short-chain n-alkanes

showing that collapse is not favorable, leaving the alkane in an extended conformation.82
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Figure 2.9: (Top panel) Probability density distribution of the triplet angle formed
by water molecules with two nearest neighbors, in which the angle is measured at the
oxygen site. For comparison, a simple Lennard-Jones fluid with icosahedral coordination
has a distribution peaked slightly below 60◦ with a much smaller secondary peak just
above 109◦. An ideal gas, non-interacting fluid has a broad distribution with a peak
near 90◦. (Middle and bottom panels) Changes to the triplet angle distribution for the
peptide-SAM systems. The dashed curve in the central figure pertains to hydration
waters within 5 Å of the SAM surface, while the dashed curve at bottom refers to
waters near a fully solvated isobutane molecule. Other curves give the perturbation to
the system distribution for each peptide either restrained on the surface (middle) or far
away in solution (bottom panel). Gray arrows show changes with increasing leucines,
which, with the exception of the 3 and 4 leucine distribution comparison, are found to
be statistically significant at the 5% confidence level by the Kolmogorov-Smirnov test.

37



Scaling of peptide-surface hydrophobic interactions Chapter 2

Because the angle distributions of the peptides on the surface all look similar, one might

imagine that the sequence variation in the bulk-solvated peptides (far from the surface)

may signal the variation of association free energy alone. To examine the relation of shifts

in three-body angle distributions to interaction free energies, we conduct equilibrium

umbrella-sampling simulations for an isobutane molecule with the SAM surface, which

gives a surface-to-bulk free energy change of 5.4 kBT (Figure 2.5). We define a per-water

solvation penalty given by 5.4 kBT normalized by the average number of waters in the

isobutane hydration shell. We hypothesize that the number of waters around a peptide

that exhibit three-body angles similar to the isobutane distribution contribute this penalty

to the overall association free energy. Similarly, we hypothesize that the remaining waters

exhibit an angle distribution associated with the (GS)5 scaffold, and contribute based on

a reference scaffold per-water solvation free energy.

(kBT )

Experiment
Nonconsecu-

tive
Experiment
Consecutive

Simulation
fast-pull

Simulation
slow-pull

Simulation
equilibrium

Slope 3.0 ± 0.4 3.4 ± 0.4 3.8 ± 0.7 1.9 ± 0.5 2.1 ± 0.0
Intercept 4.3 ± 1.0 3.1 ± 1.0 17.5 ± 1.9 7.9 ± 0.7 4.9 ± 0.1

∆gGS 0.4 ± 0.1 0.3 ± 0.1 1.7 ± 0.2 0.8 ± 0.1 0.5 ± 0.0
∆gL 3.5 ± 0.4 3.7 ± 0.4 5.6 ± 0.7 2.7 ± 0.5 2.6 ± 0.0

Table 2.4: Fitting parameters for free energy model linear in the number of leucines.
∆gGS is the free energy change per residue of removing the scaffold from the surface
and ∆gL is the free energy change of removing a single leucine residue.

To apply these ideas, we fit each peptide’s three-body angle distribution as a weighted

sum of the distributions for the (GS)5 scaffold in solution and isobutane in solution,

which bracket all perturbations of the bulk water distribution made by the hydrophobe-

containing peptides (Figure 2.9). This gives fiso, the fraction of the distribution that

looks like the isobutane one versus that of the scaffold. Given the model assumptions, a
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simple model for the association free energy is

∆G = NW,pep(fiso
∆Giso

NW,iso

+ (1− fiso)
∆GGS

NW,GS

) (2.4)

Here, NW,x is the number of shell waters around either x = the peptide, isobutane, or

(GS)5 scaffold, and ∆Gx is the free energy of removing such a group from the surface.

Remarkably, consideration of only water structure near each leucine-containing peptide

produces free energies via the above model that closely agree with the actual values

(Table 2.1), with a slope of 2.3 kBT/LEU, only slightly higher than 2.1 kBT/LEU as

estimated from detailed free energy calculations. Though this model might be improved

through more explicit consideration of how mutations affect peptide chain entropies, it

seems clear that three-body structural information of water may be a powerful indicator

of solute-solute and solvation thermodynamics.

In summary, these results highlight qualitatively distinct structural behavior for waters

in the vicinity of the extended hydrophobic interface versus near the molecularly-sized

hydrophobic leucine side chains. Moreover, the three-body angle distribution for hydration

waters around a peptide evolves with added leucines in a way that closely tracks the free

energies, moving towards that of the purely hydrophobic isobutane side-chain analog. The

angle distribution thus offers a convenient signature of hydrophobic interaction regimes

suitable to flexible, heterogeneous, soft-matter systems.

2.4 Conclusions

In summary, this close coupling of simulation to experimental approaches provides a

molecular view into dynamic single molecule/surface interactions under applied load, in

particular the all-important hydrophobic interaction in the context of peptides, which may
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easily extend to arbitrary other surface/molecule interactions. The theoretical calculations

are in good agreement with experiments given the precision of the measured data, with no

parameters fit between the two. For the interaction of hydrophobic model scaffolds, we find

that hydrophobic leucine units have an estimated interaction free energy of about 2.1 kBT

from simulation, which compares well to the experimental range 3.0-3.4 kBT , suggesting

that hydrophobic amino acids interact independently and additively with the surface.

Our results demonstrate how single molecule measurements with AFM can be directly

compared to theoretical data at solid/liquid interfaces for realistic systems, providing a

road map to increase precision. Modeling of the pulling process reveals how an individual

surface-to-molecule interaction dynamically breaks, and how equilibrium interaction free

energies can be estimated from such nonequilibrium experiments in both simulation

and experiment. This work will prove useful for designing synergistic experimental and

simulation approaches for understanding molecular thermodynamics and fluctuations at

solid/liquid interfaces under dynamic load in a wide range of fields, including interactions

at bio-interfaces and adhesive interactions in technological systems in a broad context

ranging from e.g. cell-surface, cell-cell interactions to adhesive bonding in bio-medical

applications.
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Chapter 3

Characterization of three-body angle

distributions in bulk and solvation

shells of model solutes

3.1 Introduction

Though it is common and essential to life, water is exceptionally unique from a

molecular point of view.1,2 While simple in its chemical structure, water exhibits a variety

of anomalies that may be attributed to its underlying structure and modes of intermolecular

interaction.2 In particular, hydrogen bonding promotes water associating with four

neighbors, resulting in a preference to form tetrahedral structures that are pronounced

in both its solid and liquid phases. This tetrahedral structure has historically been

the basis for interpreting many of water’s unique behaviors 3–6,3–6 including anomalous

temperature dependence of density, diffusivity, entropy, and gas solubilities.2,7 Central to

these anomalies is a competition between energetically favorable hydrogen bonds that

restrict relative orientations between water molecules and entropic driving forces towards
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less tetrahedral geometries that mimic simple-fluid-like behavior in which closest packing

is approached.2

Here we examine the range of orientational structure behaviors that rigid water models

exhibit in the liquid state and connect these to the thermodynamics of bulk water and

aqueous solvation. Specifically, we examine three-body angle distributions of water, which

involve the angle θ between two oxygens within approximately the first hydration shell of

a central water oxygen:

P (θ) = V Ω
Z

∫
[
∫
r12<rc

∫
r13<rc

e−βUδ( r2,O

|r2,O|
· r3,O

|r3,O|
− cos θ)dr2dr3]dr4 . . . rN (3.1)

In the above, translation and rotation of the central water molecule (numbered 1) has been

integrated out into the terms V and Ω, and Z represents the proper normalization factor,

related to the canonical configurational partition function. Each integral is performed over

the translational and rotational degrees of freedom of the corresponding water molecule;

the outer integral runs over all waters 4 and higher, while the inner ones correspond to the

two nearest neighbors (numbered 2 and 3) with oxygen positions r2,O and r3,O. Within

this inner integral, the delta function selects angles consistent with the one of interest,

and the limits of integration restrict waters 2 and 3 to reside within the neighbor cutoff

distance rc=0.34 nm. Though the orientational structure of water, including three-body

angles, has been studied in the past, a detailed examination of its behavior as a function

of temperature and density in the liquid state is lacking. Further, the specific role

that three-body angles play in determining water’s unique thermodynamic and solvation

behaviors remains unclear, which the present work seeks to clarify.

A number of studies have examined the orientational structure of water, including

three-body angle distributions, across a diverse set of computational models. Here, and

most commonly in the literature, water is modeled as a rigid molecule with fixed point
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Figure 3.1: The definition of the three-body angle is shown schematically as the angle
between two vectors connecting a central water oxygen atom to oxygens on two of its
neighbors within 0.34 nm. For computation of the three-body angle distribution, all
angles formed by unique pairs of neighbors within the cutoff are considered, regardless
of the number of such angles.
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charges. Head-Gordon and Stillinger8 developed a series of water models based on varying

perturbations of an orientational, three-body term enforcing tetrahedrality, studying

quenched structures in these models. Subsequent studies by Lynden-Bell and coworkers9–12

examined how perturbations to the geometry,10–12 hydrogen bond strength,9,10 and explicit

representation of anisotropy10 influence water structural, thermodynamic, and solvation

properties, including the existence of anomalous behaviors. In general, such perturbations

drastically change both water translational (i.e. oxygen-oxygen radial distribution function)

and orientational (three-body angle distribution) interparticle correlations, weakening

the presence of or even removing anomalous behaviors depending on the magnitude

of the perturbation. Interestingly, explicit representation of water’s geometry is not

necessary to capture its unique behaviors. Purely repulsive isotropic models with two

length-scales of interaction mimic most of water’s anomalous behaviors.13 When more

realistic attractive interactions are included, isotropic water models may exhibit anomalous

behaviors depending on the specific form of the potential and parametrization.14,15

The success of isotropic models might seem to suggest a limited role of purely orienta-

tional degrees of freedom in determining water’s behavior other than to create a distinctive

second length-scale of interaction. On the other hand, Molinero and Moore16 developed

a single-site water model that includes independent terms to enforce translational and

orientational ordering in water, demonstrating that simple Lennard-Jones interactions in

combination with an explicit three-body-angle potential function accurately capture many

of water’s properties,16,17 including structural and thermodynamic anomalies.18 Other

studies involving this water model demonstrate that anomalous properties, including

those at supercooled temperatures, may be turned on and off by tuning the strength of

the three-body angle term.19 In other work, the relative role of orientational, three-body

interactions in determining water-like behavior was assessed by comparing water to other

tetrahedral monatomic liquids (i.e. Si) as well as molten oxides.1820 These and isotropic,
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dual-length-scale models both highlight the role of hydrogen bonding and orientational

correlations in determining water’s behavior. However, only models including orientational

terms are able to simultaneously capture the oxygen-oxygen radial distribution function

(RDF) as well as the expected preference for tetrahedral orientations in water.10 Indeed,

even water models developed with hydrogen bonds explicitly constrained to assume

unphysical geometries are able to reproduce RDFs for all water atomic pairs,21 but exhibit

significant deviations in three-body orientational degrees of freedom from what is expected

for a tetrahedral geometry.20,21

Relationships between water’s structure and its unique properties have also been

assessed through structural contributions to water’s excess entropy. Scala, et al.22

demonstrated that the configurational entropy, as assessed by the number of minima

in the potential energy landscape, can predict anomalous behavior of water. Rigid

water models and other tetrahedral liquids have subsequently been shown to exhibit

regions of phase space where the excess entropy increases with density.18,23–25 Two-body

contributions to the excess entropy based on pairwise RDFs reflect such anomalous

behavior,18,25 but contributions from three-body degrees of freedom are largely unstudied.

An approximation to such terms has been computed via the entropy of the probability

distribution of a popular metric of tetrahedrality based on the full three-body angle

distribution.26 In conjunction with a pairwise two-body entropy, this“tetrahedral entropy”

can be used to map out regions of phase space that exhibit anomalous water behavior.25

Similar mappings based on orientational and translational contributions to the entropy

from two-body degrees of freedom also identify regimes of anomalous water behavior.27 In

addition to the excess entropy, many metrics of liquid water structure have been examined

in both ambient and supercooled regions,7,28,29 generally with a focus on capturing

transitions between two structurally distinct populations, which are thought to result

in a liquid-liquid phase transition at supercooled temperatures.7 Notably, modelling of
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configurational entropy, which is closely tied to the excess entropy, gives rise to predictions

of a liquid-liquid phase transition22 and critical point.30 Additional (though not exhaustive)

examples of metrics that identify two distinct states of water include those based on spatial

correlation of tetrahedrality,26 relative structure of first and second neighbor shells,19 and

even Markov models based on states involving clusters of six waters.31

The seminal work of Errington and Debenedetti32 suggested two of the most well-

studied metrics for assessing water structure and identifying anomalous behaviors, the so-

called translational and tetrahedral order parameters. These authors define a translational

order parameter that measures the radial ordering of a fluid as

t =
∫ rc

0 |g(r)− 1|dr
rc

(3.2)

where g(r) is the oxygen-oxygen RDF and rc is a chosen cutoff for integration. The

tetrahedral order parameter, originally introduced with a distinct normalization by Chau

and Hardwick,33 measures specifically the deviation of a fluid from perfect tetrahedral

versus ideal-gas like structuring, and is defined in terms of the three-body angle θ,

q = 1− 3
8

4∑
i

4∑
i 6=j

(cos θi,j + 1
3)2 (3.3)

Here, the sums run over the four nearest neighbors to each water oxygen. When re-

porting q as a metric, averaging is typically performed over all water oxygens and water

configurations of a defined population of water molecules.

The tetrahedral order parameter has been at the heart of a number of studies examining

the overall tetrahedrality of water within the hydration shells of solutes. Agarwal, et

al.34 found that waters in the hydration shells of peptides show increasing tetrahedrality

at more energetically favorable locations. More specifically, the electrostatic energy
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is more favorable where tetrahedral structure is higher, implying enhanced hydrogen

bonding. A number of other studies examined q within the hydration shells of small

hydrophobes.35–39 To summarize these briefly, waters within such hydration shells exhibit

reduced tetrahedrality very near to the solute (closer than the first maximum in the

solute-water oxygen RDF), and enhanced tetrahedrality in the outer edge of the first

solvation shell, as first noted by Galamba.35 As hydrophobe size is increased, q for

all waters within the first hydration shell rapidly decreases.40 This is despite the fact

that water at extended hydrophobic and air-water interfaces is expected to assume a

unique, not necessarily disordered, structure compared to the bulk.41–45 While enhanced

structure in the first solvation shell of small hydrophobes is not clearly observed for all

rigid water models,38 it has also been observed for the mW model of water,36 as well as

for a polarizable model.35 Additionally, experimental measurements of Raman spectra

also support the presence of energetically favorable hydrogen bonds (as compared to

bulk water) within small-solute hydration shells,39,46 which is generally thought to be

correlated with more tetrahedral arrangements.

Unfortunately, there is some ambiguity, and associated debate 38,47,48,38,47,48 sur-

rounding the enhancement of the tetrahedral order parameter near small solutes, as well

as its exact behavior as solute size increases. When waters are very close to an interface,

q must decrease due to purely geometric constraints – all four nearest-neighbors may no

longer reside within the first hydration shell of the central water. Even if all neighbors are

within the first hydration shell on average, as has been argued maintains the validity of this

metric,29 there is certainly a higher likelihood of having a fourth nearest neighbor outside

this first shell than for purely bulk waters. For this reason, it has been suggested that

solute heavy atoms should also be considered as neighbors for the purposes of calculating

q via Equation 3,25,35,40 though the precise effect of this adjustment is unclear.

The studies briefly reviewed above demonstrate that, while useful for mapping the
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boundaries of structural anomalies in bulk water, the tetrahedral order parameter is

difficult to define at interfaces or near solutes of arbitrary shape and chemical proper-

ties. However, understanding the structure of water in the hydration shells of solutes is

fundamentally important to understanding solvation processes and solute-solute inter-

actions, especially with regard to biomolecules.49 In contrast to q, the distribution of

three-body water angles remains well-defined within the hydration shells of solutes, with

perturbations from bulk water structure easily assessed.50,51 A variant of the tetrahedral

order parameter may be calculated from P (θ), the significant difference being that any

number of neighbors may contribute to the angles calculated in Equation 1 as long as

they are within the cutoff, while the definition of q requires a restriction to only four

nearest neighbors.50 In this study, we hypothesize that an analysis of the full distribution,

rather than metrics that represent averages, are essential to understanding hydration

water structure and properties near arbitrary solutes, and we present results showing this

behavior in comparison to conventional order parameters like q.

In a previous study,51 we noted that perturbations to three-body angle distributions

in the solvation shells of peptides can be used to develop thermodynamic models for the

free energy of association for peptides with hydrophobic interfaces. This was remarkable

in that trends in free energies could be accurately predicted merely by considering the

structural response of solvent to the presence of a solute. Here we explore this relationship

further for a set of model solutes, specifically idealized spherical colloids of different size

and attractive strength. We demonstrate that perturbations in the solvation shell water

structures of solutes fall within the variations seen in bulk water as a function of density

and temperature. We draw fundamental connections between restructuring of three-body

angles within solute hydration shells and thermodynamics of solvation, partially explaining

the success of previous thermodynamic models based on angle distributions.51 More

specifically, perturbations to three-body angle distributions track the contribution to the
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free energy beyond the direct interactions (potential energy) of the solute with water. We

show that these contributions are associated with water restructuring around the solute

and in fact are intimately related to the relative entropy associated with the solvation

process.

3.2 Methods

3.2.1 Simulation of bulk water

Simulations of bulk water use the TIP4P/2005 water model.52 As a control for

comparison, we also use a simple fluid model with only Lennard-Jones (LJ) interactions

whose energy and length scales were selected using relative entropy coarse-graining to best

match SPC/E water at 1.00 g/cm3 and 300 K.53 All simulations are performed with a

0.002 ps timestep using the 2016.1 version of GROMACS54 with the “group” cutoff scheme

and a neighbor list update every 10 steps. All simulations are run for a total of 5 ns. For

both models, a nonbonded cutoff of 1.4 nm is applied, while the TIP4P/2005 case also

employs PME treatment55 and SETTLE constraints.56 A Langevin thermostat ensures

sampling at the desired temperature. Simulations are performed at temperatures ranging

from 250 K to 350 K. Densities range from 0.80 to 1.40 g/cm3 for TIP4P/2005 water and

0.80 to 1.30 g/cm3 for the LJ water model. From calculations of the pressure (excluding

dispersion corrections) at each density for the TIP4P/2005 model and fits to 4th order

Legendre polynomials as a function of density, the stability limit is identified as the point

at which the pressure derivative with respect to density at constant temperature becomes

zero. For nearly all temperatures simulated, the 0.80 and 0.85 g/cm3 densities are below

the stability limit and hence the data from these states is excluded in all analyses other

than that to establish the stability bound.
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3.2.2 Simulation of colloids in water

Colloids are simulated as Hamaker-averaged spheres of LJ particles57–59 with σ=0.3730

nm and ε=1.2301 kJ/mol. We modify the strength of colloid-water attractions by changing

the density of LJ particles averaged over the spherical colloidal volume from 19.3/nm3

(low-attractions) to 110.4/nm3 (high-attractions). We also develop purely repulsive

colloids by separating the colloidal particle potential according to the Weeks-Chandler-

Andersen (WCA) scheme60 and only keeping the repulsive part. In the text, the resulting

WCA colloids refer to the application of this procedure to only the lowest-density (least-

attractive) colloids, though we also develop WCA colloids based on the high-density

colloids for the purposes of computing free energies, as described below.

Colloidal simulations are performed as follows. Each colloid is solvated in a box with

5000 waters. Due to the large size of some of the colloids, we use a 2.4 nm nonbonded

cutoff. Temperature is kept constant with a Langevin thermostat at 300 K, and pressure is

held constant using a Parinello-Rahman barostat.61 For TIP4P/2005, we fix the pressure

at 1 bar, while for the LJ water model, we fix it at 4560 bar, which is the pressure at which

this coarse-grained model achieves a bulk water density of approximately 1.00 g/cm3 at

300 K.53 In calculating the pressure, no dispersion corrections are included as the large

size of the colloids renders the environment of the waters effectively heterogeneous. The

large cutoffs ensure that long-range attractions important to modeling the behavior of

water at interfaces62,63 are sufficiently represented. To accurately compute changes in

three-body angle distributions for bulk water versus that near colloids, we also perform

simulations of water boxes with identical settings but without any colloids present. We

perform simulations of WCA, low-density, and high-density colloids for 20 ns each and

save simulation frames every 1 ps to ensure high-accuracy three-body angle distributions

in the first hydration shell. For the larger colloids, the distributions converge to high
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accuracy much faster than this (on the order of 5 ns), but the smaller colloids take

longer due to fewer hydration shell waters. To enhance efficiency of calculations, smaller

simulation boxes could be used for the smaller colloids, but we maintain the same number

of solvated waters for all colloids to facilitate free energy calculations, as described below.

3.2.3 Computation of three-body angle distributions

For simulations of bulk water, three-body angle distributions are computed using a

fixed cutoff of 0.34 nm to define neighbors. Within the cutoff, all pairs of neighbors are

considered for determination of the angle between vectors connecting the oxygens of the

neighbors to the central water oxygen. For simulations with colloids, the water oxygen-

oxygen neighbor-cutoff is chosen based on the first minimum in the RDF of bulk water

at the same pressure and temperature and under the same simulation conditions, with

cutoffs of 0.442 nm, 0.332 nm, 0.332 nm, and 0.358 nm used for LJ water, TIP4P/2005,

TIP4P-Ew, and TIP3P, respectively. Hydration shells are defined based on minima in the

colloid-water oxygen RDFs, with three-body angle distributions in each shell including all

angles determined around central waters in the shell with neighbors anywhere.

3.2.4 Free energy calculations

We calculate solvation free energies for colloids via two steps. In the first step, we

simulate purely repulsive WCA colloids with effective radii64,65 varying between zero and

1.298 nm for 1 ns each. We then use Bennett’s Acceptance Ratio (BAR) method66 to

compute the free energy difference for each change in radius. Note that we perform these

calculations for WCA colloids based on both weakly and strongly-attractive colloids to

broaden the number of reference stages and reduce error. In the second step, the free

energy of switching a colloid from a purely repulsive WCA state to a fully-interacting
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state is computed via a linear switching path. Simulations of 1 ns each are performed

at states along this path in increments of 0.1 from 0.0 (WCA potential) to 1.0 (fully-

interacting colloid). We use the Multistate Bennet Acceptance Ratio (MBAR)67 estimator,

implemented in the pymbar package,68 to compute the free energy of this process. By

combining the results of the first and second steps, the total free energy of solvation can

be computed. Full, tabulated values of the solvation free energies for TIP4P/2005 water

are provided in Appendix C.

3.3 Results and Discussion

3.3.1 Structural information in bulk water

We first assess the basic form of the three-body angle distributions in bulk liquid

water, its variation with state conditions, and its relationship to other structural proper-

ties. Figure 3.2 shows variations in P (θ) over a range of temperatures and densities for

TIP4P/2005 water, using a fixed neighbor cutoff of 0.34 nm that represents the approxi-

mate location of the first neighbor shell for the lowest densities considered (Appendix

C Figs. C.1-C.2). At all conditions, TIP4P/2005 water clearly exhibits a characteristic

preference for tetrahedral three-body arrangements, with P (θ) peaking near 109.5◦. In

a tetrahedral crystalline arrangement, one expects only a single, sharp peak at 109.5◦,

whereas Figure 3.2 shows that the corresponding liquid phase peak is as expected much

broader. Moreover, an additional population around 50◦ emerges, which corresponds to

the appearance of a 5th neighbor within the first hydration shell that sits interstitial to

the predominantly tetrahedral arrangement (see Fig. C.5 in Appendix C).

For comparison, Figure 3.2 also shows the three-body distribution for a simple liquid,

namely a Lennard-Jones (LJ) system using parameters (epsilon and sigma) that were
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Figure 3.2: Three-body angle distributions of bulk LJ water (top) and TIP4P/2005
water (bottom) as a function of temperature at fixed density (left) and as a function
of density at fixed temperature (right).

optimized in an earlier study to match SPC/E water’s length and energy scales at ambient

temperature and density 53. In contrast to the tetrahedral preference of TIP4P/2005, the

LJ model is peaked around 63.4◦, characteristic of a simple fluid with icosahedral closest

packing. In an icosahedral crystal, for example, sharp peaks would be observed around

63.4◦, 116.6◦, and 180.0◦, with the first two equal in population and the latter five-times

less likely. This explains the broad secondary peak near 116.6◦, though it is not of equal

probability as the peak near 60◦ because due to increased broadening at larger angles;

the 60◦ peak is sharper because it includes arrangements of three molecules that are all

mutual nearest neighbors, in contrast to larger angles.

As temperature is increased at fixed density, Figure 3.2 shows that TIP4P/2005

water shows a tradeoff in populations: the probability at low angles (near 63.4◦) grows

at the expense of the tetrahedral configurations near 109.5◦. In contrast, the LJ fluid

shows very little variation with temperature, and in fact shows a small decrease of the
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peak near 63.4◦. Changes in density lead to more pronounced shifts in the three body

distributions, and the trend is similar for both the TIP4P/2005 and LJ systems, reflecting

an increase in population near 63.4◦ with density. At the highest densities, TIP4P/2005

develops a distinct peak near 63.4◦, separate from the one at 50◦, indicating that the

model has lost substantial tetrahedrality and instead develops a packing-dominated

structure more typical of a simple fluid. At both high temperatures and densities, the

interstitial waters are squeezed out of the first shell completely (or, alternatively, more

waters are forced into the first shell, removing interstitial space) and the peak around 50◦

merges with the icosahedral, 63.4◦ peak (Appendix C Figs. C.3-C.4). This represents a

significant transition from tetrahedral and water-like at low temperatures and densities

to simple-fluid-like at the opposite conditions, at which P (θ) begins to resemble the LJ

distribution.

