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Abstract 
We employ ultrafast terahertz (THz) pulses to study the dynamical interplay of optically-induced 
excitons and unbound electron-hole pairs in GaAs/AlGaAs quantum wells. A distinct low-energy 
oscillator appears upon resonant excitation of heavy-hole excitons, linked to transitions between their 
internal degrees of freedom. Time-resolving changes in the THz conductivity, we can observe 
dynamical transitions between conducting and insulating phases as excitons form or ionize on 
ultrashort timescales. 
 
Introduction 
Understanding charge correlations in many-body systems forms a central theme in condensed matter 
physics. Confinement of carriers in semiconductor nanostructures, in particular, entails enhanced 
Coulomb correlations and unique low-energy excitations, and offers a well-defined model system to 
investigate complex interactions between large numbers of quasiparticles. Electrons and holes can 
form excitons, which exhibit internal transitions between their levels. Small reduced effective masses 
μ and large dielectric constants ε in semiconductors renormalize the Rydberg energy by a factor 
μ/(m0ε2) 1 and yield exciton binding energies of only a few meV. Whereas generation and 
annihilation of excitons was extensively explored with near-visible photons, studies of internal 
exciton transitions - at THz frequencies orders of magnitude below the optical bandgap - remained 
scarce. Microscopic theory further supports the notion that THz absorption of electron-hole gases 
provides important information about charge correlations, excitons and their dynamics [1]. Pulsed 
THz radiation offers a unique tool to measure such transient low-energy excitations. Here, we 
discuss optical-pump THz-probe experiments that explore dynamical processes of electron-hole 
gases on a picosecond timescale [2]. 
 
Optical-Pump Terahertz-Probe Experiments 

Ultrashort near-infrared pump pulses are used to excite either excitons or unbound electron-hole 
pairs in GaAs quantum wells. Selective excitation of either species is achieved through spectral 
shaping of the amplified near-infrared pulses which are derived from a 250-kHz Ti:sapphire 
regenerative amplifier system. Probe pulses of ≈500 fs duration spanning the range from 0.5 − 3 THz 
are generated and detected in thin ZnTe crystals using optical rectification and electro-optic 
sampling. The sample investigated here was grown by molecular beam epitaxy and consists of ten 
14-nm wide GaAs quantum wells separated by 10-nm wide Al0.3Ga0.7As barriers [3]. 



 At each pump-probe delay Δt, we detect the THz field E(t) transmitted through the sample in 
equilibrium and the pump-induced field change ΔE(t) shown in Fig 1a. Straightforward 
electrodynamical relations then yield the transient change of both real and imaginary parts of the 
complex THz conductivity σ(ω) = σ1(ω) + i⋅σ2(ω). We take into account the phase shifts in the 
multilayer structure. In what follows, the response is analyzed in terms of (i) the real part σ1(ω) 
which yields a measure of absorptive processes and (ii) the dispersive imaginary part, conveniently 
expressed via the real dielectric function: σ2(ω) = ω/4π [1-ε1(ω)]. Availability of both parts is central 
to understanding the transient physical states. 
 
Intra-Exciton Terahertz Response 

A distinct asymmetric peak appears in the THz conductivity Δσ1 around 7 meV photon energy, as 
shown in Fig 1b, after resonant excitation at the 1s heavy-hole exciton line at low lattice temperature 
(T = 6 K). The dispersive feature seen in Δε1 corroborates the appearance of this far-infrared 
oscillator. Calculations explain the peak which arises from transitions between the exciton bound 
states, most notably from the 1s → 2p transition. Due to the correlated motion of electrons and holes, 
charge-neutral excitons are electrically insulating up to a frequency that matches the separation 
between their lowest internal states. This is reflected directly in the THz conductivity. In contrast, 
above-bandgap excitation at elevated temperatures (not shown) generates unbound e-h pairs which 
represent a conducting ionized gas with a Drude-like response.  
 
Dynamics of Conducting and Insulating Phases 
The distinct responses of these extreme phases allows us to follow in time a transition between 
conducting and insulating phases which occurs upon formation of excitons out of a gas of unbound 
e-h pairs. Non-resonant excitation above the bandgap is employed to generate unbound e-h pairs at 
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Fig. 1:  (a) Induced change ΔE(t) of the THz field transmitted through photoexcited GaAs/AlGaAs quantum wells, and (b) 

corresponding change in the THz conductivity Δσ1 (dots) and dielectric function Δε1 (open squares) at time delay Δt = 5 ps 
after resonant excitation of n ≈ 1010 cm-2 heavy-hole excitons. The data are for lattice temperature TL = 6 K. 



T=6 K. Fig 2 shows that directly after excitation (0 ps) we indeed observe a broadband THz response 
that indicates a predominantly conducting gas of ionized e-h pairs. Low-frequency conductivity is 
acquired in Δσ1(ω) and the dielectric profile in Δε1(ω) changes into the all-negative response 
expected from a Drude oscillator. However, even at the earliest times, it is important to note that the 
conductivity is not fully described by the Drude model (thick line) but rather around ≈ 8 meV photon 
energy shows a strong excitonic enhancement. With increasing delay time in Fig 2, the spectra 
exhibit complete reshaping as they evolve into a characteristic exciton response. Binding of pairs into 
excitons on a timescale of several 100 ps eventually gives rise to an insulating quantum state with 
fundamental excitation gap equal to the exciton binding energy. The decay of conducting properties 
is a direct indicator of the increasingly correlated motion of oppositely charged quasi-particles. Two 
distinct timescales appear in exciton formation, one associated with the quasi-instantaneous 
appearance of a strong excitonic enhancement, and another much slower transformation from the 
photoexcited conducting e-h gas to a fully charge-neutral excitonic phase. 
 
Conclusions and Outlook 

In summary, we study fundamental processes of exciton physics by probing internal exciton 
transitions at THz frequencies. Resonant generation of excitons results in a low-energy response 
closely described by transitions between an exciton's internal degrees of freedom. Changes in the 
THz response are sensitive indicators for the transient state of an e-h gas. We anticipate that the 
distinctively different nature of THz conductivity compared to interband probes will enable new 
studies of many-body effects and correlated phases of e-h pairs. 
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Fig. 2:  Transient spectra at TL = 6 K after excitation into the continuum of unbound e-h pairs. The excitation pulse is tuned 21 

meV above the HH 1s exciton line. The thick solid line at Δt = 0 ps is a Drude model calculation, and all panels are equally 
scaled. 
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