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ABSTRACT OF THE THESIS 

Simulation of plasmonic and photonic crystal structures using Finite-

element method 

 

 

by 

 

 

Sen Yang 

 

 

Master of Science in Material Science and Engineering         

University of California, Los Angeles, 2015 

Professor Yu Huang, Chair 

 

 

In this thesis, the Finite-Element Method (FEM) was utilized to simulate and design the 

optimal nanostructures for better performances of Surface-Enhanced Raman Scattering (SERS) and 

lasing. FEM proved its effectiveness in the calculations of target physical models to optimize the 

model geometry or theoretically validate experimental observations.  

In chapter 1 and 2, the fundamental theorem of SERS and photonic crystal cavity were 

introduced and discussed. The most used optical structures for the two effects, metal/dielectric SPP 

structure and dielectric photonic crystal structure, were introduced as examples. Equations stem 

from Maxwell equations were derived and discussed to clarify the concepts of SERS and PCC. 

In chapter 3, the FEM method was carried out to simulate the SERS performance of Au nano-

bowl/SiO2/Au nanoparticle structure. The electric field distributions and Raman enhancement 

factors of models in real experiments were calculated and analyzed theoretically. The simulation 

result on Raman enhancement factors showed consistency with the experimental observations. 
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In chapter 4, the design process of silicon nitride photonic crystal cavity was introduced and 

the simulation results were discussed. Using L3 geometrical model, the FEM method successfully 

revealed the relations between key optical properties, such as quality factor and resonant 

wavelength, and geometrical parameter selections. The simulations were also helpful in 

determination of the optimal parameter selection in L3 PCC model for further experimental 

fabrication.
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INTRODUCTION 

The design of optical structures for optical enhancement phenomenon, such as Surface-

Enhanced Raman Scattering (SERS)
1
, stimulated emission

2
, enhanced photoluminescence

3
, is very 

important due to their potential applications in photonic devices. Such optical structures include 

optical micro-cavities
4
, metal nanoparticles

5
, photonic crystal cavities

6
, etc. However, their 

performances are highly dependent on the geometrical design and model parameter selection, while 

the analysis of model structure via experiments is both cost and time consuming. To tackle this 

problem, powerful tools based on computer numerical techniques, such as Finite-Element Method 

(FEM) and Finite-Different Time-Domain (FDTD), are used to evaluate the performance of target 

model design. 

Surface-enhanced Raman Scattering (SERS), as one of the most spectacular applications of 

plasmonics, is widely used in chemical detection. It exploits the highly enhanced local 

electromagnetic field to be coupled with Raman scattering between target molecules and incoming 

excitation light beam. Early stages of SERS study used roughened metal surfaces
7
, from which 

Raman scattering of single molecules was recorded due to enhanced scattering signal. Further study 

revealed that highly enhanced local electromagnetic fields due to metal nanoparticle junctions, 

termed “hot spots”, were playing the key role in enabling the amplification of Raman scattering 

photons by factor up to 10
14

.  To increase the population and intensity of hot spots, many plasmonic 

nanostructures have been introduced to SERS experiments, such as metal nanoparticles
4, 8

 and 

nanowires 
9
.  

In our study, Au nanobowl/SiO2/Au nanoparticle platform structure was designed for SERS 

applications in molecule detection. This structure introduced gold bowl-shaped substrate, silicon 

dioxide shell and gold nanoparticles distributed on the silicon dioxide shell. The localized surface 
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plasmon polariton of the gold nanoparticles and the surface plasmon polariton of the gold substrate 

would couple with each other and produce more hot spots so better SERS performance could be 

expected. However, the SERS enhancement factors are highly dependent on the parameter selections, 

such as gold nanoparticle radius, gold nanoparticle density and trigger laser wavelength, while the 

complexity of the model geometry calls for better design. Using FEM numerical technique, we can 

improve our model design before experiment and validate our experimental observations. 

Optical cavity, as a typical optical structure that can strongly confine light field within a limited 

volume, has never lost its popularity in many areas of photonic devices. Efforts to optimize optical 

cavities designs were mainly focused on high quality factor and small modal volume so as to realize 

strong light-matter interaction.  

Photonic crystal is one of the most studied optical structures for waveguides
10

 and cavities
6, 11

. 

Since Eli Yablonovitch and Sajeev John’s intensive study on periodic optical structures and its 

photonic properties such as photonic density of states and photonic band gap
12-15

, photonic crystal 

has appeared in almost all fields of photonic device design, such as LED
16

, laser
17

, solar cell
18

 and 

optical communication fiber
19

. It has many unique advantages such as high quality factor, small 

mode value, compatibility with standard CMOS fabrication process, etc.  

In this thesis, we also tried to design a silicon nitride photonic crystal cavity for laser design. A 

frequently used photonic crystal cavity model, L3 model, was taken into account for further 

optimization. The FEM simulation method was applied on the design process to evaluate the 

performance of the photonic crystal cavity with different parameter selections and to determine the 

optimal model parameters. The simulation result provided an optimal design on target model with 

quality factor of 2563.8. 
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Chapter I: SURFACE-ENHANCED RAMAN SCATTERING FUNDAMENTALS 

A. Surface plasmon polaritons 

Surface plasmon polaritons (SPP) are a special electromagnetic phenomenon in which 

electromagnetic excitations do not propagate in free space but are confined along dielectric and 

conductor interface and propagate along the surface. Generally speaking, surface plasmon polaritons 

come from the intercoupling between the electromagnetic fields and oscillating electron plasma 

inside conductor such as metals and semiconductors.  

 

 

 

Figure 1-1 Schematic illustration of the dielectric/conductor interfaces and coordinate 

system. The interface is between dielectric and metal and is infinite in X-Y plane. For Z > 0, the 

material is dielectrics and the dielectric constant is 𝜀𝑑. For Z < 0, the material is conductor and the 

dielectric constant is 𝜀𝑚. 

 

The nature of surface plasmon polariton can be revealed by Maxwell equations. From the well-

known Helmholtz equation and apply it to the dielectric/conductor interface in Fig 1-1: 

∇2𝐸 + 𝑘0
2𝜀𝐸 = 0                                                               (1.1) 

We can have the wave equation in the form of equation 2.2: 
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𝜕2

𝜕𝑧2 𝑬⃑⃑ (𝑧) + (𝑘0
2𝜀 − 𝛽2)  = 0                                                   (1.2) 

For harmonic time dependence, we arrive at the following set of coupled equations. For TM 

modes, 

𝐸𝑥 = −𝑖
1

𝜔𝜀0𝜀

𝜕

𝜕𝑧
𝐻𝑦 , 𝐸𝑧 = −

𝛽

𝜔𝜀0𝜀
𝐻𝑦                                             (1.3) 

For TE modes,  

𝐻𝑥 = 𝑖
1

𝜔𝜀0𝜀

𝜕

𝜕𝑧
𝐸𝑦  , 𝐻𝑧 =

𝛽

𝜔𝜀0𝜀
𝐸𝑦                                                (1.4) 

Now, considering that the interface is between conductor and dielectric. Assume that the 

conductor is metal which has the metallic property that 𝑅𝑒(𝜀𝑚) < 0.  

