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Abstract
Arctic wetlands are currently net sources of atmospheric CH4. Due to their complex biogeochemical controls and 
high spatial and temporal variability, current net CH4emissions and gross CH4 processes have been difficult to 
quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, 
oxidation, and surface emissions in Arctic polygon tundra, across a wet to dry permafrost degradation gradient ‐ ‐
from low centered (intact) to fat  and high centered (degraded) polygons. From 3 microtopographic positions ‐ ‐ ‐
(polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and 
CO2 fuxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil 
moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic 
pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or 
temperature could explain. Surface CH4 fux decreased from 64 nmol m−2 s−1 in intact polygons to 7 nmol m−2 s−1 in 
degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated 
CH4 production in low centered polygons, while CO‐ 2 reduction was the primary pathway in degraded polygons. 
We see evidence that differences in water fow and vegetation between intact and degraded polygons 
contributed to these observations. In contrast to many previous studies, these findings document a mechanism 
whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.

Introduction
The high latitude permafrost region plays an important role in the global carbon budget. Historically, this ‐

region's soils have been a large net source of atmospheric CH4, and future CH4 emissions under climate change 
remain uncertain. (McGuire et al., 2009, 2012; Mastepanov et al., 2013). Arctic CH4 emissions are difficult to 
accurately measure, model, and predict, as complex controls on CH4 processes generate highly variable 
CH4 emissions in both space and time (Whalen & Reeburgh, 1992; Bridgham et al., 2013; Olefeldt et al., 2013). 
Current estimates of high latitude CH‐ 4 emissions range widely from 9 to 35 Tg CH4 yr−1 (McGuire et al., 2012), 
and while most models predict emissions will increase with climate change and associated permafrost 
degradation (Koven et al., 2011; Schuur et al., 2013; Lawrence et al., 2015), the magnitude and geographic 
distribution of this change depend on numerous ecological variables such as soil moisture, water table 
position, thaw depth, temperature, microbial community, and vegetation composition, stature, and 
productivity (Wagner et al., 2003; Von Fischer et al., 2010; Sturtevant et al., 2012; Tagesson et al., 2012; 
Mastepanov et al., 2013; Olefeldt et al., 2013). Together, these variables control a suite of processes 
determining net CH4 emissions: CH4 production by methanogenic archaea, CH4 oxidation by methanotrophic 
bacteria, and CH4 transport to the atmosphere (Chanton, 2005; Chanton et al., 2005).
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A number of field studies have assessed CH4 emissions across stages of permafrost degradation, finding that 
thaw induced subsidence can increase CH‐ 4 emissions and alter methanogenic pathways (Wickland et al., 2006; 
Olefeldt et al., 2013; Hodgkins et al., 2014; Johnston et al., 2014; McCalley et al., 2014), with strong 
correlations between net CH4emissions and specific microbial processes (Mondav et al., 2014). These studies 
underscore the importance of gross metabolic processes as controls on net CH4 fux and the responsiveness or 
sensitivity of these processes to thaw induced changes. Critically, in all of these studies, permafrost thaw ‐

increased inundation and active layer thickness due to thermokarst subsidence. In many landscapes, however, 
permafrost thaw can reduce inundation, as loss of subsurface ice creates drainage channels, redistributing 
water away from wetlands (Fortier et al., 2007; Godin et al., 2014). Such soil drying and reductions in high‐
latitude wetland area are predicted to be key controls on future Arctic CH4 emissions (Riordan et al., 2006; 
Bohn et al., 2007; Avis et al., 2011; Koven et al., 2011), but few field studies have measured CH4emissions and 
their biogeochemical controls along wet to dry gradients of permafrost degradation.‐ ‐

Using a wet to dry permafrost degradation gradient, this study evaluates gross CH‐ ‐ 4 processes and net 
CH4 emissions across stages of drainage and geomorphic succession. In ice wedge polygon tundra in Barrow, ‐

Alaska, we combine stable isotope depth profiles with surface fux measurements to investigate process level ‐

controls on surface CH4 emissions. We ask (1) how do CH4 production and consumption processes vary across 
geomorphic and temporal gradients, and (2) how do these subsurface CH4 processes relate to surface 
greenhouse gas fuxes? This study makes use of two geomorphic gradients and one temporal gradient: an ice‐
wedge thaw gradient spanning low centered to fat centered and high centered polygons, a finer scale ‐ ‐ ‐

gradient of individual polygon features (centers, rims, and troughs), and a seasonal gradient from July–October.