A natural question is the extent to which the distributions depend on the distance

cutoff used to determine neighbors used for computing three-body angles. Because we use

a fixed cutoff to define neighbors for calculating angles, the number of angles for each water

will track with RDF variations. RDFs at all temperatures and densities for TIP4P/2005

and LJ water are shown in the Appendix C, Figures C.1-C.2. For TIP4P/2005, it is

clear that the chosen cutoff of 0.34 nm is close to the first minimum in the RDFs at

low densities, but much lower than the first minimum at high densities, around 0.4 nm.

By fixing the cutoff at a lower value, we are actually excluding some waters in the first

hydration shell at higher densities, but still always capture the high-probability peak

most representative of the first hydration shell. We find that using a larger cutoff of 0.42

nm for all temperatures and densities does not change the qualitative behavior of P (θ)

at high densities and temperatures, only acting to broaden all peaks of the distribution

as the more disordered outer edge of the first hydration shell becomes included. This is

supported by Figure C.5 in Appendix C where the qualitative behavior of P (θ) varies
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little with the number of waters included in the cut-off at high densities of TIP4P/2005

water, or at any density for LJ water. At low densities, however, such a large cutoff

includes significant amounts of second-shell neighbors and results in qualitatively distinct

behavior.

Figure 3.3: Principal components of changes in the three-body angle distributions of
LJ and TIP4P/2005 water with varying temperature and density, with the average
of all such distributions used as the reference for performing PCA. The percentage
of total variance explained by each principal component is shown in the legend, with
PC1 and PC2 together capturing over 99%.

A striking feature in Figure 3.2 is the simple manner by which the water distributions

shift in response to temperature and density variations, for which intermediate conditions

seem to interpolate smoothly between the extremes of highly tetrahedral and simple

fluid-like. To quantify the response, we extract the principal components (PCs) of
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these variations relative to a reference probability distribution, taken to be the average

distribution uniformly-weighted over all conditions. As Figure 3.3 shows, the top two

PCs account for greater than 99% of the variance across all temperatures and densities.

Moreover, we find that the precise shape of the PCs is largely independent of the reference

chosen. Thus, the principal components show rather remarkably that the distributions vary

largely according to just two primary degrees of freedom, representing the contributions

of principal components 1 and 2 (PC1 and PC2). Their form also reinforces the discussion

above, with TIP4P/2005 mainly exhibiting opposite perturbations to P (θ) around 109.5◦

and 63.4◦, and LJ water exhibiting in general perturbations of smaller magnitude and

predominantly at angles less than 109.5◦. In turn, any given distribution P (θ) can be

projected onto this small set of PCs (after subtraction of the reference distribution),

offering a simple way to interpret contributions from distinct structural propensities. The

projection onto PC1 alone accounts for nearly 94% of the variation and is particularly

insightful as it indicates, as compared to the average over all temperatures and densities,

the relative balance of tetrahedral versus icosahedral-dominant configurations: a negative

projection indicates water-like structure while a positive one a simple-fluid-like structure

(though note that the sign convention is arbitrary).

Figure 3.4 shows projections onto PC1 and PC2 within the temperature and density

space considered in this study. As density is increased at all temperatures, a transition

from tetrahedral-dominant to icosahedral-dominant configurations is signaled by a change

of sign in projections onto PC1. This crossover happens at lower densities as temperature

is increased and the strength of hydrogen bonds diminishes. A similar transition occurs

for PC2, except that in this case a minimum is reached where projections onto PC1 pass

through zero. This correlation between the first two principal components is required

by construction since the other PCs make negligible contributions: the PCs form an

orthonormal set based on a Euclidean norm, meaning that the sum of the squares of the
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Figure 3.4: Projections of three-body angle distribution perturbations onto PC1 and
PC2 (shown in Fig. 3.3) are shown as a heat-map in temperature-density space.
Negative projections are observed in the regime of structural anomalies, while positive
projections in the region of expected simple-fluid behavior, as demarcated by the
white contour line at zero. White circles indicate the locus of translational order
parameter minima (high-density structural anomaly bound) while white triangles
indicate isothermal tetrahedral order parameter maxima (low-density anomaly bound).
The dotted white curve on the left indicates the mechanical stability boundary.
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projections must be equal to the magnitude of the vector projected onto this set, which

here has been normalized to one.

It is tempting (though incorrect, as shown below) to use the projections mapped out

in Figure 3.4, in particular those onto PC1, to define structural anomalies or other water

behaviors. Indeed, the high-density structural anomaly boundary, as determined by the

pioneering order parameter analysis of Errington and Debenedetti32 (see Appendix C

Fig. C.6), seems to coincide with a transition from negative PC1 projections (tetrahedral

behavior) to positive projections (simple fluid-like behavior). No evidence, however, is

observed for the low-density boundary. This is surprising as the low-density boundary

captures a crossover in orientational behavior with density.32 One explanation is that this

boundary is intrinsically difficult to define due to its close proximity to the mechanical

stability boundary,69 where the conventional q order parameter decreases upon develop-

ment of voids in the liquid in the same manner as is expected for the structural anomaly

boundary. However, the anomaly boundary remains identifiable by minima in isotherms

of the tetrahedral order parameter (Appendix C Fig. C.6) which occur before the stability

boundary.

While analysis of principal components may not identify a low-density structural

anomaly boundary, are there other indications in P (θ) that do? One possibility is the

tetrahedral order parameter, which can be computed as an average using the distribution

P (θ). However, this approach fails to identify the lower boundary even though explicit

calculations of q do; the reason is that tetrahedral angles contribute strongly to P (θ)

even for configurations with fewer than four neighbors within the first hydration shell,

while q is always computed from the first four neighbors regardless of whether or not they

fit within a distance cutoff (Appendix C Figs. C.5,C.7-C.8). Other previously studied

structural metrics50 seem to identify an upper bound, but are also unsuccessful in clearly

identifying a lower bound (Appendix C Fig. C.9).
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Figure 3.5: (a) Isotherms of excess entropy changes (with the lowest temperature
and density as a reference) and (b) the entropy of three-body angle distributions.
TIP4P/2005 (circles) show anomalous entropy increases over a range of densities while
LJ (triangles) show monotonically decreasing behavior. While excess entropy defines a
lower bound to the anomalous region via a minimum, no such minimum is observed
for the three-body angle entropy.
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Another metric of interest is the entropy associated with the three-body angle distri-

bution, Sθ = −kB
∑
P (θ) lnP (θ). Excess entropy anomaly boundaries have been shown

to be approximated by low-order entropy expansions, in particular 2-body entropies based

on atomic radial distributions.23,25 Figure 3.5 indicates that three-body angle entropy

isotherms behave similarly to the excess entropy, increasing with density anomalously

before reaching maxima (at densities slightly higher than for the excess entropy). However,

unlike the excess entropy, no minima, and hence no lower density anomaly, emerge in the

three-body angle entropy isotherms.

It is clear, therefore, that P (θ) captures many important features of water’s unique

behavior, but not all. Moreover, it is also important that the absolute values of the

projections shown in Figure 3.4 depend on the choice of the reference distribution, as

these projections represent the magnitude of perturbations in a specific direction defined

by a principal component. While we find that the principal components themselves

do not depend significantly on the choice of reference, the values of the projections

certainly do. Therefore, the boundary implied by the projections in state space agrees

with the structural anomaly boundary insofar as our choice of reference distribution is

appropriate. Here our reference distribution is the average P (θ) over the range of liquid

state points studied, but there may be other useful references, for example, references with

equal populations of tetrahedral and simple-fluid-like water structures. Regardless of the

reference choice, however, the projections still concretely demonstrate that a boundary

exists and provide a reasonable shape for it in state space.

3.3.2 Structural information in solute hydration shells

While water’s three body structure is perturbed by changes to bulk temperature and

pressure, it is natural to ask whether interfaces and solutes have comparable effects –
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and if such inhomogeneous environments perturb P (θ) in a similarly simple way as state

condition, involving just a few principal directions. To test this idea, we consider model

spherical solutes (Hamaker colloids57–59) of varying size and attractive strength solvated

in TIP4P/2005,52 TIP4P-Ew,70 TIP3P,71 and LJ53 water models. Figure 3.6 shows for

TIP4P/2005 water variations in P (θ) compared to bulk for waters in the first colloid

hydration shell, as well as colloid-water RDFs; distributions for other water models are

similar (with the exception of the LJ model discussed below) and are shown in Figure

C.11 of Appendix C. For low attractive strengths, especially for purely repulsive Weeks-

Chandler-Andersen (WCA) colloids, water begins to withdraw from the colloid interface

as colloid size is increased, while for the attractive colloids, water wets the colloid interface

more strongly with increasing colloid radius. This behavior has been well-characterized

previously and connected to density fluctuations of hydrating waters.59,72,73

Changes in P (θ) are distinct across both colloid size and chemistry (i.e., strength

of colloid-water interactions). As observed previously,51 P (θ) is enhanced relative to

bulk around 109.5◦ for small solutes. For large colloids, including the limit of infinite

radius (a flat 9-3 wall), the region around 109.5◦ is reduced in population relative to

bulk water while a population at 90◦ grows. With increasing attraction, the tetrahedral

reduction becomes more pronounced, while only for strongly-attractive colloids is the

icosahedral region near 63.4◦ enhanced relative to bulk. Mittal and Hummer73 noted

decreases in density and increases in density fluctuations within probe volumes at solute

interfaces. For small hydrophobes, water density and its fluctuations approached bulk

values, whereas in contrast here we observe clear perturbations to orientational structure

for small solutes. For larger hydrophobes, our results link reduction of the tetrahedral

character of three-body angle distributions to previously-observed enhancements of density

fluctuations.72,73 Perturbations to P (θ) in the second hydration shell (Appendix C Fig.

C.10) are distinct from those in the first but are generally much weaker, the only exception
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Figure 3.6: (a) Colloid-water oxygen radial distribution functions (shifted so the
colloid surface, where the RDF goes to zero, is at zero). (b) Perturbations to bulk
three-body angle distributions for waters in the first hydration shell of colloids, with
(c) principal components of those perturbations. Variations from dark purple to orange
indicate small colloids; dashed orange lines indicate colloids of infinite radius (flat
9-3 walls). The dotted lines in the bottom panel of (c) are the resulting PCs if all
colloid three-body angle distributions are considered together instead of separately.
The percentage of variance for these first, second, and third PCs of the combined set
of colloids are 66.3%, 32.0%, and 1.1%.
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being the highly-attractive infinite-radius colloid (i.e., flat wall). For this reason, we only

consider the first hydration shell in what follows.

WCA Low High All colloids
PC1, PC1bulk 0.981 0.984 0.962 0.978
PC1, PC2bulk 0.082 0.058 -0.187 -0.124
PC1, PC3bulk -0.054 -0.055 -0.049 -0.042
PC2, PC1bulk -0.131 -0.106 0.195 0.139

PC2, PC2bulk 0.768 0.780 0.728 0.742
PC2, PC3bulk -0.024 -0.048 -0.103 -0.058
PC3, PC1bulk -0.080 -0.079 -0.086 -0.052
PC3, PC2bulk 0.252 0.230 0.236 0.135

PC3, PC3bulk -0.287 -0.245 -0.114 -0.238
Table 3.1: Projections of principal components of perturbations to P (θ) in the first
hydration shell of colloids onto principal components of perturbations across all
temperatures and densities of bulk water.

Remarkably, the behavior of the colloids’ perturbations to the three-body water

structure are highly similar across the different colloid types, and moreover, strongly

resemble the kinds of variations seen in bulk water distributions across temperatures

and densities (Figure 3.3). While the effect of the colloids’ perturbations is an order

of magnitude smaller, the striking similarities with the bulk results suggest that the

three-body orientational structure of water may only vary in a limited number of ways,

even in inhomogeneous scenarios. In this sense, the perturbations induced by the colloids

can be viewed as a subset of those in Figure 3.3, which instead correspond to changes

in temperature and density. This is tested in Table 3.1, where we calculate projections

of all colloid principal components onto bulk water principal components. Projections

between first principal components are very close to one in all cases, suggesting high

similarity, while second principal components show slightly more differences compared to
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bulk. Though we have not pursued it here, it would also be interesting to assess whether

perturbations to P (θ) in the solvation shells of ions also fall within those for bulk water

across state space.

Figure 3.7: Perturbations from bulk water distributions for waters in the first hydration
shells of WCA colloids are shown with solid lines. Dashed lines give controls that
indicate variations due merely to hydration shell geometry (i.e., the volumes over which
the distributions are computed), without the explicit presence of a colloid.

Figure 3.7 shows that perturbations from bulk water for three-body angle distributions

of colloids solvated in TIP4P/2005 are distinctly different from those of the LJ fluid,

suggesting a fundamentally different response to the presence of a solute. Whereas

TIP4P/2005 transitions between enhancement near 109.5◦ for small solutes and enhance-

ment of the peak near 63.4◦ for large solutes, the LJ fluid exhibits monotonic behavior

as colloid size increases, with the distribution for small angles continuously growing at

the expense of larger ones. Moreover, the perturbation in the LJ fluid is exactly what is
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expected simply by computing the distribution in a geometry corresponding to a putative

hydration shell of some radius. Figure 3.7 shows P (θ) distributions computed within

a radial shell of the same shape as the first hydration layer around WCA colloids, but

computed from a simulation of bulk water without an explicit solute present. These

distributions with only geometric constraints, no physical solutes, exhibit behavior almost

identical to that of the LJ fluid with an actual solute, indicating that the presence of

the colloid does not fundamentally perturb the structure of the LJ fluid, but instead

only reflects the geometry of the region used to compute P (θ). In contrast, TIP4P/2005

significantly shifts its structure in response to a solute, exhibiting fundamentally different

behavior: the three body distributions show marked differences between the explicit solute

case and the geometric control volume.

3.3.3 Thermodynamic information for solvation

The specific variations in P (θ) for TIP4P/2005 also show signatures of the ∼1 nm

length-scale transition in hydrophobic solvation.74 It is well-established that solvation on

small and large length-scales exhibit fundamentally different thermodynamic behaviors,74

with the structural origin of such behaviors hotly debated.75,76 Here we interpret solvation

in terms of shifts in the three-body angle distribution, providing a novel structural-

theoretical perspective for interpreting distinct solvation contributions solely from changes

in solvent configurational degrees of freedom. In Figure 3.8, we project changes in P (θ)

within the first colloid solvation shell onto the overall principal components shown in

Figure 3.6C. We observe a crossover in behavior as the colloid size is increased, with

projections onto PC1 sharply becoming less negative after ∼0.5 nm and projections onto

PC2 switching from positive to negative around the same point. While the crossover point

is unchanged with colloid attractive strength, the rate of increase of the PC1 projection
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becomes larger with increasing colloid-water attractions. Importantly, these projections

alone seem to be sensitive to both attractive strength and colloid size, exhibiting a

fundamental crossover in behavior in the latter that begins to saturate around 1 nm.

Figure 3.8: (a) Projections of colloid first solvation shell perturbations to P (θ) onto
principal components for colloids of varying size, indicated by the hard-sphere radius,
and attractive strength (increasing from the top to bottom panel). The product of
projections onto components 1 and 2 is also shown as triangles. (b) The relative entropy
of solvation, as defined here and in Appendix B, as a function of the projections onto
the first two principal components.

Our past work51 and inhomogeneous solvation theory77 suggest that examination

of water degrees of freedom, in particular three-body angles, may also provide thermo-

dynamic information on the solute solvation process. To characterize the relationship

between water’s structural response and this process, we explore models for solvation

thermodynamics based on perturbations to P (θ). This approach is supported in part by

our previous work,51 in which we showed that P (θ) appeared to capture association free

energies of short peptides of varying hydrophobic content with extended hydrophobic
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surfaces. There, the fraction of the three-body angle distribution for peptide hydration

waters that corresponded to an idealized reference distribution near hydrophobic leucine

sidechain analogues correlated linearly with the free energy for moving the peptide from

solution to the hydrophobic surface.

Here, we ask whether a similar parsing of P (θ) for the colloids correlates with their

solvation free energies, i.e., the free energy for transferring them from an ideal gas phase

into solution. This quantity corresponds to the difference in free energy ∆G for a solvated

colloid (state 2) and that in which the colloid is in the ideal gas phase while the water

exists separately in bulk (state 1):

β∆G = ln
[ ∫

e−βpV
(∫

e−βUww(rN
w )drNw drc

)
dV∫

e−βpV
(∫

e−βUww(rN
w )−βUwc(rN

w ,rc)drNw drc
)
dV

]
(3.4)

Here, p gives the pressure and V the system volume, rNw the coordinates of the waters, rc

the position of the colloid, and Uww and Uwc the total potential energies for the water-water

and water-colloid interactions, respectively. Equation 4 can be further manipulated via

the usual Zwanzig-type perturbation:

β∆G = ln〈eβUwc〉2 (3.5)

Equation 5 shows that the solvation free energy is determined by the water-colloid

interactions in the colloid-solvated state, which incorporates (through the configurational

probabilities) the effect of solvation water structure and its response to the colloid. This

result can be made more instructive by separating out the direct interaction contribution
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of 〈Uwc〉2, giving

β∆G = β〈Uwc〉2 + ln〈eβ(Uwc−〈Uwc〉2)〉2

= β〈Uwc〉2 + Srel,1→2

(3.6)

The indirect contribution in the second term of the first line clearly emerges from

fluctuations in the solvated state of Uwc around the mean 〈Uwc〉2 78–80.78–80 This term

has been previously characterized in the context of the solvation of long-chain alkanes,81

as well as for the process of turning on attractive interactions for model spherical solutes.82

The second line shows that the indirect term is also given by the relative entropy:

Srel,1→2 =
∫
℘2(V )

[∫
℘2(rNw , rc;V ) ln ℘2(rNw , rc, V )

℘1(rNw , rc, V )dr
N
w drc

]
dV (3.7)

where ℘(rNw , rc;V ) gives the probability for a particular configuration rNw , rc at a given

volume V in the ensemble of interest, ℘(rNw , rc, V ) gives the total probability of both a

given configuration and volume, and ℘2(V ) gives the volume distribution in the solvated

state. The relative entropy integrates over the entire configurational space to measure

the overlap of the two probability distributions in states 1 and 2. Relative entropies have

been used to develop inverse and coarse-graining algorithms;83,84 in the present context,

Srel,1→2 measures how accurately the pre-solvation state 1 captures the configurational

distribution of waters in the solvated state.

Note that the relative entropy still integrates over the colloid degrees of freedom;

however, for a rigid, spherically-symmetric colloid in a homogeneous system, these terms

do not contribute, such that the relative entropy only captures changes to solvent degrees
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of freedom. Equation 7 thus simplifies to

Srel,1→2 =
∫
℘2(V )

[∫
℘2(rNw ;V ) ln ℘2(rNw , V )

℘1(rNw , V )dr
N
w

]
dV (3.8)

This result shows that Srel,1→2 captures changes to hydration water structure upon

solvation, where two distinct effects arise. The first involves the creation of a solvent void

volume, at constant pressure, to accommodate the colloid; the corresponding contribution

to the relative entropy scales as expected like βpVc where Vc is the colloid volume (see

Appendix B). The second effect involves changes to local water structure, relative to the

bulk, in regions near to the colloid. In cases where a colloid perturbs the hydration water

structure substantially, this effect should be large and positive, while it has a minimum

of zero in the case where no perturbation occurs. A more detailed derivation of Equation

3.8 and these results are given in Appendix B.

Because Srel,1→2 naturally addresses the manner by which colloids influence hydration

water structure, we hypothesize that changes to the three-body angle distribution will

correlate strongly with its value and hence the indirect contribution to the solvation

free energy in Equation 6. Indeed, Figure 3.8 indicates the near-collapse of curves for

all solutes when showing projections onto PC1 and PC2 against the relative entropy of

solvation, whereas other thermodynamic quantities do not exhibit such clean behavior

(Appendix C Fig. C.12). Of course, water degrees of freedom beyond three-body angles

will contribute to Srel,1→2, but here we simply examine how well P (θ) perturbations

track local water restructuring and thus the relative entropy. We note that the βpVc

contribution to Srel,1→2 can be ignored as it is negligible for even the largest colloids

studied (see Table C.1 in Appendix C).

We thus propose a simple model in which the relative entropy for the solvation of a

given colloid is approximated using the projections of its first hydration shell three-body
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angle distribution onto the first two principal components of variation. The precise form

of our model is
Srel,model
N3b

= s1p1 + s2p2 + s12p1p2 (3.9)

with

p1 = proj
(
δP (θ), PC1(θ)

)
(3.10)

p2 = proj
(
δP (θ), PC2(θ)

)
(3.11)

where N3b is the average number of three-body angles found in the first hydration shell,

proj(δP (θ), PCi) is the projection of the perturbation of P (θ) from bulk onto the ith

PC, and si are fit parameters representing the free energy contributions associated with

changes to projections along the given PCs. Here, we express the relative entropy as

linear in the projections of the angle distributions with the addition of a non-linear cross

term. The form of Equation 11 might be motivated by the possibility that hydration

waters experience two distinct types of environments, corresponding to variations along

PC1 and PC2. But generally, we expect more complex behavior that requires a “mixing”

term between the two, since a single water’s three body angles (up to six for four-fold

coordination) may show among them deviations corresponding to both PCs. Given the

model form, we then fit the parameters s1, s2, and s12 by least squares regression to

minimize the detailed computed versus approximate values of Srel,1→2.

Figure 3.9 shows the performance of the fitted model, both with and without the

cross-term. By including the cross-term, the model accurately captures the solvation

relative entropy for all colloid sizes. On the other hand, the purely additive model (no

cross-term) fails for small colloids, in particular for those that are highly attractive,

where the free energy for solvation shifts from positive to negative with colloid size. The
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Figure 3.9: Model predictions of Equation 9 with (left) and without (right) the
cross-term for the relative entropies for solvating all colloids. The dotted line indicates
a perfect match of the model to the true Srel values while light gray and light blue
shaded regions indicate 5% and 20% error. Without cross-terms, the fit near small
colloid sizes is poor. The fit for large colloid sizes is much improved when colloids of
different levels of attractions are fit separately (Appendix C Fig. C.13).

improvement due to the cross term seems to stem primarily from its ability to switch sign

depending on the relative signs of projections onto PC1 and PC2. Figure 3.8 indicates

that projections onto PC2 change sign with increasing colloid size, while those onto PC1

do not. Thus, the first two terms in Equation 9 represent the amount of the relative

entropy, in an empirical sense, that is correlated with independent changes of three-body

angles along PC1 (tetrahedral to icosahedral changes) or PC2 (changes in the number of

interstitial waters), whereas the cross-term represents joint changes along both of these

modes for three-body angle restructuring. Although PC1 and PC2 are orthogonal, we

do not expect perturbations induced by the introduction of a colloid to correspond to

independent shifts along principal components. By this reasoning, it is not surprising

that the cross-term is necessary.

The results in Figure 3.9 also indicate that not all colloids types are fit with the
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same accuracy, with the highest errors for the highly attractive species. However, if each

type is fit separately (i.e., distinct s parameters for WCA, low, and high versions), both

small-colloid and large-colloid behavior is fit much more accurately (Appendix C Fig.

C.13); this is likely possible due to the very similar behavior of Srel,1→2 for all small

colloids, but distinct behavior at larger sizes (Fig. 3.8). This observation indicates intrinsic

differences in the way water structure is perturbed in the shells of the largest colloids,

beyond what can be explained by changes in three-body angles. As an example, it is clear

from Figure 3.6 that water density profiles as a function of radial distance from the colloid

are nearly identical for all types of small colloids. For large colloids, however, repulsive

and weakly-attractive colloids induce a de-wetting of water from the colloid surface while

very attractive colloids induce greater ordering with larger colloid size. Figure C.14 in

Appendix C demonstrates that the contribution to Srel,1→2 from three-body angles alone

is relatively small and does not linearly correlate with the total relative entropy; moreover,

colloids with distinct attractions show deviations in the relationship between the two

quantities at larger colloid sizes. This highlights the fact that the model in Equation 9

is innately a perturbative model based on a single structural metric – it breaks down

once perturbations become too large or the chosen degree of freedom fails to qualitatively

track overall shifts in water structure. In this case, perturbations to water structure are

not fully captured by three-body angles and information from changes to other degrees of

freedom, such as water density profiles or two-body correlations, should be included to

generally describe relative entropies between states.

3.3.4 Conclusions

This work has sought to understand the nature of the three-body angle distribution

in water, P (θ), as a measure of its structural and thermodynamic response to different
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conditions. This distribution is of great interest because it characterizes the full spectrum of

water’s orientational structure fluctuations, in contrast to many conventional orientational

order parameters that are averages, and because it is readily applied (without modification)

to study inhomogeneous environments with solutes or interfaces, since it does not require

waters to have a fixed number of nearest neighbors.