Then, for TM modes, equation sets 1.3 becomes 

𝐸𝑥(𝑧) = 𝐴2𝑒
𝑖𝛽𝑥𝑒−𝑘2𝑧  , 𝐸𝑧(𝑧) = −𝐴2

𝛽

𝜔𝜀0𝜀𝑚
𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧 , 𝐸𝑥(𝑧) = 𝑖𝐴2

1

𝜔𝜀0𝜀𝑚
𝑘2𝑒

𝑖𝛽𝑥𝑒−𝑘2𝑧  (1.5) 

for Z > 0 and  

𝐻𝑦(𝑧) = 𝐴1𝑒
𝑖𝛽𝑥𝑒𝑘1𝑧  , 𝐸𝑥(𝑧) = −𝑖𝐴1

1

𝜔𝜀0𝜀𝑑
𝑘1𝑒

𝑖𝛽𝑥𝑒𝑘1𝑧 , 𝐸𝑧(𝑧) = −𝐴1
𝛽

𝜔𝜀0𝜀𝑚
𝑒𝑖𝛽𝑥𝑒𝑘1𝑧     (1.6) 

for Z < 0.  

Then the continuity of 𝐸𝑥 and 𝜀𝐸𝑧 at the interface requires that 𝐴1 = 𝐴2 and  
𝑘2

𝑘1
= −

𝜀𝑚

𝜀𝑑
. We also 

have expressions for 𝑘1 and 𝑘2 that 

𝑘1
2 = 𝛽2 − 𝑘0

2𝜀𝑑 , 𝑘2
2 = 𝛽2 − 𝑘0

2𝜀𝑚                                                  (1.7) 

So that the dispersion relation for SPPs at metal/dielectric interface would be 

𝛽 =  𝑘0√
𝜀𝑚𝜀𝑑

𝜀𝑚+𝜀𝑑
                                                                      (1.8) 

And this dispersion relation can be schematically shown in Fig 1-2.  
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Figure 1-2 The dispersion relation of surface plasmon polariton propagating on 

dielectric/metal interface. The black line is the dispersion relation of light in air, which the red 

curve shows the relation of equation 2.8. When 𝑅𝑒(𝜀𝑚) =  −𝜀𝑑, the propagation constant 𝑘𝑥 will 

increase into very big value at the surface plasmon frequency 𝜔𝑆𝑃, just as the equation describes.  

 

B. Localized surface plasmon 

In most cases of SERS experiments, structures like metal nanoparticles were used more often 

than flat dielectric/metal interfaces. This kind of structure leads to the research into localized surface 

plasmons, in which electromagnetic excitations do not behave as propagating waves but more 

“localized” oscillations.  

We may start from Laplace equation for the electrostatic potential, as shown in equation 1.9: 

𝐸 = −∇Φ                                                                      (1.9) 

And the schematic demonstration of metal nanoparticles is in Fig 1-3. 
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Figure 1-3. Schematic illustration of a metal nanoparticle in an electrostatic field. The 

metal nanoparticle has radius a and the electric field direction is aligned with Z direction. The 

dielectric constant of the metal is denoted as 𝜀(ω). The dipole moment 𝑃⃑  is also labeled out to form 

an angle θ with Z direction. 

 

The general solution is of the form: 

Φ(r, θ) =  ∑ [𝐴𝑙𝑟
𝑙 + 𝐵𝑙𝑟

−(𝑙+1)]𝑃𝑙(𝑐𝑜𝑠θ)
∞
𝑙=0                                           (1.10) 

Here 𝑃𝑙(𝑐𝑜𝑠θ) are the Legendre Polynomials of order 𝑙. Apply this equation on the boundary of 

the particle considering the boundary conditions to solve the potential across the boundary, we have 

Φ𝑜𝑢𝑡 = −𝐸0𝑟𝑐𝑜𝑠𝜃 + 
𝑃⃑ ∙𝑟 

4𝜋𝜀0𝜀𝑚𝑟3 , 𝑃⃑ = 4𝜋𝜀0𝜀𝑚𝑎3 𝜀−𝜀𝑚 

𝜀+2𝜀𝑚
𝐸0
⃑⃑⃑⃑                                 (1.11) 

As we can see here, the applied field induces a dipole moment inside the sphere. Now we define 

the polarizability 𝛼 so that 𝑃⃑ = 𝜀0𝜀𝑚𝛼𝐸0
⃑⃑⃑⃑ , then we have experssion for 𝛼: 

𝛼 =  4𝜋𝑎3 𝜀−𝜀𝑚 

𝜀+2𝜀𝑚
                                                                 (1.12) 

So that when 𝑅𝑒(𝜀𝑚) =  −2𝜀𝑚, the localized SPP will be excited and the electromagnetic field 

will oscillate around the metal nanoparticle surface. This condition is called Frohlich condition
20

. 

C. Surface-enhanced Raman scattering. 
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The surface enhanced Raman scattering exploits the highly localized electromagnetic fields 

around the metal nanostructure to interact with the near-field modes and can greatly enhance Raman 

scattering of target molecules. The Raman scattering describes the inelastic scattering process 

between a photon and a molecule, in which the vibration or rotation of the molecule is involved. 

Therefore, Raman scattering can reveal geometrical feature of target molecule and is usually used as 

characterization method for chemical analyze.  

The vibrational or rotational mode of molecule will lead to the scattering of photon and the 

incoming photon energy, denoted as ℎ𝜐𝐿 , is shifted in energy by the characteristic energy of vibration 

ℎ𝜐𝑀. The corresponding photon energy after Raman scattering will be: 

𝜐𝑆 = 𝜐𝐿 − 𝜐𝑀 , 𝜐𝑎𝑆 = 𝜐𝐿 + 𝜐𝑀                                              (1.13) 

The first is named Stokes scattering and the latter anti-Stokes scattering.  

The Raman scattering is a linear process and the power of scattered photon can be analyzed by 

defining a scattering cross-section𝜎𝑅: 

𝑃𝑆(𝜐𝑆) = 𝑁𝜎𝑅𝐼(𝜐𝐿)                                                     (1.14) 

In which 𝑁 is the population of Raman scattering hot spots and 𝐼(𝜐𝐿) is the excitation beam 

intensity.  