Covering ~250 000 km2 throughout the Arctic (Donner et al., 2007), polygon tundra is characterized by ice‐
wedge polygons, microtopographic features ~10–30 m in diameter that are separated by lower lying, ofen ‐

wet or inundated channels called troughs. These polygons may be classified as low centered polygons, which ‐

have low, wet centers bordered by raised, relatively dry rims; high centered polygons, with high, well drained ‐ ‐

centers and no clear rim delineation; or fat centered polygons, with intermediate relief between high‐ ‐

centered and low centered polygons. Polygons form from the growth and thaw of subsurface ice formations ‐

known as ice wedges. During earlier polygon successional stages, ice wedges underlie the troughs of low‐
centered polygons (Brown, 1967), impeding drainage and causing soil uplif through their annual growth and 
expansion (Drew & Tedrow, 1962). If these primary ice wedges thaw, erosion of polygon rims can drain the 
centers of low centered polygons, leading to the growth of secondary ice wedges and formation of high‐ ‐

centered polygons (Drew & Tedrow, 1962; Billings & Peterson, 1980; MacKay, 2000; Huryn & Hobbie, 2012; 
Ping et al., 2015). This form of permafrost degradation produces drier equilibrium landscapes, which in the 
near term are not necessarily accompanied by increased active layer thickness. Between low centered and ‐

high centered polygons, differences in drainage and subsurface ice properties create strong thermal, ‐

hydrological, and geochemical gradients (Liljedahl et al., 2012; Hubbard et al., 2013; Newman et al., 2015; 
Wainwright et al., 2015).

Succession from low centered to high centered polygons has accelerated in Alaska, where thermokarst ‐ ‐

development over the past three decades has greatly outpaced the historical background landscape succession
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rate (Jorgenson et al., 2006). Such changes in soil moisture and inundation have large implications for 
CH4 emissions. Previous research in polygon dominated landscapes has found lower CH‐ 4 emissions with 
decreased soil moisture (Rhew et al., 2007; Von Fischer & Hedin, 2007; Von Fischer et al., 2010), less inundated
area (Sturtevant et al., 2012), and lower water table position (Kutzbach et al., 2004). A more limited set of 
studies evaluating CH4 emissions has treated polygon types as distinct geomorphic units, finding higher 
CH4 fuxes from low centered than high centered polygons (Sachs‐ ‐  et al., 2010; Wainwright et al., 2015). No 
studies to our knowledge, however, have related net CH4emissions to gross metabolic CH4 processes across a 
range of polygon features.

To investigate CH4 production, oxidation, and net emissions, this study combines surface trace gas fux 
measurements with concentrations and stable isotope measurements of CH4 and co occurring CO‐ 2. While net 
CH4 fuxes are straightforward to measure, the component processes of CH4 production and oxidation 
(hereafer referred to as gross processes) cannot be directly observed in situ without an added tracer or 
inhibitor (Frenzel & Bosse, 1996; Von Fischer & Hedin, 2007). The stable isotope compositions of CH4 provide 
an indirect approach, as these gross processes fractionate carbon and hydrogen isotopes in characteristic ways.
Isotope discrimination during methanogenesis produces CH4 that is highly depleted in 13C and 2H, whereas 
CH4 oxidation enriches the residual CH4 in the heavier isotopes (Whiticar et al., 1986; Chanton et al., 2005; 
Hornibrook & Aravena, 2010). Stable isotope analyses have been used to assess CH4 production pathways 
(Hornibrook et al., 1997; Conrad, 2005), fractional and absolute CH4 production and oxidation rates 
(Liptay et al., 1998; Chanton & Liptay, 2000), CH4:CO2 production ratios (Corbett et al., 2013, 2015), and CH4 
transport through hollow plant tissues (Chanton, 2005; Hornibrook, 2009).