We first characterized the behavior P (θ) as a function of temperature and density

in bulk water. At low temperatures and densities, the three-body distribution naturally

shows that tetrahedral arrangements of waters dominate, while moving away from these

conditions, the distribution transitions to simple-fluid-like. These shifts are captured

clearly by the principal components computed from changes to P (θ). Remarkably, we

found that only two principle components explain the shifts across all the distributions,

and projections onto these principal components then provide a metric of the relative

propensity for tetrahedral or icosahedral structure. Moreover, our results suggest that the

principal components can identify some of the boundaries in state space that delineate

regions of water’s anomalous structural behavior. While here we focused exclusively on

P (θ), similar analysis might be fruitfully applied to other water degrees of freedom, or

collections of degrees of freedom including θ, to map water structural shifts more fully.

In particular, we found that the significance of structural shifts is more readily obtained

through examination of the full distribution of the metrics (and their perturbation), in

contrast to averages or moments, such as the conventional tetrahedral order parameter.

We also studied the three-body distribution in hydration water near idealized spherical

solutes of varied sizes and strength of solute-water attractions. In the hydration shells of

these colloids, we observed enhanced tetrahedrality for small colloids while the correspond-

ing peak in P (θ) shrinks for larger ones, regardless of the level of attractive strength. For

strong attractions, the distribution becomes progressively more like a simple fluid, but to a

much lesser extent than high density-induced changes in bulk water. Remarkably, we find
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that principal components of perturbations from bulk water of P (θ) in colloid hydration

shells are very similar to those for perturbations of bulk water across temperature and

density space. This implies that this degree of freedom may only be perturbed in a limited

number of ways and that such responses may be mapped to similar changes induced by

state conditions alone. Characterization of three-body angle distributions in the hydration

shells of more realistic solutes, in particular ions or flexible polymers, may reveal new

responses of P (θ) beyond what we have presented here. It will be very interesting to see

if the principal components derived from bulk water can also track perturbations from a

more diverse set of solutes.

Using a very simple model, we find that projections onto principal components of

perturbations to P (θ) in colloid hydration shells also appears to well-predict the indirect,

solvent restructuring contribution to solute solvation free energies (specifically, the solva-

tion relative entropy). This represents an exciting explicit connection between solvation

thermodynamics and changes in microscopic solvent structure. The proposed solvation

model starts to break down for very large colloids when attempting to simultaneously

capture the behavior for colloids of all attractive strengths. This represents a limitation

of the single degree of freedom θ to comprehensively reflect water restructuring in hy-

dration shells. Future studies exploring shifts in additional water structural metrics and

correlations, and their relative contributions to solvation thermodynamics through the

relative entropy, will likely prove helpful in enhancing this type of structure-based model

of solvation. Similar analyses for bulk water may also be useful in clearly connecting

shifts in its structure to its thermodynamic properties. Finally, it is well known that sol-

vation of many solutes in water, particularly hydrophobes, exhibit distinctive temperature

dependence. It will be interesting to investigate the role that three-body angles, or other

degrees of freedom, play in determining this behavior through their contribution to the

relative entropy of solvation. The present type of analysis may identify specific degrees of
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freedom that contribute to this temperature dependence, which in turn may suggest key

features to include when developing coarse-grained models and solvation theories.
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Chapter 4

Computational design of surface

chemical patterns to optimize

proximal water mobility

Reproduced in part with permission from:

Monroe J. I., & Shell M. S. (2018). Computational discovery of chemically patterned

surfaces that effect unique hydration water dynamics. Proceedings of the National

Academy of Sciences, 115(32). https://doi.org/10.1073/pnas.1807208115

4.1 Introduction

Water dynamics near solid interfaces play a critical role in numerous technologies,

including water purification, filtration and adsorption, chromatography, and catalysis.

Modifying surface hydrophobicity and chemistry, by altering the average coverage or

surface density of functional groups, is well-known to influence the dynamics of hydrating
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water.1–5 Beyond this macroscopic view, however, there also potentially exists a rich

design space for tuning dynamics related to the nanoscale patterning of functional groups

at fixed coverage. Indeed, efforts have exploited patterning at nanoscopic to microscopic

length-scales to develop biomimetic surfaces with super-hydrophobic6 and other anomalous,

even time-dependent, wetting behaviors.7 Even though a fundamental understanding of

the effect of surface chemical heterogeneity on water dynamics is incomplete, there is

good reason to expect marked behaviors. Recent theoretical work has shown that surface

heterogeneity impacts interfacial thermodynamic properties (including hydrophobicity), in

particular highlighting non-additive, pattern-specific effects upon arranging hydrophobic

and hydrophilic groups on surfaces.8–11 Other work has also emphasized non-additivities

through the failure of macroscopic theories, like the Cassie-Baxter contact angle equation,

applied to heterogeneous surfaces.12

Nature is ripe with examples of biological interfaces that capitalize on chemical

heterogeneity, using precise functional group patterns to produce unique hydration

dynamics.13–15 In particular, proteins arrange surface amino acids to cooperatively adjust

hydration shell water in ways that impact the mechanism and timescale of protein

folding and association.14–17 For example, large hydrophobic patches at protein surfaces

can induce large fluctuations in nearby water density,18 strengthening and accelerating

protein-protein association.19 More generally, spatial heterogeneity in hydration shell

dynamics, influenced by local geometry and chemical patterning, is a hallmark of proteins

of all sizes and functions.20,21 Recent experimental measurements have also shown that

such heterogeneity is unique to the folded, structured protein and does not appear

in corresponding peptide fragments or intrinsically disordered proteins, suggesting the

importance of spatially-organized heterogeneity in the well-defined folded structure.5

Are there design principles for biologically-inspired interfacial patterning that can be

translated to arbitrary synthetic systems to control hydration water dynamics? We use
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simulations of model surfaces and inverse design algorithms to uncover how functional

group patterning alone can influence hydration dynamics in unique and significant ways.

While several case-studies on specific systems have established how average surface

properties such as functional group density2,3, 22 and surface-water energetics23,24 influence

hydration dynamics, to our knowledge this is the first systematic study to provide a

general framework for the effect of heterogeneities on dynamics. Here we focus only on

the chemical patterning of a surface without the additional effect of confinement, which is

also known to induce unusual water dynamics,15,25 both alone26 and in conjunction with

surface patterning.8,27

We examine three distinct model systems that provide complementary perspectives for

the influence of surface heterogeneity: (i) Silica is a model material in many catalytic and

separation processes, and the 101 interface of α–cristobalite allows variations in silanol

(Si-OH) densities that span a spectrum of moderately to highly hydrophilic (contact

angles of θ ≈ 42◦ to 0◦28). (ii) Mixed methyl- and hydroxyl-terminated SAMs represent a

softer interface with a wider range of hydropathy, spanning highly hydrophobic (θ ≈ 121◦)

to hydrophilic (θ ≈ 0◦) surfaces. (iii) As a control, we also examine toy Lennard-Jones

(LJ) surfaces containing two uncharged particle types with hydrophobic/weak (θ ≈ 127◦)

and hydrophilic/strong (θ ≈ 91◦) van der Waals interactions with water molecules. In

specific cases noted below, we have also considered LJ surfaces in which the hydrophilic

particles are “super-attractive” (θ ≈ 49◦), with a water-particle interaction energy double

the original hydrophilic case. Importantly, all LJ particles interact only isotropically

with water, whereas the hydroxyl groups in both the silica and SAM surfaces produce

directional hydrogen bonding. All three systems allow distinct coverages and patterning

of hydrophilic groups through the spatial arrangement of silanol groups on cristobalite,

hydroxyl-terminated SAM chains, or strongly attractive LJ particles.

Rather than exhaustively explore all surface configurations for a fixed number of
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Figure 4.1: A schematic of the workflow for the genetic algorithm to optimize (min-
imize or maximize) hydration water dynamics via re-patterning of surfaces at vari-
ous fixed coverages of hydrophilic groups. Surfaces studied include the 101 face of
α-cristobalite with varied silanol coverage, self-assembled monolayer (SAM) surfaces
with mixed methyl- and hydroxyl-terminated chains, and idealized surfaces of mixed
binary Lennard-Jones (LJ) particles with either strong or weak LJ-water interactions.
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hydrophilic groups, we develop a genetic algorithm for discovering surface configurations

that either maximize or minimize the dynamics of hydration layer water, as shown in Fig.

4.1. In effect, this approach identifies extremal surfaces that provide bounds for realizable

water dynamics due to patterning and, in doing so, magnifies surface characteristics

that impact and control mobility. The genetic algorithm rearranges surface chemical

groups at fixed coverage, and for each new surface pattern it uses molecular dynamics

simulations to assess the hydration water dynamics, quantified by the parallel diffusivity

for waters within 8 Å of the surface. The algorithm evolves surface patterns toward

extremal water dynamics through creation and evaluation of subsequent “generations” of

surfaces. Further details are provided in Methods.

4.2 Methods

4.2.1 Model systems

We model all surfaces using molecular dynamics (MD) simulations of 3D periodic

systems with slab geometries (Fig. 4.1). Surfaces are solvated on each side by TIP4P-Ew

water,29 although we found no qualitative differences using other water models. Fully

hydroxylated crystalline slabs of the 101 face of α–cristobalite were derived from the

fully-silonated library provided by Emami and coworkers.28 To reach lower densities

for these models, we perform in-silico “condensations” of two nearest-neighbor silanol

groups, using PARMED30 to remove both hydrogens and one oxygen from the topology,

then creating all necessary bonds, angles, and dihedrals surrounding the newly bridging

oxygen. Force field functional forms and parameters come from the silica portion of

INTERFACE-FF.28

We model methyl-and hydroxyl-terminated SAM chains similarly to the efforts of
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Garde and coworkers,31,32 Levine, et al,33 and Zerze, et al,34 though we introduce specific

modifications as described below. As in previous work, united atoms represent subsurface

groups while atomic detail is used for head groups. In the work of Mondello35 referenced

by the Garde group, all bonds between united atoms were constrained, whereas here

we only constrain bonds involving hydrogens. In previous parametrizations of the SAM

surface, it appears based on prior descriptions of methodology that no angle potential

energy function was applied to the C-O-H angle of hydroxyl-terminated chains, with the

OPLS/AMBER parameters36 for such an angle instead applied to the C-C-O angle. We

apply the usual OPLS/AMBER C-C-O and C-O-H angle terms to these atoms, which

somewhat limits the flexibility and hydrogen bonding ability of the hydroxyl head group.

Chains are arranged with their sulfur atoms in a hexagonal close-packed (HCP) pattern

with nearest-neighbor spacing of 4.97 Å. We place a total of 72 chains on this lattice

consisting of 9 rows (along the y dimension) and 8 columns (along the x dimension),

resulting in surfaces of size 39.7600 x 38.7373 Å2.

We generate surfaces of Lennard-Jones particles on a 2D lattice identical to that of the

SAM systems, with each layer along the direction perpendicular to the interface translated

appropriately to maintain an overall HCP crystal structure. This includes 5 lattice layers,

which makes slabs for all systems (including SAM and cristobalite surfaces) at least ∼20

Å thick. “Hydrophobic” LJ particles use parameters for OPLS united-atom methane

(ε=1.2301 kJ/mol and σ=3.730 Å),37 while “hydrophilic” ones have a six times greater ε

for interactions with water. All inter-surface interactions for LJ particles follow the purely

hydrophobic case so that surface-surface energetics are not influenced by patterning.

“Super-attractive” LJ particles are also employed in some simulations, with an epsilon

that is twelve times greater than that for hydrophobic LJ particles.

The original SAM and LJ surfaces developed in our work entail a defect in the HCP

lattice due to the use of an odd number of rows. This is manifested more obviously for
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the LJ surfaces, for which the particles are restrained in place whereas the flexible chains

of the SAM are able to re-arrange so that the surface-water interface is still approximately

HCP. Re-running the genetic algorithm at a hydrophilic fraction of 0.25 for re-constructed

SAM and LJ surfaces with 10 rows and no defect (dimensions of 39.7600 x 43.0415 Å2)

makes no difference to the diffusivity values or range measured, and thus leads to no

change in the conclusions presented.

4.2.2 Molecular dynamics details

We use the 2016.1 release of GROMACS38 for all MD simulations. In all cases,

the time step is 0.002 ps and we constrain all bonds involving hydrogens. Short-range,

non-bonded interactions are truncated and shifted to zero at a 1.2 Å cut-off, with default

GROMACS treatment for long-range electrostatics. All runs consist of ∼8000 atoms and

utilize GPU-accelerated code on NVIDIA GTX 1080 Pascal GPUs provided by Exxact.

For all MD simulations, the velocity Verlet method39 is used to propagate the equations

of motion with constraints placed on all bonds involving hydrogens through LINCS.40

The Smooth Particle Mesh Ewald algorithm, with default GROMACS parameters, treats

long-range electrostatics.41

Prior to each MD run, we use the following equilibration procedure: (1) The GRO-

MACS solvate command centers and solvates a surface, followed by relaxation with steepest

descent energy minimization and a very short NVT simulation with the Berendsen ther-

mostat.42 (2) Short NPT equilibration with a Berendsen thermostat and semi-isotropic

barostat (volume fluctuations only perpendicular to the surface) equilibrates the box

size. (3) A second short pre-production NPT simulation evaluates average box size,

which is then fixed. (4) Finally, a short NVT simulation utilizing a weak Nose-Hoover

thermostat43,44 with 10 chains45 precedes a 10 ns production run with the same settings
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and frames saved every 0.5 ps.

We separately remove center of mass momentum from the water and surface atoms

every 30 time steps. This is sufficient to keep the α–cristobalite surfaces motionless relative

to water. For the SAM surface, all united sulfur atoms are harmonically restrained in

space, with each sulfur reference position scaled separately during NPT runs. LJ surface

particles are also harmonically restrained, with the center of mass reference position of all

particles rescaled during NPT simulations.

4.2.3 Calculation of diffusivities

To assess hydration water mobility, we determine the diffusivity via linear fits to the

2D mean-squared displacement (MSD) of water oxygen atoms parallel to the plane of the

surface. Similar to earlier simulation studies,22,23 we collect MSD data from water oxygen

atoms as long as they remain within 8 Å of the surface, as defined by the most extreme

surface heavy atom coordinates. For all systems, this includes approximately 2 hydration

layers. We focus this calculation to a time window of 2-10 ps, which we find to be optimal

for assessing lateral water dynamics near interfaces. At times shorter than this, waters do

not exhibit diffusive behavior, while at times beyond 10 ps, too many waters have left

the surface and the slope of the MSD curve decreases as only the slowest-moving waters

remain. Profiles of water lateral diffusivity in the direction perpendicular to the interface

are obtained by the same procedure but using 3 Å slices with their centers spaced 0.5 Å

apart along the interface normal.

4.2.4 Calculation of excess hard-sphere chemical potentials

We compute the spatially-varying excess chemical potential for hard-spheres of radius

3.3 Å using the Widom insertion technique.46 We discretize the simulation box into cells
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and count the number of times a randomly-inserted sphere in any cell is empty of water

oxygens or surface heavy atoms. Profiles of µHSex result from placing spheres randomly

within 0.5 Å slices perpendicular to the interface, with at least 5.04 x 108 insertions

attempted for each slice. The negative log probability for a successful insertion (main text

Equation 1) then provides the hard-sphere chemical potential and its spatial dependence.

In the results presented, we reference hard-sphere excess chemical potentials to the case

in bulk TIP4P-Ew water at 300 K and 1 bar, where µHSex ≈ 10.476 kBT .

4.2.5 Determination of interfaces and interface fluctuations

We use two definitions for the surface-water interface to spatially map surface hy-

drophobicity and hydrophilicity. The “mean” interface is defined by the box Z-coordinate

where the average density of water becomes 0.3 of its bulk value (0.0332 Å−3 for TIP4P-Ew

water). “Instantaneous” interfaces are defined according to the procedure of Willard

and Chandler,47 utilizing the same parameters except for a density fraction cut-off of 0.3

instead of 0.5. In short, each water oxygen is assigned a truncated and shifted Gaussian

function, with the density field represented by the sum of such functions. The interface is

the iso-surface within this field where the density is 0.3 of the bulk value. The marching_

cubes_ lewiner method48 provided by the scikit-image package49 identifies the iso-surface

after first evaluating the density field on a 1.0 Å grid. For each X-Y bin on the grid

(i.e. bins perpendicular to the surface slab), we prune the density field as necessary such

that only two Z-coordinate iso-surface points are kept representing an upper and lower

interface. Distances of waters to such an interface are defined by projecting the vector

between a water oxygen and the nearest surface point onto the surface unit normal of

said surface point.
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4.2.6 Calculation of water re-orientation times

Water re-orientation times are determined by fitting a stretched exponential function

to the time-decay of the cosine of the angle between the water dipole vector at an initial

and later time. This was done only for waters remaining in the surface-water distance

range of interest, as described by Debenedetti and coworkers.23 Profiles result from using

3 Å slices in the direction perpendicular to the interface with slice centers spaced 0.5 Å

apart.

4.2.7 Calculation of contact angles

We calculate water contact angles by placing an equilibrated water box of 2000 TIP4P-

Ew water molecules over SAM or LJ surfaces with dimensions of about 119 x 116 Å2.

Drops are equilibrated under NVT conditions with molecular dynamics parameters as

described in other sections. Once the drop shape stops changing (∼1 ns for hydrophobic

surfaces, and 5-10 ns for hydrophilic surfaces), a 10 ns production simulation is used

to calculate the average drop geometry. The direction perpendicular to the interface is

discretized into 1.0 Å bins, with the maximum water oxygen radial distance from the

drop center of mass recorded at each timestep for each bin. At each frame, a fixed cut-off

distance from the drop center is used to ensure that gas-phase waters were not considered.

The average maximum radial distance versus height from the interface is fit to a second

order polynomial, with the coefficient on the term linear in radius providing the inverse

tangent of the contact angle.

4.2.8 Genetic algorithm implementation

The genetic algorithm workflow of Fig. 4.1 is coded in python 2.7, making extensive use

of the PARMED30 and PYTRAJ50 packages. “Individuals” refers to specific realizations
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of surface patterns, “parents” to a subset of fit individuals selected to produce “children”

of the next generation. Boolean arrays store surface configurations with True values

indicating that a surface site (i.e. silanol, SAM chain, or LJ particle) is hydrophilic.

Initially, a pool of randomly generated surfaces/individuals is created. Tournament

selection of parents collects high-fitness candidates (either high or low parallel diffusivity

depending on the optimization direction) for generating children. To combine two

randomly paired parents, a random fraction of the first’s True values is combined with

the conjugate fraction of the second’s, and a second child stems from the flipped version.

While this strategy generally preserves surface coverage, in cases where it does not, we

randomly mutate child sites until the desired surface density is reached. Once produced,

children undergo a fixed number of random mutations proportional to the surface coverage

via swapping of True and False Boolean array values; we skip this procedure if the surfaces

have already reached the target number of mutations during the process of ensuring fixed

surface density. We also explored an advanced algorithm approach involving clustering of

surfaces, called “nicheing” in the genetic algorithm literature, but found only marginal

gains in efficiency and results that were not distinct from the more basic procedure.

We have tuned the algorithm to efficiently utilize 8 available GPU processors. Each

“generation” consists of 8 individuals (surfaces), and the first 11 generations (or 88 surfaces

from generation 0 to 10) use random patterns to build a library of potential parents.

Subsequently, the genetic optimization produces 20 generations. A second 20 generation

optimization starting from the same random 88-surface pool but using a distinct random

number seed follows. Finally, we perform another 20 generations of optimization after

combining the full surface libraries from the random generations and both independent

optimization runs. The progress of genetic algorithm runs to minimize and maximize

diffusivity near cristobalite surfaces are shown in Figure X. Each generation requires ∼2

hours for all surface types, with the majority of time in MD simulations. Since each surface
100



Chemical patterning to modify water mobility Chapter 4

Figure 4.2: Evolution of the genetic algorithm for various densities of the cristobalite
surface. Blue points are minimum diffusivity surfaces for a given generation during
minimization runs of the algorithm while orange points are maximum diffusivity
surfaces from a separate maximization run. Blue and orange lines represent convex
hulls. Generations 0 through 10 represent surfaces that were randomly generated
without any optimization. For these early points, the blue and orange give the minimum
and maximum diffusivities in the set of initial random surfaces.
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is identical on its upper and lower faces, 10 ns MD simulations produce effectively 20 ns

of data used to evaluate diffusivities. In total for each particular surface and coverage,

the genetic algorithm preforms 1048 MD simulations requiring 10.5 µs of simulation time.

4.3 Results and Discussion

4.3.1 Patterning of surfaces produces a wide range of diffusivi-

ties at fixed surface coverage

For all surface types studied, the diffusivity monotonically decreases as the number of

hydrophilic groups (Si-OH, OH head-groups, or more attractive LJ particles) increases,

traversing a range of at least 0.1 Å2/ps in diffusivity between 0% and 100% hydrophilic

surface fraction (Fig. 4.3). Diffusivities generally correlate with surface hydrophobicity as

given by the simulation contact angle, increasing in the order of the cristobalite, SAM,

and LJ surfaces. Similar to the way that hydration water thermodynamic properties

vary with hydrophilic coverage,31 we observe an asymmetry in the response of water

dynamics to addition of hydrophilic sites: at low hydrophilic fractions, the reduction in

mobility is more pronounced than for higher coverages, giving rise to an overall convex

relationship in Fig. 4.3. This effect is most apparent on surfaces with a wide range of

effective hydrophilicity/phobicity, including the SAM surfaces and LJ surfaces composed

of hydrophobic and super-attractive bead types. While the asymmetry is less apparent for

the cristobalite and standard LJ cases, the overall relationships still show a discernable

convex character.

Importantly, for both the cristobalite and SAM surfaces, the genetic algorithm iden-

tifies a wide range of diffusivities resulting from chemical patterning at partial surface

coverages, where the number of possible patterns is combinatorically large. At intermediate
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Figure 4.3: Regions of accessible hydration water diffusivities due to surface repattern-
ing for the model surfaces. The hydrophilic surface fraction is defined for cristobalite
as the percentage of the maximum possible silanol (Si-OH) density, for the SAMs as
the fraction of hydroxyl-terminated chains, and for the Lennard Jones surfaces as the
fraction of strongly attractive van der Waals sites. Filled symbols show the minimum
and maximum diffusivity found by the genetic algorithm, while open symbols show
the average diffusivity for randomly generated surfaces. Red curves show diffusivities
for super-attractive LJ surfaces, using patterns optimized from the original LJ case.
The blue dashed lines and blue diamonds show the expanded diffusivity range for
SAM surfaces at surface fractions of 0.125 and 0.25 with regularly spaced and circular-
ly-clustered hydroxyl groups (see Fig. 4.5). The black dashed line gives the average
lateral diffusivity of simulation bulk water. Error bars, which are typically smaller
than the symbol size, give 1% confidence intervals assuming Student’s t-distribution
from repeated simulation runs of the same surface.
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hydrophilic fractions, patterning of these surfaces can produce a ∼10% change in absolute

diffusivity. It is interesting to note, however, that the patterning-induced variation in

diffusivity is a substantial fraction of the overall diffusivity range achievable by a given

chemistry (i.e., of the range defined between zero and full hydrophilic surface fraction);

this relative variation is 16% for cristobalite and 20% for SAM surfaces. Interestingly,

for both surface types the largest spread between minimum and maximum diffusivity

occurs at coverages skewed towards smaller hydrophilic fractions. As shown in Table

1, the differences in diffusivities due to these surface reconfigurations are statistically

significant and reproducible: in nearly all cases, the probability for erroneously predicting

that the simulation-calculated minimum surface diffusivity is greater than the maximum

is negligible. In contrast, no statistically significant range of diffusivities (for a 5% confi-

dence interval) is obtained from genetic algorithm optimizations of the LJ surface at any

coverage, implying that unlike the other two cases, surface patterning for this system has

no measurable effect on water dynamics. This is in spite of the fact that both LJ cases in

Fig. 4.3 show some non-linear character. While this non-linearity is expected due to the

higher probability of finding waters near more attractive sites (see Appendix D), the lack

of pattern-dependence is unexpected and discussed shortly.