The enhanced Raman scattering takes effect in two aspects as shown in equation 1.14. At first, 

the cross section 𝜎𝑅 is increased by adhesion to metal surface. What’s more important is that the local 

electromagnetic field is greatly enhanced due to excitations of localized surface plasmon. A factor 

named electromagnetic enhancement factor 𝐿(𝜐) = |𝐸𝑙𝑜𝑐(𝜐)|/|𝐸0|  is defined to evaluate the 

enhancement effect, where 𝐸𝑙𝑜𝑐(𝜐) is the local electric field at hot spots. Thus equation 1.14 can be 

further expressed as 

𝑃𝑆(𝜐𝑆) = 𝑁𝜎𝑅𝐿(𝜐𝐿)
2𝐿(𝜐𝑆)

2𝐼(𝜐𝐿) = 𝑅𝑁𝜎𝑅𝐼(𝜐𝐿)                                          (1.15) 
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Where the enhancement of Stokes light beam is 

𝑅 = (
|𝐸𝑙𝑜𝑐(𝜐)|

|𝐸0|
)4                                                           (1.16) 

In other words, the SERS enhancement factor is proportional to the fourth power of the local 

field enhancement factor. 
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Chapter II: PHOTONIC CRYSTAL CAVITIES 

A. Introduction to photonic crystal 

Photonic crystals are electromagnetic media that usually have a periodic structure consists of 

materials with different refractive index. The periodic structure of photonic crystals can be seen as 

an analogue of atomic lattices, in which atoms are organized to form periodic potential barriers for 

electrons, which lead to electronic band gaps. The different refractive indices of different materials 

in the media also form a periodic “potential barrier” for electromagnetic waves, thus a “photonic 

band gap” will exist so that electromagnetic waves in a certain frequency range will not be able to 

propagate in photonic crystals. The photonic band gap can be derived from Maxwell equations and 

Bloch theorem, which is similar to the derivation of electronic band gap in solid-state physics. 

First we start again from the Maxwell equation: 

                                ∇ ∙ 𝐻⃑⃑ (𝑟 , 𝑡) = 0                                                                  (2.1) 

                                ∇ × E⃑⃑ (r , t) +  𝜇0
𝜕𝐻⃑⃑ (𝑟 ,𝑡)

𝜕𝑡
= 0                                                     (2.2) 

                                ∇ ∙ [𝜀(𝑟 )E⃑⃑ (r , t)] = 0                                                            (2.3) 

∇ × 𝐻⃑⃑ (𝑟 , 𝑡) −  𝜀0𝜀(𝑟 )
𝜕E⃑⃑ (r⃑ ,t)

𝜕𝑡
= 0                            (2.4) 

Assuming that the electromagnetic wave is a plane wave, then we have  

                                ∇ × E⃑⃑ (r ) − 𝑖𝜔𝜇0𝐻⃑⃑ (𝑟 ) = 0                                                      (2.5) 

∇ × 𝐻⃑⃑ (𝑟 ) + 𝑖𝜔𝜀0𝜀(𝑟 )E⃑⃑ (r ) = 0                  (2.6) 

We can express the equation entirely in 𝐻⃑⃑ (𝑟 ), and we get the well-known master equation: 

∇ × (
1

𝜀(𝑟 )
∇ × 𝐻⃑⃑ (𝑟 )) = (

𝜔

𝑐
)2𝐻⃑⃑ (𝑟 )    (2.7) 
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Where 𝑐 =  
1

√𝜀0𝜇0
. 

B. Derivation of photonic band gap 

For simplicity, let’s assume that the periodicity is in one dimension. The corresponding 

photonic crystal model is a periodical multilayer film, as shown in Fig 2-1(a). Here we define the 

“lattice constant” as 𝑎, which is the periodicity of the layers in y direction, and the film is infinitely 

continuous in x and z direction. Then the dielectric constant of this film will also be periodic 

because of the periodic layers, as shown in Fig 2-1(b). Here we can also use the term “unit cell” in 

solid-state physics to describe the dielectric constant profile in one period. Then from this 

periodicity, we have: 

𝜀(𝑟 ) =  𝜀(𝑟 + 𝑅⃑ )                                                              (2.8) 

Where 𝑅⃑ = 𝑙𝑎 , 𝑙 = 0, 1, 2, …, and the direction is in y axis. 

Consider the modes of the electromagnetic wave and specify the modes by wave vector 𝑘𝑥 and 

𝑘𝑦. Denote 𝑇𝑅 as the translation operator, for the modes of equation (2.7), we have: 

   𝑇𝑅𝑒
𝑖𝑘𝑦(𝑦−𝑙𝑎) = 𝑒−𝑖𝑘𝑦𝑙𝑎𝑒𝑖𝑘𝑦𝑦                            (2.9) 

So that we can take linear combination of our modes into the form as: 

 𝐻⃑⃑ 𝑘𝑥,𝑘𝑦
(𝑟 ) =  𝑒𝑖𝑘𝑥𝑥 ∑ 𝑐𝑚𝑚 𝑒𝑖(𝑘𝑦+

2𝜋

𝑎
𝑚)𝑦 = 𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑦𝑦 ∑ 𝑐𝑚𝑚 𝑒𝑖

2𝜋

𝑎
𝑚𝑦 = 𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑦𝑦𝑢(𝑦) (2.10) 

Here 𝑢(𝑦)  is a periodic function in y direction and 𝑢(𝑦 + 𝑙𝑎) =  𝑢(𝑦) . This result is the 

Bloch’s theorem applied on Maxwell equations.  
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Figure 2-1. Schematic illustration of 1-D photonic crystal structure. (a) The multilayer 

structure has different materials alternating in Y direction. The periodicity of the alternation is 𝑎. 

The structure is homogeneous in X-Z plane. (b) Periodic dielectric constant profile of the multilayer 

structure. The alternation of materials in Y direction results in the periodic dielectric constant profile. 

The dielectric constant profile in one periodicity can be seen as a “unit cell”, demonstrated as the 

box. 

 

Until now we can see that the modes of propagation of electromagnetic wave in periodical 

dielectric media have the common form with that of electron wave in crystalline lattice. So that at 

the Brillouin zone boundary, the electromagnetic wave’s dispersion relation band diagram will also 

have a gap so that at certain frequency range, no propagation mode exists. This gap is defined as 

“photonic band gap”. 

C. Two-dimensional photonic crystal cavity  

If we introduce “defects” into a 2-D array of photonic crystals, light of certain frequency range 

will be localized around the defect point, and in fact this structure can behave as a cavity to confine 

the light in a certain region.  

Until now many geometrical models of 2-D photonic crystal cavity have been introduced for 

applications of photonic devices, such as laser and LED and were widely used in the study of 
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photonics like spontaneous emission control. These models differ in the way they introduce defects.  