Future high latitude CH‐ 4 emissions will depend largely on changes in wetland area (Bohn et al., 2007; 
Avis et al., 2011; Koven et al., 2011). Field studies are needed to evaluate CH4 emissions as landscapes become 
drier or wetter due to thaw, subsidence, and drainage. This study integrates measurements of net CH4 fuxes 
and gross CH4 production and oxidation along a wet to dry permafrost degradation gradient in Arctic polygon ‐ ‐

tundra. Together, this information can be used to identify mechanistic changes underlying net emissions 
outcomes and identify critical positions in the landscape such as particular polygon features that may 
disproportionately infuence the response of landscape scale CH‐ 4 fuxes to permafrost degradation.

Materials and methods

Site

The Barrow Environmental Observatory (BEO) is located ~6 km east of Barrow, AK (71.3°N, 156.5°W). At the 
northern tip of Alaska's Arctic coastal plain, Barrow has a maritime climate characterized by long, dry winters 
and short, moist, cool summers, with a mean annual air temperature of −12 °C and mean annual precipitation 
of 106 mm. Continuous ice rich permafrost extends to >400‐  m (Hinkel & Nelson, 2003), overlain by a shallow 
active layer whose depth varies spatially and interannually from approximately 20 to 60 cm. In and around the 
BEO, a region of interstitial tundra among thaw lakes and drained thaw lake basins, the land surface has low 
topographic relief reaching a maximum elevation of ~5 m (Brown et al., 1980; Hubbard et al., 2013), with ~65%
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of the ground surface organized into ice wedge polygons (Brown‐  et al., 1980; Lara et al., 2014). Soils in the 
region are primarily Typic Aquiturbels (53%), Typic Histoturbels (22%), and Typic Aquorthels (8.6%) 
(Bockheim et al., 1999), formed from late Pleistocene aged sediments of the Gubik Formation (Black,‐  1964), 
with low sulfate and nitrate concentrations and abundant iron (Herndon et al., 2015a; Newman et al., 2015). 
Vegetation cover, height and dominant species vary between polygon types and microtopographic features 
(Billings & Peterson, 1980; Minke et al., 2009). The most abundant vascular plant species include the wet 
tundra graminoids Carex aquatilis, Eriophorum species, and Dupontia fisheri. Mosses and lichens cover much 
of the land surface as well, along with limited shrub, forb, and dry tundra graminoid species 
(Brown et al., 1980; Villarreal et al., 2012).

Field measurements and sample collection

For sample collection and field measurements, we selected seven ice wedge polygons covering a gradient of ‐

microtopographic features and subsurface ice properties. We divided these polygons into two categories: (1) 
low centered polygons (LC polygons,‐  n = 3), with inundated, low lying centers, large, intact ice wedges, and ‐

ice rich permafrost; and (2) fat/high centered polygons (FHC polygons,‐ ‐  n = 4), with fat  to high center relief, ‐ ‐

smaller, more degraded ice wedges, and lower permafrost ice contents (Hubbard et al., 2013). Within each 
polygon, we established three 1 × 1 m plots, in the polygon's center, rim, and trough, totaling 21 plots. If a FHC 
polygon lacked a clearly raised rim, we placed the rim plot at the upper limit of the slope between the raised 
center and the trough. This sampling scheme was thus organized at three levels of spatial resolution: two 
polygon types (LC polygon and FHC polygon); three polygon positions (center, rim, and trough); and six polygon
features, defined as type × position (center, rim, and trough of each polygon type).

From each of these plots, we measured CH4 fux and ecosystem respiration (Reco), soil moisture, soil 
temperature, and concentrations and δ13C of soil pore space CH4 and CO2. We measured fuxes of CO2 and 
CH4 on July 10–12, August 7–16, September 4–7, and October 2–4, 2013, using opaque static chambers (25 cm 
diameter, 15–20 cm height). Chambers were tall enough to enclose vegetation and were vented according to 
Xu et al. (2006) to minimize pressure excursions due to the Venturi effect. In inundated plots, we used a 
foating chamber whose base extended 4 cm below the water surface. In all other plots, chambers were seated
on PVC bases extending ~15 cm below the soil surface. To minimize disturbance, we installed these bases in 
June 2013 and lef them in place throughout the sampling season. For each fux measurement, we seated the 
chamber in a 3 cm deep, water filled trench in the base's top rim to create an airtight seal. Using a Los Gatos ‐ ‐ ‐