The ability of patterning to modulate hydration water dynamics is surprising from a

macroscopic perspective. Purely continuum arguments would suggest that heterogeneous

surfaces consisting of distinct macroscopic regions differing in hydration water diffusivity

should see no patterning effect. Instead, the long-time interfacial dynamics on such

surfaces should only depend on the fraction of each region type, unless molecular-scale

effects are introduced in the form of barrier-crossing dynamics at region boundaries (see

Appendix D). Indeed, our results show that molecular-scale (<1 nm) patterning is essential

to produce pronounced changes in water mobility as surface patterns are adjusted, even

without confinement or nontrivial variations in surface geometry.
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Surface

P-value for hypothesis
that min diffusivity is
greater than max

using Welch’s t-test*

Probability to observe
min diffusivity surface
pattern at least once
through random
sampling alone**

Probability to observe
max diffusivity

surface pattern at
least once through
random sampling

alone**
cristobalite-101,
fHyd = 0.25 5.20 x 10-12 9.85 x 10-1 1.07 x 10-2

cristobalite-101,
fHyd = 0.375 0.00 x 100 5.45 x 10-1 5.95 x 10-1

cristobalite-101,
fHyd = 0.50 1.5 x 10-11 9.98 x 10-1 1.61 x 10-1

cristobalite-101,
fHyd = 0.75 5.90 x 10-3 9.02 x 10-1 1.00 x 100

SAM,
fHyd = 0.25 5.20 x 10-7 9.66 x 10-1 5.21 x 10-6

SAM,
fHyd = 0.50 8.90 x 10-6 9.83 x 10-1 1.05 x 10-3

LJ,
fHyd = 0.25 1.80 x 10-1 1.00 x 100 1.00 x 100

LJ,
fHyd = 0.50 6.70 x 10-2 1.00 x 100 1.00 x 100

*Uses Student’s t-distribution, but does not assume equal variances of the two sets of
samples
**Assumes a Gaussian distribution of diffusivities for randomly generated surfaces, with
the binomial distribution then providing the probability of obtaining at least one equally
or more anomalous diffusivity from a draw of the same size as the sample generated by
the genetic algorithm optimization

Table 4.1: Performance metrics for the surface design genetic algorithm

The significant diffusivity ranges in Fig. 4.3 hold important implications for experi-

mental measurements of surface hydration water dynamics, direct or inferred. For both

the cristobalite and SAM systems, surfaces of intermediate hydrophilicity can have similar

water diffusivities as those with nearly half the hydrophilic coverage, if the former are

patterned so as to maximize water diffusivity and the latter similar to randomly generated

surfaces. Such results call into question hydropathy scales that paint an additive picture

for the effect of surface chemical groups on water. Moreover, these results suggest that

surface preparation techniques may critically influence interfacial properties through
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surface functional group organization. In particular, significant jumps in diffusivity

with surface coverage may signal changes to the spatial clustering and distribution of

groups, as recently observed for amorphous silica of varied hydroxylation.4 More broadly,

measurements to assess the impacts of surface composition on water dynamics may be

misleading if surface spatial organization is not also characterized. This further highlights

the role of chemical heterogeneity as a significant design parameter in controlling water

mobility near interfaces.

4.3.2 The genetic algorithm reveals that dispersion of hydrophilic

groups reduces water mobility

Fig. 4.4 demonstrates that water mobility is higher near surfaces with large clusters

of hydrophilic groups and low on surfaces that evenly distribute such groups, as is clear

from images and two-dimensional surface –OH radial distribution functions. These results

for water dynamics now suggest a deep relationship to underlying thermodynamic and

structural properties of hydration water. Ongoing efforts have sought to understand

how surface chemistry and heterogeneities impact interfacial water density fluctuations

that predict surface hydrophobicity,8,9, 31,51,52 and affect dewetting transitions for water

confined between plates or in the cavities of proteins.8,10,18,53 Of particular note, Garde

and coworkers found that surface groups impact water in a highly non-additive manner

for small length scale features; namely, patches of hydrophobic groups on hydrophilic

surfaces must become larger than ∼1 nm before impacting water density fluctuations,

while even single hydrophilic groups significantly alter the apparent local hydrophilicity of

hydrophobic surfaces.8–11 Our results are consistent, in that dispersion of hydroxyl groups

produces an overall more hydrophilic surface with low water mobility, while hydrophilic

clustering permits the exposure of locally more hydrophobic regions that exceed the
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critical ∼1 nm size necessary to impact local water diffusivity.

Figure 4.4: (a) 2D radial distribution functions for SAM hydrophilic groups show that
maximum-diffusivity cases strengthen spatial correlations at short distances. Solid
lines for RDFs indicate minimum diffusivity surfaces, while dashed lines give maximum
diffusivity cases. (b, c) Simulation snapshots of the minimum and maximum diffusivity
patterns for SAM and cristobalite surfaces at hydroxyl fractions of 0.25 and 0.50.
Clustering of hydroxyl groups (shown in red) on maximum diffusivity surfaces is clear
from visualization of surface structures.

It is possible that more extremal patterns exist such that the true diffusivity ranges

are even broader, since the genetic algorithm finds only minimal bounds due to its finite

sampling of the surface landscape. To test the algorithm’s convergence, we simulated SAM

surfaces that represent the extremes of discovered patterns, namely regularly-dispersed

and circularly-clustered hydroxyl-terminated chains for hydrophilic chain fractions of 0.125

and 0.25 (Fig. 4.5. As seen from Fig. 4.3, such patterns do slightly increase the range of

diffusivities (dashed blue lines), showing that while the algorithm helps to objectively

define the key features of optimal surfaces, it does not find the global optima. As an

interesting contrast, we also simulated a more exotic pattern involving a single stripe of

hydroxyls along the center of a SAM surface, again at 25% coverage. This pattern exhibits

a diffusivity of 0.252 Å2/ps, almost as large as the circularly-clustered configuration,
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and notably exhibits an anisotropy of 0.003 Å2/ps between the directions parallel and

perpendicular to the stripe (significant on the 5% confidence interval). Compared to the

overall effect of patterning, this anisotropy is small; however, in principle the algorithm

could be configured to locate patterns that maximize the anisotropy, resulting in potentially

unintuitive arrangements. We leave this for future work.

Figure 4.5: Top-views of surfaces with specific patterns to further test the genetic
algorithm. Regularly-spaced and circularly-clustered hydroxyl groups represent the
extremes of diffusivity suggested by populations of surfaces discovered by the genetic
algorithm. The single stripe configuration for 25% hydroxyl-terminated chains repre-
sents a more exotic patterned to rudimentarily test for anisotropy in the diffusivity in
directions parallel to and perpendicular to the stripe.

In assessing the algorithm, it is also important to ensure that water diffusivity is

optimized through functional group patterning and not by other means. Figures E.1-

E.9 in Appendix E demonstrate that variations in simulation conditions other than

patterning, like temperature, pressure, or even the rigidity and structure of SAM chains,

are not significantly modified by the algorithm. Table 1 also characterizes the algorithm’s

performance by estimating the probability of randomly observing at least one occurrence

of an extremal diffusivity surface beyond the minimum and maximum currently found
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at each coverage. Overall, minimum diffusivity surfaces are more likely to be observed

among random surfaces than maximum diffusivity ones, but the low probabilities for the

latter show that the algorithm is helpful, particularly at intermediate coverages. This

occurs because higher water mobility surface patterns spatially cluster hydroxyl groups,

and such cases are smaller in number and more difficult for the algorithm to locate than

randomly dispersed ones. The same behavior is also highlighted by the fact that randomly

generated surfaces have diffusivities more similar to minimum-diffusivity ones (Fig. 4.3).

4.3.3 Orientation-specific surface-water interactions drive mo-

bility reductions

We find that molecular measures of hydrophobicity for a given heterogeneous surface

also reflect surface patterning in a manner consistent with variations in hydration water

diffusivity. Spatially resolved density fluctuations within probes placed near interfaces

reveal overall more hydrophilic surfaces (lower density fluctuations) for those with lower

water mobilities (Appendix E, Fig. E.10). More hydrophobic surfaces are also expected

to exhibit increased fluctuations in the location of the surface-water interface itself.47

To define an instantaneous interface, we follow the water density isosurface definition of

Willard and Chandler,47 and indeed see heightened fluctuations near regions of higher

hydrophobicity and lower ones for hydrophilic locations (Appendix E, Fig. E.11). Though

not pursued here, we expect that other estimates of local surface hydrophilicity54,55 will

provide qualitatively similar results.

To quantify and compare the average hydrophobicity of a surface to average water

mobility, we consider the excess chemical potential of hard sphere insertion, given by

µHSex = −kBT ln℘V (4.1)

109



Chemical patterning to modify water mobility Chapter 4

where ℘V gives the probability for successful insertion of a hard sphere of volume V

randomly placed within a region of interest. Such excess chemical potentials can probe

local hydrophobicity as an effective hydropathy map of heterogeneous, molecular-scale

surfaces.9,56 They are also intimately tied to the magnitude of molecular scale fluctuations

in water density, as a successful hard sphere insertion only occurs when the probe volume

density fluctuates to zero.57

Figure 4.6: (a) Hydration water diffusivity correlates with the excess chemical potential
for hard-sphere insertion near the interface across all surface types and patterning.
Hatched points represent surfaces at hydrophilic fractions of zero or one, filled points
minimum diffusivity surfaces, and open points maximum diffusivity ones. (b) The
logarithm of water diffusivity correlates with the orientational contribution to the
one-body intensive entropy.

Fig. 4.6a shows that µHSex for methane-sized (3.3 Å) spheres within 8 Å of the surface

correlates remarkably well with hydration water diffusivity, even across a wide range

of surface types, coverages, and patterning. Comparable relationships are observed

when instantaneous interface location fluctuations are taken into account (although the

correlation weakens for the SAM surfaces due to their compressibility; see Appendix E,

Fig. E.12). The notion of a relationship between mobility and µHSex is not new; Mittal

et al.58 found a strong correlation in the hard sphere fluid. However, the persistence

of this behavior here is surprising given water’s very different density fluctuations and

liquid structure, which depart from simple liquids like hard spheres and influence many

water-unique features of hydrophobic solvation.59 To illustrate the distinction, Fig. 4.7

shows water density, excess hard-sphere chemical potential, water parallel diffusivity,
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and re-orientation times as a function of distance from the interface. While mobility is

spatially correlated with density for confined hard sphere fluids,58 here the average water

density only weakly predicts diffusivity and it fails to correctly rank surfaces in terms

of either hydrophobicity or hydration water mobility. Instead because µHSex is predictive,

it is clear that water density fluctuations are strongly and locally correlated with both

translational and orientational water mobility, a trend that was noted previously for the

singular case of a hydrophobic SAM.60

Figure 4.7: Spatial variations as a function of distance from the mean interface (water
density at 0.3 of its bulk value) are shown for water density, hard-sphere excess chemical
potential, water diffusivity, and water re-orientation times.

While µHSex seems to do an excellent overall job of predicting surface dynamics, it

does not capture the entire picture. Specifically, binary patterning of the LJ surfaces

produces small variations in µHSex but fails to impact water diffusivity (Fig. 4.6a). Indeed,

earlier efforts for similar LJ surfaces have shown that particle arrangements do affect

interfacial thermodynamic properties and alter surface hydrophobicity.10 It may then seem

surprising that the genetic algorithm cannot uncover discernible diffusivity differences

due to surface patterning in these systems (Fig. 4.3). Even if we transpose the minimum

and maximum patterns from the SAM results to the LJ surface (the two systems share
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the same 2D lattice), we still do not find statistically significant variations in diffusivity

(Fig. 4.8). This behavior is also independent of the specific LJ interaction parameters:

doubling the van der Waals strength of the already six-fold more attractive hydrophilic

particles reduces the contact angle of the pure surface from 91◦ to 49◦, but still does not

produce a diffusivity difference for dispersed and clustered particle arrangements (Fig.

4.3). Yet, pattern-induced variations in µHSex are still apparent and grow larger with the

super-attractive particles. This clearly disrupts the overall trend in Fig. 4.6a, suggesting

that while water dynamics and local density fluctuations (probed by µHSex ) are correlated,

the nature of the surface-water interaction also plays a role.

The toy LJ surfaces highlight the important role of directional interactions in manip-

ulating water dynamics and nuance the predictive capability of µHSex . This observation

agrees with models of water mobility based on hydrogen bond dynamics,16 and with stud-

ies showing that interfacial mobility depends on surface affinity, water-surface hydrogen

bond strength, and water orientation with respect to the surface.61,62 To further this idea,

we consider entropic measures that quantify water orientational structure at the interface,

since close relationships between fluid entropy and diffusivity are well-established for both

simple fluids63 and bulk water.64 For small observation volumes, water degrees of freedom

may be approximately decoupled,65 allowing a separation of entropy into translational and

orientational terms. As a first approximation, we use the program GIST66 to calculate

such contributions to the entropy change from bulk for waters within 8 Å of the surface.

This analysis ignores entropy contributions from intermolecular coupling, focusing only

on changes related to single-molecule degrees of freedom.

Fig. 4.6b shows that hydration water orientation entropy strongly correlates with

diffusivity. In contrast, the translational contribution to the entropy, which at the

single-molecule level is only based on water density, is less predictive (Appendix E,

Fig. E.14). Interestingly, the correlation of diffusivity with entropy improves if SAM
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Figure 4.8: Minimum and maximum diffusivity LJ surfaces from the genetic algorithm
optimization, as well as LJ surfaces with the optimum patterns from SAM surfaces
(values for these surfaces with super-attractive particles are shown in parentheses).
Lateral diffusivities are averaged over 8 independent runs. The central column shows
the P-value for the hypothesis that the minimum value is greater than the maximum
using Welch’s t-test, which in all cases shows that there are no statistical differences
between the minimum and maximum surfaces.
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chains are frozen, highlighting complexities induced by a flexible, fluctuating interface.

Importantly, the LJ surfaces that demonstrate no dynamic effect of surface patterning

are also invariant with respect to orientational entropy, showing a consistent and strong

diffusivity-entropy correlation over the full range of coverages. Thus, while patterning can

effect variations in density fluctuations and µHSex , ultimately a perspective that addresses

the orientational structure of water is essential to understanding surface-induced dynamics.

These findings reveal a close coupling of surface water diffusivity with orientational water

entropy and suggest a future opportunity to probe the differential roles of translational

and orientational entropies, the impact of surface flexibility, and the relationship between

entropic measures and µHSex .

4.4 Conclusions

This work illustrates that functional group patterning on heterogeneous surfaces can

produce significant variations in hydration water dynamics, even if the surface coverage

remains constant. A genetic algorithm treats surface patterning as an adjustable design

parameter and can precisely delineate and magnify the effect of surface heterogeneity

by locating surfaces that extremize the hydration water diffusion constant. Such an

optimization approach seems broadly useful and could be adapted to also discover pat-

terned surface flexibility (stiffness) and local geometry (roughness) that optimize a variety

of thermodynamic and kinetic solvent properties across many distinct kinds of surface

modalities and solvents. Recent experiments have also shown that careful design of chem-

ical heterogeneity is crucial to controlling both thermodynamic and dynamic interfacial

properties in silica materials,4 which are ubiquitous in catalytic reaction processes. This

suggests exciting opportunities for computational design of novel materials in even more

diverse applications, from antifouling membrane surfaces for water purification to the
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regulation of interfacial heat transfer.67

The patterns that emerge from our optimization procedure exhibit dispersed/clumped

hydrophilic groups for high/low mobility surfaces, a result reminiscent of patterning

effects known to make surfaces less/more hydrophobic. Indeed, the correlation that we

observe between mobility and excess hard-sphere chemical potentials suggests a deep,

albeit not fully general, connection between water dynamics and density fluctuations.

We also find that surfaces composed of Lennard-Jones particles, without directional or

electrostatic interactions, cannot manipulate water diffusivity via their patterning, which

is surprising given results here and in previous studies10,52,53 that demonstrate distinct,

pattern-dependent changes in thermodynamic properties. While more investigation is

necessary, this result highlights a key difference between the thermodynamic (water

density fluctuations) and dynamic behavior of water at interfaces: interactions that make

use of the anisotropy of the water molecule (e.g., multipole electrostatics) may play a

more fundamental role in determining dynamics than water density fluctuations. In

turn, theoretical efforts seeking to connect water thermodynamics and mobility should

explicitly consider effects associated with both translational and orientational degrees of

freedom. The strong correlations between orientational hydration water entropies and

diffusivities found here lend further support to this idea, and also re-emphasize entropy-

dynamic relationships that have been well studied in bulk fluids.63,64 Thus, this work

represents a first step in not only the discovery of materials with surface patterns that

modify water dynamics, but also exposes fundamental connections between local mobility,

structure, and entropy of liquid water. In particular, the inhomogeneous yet highly

tunable model surfaces presented here, which exhibit pronounced spatial dependence of

kinetic, thermodynamic, and structural water properties, provide an excellent testing

ground for such theoretical developments.
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Chapter 5

Chemically-patterned interfaces for

the controlled affinity and selectivity

of small-molecule solutes

5.1 Introduction

Meeting current and anticipated global demands for clean water is a tremendous

immediate challenge.1–3 While water is readily available in the form of seawater and is

produced in large quantities as industrial waste-products, these water sources are not

currently accessible for domestic or agricultural use without significant energy expendi-

tures.12 Water filtration membranes, both porous and reverse-osmosis, provide promising

avenues towards purifying water at lower energy cost.3,434 Unfortunately, rational design

of such membranes is significantly hampered by the lack of molecular-level insight and

understanding into the function of these devices. This significantly reduces our ability to

rapidly advance this technology, despite an immediate need for its improvement.

Membrane fouling in particular represents a significant problem – adhesion of small
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molecule or biological solutes at membrane interfaces leads to reduced water permeation

and induces costs associated with removing foulants or replacement of the membrane.12

A number of strategies to reduce fouling exist, mainly focusing on chemical or geometric

modification of the membrane-water interface.2 The effects of these types of modifications

are often difficult to disentangle as the chemistry and nanoscale structure of an interface

are intimately connected. For example, the chemistry of a polymer brush determines

surface interactions with foulants and water both through specific chemical interactions

as well as through the polymer chain structure (upright, lying flat, etc.), which leads to

variations in surface roughness, flexibility, and nanoscale chemical patterning. In this

work, we focus on model yet realistic systems in which we assess the impact on solute

surface affinity by finely tune the chemistry and chemical patterning of interfaces without

modifying the geometry of the surface. Such a fundamental study is of interest not only

to protein fouling, but also within the fields of chromatography and surface catalysis.

The pioneering work of Whitesides and coworkers5 developed preliminary rules for

modifying the chemistry of materials to resist fouling – interfaces should be hydrophilic,

net neutral, and avoid hydrogen bond donating groups. These rules, however, only apply

generally to surface chemistry, with the effect this chemistry has on surface roughness,

flexibility, and nanoscale chemical patterning uncontrolled in the original studies. Later

studies show that indeed the density, and hence flexibility and molecular structure, of

molecules attached to an interface, such as polymer brushes, also plays a large role in

determining fouling resistance.6789 Here we examine chemistry independently of interface

geometry by employing molecular dynamics (MD) simulations of well-studied1011121314

models of alkanethiol self-assembled monolayer (SAM) systems with either hydroxyl or

methyl headgroups. Pure surfaces composed of each headgroup are simulated along with

different patterns of the two headgroups at a fixed 1:1 ratio in order to also examine the

effect of chemical patterning. In all cases, the surfaces studied are flat surfaces, avoiding
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effects due to local curvature, which on its own is known to impact surface hydrophobicity

and solute binding.1516

Chemical heterogeneity of interfaces may also have a large impact on fouling propensity

but has been investigated much less thoroughly. Ostuni, et al.17 examined how the size of

hydrophobic head groups on self-assembled monolayer (SAM) chains affected the binding

of a number of proteins. While the head group size and fraction of overall SAM chains

were varied, the exact arrangement of the various head-groups on the surface was unknown.

In a more recent study, Penna et al.18 demonstrated that protein adsorption was modified

by specific patterns of chemical headgroups, though due to the size and complexity of the

system only a very limited set of patterns was investigated. Another study considered the

effect on solute affinity of four different hydroxyl group patterns on a graphene interface.19

In this case, the shape of the solute and its hydrogen bonding ability played a large

role in the ability of hydroxyl groups to enhance or reduce affinity. It is well-established

theoretically that surface patterning of chemical groups may induce variations in both

water thermodynamic2021 and dynamic13 water properties, but the general effects on

affinity are not as clear.

In contrast to many previous studies of fouling, we focus here on a diverse set of simple

small-molecule solutes rather than proteins. Molecular simulations exploring the affinities

of peptides and proteins for SAM,11182223242526272829 mineral,3031 and graphene3212 surfaces,

to name only a few, have been investigated. In many of these studies, the surface chemistry

is well-controlled and varied independently of geometry, yet the fundamental driving forces

for adsorption are obscured by the innate complexity of large biomolecules such as proteins.

For a set of simpler solutes of varied chemistry, affinities for graphene interfaces have

been determined and used to identify thermodynamic trends driving solute binding,3334 as

well as to develop predictive models for affinity based on solute molecular descriptors.35

When considering graphenic interfaces, however, the set of solutes studied is highly biased
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towards aromatic compounds, which exhibit strong affinity for these surfaces.36 On the

other end of the spectrum are studies exploring surface-solute interactions, primarily

hydrophobicity, on a very fundamental level, making use of model solutes with highly

simplified geometries and intermolecular interactions.143738 These studies provide a rich

theory that is unfortunately far-removed from its practical application to protein affinity

for interfaces. The solutes shown in Table 1 represent a diverse and realistic chemical set

that can begin to bridge this gap. Simplicity is still required, however, to rigorously test

and connect with fundamental theories that involve water behavior and structuring.3940

This even restricts the set of solutes considered to be neutral, as ions have been shown to

exhibit highly complicated, and hotly debated, behavior at interfaces.41 Small, neutral

solutes are also of practical interest to the improvement of reverse osmosis membranes, as

such foulants tend to penetrate these membranes along with water.34

To efficiently determine the affinity of the solutes in Table 1 for a variety of interfaces,

we implement expanded ensemble simulations and alchemical free energy calculation

techniques.434445 In brief, we calculate the free energy to transfer a solute from an ideal

gas state to a solvated state, both in bulk solution and at an interface. These separate

calculations of the solvation free energy, ∆Gsolv, in different environments relative to the

interface can then be directly related to surface affinity, or the free energy of binding

∆Gbind = ∆Gsurf
solv −∆Gbulk

solv (5.1)

This is due to the fact that the free energy for the solute being fully decoupled from

the system, in the ideal gas phase, is identical in the states both near and far from the

interface. This approach also allows for the facile manipulation of solute surface affinity

through patterning of interfacial chemical functional groups: since the surface chemistry

does not affect bulk solvation behavior, minimization or maximization of ∆Gsurf
solv will also
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Solute Structure ∆GCH3
solv ∆GOH

solv ∆Gpatch
solv ∆Gspread

solv ∆Gbulk
solv ∆GHenry′s

solv

Ammonia -8.36 ±
0.09

-7.63 ±
0.04

-7.92 ±
0.04

-7.67 ±
0.05

-7.50 ±
0.07

-7.3
(5.9x10-1)

Benzene -5.60 ±
0.07

-2.59 ±
0.06

-4.80 ±
0.09

-3.32 ±
0.09

-1.19 ±
0.11

-1.4
(1.7x10-3)

Boric Acid -6.86 ±
0.06

-5.96 ±
0.10

-6.50 ±
0.06

-6.04 ±
0.11

-5.42 ±
0.04

-23.0
(3.8x106)*

Capped
Glycine -27.63 ±

0.08
-25.51 ±
0.13

-26.69 ±
0.09

-25.75 ±
0.18

-23.60 ±
0.15 N/A

Isopropanol -14.33 ±
0.04

-11.54 ±
0.12

-13.42 ±
0.05

-12.34 ±
0.06

-10.80 ±
0.16

-8.1
(1.3x100)

Methane 1.04 ±
0.05

3.32 ±
0.03

1.84 ±
0.03

2.82 ±
0.05

3.99 ±
0.07

3.36
(1.4x10-5)

Methanol -12.44 ±
0.03

-10.92 ±
0.10

-11.74 ±
0.06

-11.46 ±
0.09

-10.43 ±
0.09

-8.5
(2.0x100)

Phenol -16.69 ±
0.08

-13.30 ±
0.11

-15.94 ±
0.10

-14.58 ±
0.10

-12.09 ±
0.12

-11.1
(2.8x101)

*This value for boric acid was not measured directly like all of the other constants. Instead it is an
approximation based on the vapor pressure of the pure substance divided by the aqueous solubility.

Table 5.1: Solute structures and solvation free energies at interfaces and in bulk with
comparison made in bulk to hydration free energies computed from Henry’s constants.
Solvation free energies apply to the free energy of solvation either in bulk or when the
solute is near to methylated (CH3) hydroxylated (OH) or 1:1 mixed SAM surfaces with
either patchy or dispersed (spread) patterns of hydroxyl groups. Units are reported
in kBT with uncertainties as the standard error in the mean based on 5 independent
runs. Henry’s Law constants are shown in parentheses in units of mol/m3Pa and were
obtained from.42 For an accurate force field, we expect that the last two columns be
equal. For a derivation relating Henry’s Law constants to computed free energies of
solvation, see Appendix F.
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optimize ∆Gbind. To perform the optimization, we use a genetic algorithm to iteratively

modify surface patterning, using the output of our expanded ensemble simulations and

free energy calculations as objective functions (i.e., the genetic algorithm optimizes solute

affinity). We previously used a similar computational evolution strategy to repattern

surfaces in order to modify water mobility.13 Here we improve on this earlier approach by

using MD simulations to train on-the-fly a predictive surrogate regression model that can

then very quickly estimate a given pattern’s affinity for a particular solute, allowing the

genetic algorithm to more expansively explore the design space. This greatly reduces the

computational time required for the algorithm to converge to optimal functional group

patterns. Finer details of the calculations and optimization procedures are provided in

Methods.