One of the most used 2-D photonic crystal cavity model is the L3 model
11

. This structure is 

formed by a line of three missing holes in a triangular lattice pattern of air holes and the air holes at 

the cavity edge shifted, as shown in Fig 2-2(a). Line defect can also induce localized photonic states 

around defect region to behave as a photonic cavity
6
, as shown in Fig 2-2(b). The middle line of air 

holes were removed to form a line defect while the lattice constants of the three lateral regions were 

different, which formed a “photon potential well” in the middle region. 

 

Figure 2-2. Schematic illustration of photonic crystal cavity models. (a) Schematic view 

showing the L3 photonic crystal cavity model. The left and right air holes at cavity boundaries were 

shifted outward to improve the quality factor. Reproduced from Ref. 11. (b) Schematic view of line 

defect photonic crystal cavity model. Reproduced from Ref. 6. 
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Chapter III: SIMULATION OF PARTICLE-DRESSED, SILICA SHELL-ISOLATED 

CAVITY ARCHITECTURE FOR SURFACE-ENHANCED RAMAN SCATTERING 

A. Simulation of Electric field amplitude 

In this project, the simulation was carried out using FEM method to calculate the electric field 

distribution and SERS enhancement factors of the models in real experiments. Three models were 

constructed and simulated: gold nano-bowl array without gold nanoparticles; gold nano-bowl 

array with gold nanoparticles of radius = 16 nm; gold nano-bowl array with gold nanoparticles of 

radius = 30 nm. 

To construct the model geometry, Matlab was used to calculate the population and positions 

of nanoparticles according to experimental setup parameters, as shown in Appendix I. The radius 

of the gold nano-bowl and the average distance between nanoparticles in real samples were 

measured from SEM images and the thickness of silica from ellipsometer. Assuming that the 

nanoparticles were evenly distributed along the silica surface, the Conjugate Gradient Method was 

used to calculate the position of each particle that can be grown onto the substrate. 

In the simulation, the input excitation light beam’s electric field was set as 1V/m and its 

wavelength is 632.8 nm. The gold bowl radius R was 310 nm and height H was 496 nm. The silica 

thickness h was 7.276 nm. The gold nanoparticle radius r was 16nm or 30nm, depending on 

simulation models. The model is shown in Fig 3-1. The electric field distributions of designed 

models are shown in Fig 3-2. 
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Figure 3-1. Schematic illustration of Au nano-bowl/SiO2/Au nanoparticle model. A 

layer of gold nano-bowl structure was fabricated onto SiO2 substrate, coated by a layer of silica. 

Gold nanoparticles were dressed onto the surface of silica coating layer. Parameters:  

ℎ, thickness of silica coating layer. 𝑅, radius of gold nano-bowl structure. 𝑅, thickness of gold 

layer. 𝑟, radius of gold nanoparticle. Reproduced from Ref. 21. 

 

The electric field distributions in three models revealed the significance of gold nanoparticles 

in electric field enhancement. The electric field pattern in Fig 3-2(a), when no gold nanoparticle 

was dressed on silica surface, has strong electric field amplitude in air and Au/SiO2 bowl corner 

instead of the inner surface of the bowl, indicating weak SERS enhancement factors because most 

molecules would be distributed on the bowl inner surface. When gold nanoparticles with radius = 

16 nm were dressed onto the inner surface of Au/SiO2 bowl, the electric field along the Au/SiO2 

bowl inner surface was stronger than that in Fig 3-2(a). In Fig 3-2(c), electric field along the 

Au/SiO2 bowl inner surface was further enhanced, indicating better SERS enhancement than in Fig 

3-2(b). 
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Figure 3-2. The electric field amplitude of Au nano-bowl/SiO2/Au nanoparticle models. 

(a) Au nano-bowl/SiO2/Au nanoparticle model without gold nanoparticles. (b) Au nano-

bowl/SiO2/Au nanoparticle structure with gold nanoparticle radius = 16 nm. (c) Au nano-

bowl/SiO2/Au nanoparticle structure with gold nanoparticle radius = 30 nm. Reproduced from Ref. 

21. 

 

B. Simulation of Raman enhancement factor 

SERS is mainly contributed by hot spots around which the electric field is enhanced to be 

extremely strong. From the theoretical discussion in chapter 1, the maximum enhancement factor 

predicted is proportional to 𝐸4, where 𝐸 = 𝐸𝑙𝑜𝑐/𝐸𝑖𝑛, 𝐸𝑙𝑜𝑐  and 𝐸𝑖𝑛  are the electric field amplitude 

at the hot spot and incoming port, respectively. Thus from the calculated electric field distribution, 

we can anticipate the possible maximum Raman enhancement factor along Au/SiO2 bowl inner 

surface in different models. 

From the electric field amplitude results, the value of 𝐸𝑙𝑜𝑐/𝐸𝑖𝑛 of the model with 16 nm gold 

nanoparticle was 19.5, and the model with 30 nm gold nanoparticle had the 𝐸𝑙𝑜𝑐/𝐸𝑖𝑛 value of 25.4. 

The Raman enhancement factors calculated from electric field amplitudes were 1.446 × 105 for 

the model with 16 nm gold nanoparticles and 4.162 × 105  for the model with 30 nm gold 
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nanoparticles, respectively.  

C. Experimental setup 

The designed Au nano-bowl/SiO2/Au nanoparticle models were fabricated after simulation, 

followed by SERS experiments to evaluate the real SERS performance of the designed structure. 

Pyridine was used as the probe molecule to demonstrate SERS behaviors and its predominate 

peaks are at 1013 and 1038 𝑐𝑚−1. To better demonstrate the SERS effect of designed models, 

gold nanoparticles with radius of 16 nm and 30 nm were coated on silica flat substrates for better 

comparison.  

The fabrication process is shown in Fig 3-3
21

. Briefly, monolayer colloidal crystal template of 

620 nm polystyrene (PS) spheres were self-assembled at a water-air interface. The template was 

transferred onto gold-coated glass slide. Then gold was electrodeposited through the template. The 

height of gold deposition was controlled to be 496 nm. After removal of the PS spheres, a layer of 

SiO2 was grown on gold nano-bowl structure via surface sol-gel method. Then gold nanoparticles 

with radius 16 nm or 30 nm were anchored by a layer of (3-aminopropyl)trimethoxysilane (APTS) 

coated on SiO2 surface and were immobilized in the cavity by immersing in gold nanoparticle 

colloids. 
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Figure 3-3. Schematic diagram of the preparation procedures for the Au nano-

bowl/SiO2/Au nanoparticle structure. (a) Self-assembly of monolayer template of 620nm PS 

spheres at water-air interface. (b) Transfer of the template onto gold-coated glass slide. (c) 

Electrodeposition of gold. (d) Removal of the PS spheres. (e) Surface sol-gel growth of ultrathin 

silica shell. (f) Immobilization of gold nanoparticles. Reproduced from Ref. 21. 