Research, Inc. (LGR) portable Greenhouse Gas Analyzer, we recorded CO2 and CH4 concentrations within the 
chamber over 4–8 min and calculated the fux rate of each gas from the slope of the linear portion of the 
concentration vs. time curve. As chambers were opaque with no light penetration, measured CO2 fuxes were 
equivalent to Reco. Soil moisture and soil temperature were recorded concurrently with each greenhouse gas 
fux measurement. We measured volumetric water content in the top 10 cm of soil or standing water with a 
MiniTrase time domain refectometer (Soilmoisture Equipment Corp.) and soil temperature at 10 cm depth 
with a thermistor probe. As vegetation and inundation status varied between plots, depths of moisture and 
temperature measurements were determined from the top of the moss layer, bare soil, or water surface.
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On August 7–11, 2012, July 12–14, 2013, August 10–16, 2013, September 3–8, 2013, and October 2–5, 2013, 
we collected soil pore water or gas from depths of 10 cm, 20 cm, and the full depth of the thawed layer, 
approximately 2 cm above the frozen layer. When thaw depth was 20 cm or less, we collected samples from 
only two depths. Samples were collected using ¼″ diameter stainless steel probes inserted in the plots during 
August 2012 and June 2013, sealed with airtight caps, and lef in place throughout the sampling season to 
reduce disturbance from repeated insertion and removal. At each sampling time, we removed the cap, 
connected ¼″ inner diameter tubing to the probe, and used a peristaltic pump to draw subsurface water or gas
through the tubing into a 60 mL syringe. To minimize sample contamination, we assessed tubing and ‐

connections for leaks and fully purged the system with soil gas or water before attaching a sampling syringe. If 
the sampling probe became clogged by thick vegetation or wet soil, we removed the probe, cleaned it, and re‐
inserted it ~10 cm from the previous insertion point. We filtered water samples in the field through 0.1 μm 
syringe filters and injected them directly into evacuated glass vials sealed with 14 mm thick chlorobutyl septa ‐

(Bellco Glass, Inc., Vineland, NJ, USA). In cases where syringes contained a mixture of water and gas, we 
collected and analyzed both sample types. When transferring samples from syringes to vials, precautions were 
taken to prevent any loss of headspace gas; samples were isolated from the atmosphere using syringe 
stopcocks and in line syringe filters, and needles were slowly removed from vials afer injection to allow septa ‐

to properly to reseal. Samples were stored at 4 °C for up to 1 month in Barrow and then transported to 
Berkeley, CA, for analysis. Vials and septa were tested for loss or exchange of headspace gas over this period.

Laboratory analyses and isotope calculations

All isotope and concentration analyses were conducted at the Center for Isotope Geochemistry (CIG) at 
Lawrence Berkeley National Laboratory, Berkeley, CA. We measured carbon isotope ratios of dissolved 
inorganic carbon (DIC) in water samples and CO2 in gas samples using a variation on the technique outlined in 
Torn et al. (2003). We report carbon isotope ratios in parts per thousand (‰) using the conventional δ‐
notation relative to Vienna Peedee Belemnite (VPDB), where δ13C = (Rsample/Rstandard − 1) × 1000 and R is the 
abundance ratio of the light to heavy isotope. The carbon isotope ratios of DIC or CO2 are accurate to ±0.33‰ 
(1σ) based upon repeated analyses of the laboratory standards.

Carbon isotope ratios of higher concentration CH4 samples (>300 ppmv) were measured using a trace gas ultra 
system interfaced to a Delta V Plus mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). CH4 was 
chromatographically separated from other gases in the trace gas ultra system using an HP molesieve fused‐ ‐

silica capillary column (30 m × 0.320 mm). The CH4 was then combusted to CO2 at 1000 °C in a capillary ceramic
tube loaded with Ni, Cu, and Pt wires, dried, and transferred to the IRMS for the carbon isotope 
measurements. The reproducibility of measured CH4 δ13C values using this method is estimated to be ± 0.16‰ 
(1σ) based on repeated analyses of an in house laboratory standard. The‐  δ13C values of lower concentration 
CH4 samples were analyzed using the trace gas preconcentration system interfaced with a Micromass mass 
spectrometer as described in Torn et al. (2003). Up to 60 mL of gas was injected into the trace gas where 
CO2 and water vapor were chemically stripped from the gas before combusting the CH4 at 1000 °C and 
cryogenically preconcentrating the resulting CO2 prior to analysis in the mass spectrometer. The reproducibility 
of these analyses is ±0.3‰ (1σ). δ13C measurements of CH4, DIC, and CO2 were corrected for 3–5‰ systematic 
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offsets between the measured δ13C values of in house standards and their known isotopic compositions, ‐

calibrated with external standards.