Once we have explored pure SAM surfaces with methyl and hydroxyl headgroups,

as well as patterns that optimize solute interfacial affinity, we then examine the role of

water structure in driving solute-surface interactions. We correlate affinity to solvation

shell water structure, finding that chemical patterns induce surprisingly similar behavior

in affinities for all small-molecular solutes tested. This is despite notable differences in

the solvation-shell structure surrounding these solutes, and the fact that they display a

wide range of affinities and bulk solvation free energies. These fundamental connections

between surface chemistry and patterning, solute chemistry, and water structure become

clear through these extensive simulations of relatively simple systems. Thus, this work

represents a preliminary step in connecting detailed theories based on the unique behavior

of water to realistic and practical applications involving the design of interfacial materials.
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5.2 Methods

5.2.1 Model systems

Self-assembled monolayer (SAM) systems and parameters associated with them have

been previously described.11,13,46,47 Briefly, systems consist of alkanethiol chains consisting

of 11 carbons and either a methyl or hydroxyl head-group. The only difference in the

current set-up involves the freezing of SAM sulfur atoms rather than applying position

restraints, minimally changing the system. All atoms except for the sulfur move freely in

the simulations. We model non-terminal carbon and sulfur atoms within the chains, as

well as their associated hydrogens, via united atom representations48 while head-groups

are modelled with full atomistic resolution, including hydrogens.49

Periodic boundary conditions apply in all directions so that SAM interfaces are

replicated with approximately 3.5 nm of water between periodic copies, resulting in box

dimensions of 2.9820 x 3.4432 x 6.0000 nm3. For solutes in bulk water, simulation boxes

are 3.5 x 3.5 x 3.5 nm3. TIP4P/Ew water50 models the solvent in all simulations and is

added to simulation boxes via the “solvate” command in GROMACS 2016.1.51 For capped

glycine, AMBER ff14SB represents all intramolecular, electrostatic, and Lennard-Jones

(LJ) interactions, with no charge reductions applied based on empirical adjustments from

MD simulations in explicit water.52 Boric acid intramolecular parameters come from the

work of Otkidach and Pletnev,53 and include a “bond repulsion” term that simultaneously

enforces planarity and angular distances. LJ parameters for boron are provided by the

DREIDING force field,54 as implemented in simulations of ionic liquids containing boron,55

while parameters for the oxygen and hydrogen are taken from GAFF2.56 Unintentionally,

the LJ sigma parameter for the boron atom was divided by two. Charges for boric acid

are determined using the ANTECHAMBER package of AmberTools1856 through RESP57

fitting of electron densities computed by GAUSSIAN16.58 All other solutes are modelled
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via GAFF2 parameters and AM1-BCC charges,59 with parameter files generated through

ANTECHAMBER.

We initially noticed that the solvation free energies of all alcohols studied were

systematically larger (less favorable or less negative) than experiment and apply the

empirical adjustment to partial charges suggested by Fennel, Wymer, and Mobley.60 We

do not apply the adjustments to the LJ interactions proposed by these authors, as GAFF2

assigns LJ parameters differently than the GAFF force field used by the authors. However,

we do scale the oxygen and hydrogen partial charges by 1.20905 and redistribute charge as

described by Fennel, Wymer, and Mobley over other solute atoms to maintain neutrality.60

This procedure results in free energies of solvation more in line with experiment, but

that are in fact too favorable (more negative than experiment). This is expected for a

fairly rigid molecule with fixed partial charges and no polarizability that has a polarity

closer to that expected in the liquid phase than the gas phase. For this scenario, there is

an unfavorable free energy of polarizing the gas-phase molecule that we do not include

here, but which would further bring the alcohol solvation free energies more in line with

experiment.60

In simulations to determine solvation free energies in octanol, we construct boxes

of roughly 3.5 x 3.5 x 3.5 nm3 to hold solutes that are filled with octanol solvent via

the ‘insert-molecules’ command of GROMACS. Octanol molecules are modeled with the

united-atom TRAPPE force field,61 with all bonds constrained. In these systems, we

use the same cutoff as described above without dispersion corrections, resulting in bulk

densities that are ∼1.5% lower than literature values at the same temperature of 298.15

K and pressure of 1 bar.61
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5.2.2 Molecular dynamics simulations and free energy calcula-

tions

All molecular dynamics simulations utilize GPU-accelerated code in OpenMM,62 with

all waters constrained with SETTLE,63 non-water bonds involving hydrogens constrained

by SHAKE64 and equations of motion propagated via a 2 fs timestep with Langevin

dynamics. A Monte-Carlo isotropic barostat maintains pressure in bulk systems while

in SAM systems an anisotropic barostat holds pressure constant by only changing the

z-dimension (normal to the interface). Particle Mesh Ewald (PME) handles long-range

electrostatics while a hard real-space cutoff of 1.2 nm is applied to both Coulombic and

LJ interactions with no dispersion corrections applied when computing the energy.

We compute potentials of mean force (PMFs) using umbrella sampling65 with solute

heavy-atom centroids restrained with a harmonic potential at increasing distances from

the interface. Starting configurations at each umbrella distance are obtained by pulling

the solute at a fixed rate towards the surface in the NVT ensemble. We equilibrate each

umbrella in the NVT ensemble for 500 ps and for 1 ns in the NPT ensemble. Production

umbrella simulations are run for 10 ns for each umbrella.

To compute solvation free energies, we employ expanded ensemble techniques.43–45 This

involves Monte-Carlo moves between solute-system interaction states every 250 timesteps

(or 0.5 ps). The most extreme interaction states involve the solute fully interacting with

the rest of the system (state 0) and the solute maintaining only intramolecular interactions

and lacking all interactions with the rest of the system (state 1). Tracking the free energy

from state 0 to state 1 then represents the free energy to solvate an ideal gas solute

molecule in the same volume occupied by the system. Intermediate electrostatic states

are achieved by linearly scaling charges used by the full PME scheme in OpenMM from

1.0 to 0.0 while simultaneously turning on charges at the same rate for atoms within the
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solute molecule interacting by a purely real-space coulombic potential. LJ interactions

between the solute and the rest of the system are turned off using soft-core interactions66

while maintaining intramolecular LJ interactions.

In order to efficiently sample all interaction states, we start all expanded ensemble

simulations with 2 ns of Self-Adjusted Mixture Sampling,67 which is used to adjust

biasing weights until they are approximately equal to the free energies between interaction

states so that all states are sampled roughly evenly. At the end of this procedure, the

final weights to be used in the production part of the simulation (with fixed biases) are

determined via the pymbar68 implementation of MBAR69 using data from the initial 2

ns. Production runs of 10 ns in bulk solution and 5 ns at interfaces are used to collect

potential energies at all interaction states every 1 ps.

At interfaces, the solute must be restrained to prevent it from drifting away from

the interface. This is done by harmonically restraining the centroid of all solutes via a

flat-bottom harmonic potential that is zero between 1.40 and 1.75 nm from the SAM

sulfur atoms and harmonic thereafter. While in state 1 (the fully non-interacting state)

the solute can easily escape from free energy minima that exist in state 0 as a function

of lateral position on the interface. However, it is still difficult to ensure that the solute

samples the entire surface, and hence all surface patterns, which is required for accurate

free energies of solvation. To assist this sampling, four simulations of the solute on the

surface are conducted, with the first heavy atom of the solute harmonically restrained to

a single surface quadrant via two-dimensional flat-bottom restraints. The resulting 20 ns

of production simulation data are reweighted through MBAR to remove the effect of the

lateral restraints and provide an overall free energy of solvation. In comparing solvation

free energies at interfaces and in bulk solution it is implied that a restraint to the same

volume in solution is applied as when the solute is near the interface. However, it is

not required that restraints are explicitly accounted for in computing the bulk solvation
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free energy. This is because the free energy to turn on this restraint is the same in both

the coupled and decoupled (ideal gas) states when in bulk, leading to no change in the

solvation free energy.

5.2.3 Genetic algorithm optimization

The genetic algorithm optimization procedure has been described previously,13 though

we have modified it here to incorporate a machine-learned model to more quickly predict

the solvation free energy instead of utilizing a full molecular simulation. Briefly, the

genetic algorithm treats each surface pattern as in “individual” with a specific level of

“fitness.” The goal of the algorithm is to increase the fitness of the population by combining

and randomly adjusting (“mutating”) different surface patterns. This can be done to

optimize arbitrary interfacial properties by changing the fitness metric associated with

each surface that is provided to the algorithm, which here is the solvation free energy of

a solute near an interface. The genetic algorithm may then be used to explore surface

patterns that minimize or maximize a given property by defining fitness to be either low

or high values of the associated metric.

The full process is shown schematically in Figure 5.1 and involves first randomly

generating surface patterns and evaluating solvation free energies with MD for 6 genera-

tions. To further explore pattern space in order to later train the model more accurately,

we next perform 5 generations of minimization and 5 generations of maximization each

starting from the randomly generated library. The resulting 128 surface patterns and

MD-computed solvation free energies are then used to train a linear-regression model

based on two-dimensional radial distribution functions (RDFs) for CH3-CH3 and OH-OH

chains based on the locations of their frozen SU atoms. This does not reflect the true 2D

head-group RDFs when in contact with water but approximates this quantity and may be
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Figure 5.1: Schematic demonstrating the functioning of the genetic algorithm coupled
to iterative training of a linear regression model.

computed without solvating the surface or performing any simulation. Once the model

is preliminarily trained, it is used instead of MD simulations to estimate solvation free

energies to pass as fitness metrics to the genetic algorithm. For both minimization and

maximization, 5 independent optimizations of 30 generations are performed each starting

from the 128 surfaces used to train the model, with a final 30 generation optimization

performed combining all surfaces sampled previously. Another 5 generations of MD-based

minimization and maximization are performed including all surfaces generated up to that

point in the library of surfaces from which the genetic algorithm draws, regardless of

whether the surface fitness is evaluated by MD or the regression model. The regression

model is retrained by adding these additional 80 surface patterns to the original MD library

and final minimizations and maximizations using the new model are each performed for

60 generations.
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5.2.4 Computation of density fluctuations and water structure

near interfaces and solutes

Density fluctuations are assessed by examining the probability of finding a given

number of water oxygens within a probe volume.21 The value of this distribution at zero

waters is related directly to the chemical potential of inserting a hard-sphere probe into

the fluid.70 In this study, we histogram numbers of waters in both spherical probe volumes

(see Figure G.4) as well as in volumes based on the effective hard-sphere molecular volume

of a solute (see Figure 5.5). Spherical probes are defined as spheres with radii of 0.33

nm such that any heavy-atom center falling within this volume is defined as an overlap.

To construct hard-sphere solutes, we compute pairwise effective hard-sphere distances of

closest approach for all atom types in the solute to all non-solute atom types, including

hydrogens. Pairwise effective hard-sphere radii (or distances of closest approach) are

computed as71,72

RHS,ij =
∫ inf

0

(
1− e−βUW CA,ij(r)

)
dr (5.2)

where UWCA,ij is the repulsive WCA73 part of the Lennard-Jones interaction between the

two atoms of types i and j. Solute and non-solute atoms are checked for overlaps in a

pairwise fashion with atom centers considered to be overlapping if the distance between

them is less than RHS,ij.

We mainly examine water structure via three-body angle distributions (see Chapter 3)

within the first hydration shells of solutes and interfaces. This quantity is defined as the

angle between vectors connecting two neighboring water oxygens to a central water oxygen

that is within the region of interest. All water oxygens in the system are candidates for

being neighbors to water oxygens with the solute or interface hydration shells, with the

neighbor cutoff set to 0.332 nm, the first radial distribution function minimum for bulk

TIP4P-Ew water at standard temperature and pressure. To assess perturbations from
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bulk structure, distributions based on histograms of three-body angles are normalized to

sum to 1 and the similarly normalized bulk distribution is subtracted.

5.3 Results and Discussion

5.3.1 Diverse solute chemistries show affinity for both polar

and nonpolar surfaces

A primary goal is to understand the influence of surface chemistry on the surface

affinity of highly varied solutes. It is well-known that nonpolar, hydrophobic solutes adhere

to hydrophobic interfaces, but what level of surface polarity or overall hydrophilicity is

required to prevent such adhesion? Conversely, a more polar surface will more strongly

attract water and may resist adsorption of nonpolar solutes, but the effect on hydrophilic

solutes is less clear. Depending on the solute’s polarity or charge, it may adhere more

strongly to the polar surface. While we do include solutes of moderate polarity here

(Table 1), consideration of highly polar and even charged solutes will be left for future

work.

It is first useful to classify the solute molecules by their hydrophobicity/hydrophilicity.

One way to define this is in terms of the solvation free energy ∆Gsolv, or excess chemical

potential at infinite dilution in bulk solution.40,74 If this quantity is positive, the molecule

prefers the ideal gas phase over water and is hydrophobic, while if this is negative, solvation

is favorable and the molecule is hydrophilic. All of the solutes studied except for methane

exhibit negative solvation free energies (Table 1). For benzene, this is not unexpected once

the relatively high spatial density of Lennard-Jones sites in the molecule is considered,

which provide attractive interactions with water.

Figure 5.2 demonstrates that solute hydrophilicity, as measured by bulk solvation
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Figure 5.2: While the solvation free energies at all interfaces studied are correlated
with bulk solvation free energies for all solutes, they are not correlated with binding
affinities. Thus, solute hydrophobicity/hydrophilicity as measured by solvation free
energies is not a good metric for solute binding affinity.

free energy, is not correlated with surface affinity. It might seem reasonable that more

hydrophobic molecules more tightly adhere to hydrophobic interfaces, but this is not

the case here. This is reinforced in Figure 5.3, which shows potentials of mean force

(PMFs) as a function of distance of the solute heavy-atom center of geometry from the

interface, with the points far from the interface matched to the bulk solvation free energy.

Interestingly, Figure 5.3 also demonstrates that all solutes show affinity for both the

methylated and hydroxylated interfaces, though the latter affinity is nearly negligible in

the cases of ammonia and boric acid. Similar affinity for hydroxylated SAMs has been

observed for peptides, both in simulation and experimentally,11,12,25 but is still surprising

given that the fully hydroxylated surfaces have contact angles of essentially 0◦.13 While

methane is the only solute with an unfavorable (positive) solvation free energy, all solutes,

including those that are considered hydrophilic and that form favorable hydrogen bonds

with water, have lower free energy compared to bulk when near the fully methylated,
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presumably hydrophobic, interface.

An alternative metric for hydrophobicity also fails to correlate with solute affinities

for the methylated interface (Figure G.1). Specifically, the logarithm of the octanol-water

partition coefficient, which is equal to the difference in chemical potentials between a

solute in water and octanol phases, is commonly used to predict affinities in reversed-phase

chromatography.75 Here, however, we find no correlation between binding affinities and

octanol-water transfer free energies, similar to the results observed above for aqueous

solvation free energies (Figure G.1). In the case of octanol-water transfer free energies,

there is also no correlation to raw interfacial solvation free energies, which appears strongly

for bulk aqueous solvation in the top panel of Figure 5.2. Lack of correlations of surface

affinities to either common definition of hydrophobicity (aqueous solvation or octanol-water

transfer) suggest that binding affinity at interfaces is driven by distinct physics and cannot

necessarily be predicted based on common concepts of hydrophobicity/hydrophilicity.

To understand these counterintuitive results, we break the solvation free energy into

two separate contributions corresponding to the process of turning on LJ interactions

alone ∆GLJ , followed by that of charging of the solute atoms ∆GQ,

∆Gsolv = ∆GLJ + ∆GQ (5.3)

Values for these quantities both in bulk and at methylated and hydroxylated interfaces are

shown in Figure G.2. Considering Equation 5.1, we can examine how these contributions

change upon binding

∆Gbind = (∆Gsurf
LJ −∆Gbulk

LJ ) + (∆Gsurf
Q −∆Gbulk

Q ) = ∆∆GLJ + ∆∆GQ (5.4)

This analysis does not make direct connections to conventional physical quantities,
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Figure 5.3: Potentials of mean force are shown for all solutes studied at methylated
(left) and hydroxylated (right) interfaces. The distance from the interface is calculated
from the solute heavy-atom centroid to the fixed sulfur atoms of the SAM chains. All
PMF values are relative to the bulk solvation free energies of solutes, which are shown
as points at the furthest distances from the interface sampled. Error bars are those
reported by pymbar.68

such as specific energetic or entropic terms connected to solvent or solute degrees of

freedom or interactions, but here it is useful for understanding the broader, more general

contributions driving both solvation and adsorption. In Figure 5.4, ∆∆GQ values are

positive for all solutes, indicating that charging a solute at the interface results in

less favorable electrostatic interactions than in bulk. On the other hand, all solutes

experience a negative ∆∆GLJ , signifying a favorable LJ contribution to solvation at

the interface as compared to in solution (Figure 5.4). With or without strong solute-

water energetic interactions, all of these small solutes are expected to induce unfavorable

entropic penalties upon solvation due to excluded volume effects.70,76 For all but methane,

favorable electrostatic and LJ energies offset these penalties. Once in solution, however,

these energetic interactions are not enough to prevent solutes from seeking an interfacial

region with enhanced density fluctuations38,77,78 and hence more effective volume in which
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the solute may reside without disrupting water structure. Intuitively, it might seem

reasonable that alcohols have affinity for the hydrophobic interface, potentially orienting

their hydroxyl group away from the surface to maintain hydrogen bonds with water while

placing their hydrophobic portion close to the interface. However, ammonia and boric acid

will both sacrifice hydrogen bonds upon moving to the methylated surface. This could be

compensated by more favorable water-water hydrogen bonding upon solute adsorption,

but it is clear that this is not the case from the positive values of ∆∆GQ.

Figure 5.4: Contributions to binding free energies as described in the text and defined
in Equations 5.3 and 5.4 are shown for the methylated (top) and hydroxylated (bottom)
SAM surfaces. Summing the ∆∆Grep and ∆∆Gattr terms yields the change in LJ
interactions ∆∆GLJ . The repulsive component, which involves creating a cavity in
which the solute may be inserted, is the predominant thermodynamic driving force for
a solute’s preference for the interface over bulk solution.

From the above discussion, it seems that affinity of all solutes for the methylated

interface, regardless of solute hydrophilicity, may be driven by excluded volume effects.

Such contributions may be estimated by considering a further decomposition of the free
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energy to turn on LJ interactions during solvation

∆GLJ = ∆Grep + ∆Gattr (5.5)

∆Grep represents the free energy to turn on only repulsive interactions to the free energy

and is estimated by the free energy to solvate solutes composed of hard-spheres (HS)

through repeated insertions according to Widom’s method.79 ∆Gattr is then the free energy

to move from a hard-sphere solute to a LJ solute with soft repulsions and attractions. For

a purely HS solute, the free energy of solvation β∆Grep may be computed based on the

probability of finding no solvent (or surface) atoms overlapping with solute atoms, P (0)

β∆Grep = − lnP (0) (5.6)

Figure G.3 shows probability distributions of the number of overlapping atoms for

HS solutes both in bulk and at interfaces. As the solute size increases, distributions

broaden and shift to larger numbers of overlapping atoms. Additionally, the presence of a

hydrophobic interface further broadens this distribution, while the hydroxylated interface

only induces a slight broadening of the distribution. For larger solutes, such as benzene,

phenol, and capped glycine, P (0) cannot be directly evaluated, but Gaussian fits to the

probability distributions in Figure G.3 allow for this term to be estimated. For the bulk

and hydrophilic cases, such Gaussian fits are justified based on prior observations,38,70,80

but result in underestimates of ∆Grep at the methylated interface (Figure G.3). The latter

result is unexpected based on previous literature, where super-Gaussian behavior in the

tails of the distribution is observed.38,77,78 This discrepancy may be due to particularly

poor sampling of numbers of overlapping atoms in the tails of the distribution, especially

for larger solutes. For both methyl- and hydroxyl-terminated SAMs, ∆∆Grep is highly
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favorable when moving solutes from bulk to the methyl-terminated SAM interface (Figure

5.4). By considering the total ∆∆GLJ , it is even the case that ∆∆Gattr must be positive

(unfavorable) for most solutes, indicating a loss of attractive solute-system LJ interactions

at the interface compared to in bulk (Figure 5.4).

Extremely favorable ∆∆Grep contributions to binding along with unfavorable ∆∆Gattr

may be easily rationalized for the methylated interface, but the picture is far less clear

at the hydroxylated surface. For a hydrophobic interface, water slightly withdraws from

the interface, as demonstrated by water density profiles shown in Figure G.4. Hard-

sphere excess chemical potential profiles shown in Figure G.5, which relate to density

fluctuations via Equation 5.6, show strongly enhanced fluctuations near the methylated

surface. Comparison with PMFs in Figure 5.3 shows that solutes tend to sit in surface

locations with reduced water density, leading to a reduction in ∆Gattr compared to

bulk, while ∆Grep is reduced significantly compared to bulk due to the enhanced density

fluctuations. While Figure 5.4 demonstrates similar trends in ∆∆Grep and ∆∆Gattr for

the hydroxylated interface, similar arguments rationalizing the signs of these terms do not

hold. First, the density profile in Figure G.4 indicates that solute centers of geometry are

actually separated from the hydroxylated SAM interface by a layer of water. Placing some

solute atoms near the first density minimum may result in similar reductions of ∆Gattr

as compared to the methylated interfaces, but based on a slightly different solute/water

interfacial structuring. Figure G.5 demonstrates that solute geometric centers are located

where density fluctuations are approximately equivalent to bulk, with atoms expected

to experience both reduced and enhanced fluctuations. This is despite slightly enhanced

density fluctuations at locations very close to the interface (Figure G.5), which is somewhat

at odds with past studies demonstrating repulsion of purely repulsive particles from nearly

identically parametrized hydroxylated SAMs in contact with a different water model.14

This raises doubt as to whether density fluctuations, which create additional free-volume
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for the solute to occupy, is the predominant driving force for affinity. It may be that

other contributions associated with water restructuring or partitioning back to the bulk

may play a more prominent role at the hydroxylated interface.

5.3.2 Genetic algorithm optimization of affinity via surface pat-

terning

Beyond the interplay of solute and surface chemistry on solute affinity, patterning of

functional groups represents an additional surface feature that may be tuned. While it

is well-established that interface geometry and flexibility also play a role in determining

solute adhesion,6,7, 18 we continue to focus on surface chemistry, including chemical

patterning, in a controlled manner for surfaces of essentially identical flexibility and

roughness. We start by using our genetic algorithm to optimize the affinity of the simplest

solute studied, methane, by repatterning a SAM interface of hydrophobic (methyl) and

hydrophilic (hydroxyl) head-groups at a 1:1 ratio of each type of SAM chain (Figure 5.5).

For such a simple, small solute the solvation process will be particularly dominated by the

magnitude of solvent density fluctuations,70 as noted above. It has been well-established

that clustering hydrophobic headgroups enhances density fluctuations, while distributing

them across an interface reduces these.21 Such patterns have recently also been shown

to respectively maximize and minimize water dynamics at an interface.13 Based on this

past work, we expect the global minimum solvation free energy structure to be a patchy

surface and the global maximum to be a surface with hydroxyls spread uniformly over

the interface, as shown in Table 2.

Figure 5.5 shows the progress of the genetic algorithm optimization (see Methods) for

methane, while Table 2 shows representations of the optimal surface patterns. From Table

2 it is clear that the optimization delivers the expected results – a surface with a single
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Figure 5.5: The progress of the genetic algorithm is shown for minimization (decreas-
ing regions) and maximization (increasing regions) of the affinity of methane. As
described in Methods, it is advantageous to perform optimization in both directions
simultaneously. For each generation, or round of optimization, the minimum and
maximum affinity surfaces are shown connected by a vertical line. Green circles
and black triangles represent generations where MD and the linear regression model,
respectively, were used to determine solvation free energies. The points for the linear
regression model are based only its final version – that trained from results of all MD
simulations, including the second set of green points at much later generations.
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large patch of hydrophobic groups minimizes the solvation free energy (increases density

fluctuations) and maximizes methane affinity, while a surface with evenly-distributed

hydrophobic groups maximizes solvation free energy (decreases density fluctuations) and

minimizes affinity. We also test “perfectly” patchy and dispersed surfaces shown in

Table 2, revealing that the genetic algorithm comes very close to identifying the surface

patterns expected to be optimal. For the maximum solvation free energy surface, the

genetic algorithm effectively identifies the optimal pattern within the precision of the

free energy calculations. For the minimum solvation free energy surface, however, it only

comes within ∼0.30 kBT of the anticipated global minimum, though the surface pattern

appears visually to be very close to the assumed global optimum. Interestingly, the

linear regression model also finds this surface similar to the global minimum, assigning

it a nearly identical solvation free energy value. In the case of the global minimum,

the model-assigned value is 0.19 kBT too large while for the GA minimum the model

prediction is 0.11 kBT too low. This indicates a lack of training, and in turn sensitivity,

of the model within the region close to the global minimum involving highly segregated

headgroups. In contrast, the regression model uniformly over-predicts the solvation free

energy for surfaces with dispersed hydrophilic groups, in the region containing maximal

solvation free energy patterns. This is likely due to rare, large overpredictions of solvation

free energies by MD simulations during the initial stages of the genetic algorithm, as

discussed further below.

From Figure 5.5 it is clear that the probability of randomly identifying a minimum

∆Gsolv surface, with clusters of hydroxyl or methyl groups, is very low. The first round

of optimization using the linear regression model expands the search space, particularly

in the direction of minimal solvation free energies to consider surfaces with clustered

configurations, but does not reach globally optimal surface patterns. After further

refinement of the linear regression model based on short optimizations with MD simulations
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Surface Surface image
∆Gsolv from MD
simulation (kBT )

∆Gsolv predicted by
linear regression
model (kBT )

GA Model-predicted
Minimum 2.15 ± 0.03 2.04

GA Model-predicted
Maximum 2.85 ± 0.04 3.03

Global Minimum 1.84 ± 0.03 2.03

Global Maximum 2.82 ± 0.05 2.95

Table 5.2: Surface representations and free energies of solvation for methane, determined
by MD simulations and linear regression models. The surfaces shown for the GA are
those with minimum and maximum solvation free energies predicted by the linear
regression model, not necessarily the overall optimal surfaces reported by the GA.
Uncertainties are the standard error in the mean from 5 independent simulations.
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used to evaluate ∆Gsolv, which should now include surfaces with more clustering of surface

groups, we see significantly faster approach of the GA towards the minimum bound.