 

D. Experimental results 

As shown in Fig 3-4 and Fig 3-5, the experiment results agreed well with simulation results
21

. 

Fig. 3-4 showed the SEM images of gold nanoparticles with radius of 16nm and 30nm dressed on 

gold nano-bowl/silica substrates and flat silica substrates. Fig 3-5 showed the Raman spectra of 

pyridine molecules on the four different substrates.  
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Figure 3-4. SEM images of experiment samples. (a) Au nano-bowl/SiO2/Au nanoparticle 

structure with 16 nm gold nanoparticle. (b) Au nano-bowl/SiO2/Au nanoparticle structure with 30 

nm gold nanoparticle. (c) 16 nm gold nanoparticle coated on flat silica substrate. (d) 30 nm gold 

nanoparticle coated on flat silica substrate. Reproduced from Ref. 21. 

 

Figure 3-5. SERS spectra of 1mM pyridine solution on different substrates. (a) Au nano-

bowl/SiO2/Au nanoparticle structure with 30 nm gold nanoparticle. (b) 30 nm gold nanoparticle 

coated on flat silica substrate. (c) Au nano-bowl/SiO2/Au nanoparticle structure with 16 nm gold 

nanoparticle. (d) 16 nm gold nanoparticle coated on flat silica substrate. Reproduced from Ref. 21. 
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First the effectiveness of gold nano-bowl structure is proved to be significant. The intensity of 

characteristic peak of pyridine on Au nano-bowl/SiO2/Au nanoparticle substrate is 5 times of that 

on flat silica substrate. This is contributed by the strong particle-cavity coupling between gold 

nanoparticle and gold nano-bowl substrate. Second, the peak intensity is higher when the 

nanoparticle radius is 30nm. The ratio of peak intensities of pyridine on Au nano-bowl/silica/Au 

NP substrate with particle radius of 30nm and 16nm is around 3, which agrees well with the value 

of 2.8 from simulation results.  

E. Summary 

In this project, FEM method was carried out to simulate the Raman enhancement factors of 

the physical models we used in experiments. The simulation and experiment results all revealed 

the effectiveness of Au nano-bowl/silica/Au nanoparticle structure in SERS applications. The 

simulation also anticipated that the Au nano-bowl/silica/Au nanoparticle structure with 30 nm 

gold nanoparticles will have better SERS performance than the model with 16 nm gold 

nanoparticles, which is consistent with experimental observations. What’s more, the simulation 

results anticipated that the Raman enhancement factor of the model with 30 nm gold nanoparticles 

would be about 2.8 times of the Raman enhancement factor of the model with 16 nm gold 

nanoparticles, which agreed well with experimental observations.  
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Chapter IV: DESIGN OF SILICON NITRIDE PHOTONIC CRYSTAL CAVITY 

A. Goal of design 

In recent years, perovskite has been attracting the attention of research groups worldwide 

because of its unique photonic properties. Many photonic devices such as solar cell
22-23

, LED
24

 and 

photodetector
25

 have been realized using perovskite. However, successful reports of perovskite laser 

are much fewer. 

The primary difficulty of perovskite laser is to design an optical cavity that has high quality 

factor and should be coupled well with perovskite. In this chapter, the Finite-element Method was 

used to numerically simulate a L3 photonic crystal cavity
26

 for optimal parameter set. To design an 

ideal photonic crystal cavity for perovskite laser, we need to consider two variables: the resonant 

wavelength of fundamental cavity mode and the quality factor. The resonant wavelength of 

fundamental cavity mode should be as close to the photoluminescence peak of perovskite as possible 

so that the perovskite could be coupled to the cavity. The quality factor, on the other hand, is used to 

evaluate the ability of the cavity to confine photons inside the cavity. Higher quality factor means 

lower lasing threshold thus it would be easier to achieve stimulated emission effect on perovskite. 

In our simulation, we first constructed L3 photonic crystal cavity design that has the resonant 

wavelength of fundamental cavity mode in the range of 750 nm to 760 nm. Then we tried different 

parameter sets in simulation and select the parameter sets with highest quality factor as the optimal 

design.  

B. Physical model design 

The material chosen for the photonic crystal cavity is important. Most reports about photonic 

crystal cavities made use of material systems with high refractive indices, such as Si
27

 or InAs
28

. 

Generally, high refractive index would make it easier to achieve high quality factor due to higher 
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reflectivity, however the resonant wavelengths of photonic crystal cavities made of high refractive 

index materials were usually in the near infrared spectral region, thus they were not ideal candidates 

for our design. To tune the resonant wavelength around the wavelength region of our goal while still 

maintain a relatively large quality factor, we need to choose our candidate material from other 

material systems to extend the resonant wavelength into the visible range yet still maintain sufficient 

quality factor.  

Nitride materials are possible candidates. Former reports of photonic crystal cavities made of 

nitride materials such as AlN
29

 and GaN
30

 showed resonant wavelengths in visible region. However, 

III/V semiconductor photonic crystal structure is hard to process, especially the fabrication of free-

standing slab structure. Thus we choose Si3N4, which has a refractive index of 1.99, as our material. 

It is fully compatible with standard CMOS fabrication process and is very cost-effective.  

In this project, the L3 photonic crystal cavity is used. The L3 cavity introduces point defect 

around the cavity region, which consists of three missing air holes in a row. The air holes at the 

cavity left and right boundaries were shifted outward by a distance 𝑑, and they both have radius 𝑟1.It 

supports a spectrally well separated fundamental mode with small mode volume and can be 

optimized to have high quality factors by adjusting the size and position of surrounding air holes in 

the cavity. The two-dimensional demonstration of L3 model is shown in Fig. 4-1(a).  
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Figure 4-1. Schematic representation of the L3 photonic crystal cavity geometry. 

Parameters in (a): 𝑟0, the radius of normal air holes. 𝑎, the lattice constant. 𝑟1, the radius of air 

holes at the left and right boundary of the cavity region. 𝑑, the shift of air holes at left and right 

cavity boundaries. (b) Three-dimensional view of the model structure. The photonic crystal 

cavity slab is suspended on air layer for better quality factor.  

 

The Si3N4/air photonic crystal cavity is a free-standing slab suspended on air. The three-

dimensional model is shown in Fig 4-1(b). This model includes 23 periods in row and 27 periods in 

column, in which the air holes are organized to form a triangular lattice. The reason to include so 

many periods in our design is that we need better light confinement in lateral direction for this 

relatively low refractive index system. The lattice constant was chosen to be 300 nm and the radius 

of air holes was chosen as 90 nm so that the wavelength requirement will be fulfilled. The thickness 

of the slab was chosen to be one lattice constant 𝑎. Then we adjusted the parameter set of 𝑟1 and 𝑑 to 

optimize our design. 

The simulation results were based on the following parameter sets: 𝑟1/𝑎 = 0.1, 0.15, 0.2, 0.25, 

and 𝑑/𝑎 = 0.1, 0.15, 0.2, 0.25. At first glance the electric field pattern of the cavity fundamental 
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mode was analyzed. Then the energy density spectrums of different models with different parameter 

sets were calculated and discussed. After the energy density spectra, cavity fundamental mode 

wavelengths and quality factors were compared among all parameter selection sets. The parameter 

set with highest quality factor was chosen as the final result. 

C. Simulation of cavity fundamental mode electric field pattern 

In the parameter selections, two parameters were chosen as the key variables in optimization of 

the cavity performance. They were 𝑟1(the radius of air holes at the left and right boundary of the 

cavity region) and 𝑑(the displacement of left and right boundary air holes). The electric field patterns 

were organized to show the effect of changing these two variables. 

The electric field patterns of fundamental mode in our models in different parameter selection 

sets were shown in Fig 4-2 to Fig 4-17. For all models, the radius of normal air hole was 90 nm and 

lattice constant was 300 nm. 

 

Figure 4-2. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.1, 

𝑑

𝑎
=  0.1 . (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 
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Figure 4-3. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.1, 

𝑑

𝑎
=  0.15. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-4. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.1, 

𝑑

𝑎
=  0.2 . (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern 

inX-Z plane. 

 

Figure 4-5. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.1, 

𝑑

𝑎
=  0.25. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 
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Figure 4-6. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.15, 

𝑑

𝑎
=  0.1. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-7. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.15, 

𝑑

𝑎
=  0.15. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-8. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.15, 

𝑑

𝑎
=  0.2. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 
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Figure 4-9. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.15, 

𝑑

𝑎
=  0.25. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-10. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.2, 

𝑑

𝑎
=  0.1. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-11. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.2, 

𝑑

𝑎
=  0.15. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 
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Figure 4-12. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.2, 

𝑑

𝑎
=  0.2. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-13. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.2, 

𝑑

𝑎
=  0.25. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-14. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.25, 

𝑑

𝑎
=  0.1. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 
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X-Z plane. 

 

Figure 4-15. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.25, 

𝑑

𝑎
=  0.15. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-16. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.25, 

𝑑

𝑎
=  0.2. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 

X-Z plane. 

 

Figure 4-17. Electric field pattern of cavity fundamental mode with  
𝑟1

𝑎
= 0.25, 

𝑑

𝑎
=  0.25. (a) 

Electric field pattern in X-Y plane. (b) Electric field pattern in Y-Z plane. (c) Electric field pattern in 
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X-Z plane. 

 

The X-Y view of electric field patterns in all models were typical pattern of cavity fundamental 

mode of L3 cavity model. The electric field was strongest at the three point defect positions. 

Generally the effectiveness of the cavity to confine light can be evaluated by looking at the electric 

field amplitude outside the cavity region: cavity with weaker electric field outside cavity region has 

higher quality factor.  

The Y-Z views of electric field pattern showed light confinement in Y direction and Z direction. 

They clearly demonstrated that current mode is the fundamental mode in Y direction: only one 

electric field maxima showed up in the cavity region in Y direction. The electric field distribution in 

Z direction showed that the electric field amplitude in air is much smaller than that in silicon nitride. 

The X-Z views of electric field pattern showed the three electric field maxima in cavity region. It 

also demonstrated the effectiveness of the cavity in confining light in X direction: the electric field 

reduced rapidly across the boundary air holes. 

D. Simulation of cavity energy density spectrum  

From the electric field pattern, we can roughly evaluate the performance of the cavity models by 

estimate the electric field amplitude inside and outside the cavity region. However, to evaluate the 

effectiveness of the cavity models in confining light quantitatively, we need to numerically calculate 

the energy density spectrum in cavity region for all models to determine their quality factors.  

The calculated energy density spectrums for all simulated models were calculated by integrating 

the electromagnetic field power in cavity region for all models. Wavelength sweeps were carried out 

to calculate the spectrum information shown in Fig. 4-18 to Fig. 4-21. We also did Gaussian fitting 

on the energy density data using Matlab. The simulated wavelength sweep data obeyed Gaussian 
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distribution well. The black triangles were simulated data points while the red curve was the 

Gaussian fitting curve based on the distribution of data points. From these spectrum data, we can 

calculate the cavity fundamental mode resonant wavelength and quality factors by just applying 

Gaussian fit on them. From the definition of Gaussian distribution, we have expression  

𝑓(𝑥) =  
1

√2𝜋𝜎2
𝑒

−(𝑥−𝑎)2

2𝜎2                                                      (4.1) 

 

Figure 4-18. Power density spectrums for models with   
𝑑

𝑎
= 0.1. (a) 

𝑟1

𝑎
= 0.1. (b) 

𝑟1

𝑎
= 0.15. (c) 

𝑟1

𝑎
= 0.2. (d) 

𝑟1

𝑎
= 0.25. 
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Figure 4-19. Power density spectrums for models with   
𝑑

𝑎
= 0.15. (a) 

𝑟1

𝑎
= 0.1. (b) 

𝑟1

𝑎
= 0.15. (c) 

𝑟1

𝑎
= 0.2. (d) 

𝑟1

𝑎
= 0.25. 
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Figure 4-20. Power density spectrums for models with   
𝑑

𝑎
= 0.2. (a) 

𝑟1

𝑎
= 0.1. (b) 

𝑟1

𝑎
= 0.15. (c) 

𝑟1

𝑎
= 0.2. (d) 

𝑟1

𝑎
= 0.25. 
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Figure 4-21. Power density spectrums for models with   
𝑑

𝑎
= 0.25. (a) 

𝑟1

𝑎
= 0.1. (b) 

𝑟1

𝑎
= 0.15. (c) 

𝑟1

𝑎
= 0.2. (d) 

𝑟1

𝑎
= 0.25. 

 

E. Cavity fundamental mode wavelength analysis 

From the power density spectrums, the cavity fundamental mode wavelengths of different 

parameter selection sets were shown in Fig 4-22 and Table 4-1. The cavity fundamental mode 

resonant wavelengths of designed models fall in the range of 750 nm – 760 nm, which fulfilled our 

requirements. 

From equation 4.3, the cavity fundamental mode wavelength can be calculated by Gaussian 
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fitting.  