It is then clear that the use of the computationally efficient linear regression model is

necessary for enhancing the speed of the calculations, as well as the space searched, but

that iterative reassessment and training of the model is crucial.

It is also clear from Figure 5.5 that the effectiveness of the algorithm is limited by the

statistical error in the MD simulation predictions of solvation free energies. Use of the

linear regression model actually reduces the necessary precision of the MD calculations by

stitching together multiple simulation results into a predictive model that is less sensitive

to outliers than the underlying genetic algorithm. For instance, the maximum ∆Gsolv value

sampled during genetic algorithm optimization (3.19 kBT ) was by MD simulation and is

unusually high for the surface pattern with which it is associated. When re-evaluating

this surface with multiple MD simulations, we find that its average ∆Gsolv value is only

2.59 kBT , making the high outlier sampled during the genetic algorithm run a statistical

anomaly. If running the genetic algorithm with only MD predictions of ∆Gsolv, such

outliers would dominate the algorithm and limit its convergence. However, when training

the linear regression model, such statistical outliers have only a small weight compared to

more typical predictions, resulting in a reasonably accurate model (Table 2). By using the

linear regression model, we actually reduce the influence of these outliers on the genetic

algorithm, further enhancing its convergence.

Assuming density fluctuations are the primary driving force for all solutes to adhere

to interfaces, we expect that similar patterns as for methane will maximize and minimize

the interfacial ∆Gsolv for the broader set of solutes. This seems to be the case based on

affinities of solutes shown in Table 1 for perfectly “patchy” and “spread” patterns (the

global minima and maxima in Table 2). As a more specific example, genetic algorithm

optimization of the affinity of capped glycine via surface patterning is shown in Figure
146



Chemical patterning to modify solute affinity Chapter 5

G.6. Being the largest, most flexible solute makes this the most challenging case studied

here. As such, the results are not as impressive as for methane, largely due to much

higher uncertainty in the solvation free energy calculations (∼0.25 kBT compared to ∼0.1

kBT for methane). This is despite using twice the simulation time for both convergence

of weights and production expanded ensemble simulations in this optimization. Greater

uncertainty makes it more difficult to train the regression model and for the genetic

algorithm to clearly define patterns that minimize or maximize affinity. However, Table

S1 demonstrates that the genetic algorithm does move towards similar surface patterns

as discovered for methane. Further, the regression model trained for capped glycine

predicts smaller and larger values for the perfectly patchy and spread interfaces than

the minima and maxima observed during the genetic algorithm optimization (Table S1).

Evaluating the solvation free energy of capped glycine on these perfectly patchy and spread

surfaces with repeated MD simulations validates the regression model’s accuracy (Table

S1). The inability of the genetic algorithm to establish distinct differences in affinity then

suggests that it has not been run for long enough. Alternatively, the algorithm could be

made to identify these differences more rapidly through even more precise solvation free

energy calculations, though this would necessitate significantly more computation time

per generation.

5.3.3 Surface patterns modulate density fluctuations to adjust

affinity and selectivity

Figure 5.6 demonstrates that affinities for interfaces are highly correlated to each other,

further suggesting that affinity for all interfaces is driven by similar physics, namely density

fluctuations. The only disruption to the correlations in Figure 5.5 is the affinity of the

capped glycine for the hydroxylated interface. Compared to other solutes of similar overall
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Figure 5.6: Binding free energies to all surfaces are correlated to each other despite
different chemistries and chemical patterns. “Patch” and “spread” surfaces refer to
the inferred globally optimal patterns shown in Table 2.
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affinity, capped glycine exhibits a smaller difference upon moving between hydroxylated

or methylated interfaces, or between different surface patterns (Table 3). This is due to a

much more favorable bulk solubility compared to other solutes. Additionally, the change

in affinity between the hydroxyl and methyl surfaces is lower than for other ligands,

though the correlation of this with patterning still holds. The reduced effects of surface

chemistry and heterogeneity may be due to the increased flexibility and more varied

chemical composition of the capped glycine, which allow it to restructure in different

environments.

Solute
∆GOH

solv −∆GCH3
solv

(kBT )
∆Gspread

solv −∆Gpatch
solv

(kBT )
∆Gspread

solv
−∆Gpatch

solv

∆GOH
solv
−∆GCH3

solv

Ammonia 0.73 ± 0.09
(3.19x10-4)

0.25 ± 0.06
(4.11x10-3) 0.34 ± 0.10

Benzene 3.01 ± 0.09
(1.12x10-9)

1.47 ± 0.13
(3.00x10-6) 0.49 ± 0.05

Boric Acid 0.90 ± 0.11
(1.16x10-4)

0.45 ± 0.13
(9.88x10-3) 0.50 ± 0.15

Capped Glycine 2.12 ± 0.15
(4.68x10-6)

0.94 ± 0.20
(3.17x10-3) 0.44 ± 0.10

Isopropanol 2.79 ± 0.12
(3.47x10-6)

1.08 ± 0.08
(1.90x10-6) 0.39 ± 0.03

Methane 2.28 ± 0.05
(1.39x10-7)

0.98 ± 0.06
(3.61x10-7) 0.43 ± 0.03

Methanol 1.52 ± 0.10
(2.79x10-5)

0.28 ± 0.11
(4.09x10-2) 0.19 ± 0.07

Phenol 3.39 ± 0.14
(3.38x10-8)

1.36 ± 0.14
(1.26x10-5) 0.40 ± 0.05

Table 5.3: Differences in solvation free energies at various interfaces are shown. Errors
are based on standard error propagation of the standard error in the mean of the
solvation free energy estimates based on 5 independent MD simulation runs. Numbers
in parentheses provide the P-value for the two-sided hypothesis test for the equivalence
of the mean solvation free energies.

To further assess the relevance of surface patterning, Table 3 compares differences

between solvation free energies at the perfectly dispersed and patchy interfaces shown

in Table 3 with differences between the fully hydroxylated and methylated interfaces.

Differences in solvation free energies between the pure surfaces (contact angles varying
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between 0◦ and 130◦ 13) are all positive, demonstrating higher solvation free energies at

the hydroxylated surface, as expected from the PMFs in Figure 5.3. This includes highly

polar, hydrophilic solutes such as ammonia and boric acid, though for these solutes the

difference in solvation free energy is much smaller. As the solute size grows, the solvation

free energy difference (and hence affinity difference) also generally increases.

Similar trends in Table 3 are observed for surfaces with a 1:1 ratio of hydroxyl and

methyl headgroups, with spread surfaces (lower water density fluctuations) always exhibit-

ing higher solvation free energies than patchy surfaces (higher water density fluctuations),

even for polar solutes. However, the differences are less statistically significant compared

to those for pure surfaces. This is not to say that the differences induced by patterning

are insignificant – they are actually 19-50% of the range observed between pure interfaces.

From a practical standpoint, however, changes induced by patterning are all less than

2 kBT , which would not provide significant improvements to an adsorption process or

in terms of preventing fouling. If the trends observed here continue, we expect that

patterning may have a significant effect for much larger solutes (i.e. proteins), though

this remains out of the scope of the current study.

It is also apparent that it is possible to adjust the interfacial selectivity between two

solutes with surface patterning. We define selectivity to be the ratio of the interfacial

concentration of solute 2 to that of solute 1 for the same bulk concentration, which relates

to the solvation free energies at the interface,

C2/Cbulk
C1/Cbulk

= e−β∆Gbind,2

e−β∆Gbind,1
= e−β(∆Gsolv,2−∆Gbulk,2)

e−β(∆Gsolv,1−∆Gbulk,1) (5.7)

where in the second equality we have made use of Equation 5.1. Because the bulk solvation

free energies are unaffected by the patterning at the interface, we may optimize selectivity

by considering only the solvation free energies at the interface. Further, we may use
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Figure 5.7: Genetic algorithm optimization successfully identifies patterns that optimize
the selectivity of an interface for methanol (2) compared to methane (1). Note that a
minimization of methanol selectivity is a maximization of methane selectivity and vice
versa. The optimization procedure is the same as that shown in Figure 5.5 but MD
simulations are run for both methane and methanol for each surface pattern and the
difference in interfacial solvation free energy between the two solutes is optimized.
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the difference in solute solvation free energies at the interface as a proxy for selectivity;

optimizing one will also optimize the other. The solvation free energy increases more

drastically for increasing surface patchiness for larger and more hydrophobic solutes,

meaning that we expect patchy patterns to generally make such interfaces more selective

for these solutes at the expense of slightly enhanced overall binding of the lower affinity

solute.

Figure 5.7 demonstrates that the genetic algorithm is successful in optimizing surface

selectivity for methanol compared to methane, resulting in surfaces with affinity differences

of -13.97 ± 0.07 and -14.18 ± 0.08 kBT , as evaluated by independent MD simulations of

minimum and maximum methanol selectivity surfaces sampled by the regression model

during the genetic algorithm (Table S2). This range of 0.21 kBT is somewhat smaller than

between the expected minimum (perfectly spread) and maximum (patchy) surfaces of 0.70

kBT , and is much smaller than the affinity difference for these surfaces predicted by the

regression model of 0.88 kBT (Figure 5.7 and Table S2). We attribute this discrepancy to

deficiencies of the linear regression model to distinguish patchy surface patterns, as the

genetic algorithm optima shown in Table S2 are visually similar to the expected optima

but subtly different. In particular, the algorithm has created a patchy surface through

segregation along the longer in-plane box dimension, leading to increased contact between

the two domains, reducing the effective size of the patch in terms of its influence on water

behavior.

Though the presented genetic algorithm optimizations have been mostly successful,

from a practical perspective the increases due to patterning for both selectivity and

affinity are quite small. This is potentially a result of the chosen head-group chemistry.

Both pure interfaces increase water density fluctuations and hence have affinity for all the

solutes studied here. For head-groups that strongly attract water, such as charged species,

solutes may actually be repelled from the surface. A similar effect might be observed
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with the current head-groups but for solutes, such as ions, that are strongly solvated by

water. In either case, we would expect a richer behavior with solute pattern and much

larger, more practically useful changes in both affinity and selectivity.

5.3.4 Structural behavior of water associated with solute affin-

ity

Figure 5.8: Free energies of binding are broken down into differences between direct
solute-system energetics (∆〈Usw〉2) of solvation and relative entropies of solvation
(∆Srel,1→2), which for relatively rigid surfaces and solutes are dominated by water
restructuring.

So far, we have rationalized differences in solute affinity for interfaces by noting

the surface’s different abilities to induce water density fluctuations. An alternative

perspective, which may be made rigorous through consideration of the relative entropy,

involves examination of the way that perturbed water structure changes when the solute
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is moved from the bulk to the interface (Chapter 3). Rather than decomposing the free

energy of solvation according to Equation 5.3, we can instead write

∆Gsolv = 〈Usw〉2 + Srel,1→2 (5.8)

The subscripts 1 and 2 represent the ideal gas and fully interacting states, 〈Usw〉2 is the

average of the solute-water (or overall solute-system for interfacial systems) potential

energy evaluated in the coupled ensemble, and Srel,1→2 is the relative entropy associated

with moving from the solute being decoupled to coupled. While 〈Usw〉2 obviously relates

to direct energetic contributions to solvation, Srel,1→2 contributes to the free energy via

changes to probability distributions of degrees of freedom within the system (Chapter 3

and Chapter B). The internal degrees of freedom of the solutes and surfaces considered

here are not expected to change significantly upon coupling of the solute, and so the

relative entropy principally tracks changes to water structuring associated with solute

solvation. By then applying Equation 5.1, we can track contributions to the binding free

energy from differences between the surface and bulk direct potential energy interactions

and solute restructuring

∆Gbind = ∆〈Usw〉2 + ∆Srel,1→2 (5.9)

A similar decomposition has been proposed previously, though was not interpreted

in terms of the relative entropy.39 Figure 5.8 shows these contributions to the binding

free energy for fully methylated and hydroxylated surfaces. In the methyl-terminated

surfaces, the solvent restructuring term contributes favorably to affinity while the solute-

system energetics resist binding. This is in line with the results shown in Figure 5.4 –

the free energy of hard-sphere solvation will not contribute an energetic term and will
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be completely described by the relative entropy of water restructuring. This trend is

reversed for the hydroxyl-terminated surfaces, but the differences are much smaller and of

similar magnitude to the error estimates in the case of the relative entropy contributions.

Qualitatively different behavior of the relative entropy between the methylated and

hydroxylated surfaces further supports the idea that density fluctuations may drive

affinity for the hydrophobic interface, while solvent restructuring may contribute more

prominently at the hydroxylated interface. However, further comparison to Figure 5.4 is

hampered by the fact that the electrostatic and LJ terms shown there contain contributions

not only from solute-system energies, but also from potential energy changes involving

water and SAM surfaces, which are not considered through the distinct decomposition

shown in Equation 5.8.

In Figure 5.9(a) we observe distinct changes in water structure, as measured by

perturbations to three-body angle distributions, for all interfaces studied. In Chapter

3, we have shown that shifts in three-body angle distributions, which contribute to the

relative entropy based on water degrees of freedom, are useful for tracking changes to this

quantity in the context of solvation. Three-body angles are defined as the angle between

the vectors connecting two water oxygens in the first solvation shell of a central water

oxygen. Perturbations from bulk for water three-body angle distributions for various

bare interfaces without any solutes appear in Figure 5.9(a). All distributions are similar,

peaking just below 60◦ and at 90◦. This is in contrast to the behavior for small solutes and

has been observed previously for large hydrophobes (Chapter 3) and methyl-terminated

self-assembled monolayer surfaces in contact with a different water model.27 It seems that

regardless of the hydrophilicity of the interface, geometric effects dominate, resulting in

similar perturbations to water three-body angles. There are some differences, notably

that the peak near 90◦ is shifted to higher angles for the fully hydroxylated surface, with

this distribution generally smoothened relative to other interfaces. Overall, however,
155



Chemical patterning to modify solute affinity Chapter 5

there are no clear trends that seem to correlate with increased solute affinity or density

fluctuations.

Figure 5.9: Changes from bulk water structure of three-body angle distributions for
water oxygens within first solvation shells of bare surfaces with no solutes (a), solutes
in bulk (b), and solutes near methylated (c) and hydroxylated (d) surfaces. Interfaces
at bare surfaces are defined by the point at which average water density reaches 0.3
of its bulk value of 33.2 1/nm3 with the first solvation shell defined as 0.4 nm from
this interface, which is approximately the first minimum in the associated density
profile for all surfaces. Solvation shells for solutes include all water oxygens within
0.55 nm of solute heavy atoms. Dotted vertical lines show the locations of expected
peaks for liquid systems with LJ particles (63.4◦), ideal gas particles (90.0◦), and
water (109.5◦).81

In Figure 5.9(b), we focus on the structure of water surrounding solutes in bulk

solution. The first solvation shells is defined as all water oxygens within 0.55 nm of any
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solute atom except hydrogen. In support of this definition, all RDFs for solute atoms

to water oxygens are shown in Figure G.7 of Appendix G. Figure 5.9(b) demonstrates

that the smallest, most polar solutes disrupt the structure of water the least, while larger

solutes, especially those that are hydrophobic, disrupt structure the most, as measured by

three-body angle distributions within the first solvation shell of solutes. In Figure 5.9(b),

we see similar behavior for boric acid and ammonia, hardly perturbing the distribution at

all. For the other solutes, the distribution near the tetrahedral angle of 109.5◦ is enhanced

while the region near 60◦ is decreased, as noted previously for small hydrophobes (Chapter

3). Figure 5.9(c,d) also show the effect of an interface on the three-body angle distribution

around a solute. When solutes are at a methylated interface, their hydration shell structure

is dominated by the presence of the interface. At a hydroxylated interface, however, the

three-body angle structure around the solutes is nearly like that of bulk, though the

interface itself perturbs water relative to bulk (Figure 5.9(b)). This is likely due to two

predominant factors: first, the three-body angle distributions are only weakly perturbed

by the hydroxylated interface over the region where the solutes reside, and second, the

solutes are only loosely bound (Figure 5.3) and more easily sample regions farther from

the interface, allowing for more bulk-like interactions with water.

The magnitude of three-body angle perturbations varies with the size of the solute, as

well as the relative amounts of polar and apolar chemical groups present. For instance,

methanol exhibits a perturbation approximately half as large as that for methane. If

we assume that water structure near the hydroxyl moiety is not modified, similarly to

boric acid or ammonia, and that this takes up about half of the hydration shell volume,

then this relationship is expected. Overall, methane perturbs water structure the most,

followed by benzene, isopropanol, phenol, methanol, and capped glycine. Benzene being

larger than methane, this may cause additional strain on the hydrogen-bond structure

of surrounding water, resulting in a slightly less tetrahedral structure. Isopropanol and
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phenol both have hydrophobic groups larger than methane attached to hydroxyl groups,

resulting in similar effects as benzene in combination with regions of the hydration shell

that do not affect bulk water structure. While capped glycine is large and has a number of

apolar groups, these groups are not clustered together and are directly adjacent to highly

polar carbonyl and amine functionalities, resulting in less perturbation of water structure.

It is important to note that such shifts are on a per-three-body-angle basis – the net effect

on the solute solvation free energy or affinity for an interface will also depend on the

number of waters in the solvation shells. This will be an important consideration when

constructing a model to connect overall free energies of solvation or binding to shifts in

three-body angle distributions, which seems likely to be a fruitful future endeavor.

5.4 Conclusions

We have investigated the effect of surface chemistry and chemical patterning on the

affinity of a chemically diverse set of simple solutes. We find that the interfacial affinity

of all solutes is similarly modified by surface chemistry and patterning, with surfaces that

induce larger density fluctuations universally resulting in higher affinity. This is true

even for solutes generally considered to be hydrophilic – surprisingly, we find that surface

affinity is poorly correlated to solute hydrophobicity, as evaluated by either aqueous

solvation or octanol-water transfer free energies. Surface hydrophobicity, as measured

by density fluctuations, seems to be a much better predicter of solute affinity, especially

relative to other interfaces. As such, solute affinity increases with the excluded volume

of the solute, which is related to the free energy to solvate the same solute with its

atoms interacting with the rest of the system as hard-spheres. This term is shown to be

the dominant favorable contribution to solute affinity at interfaces, with free energies

attributable to the addition of attractive interactions and solute charging resisting solute
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association with a surface. However, the importance of density fluctuation physics in

driving affinity for the hydroxylated interface is less clear. In this case, affinity may be

driven more by reorganization of water. Future work will extend our current investigation

of water interfacial structure to more thoroughly elucidate the driving force for binding

at hydrophilic interfaces.

We do not here evaluate the role of surface flexibility or curvature in determining

solute surface affinity; based on prior literature in fouling6,7 and interfacial density

fluctuations,15,16 however, we expect that increasing flexibility and convexity will further

resist binding, while the opposite should hold true for enhancing affinity. In line with

these concepts, we find that surfaces with well-segregated domains of hydrophobic and

hydrophilic head-groups maximize affinity for all solutes, while those with well-mixed

patterns minimize affinity. However, the shifts in binding affinity due to patterning are

proportional to the solute volume and overall surface affinity, meaning that such patterns

may also be used to modify the selectivity of an interface for one solute or another.

Finally, we have also demonstrated that water structure at interfaces, as well as in the

solvation shells of solutes, varies significantly with chemistry. Such shifts in water structure

are intimately related to free energies of solvation or binding through the relative entropy.

Future work should focus on more concretely connecting shifts in water structure to free

energies of binding. This may occur through consideration of an expanded set of water

degrees of freedom as well as the development of simple thermodynamic models based on

specific structural perturbations, such as changes to three-body angle distributions.

These results hold important implications for the design of interfacial materials for

use in water purification membranes, chromatography, and catalysis. In particular, we

have identified specific aspects of fundamental theories of solvation and aqueous solutions

that seem to apply generally to simple yet realistic solutes. Next steps will involve

incrementally increasing solute and surface complexity to eventually connect the theory to
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practical applications such as the prevention of biomolecular fouling or the enhancement of

selective capture of valuable solvated species. An obvious extension is to charged solutes,

as well as charges at an interface. In these cases, it is not clear that density fluctuations

will dominate surface affinity, as energetics associated with electrostatic interactions

will become increasingly important. Nanoscale patterns that optimize affinity may be

very different in these cases. For charged and larger solutes, however, the efficiency and

robustness of the methods presented here will need to be improved. Though we have

demonstrated an efficient optimization strategy for discovering surface optimal surface

patterns, we are far from utilizing this algorithm for full design of interfacial materials.

In the meantime, the results presented here provide molecular-level insight into solute

affinity for surfaces, helping to establish new rules of thumb for interfacial materials

design. Connecting this work with previous studies on the mobility of interfacial water,13

it is already interesting to note that the same surface patterns that minimize/maximize

water mobility actually minimize/maximize solute affinity. In membrane applications,

this immediately suggests that modification of nanoscale patterning to minimize fouling

may simultaneously reduce water flux through the membrane. It is then recommended

to either consider alternatives to chemical patterning, such as adjustments in nanoscale

surface geometry, or localize different patterning modifications to specific mesoscopic

membrane regions.
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Chapter 6

Conclusions

6.1 Summary

In summary, we have presented a body of work extending current knowledge of water’s

response to interfaces and solutes, which drives water-mediated interactions key to aqueous

solvation, adsorption, association, and self-assembly phenomena. In particular, we have

used realistic yet simple model systems to probe modern theories developed on the basis

of artificial, toy problems. This represents an essential and timely bridge necessary to

make fundamental insights learned from theory useful in practical scenarios. All of this,

of course, relied on the presence and willingness of experimental collaborators devoted

to developing fundamental understanding and interested in probing simple systems in

a controlled manner in order to make direct comparisons to simulation. All of the

research presented here has benefitted significantly from such collaborations, rendering

these interactions absolutely essential to the overall goal of developing a fundamental

understanding of water’s interfacial behavior.

Chapter 2 describes a close-knit collaboration with the Valtiner group to study the

affinity of simple yet realistic peptides for a hydrophobic surface. The system at hand was
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designed to be amenable to both simulation and atomic force microscopy experiments so

that results could be compared as directly as possible with little ambiguity. By changing

the hydrophobic content of short peptides and measuring the free energy to separate them

from an extended interface, we determined the scaling of the hydrophobic interaction

at a molecular level, finding that it grows approximately linearly with the number of

hydrophobic units. Molecular simulations of these systems allow for the characterization

of molecular scale structure of both the peptides and surrounding water. This analysis

highlighted a need to establish structural metrics of water amenable to flexible, realistic

solutes heterogeneous in their chemical composition. Perturbations to three-body angle

distributions of waters within peptide solvation shells satisfy this criterion and, remarkably,

are useful in developing predictive models for peptide-surface affinities.

We further investigate three-body angle distributions and connect this structural

signature of water to previously-developed metrics and theories in Chapter 3. Specifically,

we consider shifts to this distribution as a function of temperature, density, and the

presence of model solutes that have previously been well-characterized. We have shown that

three-body angle distributions provide an intuitive way of measuring relative preference

of waters for tetrahedral or simple-fluid-like configurations and that three-body angle

distributions seem constrained to varying in only a relatively small number of ways.

At the same time, consideration of these distributions is still possible in heterogeneous

environments, even for flexible solutes. Changes to such water degrees of freedom and their

role in thermodynamic processes, as it turns out, are rigorously connected to the relative

entropy. With this proof, we have opened up a framework for understanding and assessing

the relative role of changes to any water degree of freedom along a thermodynamic

pathway. Generalizations to solutes of arbitrary complexity are possible, though the

subject of future work. While the practical usefulness of the theory is yet to be explored,

it shows great promise for the identification of key solute degrees of freedom during
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solvation processes and as a result the development of minimalistic, highly-predictive

thermodynamic models. This is deeply connected to the use of relative entropy in coarse-

graining, but here we are proposing its merger with dimensionality reduction techniques

to simultaneously determine the degrees of freedom present in a coarse-grained ensemble

that must be present in order to provide a reliable model, thermodynamic or otherwise.

Rather than examining how specific solutes modulate water properties, Chapters 4

and 5 instead consider the problem of how to design interfaces to bias water to behave

in a desired fashion. This is only possible due to the development of a novel genetic

algorithm that adjusts surface features in order to modify arbitrary interfacial properties,

such as nearby water structure, thermodynamics, or dynamics. While it was previously

well-established that surface patterning of more and less hydrophilic groups leads to

differences in surface hydrophobicity, as measured by water density fluctuations, Chapter

4 demonstrates that such patterns may also be used to modulate water dynamics. Indeed,

the same patterns that maximize water density fluctuations also lead to increased water

mobility, resulting in a clear correlation across a diverse set of material interfaces between

these two quantities. This trend breaks down, however, for surfaces with only isotropic

interaction potentials between surface sites and water. Specifically, without electrostatic

interactions that preferentially orient water molecules, surfaces are incapable of modulating

water dynamics through patterning. This is despite the ability of such surfaces to modulate

water density fluctuations and hence surface hydrophobicity.