 

Figure 4-22. Cavity fundamental mode wavelengths of simulated models. The cavity peak 

wavelength decreases with increasing 
𝑟1

𝑎
 ratio and increases with increasing 

𝑑

𝑎
 ratio. All modes had 

their cavity fundamental mode resonant wavelength in the range of 750 nm to 760 nm, which is the 

range of our design goal. 
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Table 4-1. Cavity fundamental mode resonant wavelengths of all models 

 Cavity fundamental mode resonant wavelength / nm 

𝒓𝟏

𝒂
 ratio 

𝑑

𝑎
 = 0.1 

𝑑

𝑎
 = 0.15 

𝑑

𝑎
 = 0.2 

𝑑

𝑎
 = 0.25 

0.1 753.877018 754.182383 754.407752 754.536567 

0.15 753.010636 753.621241 754.036437 754.369594 

0.2 751.941448 752.672518 753.412714 753.917046 

0.25 750.538297 751.706941 752.612649 753.288453 

 

 

F. Cavity quality factor analysis 

The quality factor is defined to characterize a resonator about its capacity to maintain its energy 

inside itself. Higher quality factor indicates a lower rate of energy loss relative to the stored energy 

thus the resonator is less damped.  

The definition of the quality factor is the frequency-to-bandwidth ratio of the resonator: 

𝑄 = 
𝑓𝑟

∆𝑓
                                                                      (4.2) 

Where 𝑓𝑟  is the resonant frequency, ∆𝑓 is the half-power bandwidth.  

We can push a little forward from the above equation:  

                         𝑄 =  
𝑓𝑟

∆𝑓
= 

𝑐

𝜆𝑟
𝑐

𝜆2
− 

𝑐

𝜆1

=
𝜆1𝜆2

𝜆𝑟(𝜆1− 𝜆2)
≈

𝜆𝑟

∆𝜆
                                          (4.3) 

We further apply equation (4.1), then the cavity fundamental mode resonant wavelength and 

quality factor would be 

𝜆𝑟 = 𝑎, Q =
𝑎

2√2ln(2)𝜎
                                                    (4.4) 
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From the cavity fundamental mode energy density spectrum, we can calculate the quality factors 

of our simulated models. The results were shown in Fig 4-23.  

The results in Fig 4-23 showed the trend of the quality factor with varying 
𝑟1

𝑎
 and 

𝑑

𝑎
 ratio. The 

quality factor increases with increasing 
𝑟1

𝑎
 and then decreases. We can pick out the model parameters 

with the highest model quality factor. With 
𝑟1

𝑎
= 0.2 and 

𝑑

𝑎
= 0.1, the quality factor is 2563.8. The 

highest quality factor in our simulations is about 1.5 times of the quality factor of lowest quality 

factors, indicating the necessity of parameter selection and model simulation. 

 

Figure 4-22. Cavity fundamental mode quality factor with respect of 
𝑟1

𝑎
 ratio and 

𝑑

𝑎
 ratio. In all 

parameter selection sets, the parameter set with 𝑎 = 300 𝑛𝑚 , 𝑟0 = 90 𝑛𝑚 , 𝑟1 = 60 𝑛𝑚  and 𝑑 =

30 𝑛𝑚 has the maximum quality factor of 2563.8. 
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G. Summary 

In this project, our goal was to design a L3 photonic crystal cavity with fundamental mode 

resonant wavelength in the range of 750 nm to 760 nm and with high quality factor. Our simulations 

on two key parameters of L3 model calculated three-dimensional electric field amplitude pattern and 

field energy density spectrum, from which we calculated the resonant wavelengths and quality 

factors through Gaussian fitting. The result indicates that the parameter selection of 𝑎 = 300 𝑛𝑚, 

𝑟0 = 90 𝑛𝑚 , 𝑟1 = 60 𝑛𝑚  and 𝑑 = 30 𝑛𝑚  is the optimal design. This model has its resonant 

wavelength of 751.94 nm and quality factor of 2563.8. 
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APPENDIX I 

In this appendix section, the Matlab code to calculate the positions of gold 

nanoparticles evenly distributed along the bowl surface of gold nano-bowl structure in 

chapter 2 is presented. Conjugate Gradient method is used in np_pos.m to finish this task. 

% np_pos.m version 2.0 
% Sen Yang 2014/12/08 
% The parts to generate other nearest gold NP from the first gold NP 
% parameter definitions--------------------------------------------------

-- 
diameter_bowl = 620; 
d1_1 = 480; 
diameter_NP = 16; 
distNP = 28;%distance among the gold NPs 
r1 = diameter_bowl / 2 - diameter_NP / 2 ; 
r2 = distNP+diameter_NP; 
epsilon1 = 0.05; % The error cannot be >2 nm^2 
epsilon2 = 3; 
stepM = 10;% maximum step length of 10nm 
SearchLabel = 1; 
%------------------------------------------------------------------------

-- 
origin = [0 0 -sqrt((diameter_bowl/2)^2-(d1_1/2)^2)];% Center of the bowl 
origin = origin'; 
% get the first and second points in pool 
coordList = [0 0 (origin(3) - (diameter_bowl/2-diameter_NP/2))]; 
coordList = coordList'; 
%Get the second point 
syms y z 
[y,z] = solve('y^2+(z-origin(3))^2 == (diameter_bowl/2-

diameter_NP/2)^2','y^2+(z-coordList(3,1))^2 ==(distNP+diameter_NP)^2'); 
y = eval(y); 
z = eval(z); 
t = [0 y(1) z(1)]'; 
coordList = [coordList t]; 
Num = 2;% Total number of nanoparticle in pool 
% Conjugate gradient method to calculate other gold nanoparticles in bowl 
vector1 = [0 1]; 
point0 = coordList(:,2); 
while SearchLabel == 1 
    ori1 = [coordList(1,1) coordList(2,1) coordList(3,1)]';% The origin 

of the first sphere space 
    ori2 = [coordList(1,Num) coordList(2,Num) coordList(3,Num)]';% The 

origin of the second sphere space 
    vector2 = [ori2(1)-ori1(1) ori2(2)-ori1(2)]; 

     
    if vector2(1)>=0 
        theta = acos(dot(vector1,vector2)/norm(vector2)) + pi/6; 
        x0 = r2*sin(theta); y0 = r2*cos(theta); 
    else 
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        theta = acos(dot(vector1,vector2)/norm(vector2)) - pi/6; 
        x0 = -r2*sin(theta); y0 = r2*cos(theta); 
    end 
    point = [ x0 y0 ori2(3)]';% The start point before searching 
    label1 = 1; 
    label2 = 1; 
    label3 = 1; 

    
    whileLabel = label1+label2+label3; 
    % Used to get one matchpoint 
    while whileLabel > 0 

         

         
        %  search for point in origin spherespace 
        sstep = 0.1;% step step length 

         
        while label1 > 0 

             
            gx = 2*(point(1) - origin(1));gy = 2*(point(2) - 

origin(2));gz = 2*(point(3) - origin(3)); 
            g = -1*[gx gy gz]';% The gradient of first function at 

present point 
            g = g/norm(g); 
            point1 = point; 
            d1 = norm(norm(point1 - origin) - r1);% distance control 

parameter 
            sign = ((point(1)-origin(1))^2+(point(2)-

origin(2))^2+(point(3)-origin(3))^2-r1^2)/norm((point(1)-

origin(1))^2+(point(2)-origin(2))^2+(point(3)-origin(3))^2-r1^2); 
            % To look for better step length 
            i = 0; 
            note = 0; 
            for step1 = 0:sstep:stepM 
                point1 = point + g*step1*sign; 
                d2 = norm(norm(point1 - origin) - r1); 
                if d2<d1 
                    d1 = d2; 
                    note = i; 
                end 
                i = i + 1; 
            end 
            step1 = note*sstep; 
            point = point + g*step1*sign; 
            if norm(norm(point - origin) - r1)>epsilon1 
                label1 = 1; 
            else 
                label1 = 0; 
            end 

             
        end 

         

        % search for point in second sphere space 
        while label2 > 0             
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            gx = 2*(point(1) - ori1(1));gy = 2*(point(2) - ori1(2));gz = 

2*(point(3) - ori1(3)); 
            g = -1*[gx gy gz]'; 
            g = g/norm(g);% The gradient of first function at present 

point 
            point1 = point; 
            d1 = norm(norm(point1 - ori1) - r2);% distance control 

parameter 
             sign = ((point(1)-ori1(1))^2+(point(2)-ori1(2))^2+(point(3)-

ori1(3))^2-r2^2)/norm((point(1)-ori1(1))^2+(point(2)-

ori1(2))^2+(point(3)-ori1(3))^2-r2^2); 
            % To look for better step length 
            i = 0; 
            note = 0;             
            for step1 = 0:sstep:stepM 
                point1 = point + g*step1*sign; 
                d2 = norm(norm(point1 - ori1) - r2); 
                if d2<d1 
                    d1 = d2; 
                    note = i; 
                end 
                i = i + 1; 
            end 
            step1 = note*sstep; 
            point = point + g*step1*sign; 
            if norm(norm(point - ori1) - r2)>epsilon1 
                label2 = 1; 
            else 
                label2 = 0; 
            end             
        end         
        % search for point in third spherespace 
        while label3 > 0             
            gx = 2*(point(1) - ori2(1));gy = 2*(point(2) - ori2(2));gz = 

2*(point(3) - ori2(3)); 
            g = -1*[gx gy gz]'; 
            g = g/norm(g);% The gradient of first function at present 

point 
            point1 = point; 
            d1 = norm(norm(point1 - ori2) - r2);% distance control 

parameter 
            sign = ((point(1)-ori2(1))^2+(point(2)-ori2(2))^2+(point(3)-

ori2(3))^2-r2^2)/norm((point(1)-ori2(1))^2+(point(2)-

ori2(2))^2+(point(3)-ori2(3))^2-r2^2); 
            % To look for better step length 
            i = 0; 
            note = 0; 
            for step1 = 0:sstep:stepM 
                point1 = point + g*step1*sign; 
                d2 = norm(norm(point1 - ori2) - r2); 
                if d2<d1 
                    d1 = d2; 
                    note = i; 
                end 
                i = i + 1; 
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            end 
            step1 = note*sstep; 
            point = point + g*step1*sign; 
            if norm(norm(point - ori2) - r2)>epsilon1 
                label3 = 1; 
            else 
                label3 = 0; 
            end             
        end         
        if norm(norm(point - origin) - r1) > epsilon1 
            label1 = 1; 
        else 
            label1 = 0; 
        end 
        if norm(norm(point - ori1) - r2) > epsilon1 
            label2 = 1; 
        else 
            label2 = 0; 
        end 
        if norm(norm(point - ori2) - r2) > epsilon1 
            label3 = 1; 
        else 
            label3 = 0; 
        end 
        whileLabel = label1+label2+label3; 

         
    end     
    if norm(point - point0) >= r2/2 
        coordList = [coordList point]; % add one point into the pool 
        Num = Num + 1; 
        SearchLabel = 1; 
    else 
        SearchLabel = 0; 
    end 
end 
coordList = coordList * 1e-9; 
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APPENDIX II 

In this section, the Matlab code for Gaussian lineshape fitting in chapter 4 is presented. 

This code also calculates the quality factor from spectrum and write them in text files. 

%Gaussian_fit.m 
%Sen Yang 2015/09/21 
%This file is used to fit the power density spectrums of PCC from 
%simulations. 
allFiles = dir('.'); 
allnames = {allFiles(arrayfun(@(x) ~x.isdir, allFiles)).name}; 
numOfFiles = size(allnames); 
numOfFiles = numOfFiles(:, 2); 
iter = 1; % first is . and second is .. 
while iter < numOfFiles - 1 
    curName = char(allnames(iter)); 
    fileID = fopen(curName, 'r'); 
    A = fscanf(fileID, '%f'); 
    tot = size(A); 
    row = tot(:, 1); 
    x = []; 
    y = []; 
    for i = 2 : 2 : row 
        x = [x A(i - 1)]; 
        y = [y, A(i)]; 
    end 
    y = y - min(y); 
    ymax = max(y) / 2; 
    f = fit(x', y','gauss2'); 
    %plot of data points and fit curve 
    fig = figure(iter); 
    p = plot(f, x, y, '^'); 
    set(p(1), 'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'k'); 
    set(p, 'LineWidth', 2); 
    set(gca, 'FontSize', 14); 
    title('Power Density Spectrum', 'FontName', 'Arial', 'FontSize', 20); 
    xlabel('Wavelength / nm', 'FontName', 'Arial', 'FontSize', 16); 
    ylabel('Power Density / Arbitrary Units','FontName', 'Arial', 

'FontSize', 16); 
    axis([750 757 0 max(y) + 10]); 
    %plot ended     
    % write a binary-find 
    index11 = 752; 
    index12 = f.b1; 
    index21 = f.b1; 
    index22 = 756; 
    step = 1e-3; 
    while(index12 - index11 > step) 
        mid = (index11 + index12) / 2; 
        if(f(mid) > ymax)  
            index12 = mid; 
        else 
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            index11 = mid; 
        end 
    end 

     
    while(index22 - index21 > step) 
        mid = (index21 + index22) / 2; 
        if(f(mid) > ymax)  
            index21 = mid; 
        else 
            index22 = mid; 
        end 
    end 
    Qfactor = f.b1 / (index22 - index12); 
    fclose(fileID); 
    fileID = fopen(curName, 'w'); 
    formatSpec = 'Quality factor is %f, peak wl is %f'; 
    fprintf(fileID, formatSpec, Qfactor, f.b1); 
    fclose(fileID); 
    iter = iter + 1; 
end 

 