Density fluctuations also dominate in determining the affinities of neutral, small-

molecule solutes for patterned interfaces in Chapter 5. We demonstrate that surfaces

with patterns that lead to higher density fluctuations also maximize surface affinity for all

studied solutes, even those that are hydrophilic. In consideration of Chapter 4, this result

immediately suggests limitations on materials for use in membranes or other applications,

at least for the specific materials considered. In order to prevent fouling (i.e. minimize
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affinities of a broad range of solutes), interfaces should be designed at a nanoscale to

diminish water density fluctuations, which also reduces water mobility near the interface.

The impact of this tradeoff on macroscopic processes, such as water purifications, is

unclear, though our work lays the theoretical foundations for understanding such industrial

processes from a molecular viewpoint. Further, the presented design algorithms are a

significant contribution towards both computational design of materials as well as the

introduction of nanoscale features into materials design.

6.2 Outlook

Throughout this work, there is a notable lack of consideration for charged solutes and

interfaces. This of course is for good reason – such systems are more difficult to work

with from a methodological point of view and are also known to present unique behaviors

compared to the neutral systems studied here.1 However, with the established toolset in

hand, it is time to begin exploring the role of water in mediating and modulating charged

interactions, as well as the role of charges at interfaces in manipulating water. In the latter

case, significantly different behavior is expected for patterning of charged groups compared

to that of neutral surface functional groups of differing polarity. With the introduction of

charged groups, water will be tightly bound at specific sites on the surface, with the degree

of this adhesion highly dependent on the local electrostatic environment, i.e. the presence

of other charged species. This is in contrast to even the more polar head-groups, where

density fluctuations are at most observed in our simulated systems to be equivalent to bulk

water. Ionic surface functional groups, however, will dampen fluctuations relative to bulk,

potentially heralding a fundamental shift in observed water behaviors. In terms of solute

affinity for interfaces, surface charges will greatly enhance specific energetic interactions

and orientational preferences of solutes, potentially leading to dominance of these or

171



Conclusions Chapter 6

other factors in determining affinity over water density fluctuations. Overall, variations

in patterning of charged groups will result in distinctive changes in water structure as

well as solute affinity, adding useful, molecular-scale principles to the interfacial materials

design toolbox that we have developed.

In terms of solute solvation and association, it would be very interesting to investigate

the extent to which charge affects water three-body angle distributions or other degrees

of freedom in solute hydration shells. Water orients distinctively relative to solutes of

different charge,2 as well as relative to neutral solutes, but it will be very interesting to

carefully examine the response of water-water degrees of freedom. Our results currently

suggest that perturbations to water three-body angle distributions in the solvation shells

of ions should be captured by variations in bulk distributions across temperatures and

densities. If this is the case, it will be crucial to ascertain whether or not such perturbations

are still distinct from those induced by neutral solutes. In particular, if no distinction

is made, it clearly highlights the necessity of considering other degrees of freedom when

determining solvation or other free energies.

This last point is of particular relevance to extensions of the theory presented in

Chapter 3 of this work. In the context of relative entropy associated with thermodynamic

processes (such as the case of solvation considered here), there is no reason that multiple

water degrees of freedom may not be considered. In analogy to entropy expansions of

liquids,3–6 relative entropy expansions should also be feasible.7–9 As with such expansions

in liquids, however, the calculation of higher-order contributions (such as those between

three or four molecules) becomes cumbersome. A study examining the convergence

properties of various forms of the relative entropy expansion in the context of solvation or

other thermodynamic process, such as solute-solute association, is of great interest. It is

anticipated that such expansions will converge much faster than their thermodynamic

entropy analogs, as the relative entropy only weights changes to distributions of structural
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degrees of freedom. If this is the case, this would also provide an efficient route towards

calculating solvation free energies.

Beyond simply the efficient calculation of free energies, consideration of the relative

entropy should provide insight into which degrees of freedom are most critical to the physics

of the system. In coarse-graining applications, minimization of the relative entropy is used

to naturally embed contributions from these critical structural features at the atomistic

level into a model at the coarse-grained level. A major issue in coarse-graining, however, is

selecting an appropriate coarsened model (i.e. the number of atoms to lump into a single

bead, the geometry of the coarsened beads, etc.).10,11 To solve this, as well as to accelerate

free energy calculations, it may prove very fruitful to couple calculations based on the

relative entropy to dimensionality reduction techniques. First, it would be essential to

establish an orthogonal set of structural degrees of freedom whose probability distributions

contained no joint or mutual information. In this scenario, the relative entropy and its

expansions should become perfectly additive. Such a coordinate transformation might be

determined by techniques such as independent component analysis.12 By then computing

relative entropies associated with thermodynamic processes or coarse-graining in this

independent set of coordinates, the collective degree of freedom most informative for

constructing a reduced model would be identified. There have been recent efforts to reduce

dimensionality in order to identify natural reaction coordinates and subsequently bias

sampling along these coordinates for increased simulation efficiency while also discovering

key kinetic pathways.13,14 However, the methods proposed here may be useful in filling

the gap of constructing reduced models preserving thermodynamics. While promising, the

method might still result in highly transformed coordinates that lack physical intuition.

These coordinates might still prove useful for efficient calculations but may need to be

further manipulated in order to provide physical insight useful for theoretical advances.

Finally, the genetic algorithm used for interfacial design stands to benefit from a few
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specific improvements. Principally, the current algorithm makes no attempt to reduce the

space searched by checking for structures that are equivalent under periodic translation

or rotation. This could greatly improve its efficiency by reducing the search space.

Additionally, the algorithm is very sensitive to noise in the data, relying on accurate

assessments of metrics to be optimized for each proposed surface configuration. Currently

this requires that more computer time be devoted to increasing the precision of the metric

calculation, which means that longer molecular simulations are required. Improvements

to specifically reduce the effect of statistical outliers will improve the accuracy, and likely

also efficiency, of the genetic algorithm. Finally, the genetic algorithm itself may need

to be reconsidered in deference to more modern machine learning techniques. As the

interfaces that we seek to design inevitably become more complicated, more sophisticated

optimization strategies will likely prove necessary.
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Appendix A

Characterization of peptide

structure in equilibrium and

non-equilibrium simulations

In Table 2.1 of Chapter 2, the simulation estimate of the free energy difference for the

(GS)5 scaffold is similar to that of the (GS)4GL peptide, while in experiment no interaction

for the former was detected. While this does not affect the slope with respect to the

number of leucine residues, it is interesting to explore the source of this deviation. Figure

2.6B shows that the average force profile for the (GS)5 peptide exhibits a slight peak

only at small distances from the surface. In experiments, such an interaction would be

hidden by the large attractive forces between the AFM tip and surface at these same

distances (Figure 2.3A). By using approach curves as a baseline, experiments thus set the

free energy change for the scaffold peptide to zero.

In simulation, however, one still might not expect the scaffold to have a higher affinity

for the surface than the (GS)4GL peptide, as observed at faster pulling rates. Figure

A.1 demonstrates that the biasing force to keep the peptide near the surface induces a
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β-hairpin-like structure, in which glycine hydrogens are pointed towards the surface while

serine hydroxyl groups are directed into solution. This contrasts with observed structures

of the unrestrained (GS)5 peptide on the surface, which show far less time in a β-like

conformation and more time protruding into solution (Figure A.1). Thus, the applied

biasing force may over-populate the starting ensemble with structures of more favorable

affinity for the surface. Pulling at rates faster than the relaxation time of the peptide

configuration on the surface then biases the observed work distributions to artificially high

values. Unlike the (GS)5 scaffold, surface conformations of leucine-containing peptides do

not seem to be significantly perturbed by a restraint. However, extensions of hydrophilic

portions of the peptide into solution seem to become more common (Figure A.1).
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Figure A.1: Highest percentage RMSD clusters are shown for peptides in solution and
with the pulling atom, restrained or free, near the simulated SAM surface. Differences
do not appear with the release of restraints, though in many cases the GS part of the
chain extends more readily into solution. For 3 and 4 leucines, at least one leucine is
left dangling into solution, regardless of restraints, due to constraints introduced by
backbone connectivity. Especially for structures in solution, low top cluster percentages
indicate a lack of well-defined secondary structure.
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Figure A.2: Two-dimensional free energy surfaces in intrapeptide hydrogen bond
(oxygen acceptor to hydrogen donor distance cutoff of 2.1 Å and donor-H-acceptor
angle cutoff of 150◦) and radius of gyration space are shown for all simulated peptides.
Heat maps in the first column show results for the peptide restrained to be near the
surface, in the second for the peptide free on the surface, and in the third for the
peptide in solution. Each plot has been shifted in reference to its point of lowest free
energy, with the scale at right in kBT . In the case of the peptide restrained on the
surface, re-weighting to account for the energy of the restraint has not been performed.
Such re-weighting results in negligible changes to the free energy surfaces shown in the
first column. In general, peptides explore a wide range of configuration space, though
this space is reduced for peptides near the surface compared to those in bulk.
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Figure A.3: Similar to Figure A.2, but with total SASA per atom (top) or hydrophobic
SASA per atom (bottom) on the y-axis. Once the restraint is released, the increases
in Rg on the surface also occasionally correspond to increases in the SASA per atom,
indicating that the peptide extends its hydrophilic region away from the surface into
solution.
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Figure A.4: Radius of gyration for each peptide restrained on the surface, free of
restraints but on the surface, and in solution. From the large jumps in Rg, it is clear
that the peptide frequently folds and unfolds, indicating a lack of well-defined structure.
This matches results from the free energy surfaces above, but further indicates that
the wide regions of stability in SASA, Rg, and hydrogen bond space are due to peptide
disorder rather than lack of equilibration. Autorrelation times are shown at the top
left corner of each figure. Note that simulation times for peptides in solution are 90
ns, while those on the surface are 18 ns.
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Figure A.5: For the (GS)5 peptide, various quantities are shown throughout the
slow-pulling process. Black curves are averages over configurations from individual
trajectories falling within pulling coordinate (z-axis) bins of 1 Å width. Red curves are
averages over all trajectories, or black curves. The minimum z-coordinate refers to the
atom in the peptide closest to the SAM surface, with a pull-off event defined as the
time at which this value exceeds 21 Å. Peptide z-extension refers to the z-separation
between the pulled atom and the first backbone atom in a leucine residue (or the
backbone atom preceding the C-terminal cap in (GS)5). Rg refers to the peptide radius
of gyration. Shell waters are defined as waters within 5 Å from exposed peptide atoms.
Total SASA/atom is the per-atom solvent accessible surface area for the entire peptide,
while SASAhyd is the solvent accessible surface area of only leucine residues. Numbers
of hydrogen bonds (distance cutoff of 2.1 Å between heavy atoms and hydrogen bonded
hydrogens, and donor-H-acceptor angle cutoff of 150◦) are shown between the peptide
and water, as well as between backbone atoms in the peptide. Force and work curves
are additionally shown at the bottom.
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Figure A.6: Metrics shown for the (GS)3L4 peptide, slow-pulling simulations. From
Figure A.5 to Figure A.6, distinct qualitative differences in many of the curves reveal a
starkly different pull-off mechanism with the addition of leucine residues. Mainly, the
radius of gyration develops a clear maximum that corresponds to a force peak around
full extension of the peptide.
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Derivation of

solvation-thermodynamic relations

in terms of the relative entropy

B.1 Free energy of solvating colloids

We begin with the definition of the relative entropy between the system with the

colloid solvated (state 2) and that with the colloid in the ideal gas phase and a separate

bulk water system (state 1):

Srel,1→2 =
∫
℘2(V )

[∫
℘2(pNw , rNw ,pc, rc;V ) ln

[
℘2(pNw , rNw ,pc, rc, V )
℘1(pNw , rNw ,pc, rc, V )

]
dpNw drNw dpcdrc

]
dV

(B.1)

In the above, there are N solvent molecules and a single solute and r and p represent

vectors of positions and momenta for all degrees of freedom of a single molecule and

the subscripts w and c signify whether the molecule is a solvent (water) or colloid. We

consider the above in the isothermal-isobaric ensemble and rewrite the expression in terms
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of partition functions.

Srel,1→2 =
∫
℘2(V )

[∫
℘2(pNw , rNw ,pc, rc;V )

ln
[
e−βH2(pN

w ,rN
w ,pc,rc)e−βpV

∆2

∆1

e−βH1(pN
w ,rN

w ,pc,rc)e−βpV

]
dpNw drNw dpcdrc

]
dV

=
∫
℘2(V )

[∫
℘2(pNw , rNw ,pc, rc;V )

ln
[
e−βU2(rN

w ,rc)e−βK2,w(pN
w )e−βK2,c(pc)e−βpV

∆2
∆1

e−βU1(rN
w ,rc)e−βK1,w(pN

w )e−βK1,c(pc)e−βpV

]
dpNw drNw dpcdrc

]
dV

(B.2)

The momenta are not affected by an isothermal solvation process, and hence the kinetic

energies are equal (K2,x = K1,x) for both solvent and solute. This means that all terms

containing momenta or integrals over momenta will cancel within the logarithm, allowing

integration over these degrees of freedom and cancelation with the momenta component

of ∆2. Additionally, the exponentials involving the pressure term cancel. The relative

entropy is then more simply written as

Srel,1→2 =
∫
℘2(V )

[∫
℘2(rNw , rc;V ) ln

[
e−βU2(rN

w ,rc)

∆2

∆1

e−βU1(rN
w ,rc)

]
drNw drc

]
dV (B.3)

where we have now defined ∆ as the configurational partition function and the probabilities

now only depend on the positions and not the momenta. The full partition functions

have been left for simplicity of notation, as will become clear later on. For a pairwise

potential function, we may split the potential energy in the solvated ensemble (U2) into

water-water, colloid-water, and colloid only terms. After cancellation and re-arrangement,

we arrive at an expression for the free energy of solvation in terms of the relative entropy:
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Srel,1→2 =
∫
℘2(V )

[∫
℘2(rNw , rc;V )

ln
[
e−βUww(rN

w )e−βUwc(rN
w ,rc)e−βUc(rc)

∆2

∆1

e−βUww(rN
w )e−βUc(rc)

]
drNw drc

]
dV

Srel,1→2 =
∫
℘2(V )

[∫
℘2(rNw , rc;V ) ln

[
e−βUwc(rN

w ,rc)

∆2
∆1

]
drNw drc

]
dV

Srel,1→2 =
∫
℘2(V )

[∫
℘2(rNw , rc;V )

(
−βUwc(rNw , rc))drNw drc

]
dV

+
∫
℘2(V )

[∫
℘2(rNw , rc;V ) ln

[∆1

∆2

]
drNw drc

]
dV

Srel,1→2 = −β〈Uwc〉2 + β∆G

β∆G = β〈Uwc〉2 + Srel,1→2

(B.4)

B.2 Free energy to solvate a hard-sphere colloid in

a monatomic ideal gas

We present an example solvation free energy calculation using the relative entropy

approach that highlights how the pressure-volume work is included in the relative entropy

of solvation. For solvating a hard-sphere in an ideal gas in the isothermal-isobaric ensemble,

the colloid-solvent potential energy is zero if no particles are in the hard sphere volume

and infinity otherwise. If the volume of the system is smaller than the volume of the

hard-sphere, the weight for that configuration is zero. This means that the average

potential energy between the colloid and ideal gas is zero and the free energy difference is

equal to the relative entropy. In this case, we can write the relative entropy as

β∆G = Srel,1→2 = ln
[

∆1

∆2

]
(B.5)
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Srel,1→2 = ln
[ ∫ inf

0 e−βpV V N+1dV∫ inf
0 e−βpV V

[∫
e−βUwcdrN

]
dV

]
(B.6)

In the numerator, each of the N ideal gas particles contributes a volume term, as well as

the colloid in the ideal gas state. Since only positions of the ideal gas particles relative to

the colloid matter, integration of the colloid position over the volume yields the V term

in the denominator.

As noted previously, the effect of allowing the hard-sphere colloid to interact with

ideal gas particles is to restrict the volume over which the ideal gas may be placed. The

effect of the integral over positions of ideal gas particles is to restrict the volume integral

from the size of the colloid, Vc = 4
3πR

3
c , to infinity, giving an overall available volume of

V − Vc per particle.

Srel,1→2 = ln
[ ∫ inf

0 e−βpV V N+1dV∫ inf
Vc
e−βpV (V − Vc)NdV

]
(B.7)

The numerator may be readily evaluated by substituting x = βpV and re-writing the

resulting integral as a Gamma function, Γ(N) =
∫ inf

0 x(N−1)e−xdx = (N − 1)!

Srel,1→2 = ln
[

(βp)−(N+2)Γ(N + 2)∫ inf
Vc
e−βpV (V − Vc)NdV

]
(B.8)

In the denominator, we first make the substitution V ′ = V − Vc

Srel,1→2 = ln
[

(βp)−(N+2)Γ(N + 2)∫ inf
0 e−βp(V ′+Vc)(V ′ + Vc)V ′NdV ′

]
(B.9)
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And next we rearrange and let x = βpV ′ so that

Srel,1→2 = ln
[

(βp)−(N+2)Γ(N + 2)
e−βpVc

∫ inf
0 e−βpV ′V ′N+1dV ′ + Vce−βpVc

∫ inf
0 e−βpV ′V ′NdV ′

]

= ln
[

(βp)−(N+2)Γ(N + 2)
e−βpVc(βp)−(N+2) ∫ inf

0 e−xxN+1dx+ Vce−βpVc(βp)−(N+1) ∫ inf
0 e−xxNdx

]

= ln
[

(βp)−(N+2)Γ(N + 2)

e−βpVc

(
(βp)−(N+2)(N + 1)! + Vc(βp)−(N+1)N !

)]

= ln
[
eβpVc

(N + 1)!
(N + 1)! + βpVcN !

]

= ln
[
eβpVc

N + 1
N + 1 + βpVc

]

= βpVc + ln
[

N + 1
N + 1 + βpVc

]

≈ βpVc

(B.10)

This shows that the relative entropy includes the pressure-volume work involved in the

solvation process because the restriction of volume accessible to the solvent is explicitly

taken into account when integrating over solvent configurational degrees of freedom. This

results in a contribution from the work to grow the cavity at constant pressure (the first

term in the final expression) and a second term that is approximately zero for large N

(or even when N � βpVc, which only requires that βpVc be small and is exact without

invoking the macroscopic limit). This work to grow the cavity is not captured by looking

at local degrees of freedom between water molecules, such as the three-body angle, but is

negligibly small for even the largest of colloids (see Table C.1).
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Additional structural and

thermodynamic data associated with

water three-body angle distributions
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Figure C.1: Radial distribution functions for the LJ water model at various tempera-
tures and densities (in g/cm3). Vertical dashed lines show the cut-off of 0.34 nm used
to define neighbors for calculating three-body angle distributions in bulk TIP4P/2005
and LJ water.
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Figure C.2: Radial distribution functions for the TIP4P/2005 water model at various
temperatures and densities (in g/cm3).
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Figure C.3: Three-body angle distributions for the LJ water model at various temper-
atures and densities (in g/cm3).
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Figure C.4: Three-body angle distributions for the TIP4P/2005 water model at various
temperatures and densities (in g/cm3).
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Figure C.5: Two-dimensional probability densities in the number of neighbors within
the 0.34 nm cutoff and the three-body angles are shown for the lowest-density, low-
est-temperature and highest-density, highest-temperature conditions for both LJ and
TIP4P/2005 water. For the low-density, low-temperature TIP4P/2005 distribution
(top right), the peak at low angles (around 50◦), is due to rare configurations involving
5 neighbors, where the tetrahedral peak around 109.5◦ is still prevalent but a neighbor
interstitial to this tetrahedral arrangement also contributes low angles.
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Figure C.6: Translational order parameters t and q are computed as described by
Errington and Debenedetti.1 Isotherms in t-q space are shown at far left, with isotherms
as a function of density shown for q and t shown in center and right, respectively.
The low-density structural anomaly boundary occurs where q exhibits maxima, and
the high-density boundary occurs where t shows minima. In the center and right
plots, solid lines are fits of the points shown to 4th-order Legendre polynomials, which
are used to determine the minima/maxima and the anomaly bounds. In the center
figure at a temperature of 280 K (5th from lowest), it appears that a maximum has
been found; however, the lowest density point actually represents a decrease in q due
to nucleation of voids in the liquid while it is very close to its metastability bound.
Thus, the same q behavior is exhibited whether the mechanical stability or structural
anomaly boundary is crossed.
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Figure C.7: Tetrahedral order parameters isotherms computed via the definition from
Errington and Debenedetti,1 using 4 nearest neighbors (left) and computed from the
distributions of three-body angles using a fixed distance cut-off (right). Circles are
for TIP4P/2005 water and triangles show LJ water. When using a fixed cut-off, no
maxima in q are observed, except in the case of the simulation at 0.87 g/cm3 and
280 K where voids are observed in the metastable liquid. When considering exactly
4 neighbors, some neighbors are occasionally included that reside outside the first
solvation shell, leading to decreases in q at low densities where there is non-negligible
probability of seeing 3 neighbors within the fixed cut-off instead (Fig. C.5). At high
densities, q is much lower due to inclusion of greater numbers of neighbors that have
angles different from the tetrahedral angle of 109.5◦.

196



Three-body angle additional data Appendix C

Figure C.8: Translational order parameter distributions are shown using a large cutoff
identical to that defined by Errington and Debenedetti1 (left), and a small cutoff of
0.34 nm equivalent to the neighbor cutoff for computing three-body angles (right).
TIP4P/2005 water is represented by circles while LJ water is shown with triangles.
Though the order parameter is shifted to different values, the qualitative behavior is
almost identical, with minima of isotherms occurring at effectively the same densities.
In this way, either cutoff definition produces the same result for the high-density
structural anomaly boundary.

197



Three-body angle additional data Appendix C

Figure C.9: Various metrics based on the three-body distribution2 are shown for
isotherms versus density. ftetra is the fraction of the distribution that is tetrahedral as
defined by the weight of the distribution between 90.0◦ and 130.0◦. The top right shows
the average of the cosine of the three-body angle within the tetrahedral region defined
above. The bottom left shows the variance of the cosine of three-body angles within
the tetrahedral region. The bottom right presents the entropy of the three-body angle
distribution. Maxima in the three-body angle distribution entropies are suggestive of
the high-density structural anomaly bound. However, no metric seems to suggest a
lower-density bound.
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Figure C.10: Perturbations of bulk water three-body angle distributions in the second
hydration shell (left) and a shell far enough away to achieve bulk-like behavior,
between 2.4 and 2.6 nm from the colloid center (right). The magnitude of second-shell
perturbations is almost an order of magnitude smaller than the first shell and the
trends are distinct from those observed in the first shell. Far from the colloid, there is
only low-magnitude noise compared to the reference distribution.
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Figure C.11: Perturbations from bulk for three-body angle distributions in the first
hydration shell of WCA colloids are shown as solid lines for LJ, TIP3P, TIP4P-Ew,
and TIP4P/2005 water models (from top to bottom). Small systems are in darker
purple, while larger systems are lighter orange. Dashed lines represent distributions
with applied geometric constraints rather than physically present colloids. Specifically,
spherical shells corresponding to the same radial range between the hard-sphere radii
and RDF first minima of WCA colloids are defined to select water oxygens in bulk-water
simulations, with only waters at positions greater than the radius considered when
computing the distributions. This effectively imposes geometric constraints without
any colloids present. In the case of the LJ fluid, it is notable that the physical colloids
perturb the distribution less than the geometric constraints. This is because the
physical colloids, though purely repulsive, exhibit a soft interface while the constraints
imposed are a perfectly hard interface defined by the effective hard-sphere radius.
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Figure C.12: Thermodynamic quantities associated with solvation, normalized to the
average number of three-body angles formed by waters in the first hydration shell, are
shown against projections onto the first two principal components of perturbations by
all colloids. Circles represent WCA colloids, triangles low-density colloids, and squares
high-density colloids. Smaller colloids are shown with dark purple while large colloids
are brighter orange. Only for the relative entropy do we see evidence of a collapse of
the projections across all colloid types. This collapse breaks down for larger colloid
sizes, possibly indicating a length-scale cross-over or a point at which attractions
become increasingly significant.
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Figure C.13: Fits to the principal-component-based model for the relative entropy
(with cross-terms) are shown for independently fitting to each of the colloid types. The
gray shaded region represents 5% error while the blue-shaded region represents 20%
error. The fits are excellent even at small colloid sizes. Compared to the fit over all
colloids (Fig. 3.8), the individual fits are more accurate at large colloid sizes.
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Figure C.14: Three-body relative entropy in the first solvation shell of colloids is shown
against the total solvation relative entropy. For small colloid sizes (smaller relative
entropies), all colloid types fall along the same line. For colloids larger than ∼0.5 nm
in hard-sphere radius, the behavior becomes qualitatively different, with slopes for
large colloids significantly diverging.
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Rhs (nm) ∆Grep ∆Gattr p∆V ∆H ∆S 〈Ucs〉 Srel ∆G
WCA colloids
0.258 4.71 ± 0.08 N/A 0.00 ± 0.00 -0.52 ± 5.18 -5.23 ± 5.18 1.17 ± 0.04 3.54 ± 0.08 4.71 ± 0.08
0.318 9.60 ± 0.10 N/A 0.00 ± 0.00 -9.30 ± 5.03 -18.90 ± 5.03 1.85 ± 0.05 7.74 ± 0.12 9.60 ± 0.10
0.374 16.10 ± 0.13 N/A 0.00 ± 0.00 6.41 ± 5.06 -9.64 ± 5.07 2.43 ± 0.06 13.63 ± 0.14 16.10 ± 0.13
0.422 22.99 ± 0.15 N/A 0.00 ± 0.00 13.30 ± 4.90 -9.68 ± 4.91 2.78 ± 0.06 20.21 ± 0.16 22.99 ± 0.15
0.520 41.19 ± 0.30 N/A 0.01 ± 0.00 32.24 ± 4.95 -8.95 ± 4.96 3.69 ± 0.10 37.50 ± 0.31 41.19 ± 0.30
0.612 62.06 ± 0.44 N/A 0.02 ± 0.00 55.79 ± 4.91 -6.27 ± 4.93 4.14 ± 0.08 57.92 ± 0.45 62.06 ± 0.44
0.804 119.49 ± 0.71 N/A 0.05 ± 0.00 129.48 ± 4.93 9.99 ± 4.98 5.33 ± 0.10 114.16 ± 0.72 119.49 ± 0.71
0.990 191.37 ± 1.13 N/A 0.09 ± 0.00 229.20 ± 4.92 37.82 ± 5.05 6.79 ± 0.11 184.58 ± 1.14 191.37 ± 1.13
1.244 316.99 ± 1.35 N/A 0.20 ± 0.00 414.69 ± 4.86 97.68 ± 5.05 8.02 ± 0.12 308.97 ± 1.36 316.99 ± 1.35

Low-density colloids
0.258 4.71 ± 0.08 -0.06 ± 0.00 0.00 ± 0.00 -2.93 ± 4.95 -7.57 ± 4.95 1.12 ± 0.01 3.52 ± 0.08 4.64 ± 0.08
0.318 9.60 ± 0.10 -0.44 ± 0.00 0.00 ± 0.00 -7.87 ± 4.96 -17.03 ± 4.96 1.41 ± 0.01 7.75 ± 0.10 9.16 ± 0.10
0.374 16.10 ± 0.13 -1.38 ± 0.00 0.00 ± 0.00 14.10 ± 5.16 -0.582 ± 5.16 0.99 ± 0.01 13.69 ± 0.13 14.68 ± 0.13
0.422 22.99 ± 0.15 -2.71 ± 0.00 0.00 ± 0.00 7.78 ± 4.94 -12.49 ± 4.94 0.10 ± 0.01 20.17 ± 0.15 20.28 ± 0.15
0.520 41.19 ± 0.30 -6.97 ± 0.00 0.01 ± 0.00 19.30 ± 4.94 -14.92 ± 4.94 -3.33 ± 0.02 37.54 ± 0.30 34.22 ± 0.30
0.612 62.06 ± 0.44 -12.56 ± 0.01 0.02 ± 0.00 35.67 ± 4.85 -13.83 ± 4.87 -8.12 ± 0.02 57.62 ± 0.44 49.50 ± 0.44
0.804 119.49 ± 0.71 -28.62 ± 0.02 0.04 ± 0.00 89.07 ± 5.06 -1.80 ± 5.11 -22.68 ± 0.02 113.55 ± 0.71 90.87 ± 0.71
0.990 191.37 ± 1.13 -48.97 ± 0.04 0.09 ± 0.00 158.35 ± 4.96 15.95 ± 5.10 -41.87 ± 0.03 184.28 ± 1.13 142.40 ± 1.13
1.244 316.99 ± 1.35 -82.58 ± 0.06 0.18 ± 0.00 284.92 ± 4.86 50.51 ± 5.04 -74.81 ± 0.04 309.22 ± 1.35 234.41 ± 1.35

High-density colloids
0.291 7.13 ± 0.09 -0.367 ± 0.00 0.00 ± 0.00 -2.48 ± 5.05 -9.22 ± 5.05 1.22 ± 0.01 5.51 ± 0.09 6.74 ± 0.09
0.350 13.08 ± 0.11 -2.45 ± 0.00 0.00 ± 0.00 -1.10 ± 4.88 -11.73 ± 4.88 -0.36 ± 0.01 11.00 ± 0.12 10.63 ± 0.11
0.404 20.20 ± 0.14 -7.66 ± 0.01 0.00 ± 0.00 -2.38 ± 5.10 -14.92 ± 5.09 -5.25 ± 0.01 17.79 ± 0.14 12.54 ± 0.14
0.451 27.61 ± 0.16 -15.10 ± 0.01 0.01 ± 0.00 -5.98 ± 4.82 -18.49 ± 4.82 -12.50 ± 0.01 25.01 ± 0.16 12.51 ± 0.16
0.547 47.13 ± 0.33 -39.15 ± 0.03 0.01 ± 0.00 -16.37 ± 5.34 -24.34 ± 5.35 -36.75 ± 0.02 44.72 ± 0.33 7.98 ± 0.33
0.637 68.74 ± 0.46 -71.90 ± 0.05 0.02 ± 0.00 -30.37 ± 4.92 -27.22 ± 4.94 -70.73 ± 0.03 67.57 ± 0.47 -3.15 ± 0.47
0.828 127.84 ± 0.74 -169.59 ± 0.11 0.04 ± 0.00 -100.19 ± 4.97 -58.43 ± 5.03 -175.88 ± 0.06 134.13 ± 0.75 -41.75 ± 0.75
1.013 201.77 ± 1.17 -298.78 ± 0.18 0.07 ± 0.00 -180.91 ± 5.03 -83.90 ± 5.17 -319.59 ± 0.08 222.58 ± 1.18 -97.01 ± 1.18
1.267 329.07 ± 1.39 -524.99 ± 0.24 0.15 ± 0.00 -318.99 ± 5.01 -123.06 ± 5.21 -576.72 ± 0.11 380.80 ± 1.42 -195.92 ± 1.41

Table C.1: Various thermodynamic components of free energies of solvation for different
colloids. All units in kBT unless otherwise noted. Uncertainties for ∆Grep and ∆Gattr
derive from estimates of uncertainty using uncorrelated potential energies from the
pymbar package.3 Uncertainties for ∆H and 〈Ucs〉 are standard deviations from
averaging all uncorrelated potential energies (and pressure-volume terms in the former
case) in the trajectory. Uncertainties for ∆G, ∆S, and Srel are computed via standard
error propagation.
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Appendix D

Additivity of dynamics in simple

Markov models

From a continuum point of view, the dynamics of heterogeneous systems can be explored

with models as simple as continuous time Markov chains. Imagine a one-dimensional

system with two types of sites, either 1 or 2, that can be arbitrarily arranged along a line

that wraps periodically in space (Figure D.1). Note that the dimension and boundary

conditions of the problem are chosen for convenience of illustration, though in principle

the results are more general. Let us assume that if a random walker is at a type 1 site,

the rate with which it leaves to either of the neighboring states is a, while this rate is b for
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type 2 sites. This results in a transition rate matrix corresponding to Figure D.1 (top) as

R =



−2a a 0 0 0 a

a −2a a 0 0 0

0 a −2a a 0 0

0 0 b −2b b 0

0 0 0 b −2b b

b 0 0 0 b −2b



(D.1)

If we require that detailed balance be satisfied, the equilibrium occupation probability of

any site 1 is related to the probability of any site 2 via

℘2 = a

b
℘1 (D.2)

which fully specifies the problem if we assume that we start from an ensemble in which

the equilibrium probabilities of each state are satisfied. For any time t, the time evolution

of the occupation probabilities follows

d~P (t)
dt

= ~P ·R (D.3)

which is formally solved by

P(t) = eRt (D.4)

If we then measure the slope of the average mean-squared displacement at long times,

the diffusivity is given by

D = 〈d
2(t+ δt)〉 − 〈d2(t)〉

2δt

=
∑
i ℘i

∑
j P(t+ δt)i,j(j − i)2 −∑i ℘i

∑
j P(t)i,j(j − i)2

2δt

(D.5)
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Note that the time must be long enough that a walker visits domains of both type 1 and

2, but short enough that the periodicity scale of the system remains comparatively large

(this difficulty vanishes for infinitely sized systems). Though the above expressions are

analytical, numerical solutions for arbitrary arrangements of sites 1 and 2 that address

finite-size effects are easiest. Such results show that the diffusivity does not depend on the

arrangement of sites of type 1 and 2, illustrating that a macroscopic model holds in which

surface types have additive effects (i.e., the influence of a surface type is independent of

neighboring site identities).

Figure D.1: Schematics of 1D Markov models with distinct transition rates that result
in average diffusivities that are additive (top) and non-additive (bottom).

Additivity breaks down, however, as soon as we introduce edge effects between the

domains, as shown in Figure D.1 (bottom). This is the equivalent of creating new types of

sites with asymmetric rates of transition to adjacent sites. The asymmetry allows specific

patterning of domains to influence the average diffusivity since the number of such edges

can vary from one arrangement to another. The effect is similar to what is observed for

interfaces with spatial chemical heterogeneity as described in the main text. At each

surface site, one can consider analogous rates for moving to any neighboring surface site.

If these rates are all the same, depending only on the nature of the site itself and not

208



Additivity of dynamics in simple Markov models Appendix D

where the walker is moving, then additivity will hold. However, it is obvious that the

arrangement of other nearby chemical groups can produce rate asymmetry, with subtle

effects appearing as the free energy landscape changes across the surface. In this way,

molecular scale heterogeneities likely make additive models for dynamical behavior break

down, instead requiring brute force atomistic molecular dynamics simulations to evaluate

the detailed dynamics.
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Appendix E

Genetic algorithm validation and

additional, spatially-resolved

measures of surface hydrophilicity

and water mobility
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Figure E.1: For cristobalite at a fraction of 0.25 of the maximum possible number of
silanol groups, correlations are shown between the measured diffusivity parallel to the
plane of the surface (Dnet on the x-axis of all panels) and (a) the diffusivity measured
below the surface (b) the diffusivity measured above the surface (c) Dnet itself (d) the
measured diffusivity far from the surface (e) the average simulation temperature (f)
the total simulation pressure (g) the component of simulation pressure perpendicular
to the surface and (h) the equilibrated box dimension perpendicular to the surface.
Black lines are linear regressions to the data with R2 values shown on each plot. While
the average simulation box length perpendicular to the interface weakly correlates
with diffusivity (larger volumes for faster diffusion), this is due to variation in effective
surface hydrophobicity that modulates interfacial width at constant pressure. For
cristobalite surfaces at low density (here and in Figure E.2), it appears that the total
system pressure (including all Cartesian directions) correlates weakly with the mobility
of hydration water. Noting that the surface area is fixed in the plane of the interface
and not relaxed during constant-pressure equilibration, it is clear that arrangements of
silanol groups can affect the in-plane strain of these surfaces by changing the bonding
pattern. Thus, a weak correlation is observed between measured diffusivity and total
simulation pressure as the pattern of functional groups in cristobalite is adjusted.
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Figure E.2: Same as Figure E.1, but for cristobalite surfaces at a fraction of 0.375 of
the maximum possible number of silanol groups.

Figure E.3: Same as Figure E.1, but for cristobalite surfaces at a fraction of 0.50 of
the maximum possible number of silanol groups.
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Figure E.4: Same as Figure E.1, but for cristobalite surfaces at a fraction of 0.75 of
the maximum possible number of silanol groups.

Figure E.5: Same as Figure E.1, but for the SAM surface at an OH-terminated chain
fraction of 0.25.
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Figure E.6: Same as Figure E.1, but for the SAM surface at an OH-terminated chain
fraction of 0.50.

Figure E.7: Same as Figure E.1, but for the LJ surface at an attractive particle fraction
of 0.25. For LJ surfaces at all coverages, the pressure normal to the interface correlates
with the diffusivity. It should be noted, however, that the range of Z-pressures observed
is the same as for other surface types. With surface patterning playing little to no role
in determining diffusivity for the LJ surfaces (see main text), system properties that
vary with system set-up and equilibration, like the Z-pressure, are more statistically
significant, whereas these same fluctuations primarily introduce statistical noise to
diffusivities on SAMs or cristobalite.
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Figure E.8: Same as Figure E.1, but for the LJ surface at an attractive particle fraction
of 0.50.
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Figure E.9: Probability density distributions for the cosine of the tilt angle for SAM
surfaces (the angle between the direction perpendicular to the interface and the vector
between the restrained sulfur atom and the last united atom before the head group).
The top panel shows the distribution for OH-terminated chains while the bottom for
CH_3-terminated ones. Each color represents an independent simulation, with solid
lines corresponding to the minimum-diffusivity surface pattern and dashed lines to the
maximum-diffusivity surface. Variations in tilt angle distributions between independent
simulation runs are larger than any differences observed between the minimum and
maximum diffusivity patterns, implying negligible changes in average surface structure.
Additionally, freezing all but the head-group atoms of SAM chains results in nearly
identical diffusivity ranges in Figure 4.3 (also see Figure E.12), although the diffusivity
is slightly reduced overall (by 0.014 to 0.032 Å2/ps). The decreases in diffusivity are
more pronounced at higher surface densities and stem from the reduction, due to
chain rigidification, in hydrogen bonding between surface hydroxyls, increasing the
availability of water-surface hydrogen bonds.
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Figure E.10: Top-views for the normalized fluctuations in the number of waters within
probes of radius 3.3 Å sitting with their edge at the mean interface of (a) cristobalite,
(b) SAM, and (c) LJ surfaces. The mean interface is defined as the location at which
the average water density is 0.3 of the bulk value for TIP4P-Ew of 0.0332 Å−3. For LJ
surfaces, the middle column considers the patterns determined by optimization of the
SAM surface at the same density. It is clear that fluctuations are enhanced near larger
patches of more hydrophobic groups on both SAM and LJ surfaces. For cristobalite,
both very small and large fluctuations are observed near hydroxyl groups. This in turn
leads to higher excess chemical potentials for hard-sphere probes near the surface.
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Figure E.11: Top-views of height fluctuations for instantaneous interfaces for cristobalite
(top), SAM (middle), and LJ surfaces (bottom). The instantaneous interface is defined
according to the methodology of Willard and Chandler,1 but with a surface density
cut-off of 0.3 of the bulk value of 0.0332 Å−3 for TIP4P-Ew water.
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Figure E.12: Correlation between lateral diffusivities of water near minimum and
maximum diffusivity surfaces and the average interfacial height fluctuations using
the method of Willard and Chandler1 to define the instantaneous interface. Hatched
points represent surfaces at hydrophilic fractions of zero or one, filled points minimum
diffusivity surfaces, and open points maximum diffusivity surfaces. The correlation is
enhanced by freezing the united atoms (non-head-group atoms) of the SAM chains, as
shown by the black versus blue diamond symbols.
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Figure E.13: Profiles for water density, hard-sphere excess chemical potential, water
diffusivity parallel to the interface, and water dipole re-orientation times as a function
of distance from the mean interface (defined as the point where water reaches 0.3
of its bulk value). Dipole re-orientation times were computed by fitting the time
decay of the cosine of the angle between the original dipole moment vector with a
stretched exponential, as in the work of Debenedetti and co-workers.2 The qualitative
trends are the same if an instantaneous interface definition is used instead. In general,
hard-sphere excess chemical potentials are correlated with both lateral diffusivities and
water re-orientation times. However, these spatial correlations seem to break down
very close to the solid surfaces, where geometric constraints due to the presence of
surface atoms seem to impact hard-sphere insertion probabilities and water mobility
in an unrelated manner.
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Figure E.14: The natural logarithm of the ratio of lateral diffusivity to its bulk value
is shown as a function of the orientational, translational, and total contributions to
hydration water entropy 8 Å from the interface (reported relative to bulk waters).
Filled symbols are minimum diffusivity surfaces (distributed hydrophilic groups), open
symbols are maximum diffusivity surfaces (clumped hydrophilic groups), and hatched
symbols are surfaces with hydrophilic fractions of 0.0 or 1.0. When all atoms in SAM
chains except head-groups are frozen, all correlations are enhanced, mainly due to
more negative translational contributions.
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Appendix F

Relating Henry’s Law constants to

free energies of solvation

In order to convert Henry’s Law constants to free energies of solvation, we first make

it clear that the latter quantity is related directly to the excess chemical potentials at

infinite dilution. We start by writing the total chemical potential in terms of Gibb’s

ensemble partition functions at constant T, P, and N solvent molecules while adding a

single solute molecule

βµ = − ln ∆(T, p,N,NS = 1)
∆(T, p,N,NS = 0)

βµ = − ln ΛN
∫ inf

0 e−βpV
∫
e−βU(rN ,rs)drNdrsdV

ΛNΛs

∫ inf
0 e−βpV

∫
e−βU(rN )drNdV

(F.1)

In the above, rN refers to the coordinates of the N solvent molecules, rs to the solute

coordinates, 1/ΛN to the kinetic contribution to the partition function for the solvent,

and 1/Λs the kinetic contribution from the solute. The factorial terms cancel in this case

because there are the same number of identical solvent molecules and only one solute.

From here we may follow Widom’s derivation of the excess chemical potential resulting in
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his Potential Distribution Theorem.1 Assuming a pairwise potential energy function, we

may write U(rN , rs) = U(rN) + ∆U(rN , rs) so that

βµ = − ln
∫ inf
0 e−βpV

∫
e−βU(rN

e−β∆U(rN ,rs)drNdrsdV
Λs

∫ inf
0 e−βpV

∫
e−βU(rN )drNdV

βµ = − ln 1
Λs

〈
∫
e−β∆U(rN ,rs)drs〉

(F.2)

The average runs over all configurations, including realizable volumes, of the NPT solvent

system without the solute present. If we introduce the solute canonical configurational

partition function zs to the numerator and denominator inside the average, we can also

write the average over all configurations of the solute in the ideal gas phase

βµ = − ln 1
Λs

〈zs
zs

∫
e−β∆U(rN ,rs)drs〉

βµ = − ln 1
Λs

〈zs(V )e−β∆U(rN ,rs)〉
(F.3)

We have noted the dependence of zs on the volume to remind ourselves of this fact and

that the averaging procedure described above will affect this term via the integral over

volume. Multiplying and dividing by the factor kBT
p

we find

βµ = − ln kBT
pΛs

〈zs(V )p
kBT

e−β∆U(rN ,rs)〉

βµ = − ln kBT
pΛs

− ln 〈zs(V )p
kBT

e−β∆U(rN ,rs)〉

βµ = βµid + βµex

(F.4)

The calculated free energy of solvation involves the free energy to move a single solute

from the ideal gas phase into solution, but this is not identical to the excess chemical

potential due to differences in pressure. In the simulations, the ideal gas particle is to a

good approximation in a fixed volume equal to the average box size V which results in
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a pressure of p′ = kBT

V
. This pressure is different from the pressure of the bulk phase p

and so the excess chemical potential is related to the solvation free energy computed in

simulation by

β∆Gsolv = βµex + ln p

p′
= βµex + ln V

V
(F.5)

In the last equality, V is the volume occupied by a single ideal gas particle at pressure p.

We now assume that the solute is in equilibrium with an ideal gas mixture at the

same overall pressure with vapor mole fraction of the solute, y

− ln kBT
pΛs

− ln 〈zs(V )p
kBT

e−β∆U(rN ,rs)〉 = − ln kBT

ypΛs

〈zs(V )p
kBT

e−β∆U(rN ,rs)〉 = 1
y

(F.6)

Henry’s Law is usually defined as having the form

y = c

Hcpp
(F.7)

where Hcp is the Henry’s Law constant and c is the concentration, in moles/m3 in the

liquid phase. Substituting this into our expression and remembering the above definition

of the excess chemical potential

e−βµex = Hcpp

c

βµex = − ln H
cpp

c

(F.8)

To compute µex for our simulated systems via Henry’s Law constants, we only need to

know the concentration of the solute in the system. For a large enough system, the volume

fluctuates little and is well approximated by the average system volume, or V = 1/c.

Substituting the expression relating the free energy of solvation to the excess chemical
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potential, we find that

β∆Gsolv = − ln H
cpp

c
+ ln V

V
= − lnHcppV (F.9)

β∆Gsolv = − lnRTHcp (F.10)

The above expression is equivalent to the expression commonly relating the excess chemical

potential in the canonical ensemble to the Henry’s Law constant

βµex = − ln RTρsolvent
kH

(F.11)

where at infinite dilution

kH = yp

x
≈ ypρsolvent

c
= ρsolvent

Hcp
(F.12)

Indeed, if our simulations were performed in the canonical ensemble, the solvation free

energy would be identical to the excess chemical potential of the canonical ensemble. In

the macroscopic limit, both expressions yield the same result in equilibrium with an ideal

gas at a fixed pressure.
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Figure G.1: Octanol-water transfer free energies (equal to the natural logarithm of
the octanol-water partition coefficient) do not correlated to either aqueous solvation
free energies at interfaces (top) or, more importantly, binding free energies (bottom).
Transfer free energies were computed as the difference to solvate each solute in water
minus solvation in a similarly-sized volume of octanol at the same temperature and
pressure. Terms accounting for the difference in average volume have been neglected
as they are small (∼0.05 kBT ) compared to the uncertainty (up to ∼0.30 kBT ).
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Figure G.2: Contributions to solvation free energies from turning on electrostatics
with full LJ interactions on (blue, ∆GQ), switching solutes from the ideal gas phase to
interacting with the rest of the system via only hard-sphere repulsions (gray, ∆Grep),
and switching hard-sphere interactions to full LJ interactions (orange, ∆Gattr). Due
to the chosen alchemical pathway in expanded ensemble simulations it was possible
to directly calculate the free energies to turn on only LJ interactions and to turn on
electrostatics with LJ on. Repulsive free energies as described here are not along with
pathway but were estimated by from Gaussian fits to overlap probability distributions
as shown in Figure G.3. The attractive component of the LJ free energy is then
estimated by subtracting this hard-sphere solute solvation free energy.
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Figure G.3: Probability distributions for the number of non-overlapping non-solute
atoms are shown for all solutes in bulk (circles) and at methyl- (squares) and hydrox-
yl-terminated (diamonds) SAMs. Gaussian fits to the distributions used to evaluate
the probability at zero non-overlapping atoms are shown as solid, dashed, and dotted
lines, respectively. For distributions in bulk and at hydrophilic interfaces, Gaussian
distributions have been observed for small solutes for spherical,1 cuboidal,2 and irregu-
lar volumes, including that defined by a single alanine.3 Near hydrophobic surfaces,
however, the Gaussian fits are anticipated to underestimate the weight in the distribu-
tion at low values of N ,2,4, 5 resulting in underestimates of the hard-sphere solvation
free energy at these surfaces. This does not seem to be the case, however, for values of
N below the average, where the Gaussian fit actually leads to an overestimate of the
weight, possibly due to poor sampling of the tails of the distributions, especially for
larger solutes.
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Figure G.4: Water density profiles as a function of distance from the frozen sulfur
atoms of the SAM surface, the same scale as used for the PMFs shown in Figure 5.3 of
the main text.

Figure G.5: Hard-sphere excess chemical potentials for methane-sized (0.33 nm radius)
particles as a function of distance from distance from frozen sulfur atoms in the
SAM surfaces. Larger values signify smaller density fluctuations, which is a proxy
for measuring hydrophilicity/hydrophobicity, indicating that the surfaces increase in
hydrophilicity in the order fully methylated, half and half patchy, half and half spread,
and fully hydroxylated.

232



Solute affinity additional data Appendix G

Figure G.6: Genetic algorithm optimization of surface patterns to minimize and
maximize the affinity of capped glycine for a 50:50 methyl- and hydroxyl-terminated
surface. Procedures are identical to the optimization for methane except that twice as
much computational time is utilized for each simulation in both determining biasing
weights and for data production. Though the results are far less impressive, the
algorithm is beginning to identify patterns that change affinity for the interface, with
the trained regression model accurately predicting free energies of solvation (see Table
S1). While a longer run might help converge to more optimal patterns, convergence
is mainly hindered by the large amount of noise in the MD simulation predictions of
affinity.
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Surface Surface image
∆Gsolv from MD
simulation (kBT )

∆Gsolv predicted by
linear regression
model (kBT )

GA Model-predicted
Minimum -26.34 ± 0.18 -26.40

GA Model-predicted
Maximum -25.71 ± 0.15 -25.67

Global Minimum -26.69 ± 0.09 -26.79

Global Maximum -25.75 ± 0.17 -25.87

Table G.1: Surface representations and free energies of solvation for capped glycine,
determined by MD simulations and linear regression models. The surfaces shown for
the GA are those with minimum and maximum solvation free energies predicted by the
linear regression model, not necessarily the overall optimal surfaces reported by the
GA. Uncertainties are the standard error in the mean from 5 independent simulations.
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Surface Surface image

∆Gsolv,2 −∆Gsolv,1
from MD simulation

(kBT )

∆Gsolv,2 −∆Gsolv,1
predicted by linear
regression model

(kBT )

GA Model-predicted
Minimum -14.18 ± 0.08 -14.48

GA Model-predicted
Maximum -13.97 ± 0.07 -13.60

Global Minimum -14.28 ± 0.10 -14.59

Global Maximum -13.58 ± 0.07 -13.81

Table G.2: Surface representations and selectivity for methanol compared to methane,
determined by MD simulations and linear regression models. Note that minimization
of methanol selectivity is maximization of methane selectivity and vice versa. The
surfaces shown for the GA are those with minimum and maximum solvation free
energies predicted by the linear regression model, not necessarily the overall optimal
surfaces reported by the GA. Uncertainties are the standard error in the mean from 5
independent simulations.
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Figure G.7: Radial distribution functions between all solute atoms and water oxygens.
Heavy atoms are shown in red while hydrogens are shown in black. Cutoffs defining
first and second solvation shells at 5.5 and 8.5 Å are shown as vertical dotted lines.
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