Concentrations of CH4 and CO2 in gas samples were determined using a 2014 Shimadzu GC. Approximately 
4.5 mL of gas headspace from sample vials was fushed through a 1 mL stainless steel loop. The two gases were
then isolated on a HayeSep D packed column (4‐  m × 1/8″) and quantified with a fame ionization detector. For 
water samples, we used Henry's law with measured headspace pressures and water volumes to convert 
headspace CH4 concentrations to dissolved CH4 concentrations. DIC concentrations were calculated from IRMS 
results, using known sample aliquot volumes and calibrated mass 44 (CO2) peak areas.

We determined the dominant CH4 production pathway in each soil profile using two stable isotope abundance 
metrics. We performed these analyses on the subset of total samples that were collected as water from the 
full depth of the thawed soil, where CH4 isotopic compositions were unlikely to have been affected by 
oxidation, thus representing the values of CH4 at the time of production. First, acetate cleavage and 
CO2 reduction each yield CH4 whose δ13C values fall within characteristic ranges (Whiticar et al., 1986; 
Hornibrook & Aravena, 2010). CH4 produced by acetate cleavage typically has δ13C values between −65 and 
−50‰, whereas CH4 from CO2 reduction has δ13C values between −110 and −60‰. Second, the apparent 
fractionation factor (αDIC CH4‐ ) is a measure of the isotope separation between CH4 and co occurring DIC (or CO‐ 2) 
(Hines et al. 2008, Whiticar et al., 1986; Chanton et al. 2006):

αDIC CH4‐  is termed apparent fractionation because it is not the fractionation factor for an individual process, but 
rather a composite metric describing kinetic fractionation during CO2reduction and acetate cleavage 
(Conrad, 2005) and equilibrium fractionation between carbonate species (Mook et al., 1974). αDIC CH4‐  values vary 
along a continuum between environments where CH4 is derived entirely from acetate cleavage and those 
where CH4 is entirely a product of CO2 reduction. Measured fractionation factors range from 1.007 to 1.027 for 
acetate cleavage and from 1.031 to 1.077 for CO2 reduction (Conrad, 2005), so αDIC CH4‐ values increase with 
increased importance of CO2 reduction.

Statistical analyses

We analyzed CH4 fux, Reco, and deep pore water δ13C CH‐ 4 individually using linear mixed effects models. We ‐

selected models based on Akaike information criterion (AIC) values with backward elimination of random and 
fixed effects, using significance cutoffs of P < 0.1 and P < 0.05 for random and fixed effects, respectively. P‐
values for random effects were assessed with likelihood ratio tests, and fixed effect‐  P values were determined ‐

using F tests based on Satterthwaite's approximation for denominator degrees of freedom. We calculated ‐

variance infation factors, using a cutoff of 10 to avoid multicollinearity. Following fixed effect selection, we ‐

tested all possible two way interactions and then performed pairwise comparisons between individual ‐

positions, features, or months with Tukey's honest significant difference test, using degrees of freedom from 
Satterthwaite's approximation. All models included polygon and individual profile as possible random effects. 
For CH4 fux and Reco models, possible fixed effects included polygon type, position, sampling month, top 10 cm 

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0078
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0500
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0110
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0501
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0045
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0110


soil moisture, and soil temperature at 10 cm depth. For the model of δ13C CH‐ 4, possible fixed effects were 
polygon type, position, and month. We conducted all analyses in R version 3.1.0 ‘Spring Dance’ (October 4, 
2014), using the packages LME4 (Bates et al., 2014) for linear mixed effects modeling, lmerTest ‐

(Kuznetsova et al., 2014) for significance testing and model selection, and multcomp (Hothorn et al., 2008) for 
pairwise comparisons.

Because CH4 fuxes, Reco measurements, and soil temperature measurements had skewed distributions, we log‐
transformed these variables for all statistical analyses. Model estimates and associated P values refect these ‐

transformed data. In all figures, however, we present nontransformed data to ease visual interpretation.

Results

CH4 fux and ecosystem respiration

Surface CH4 fux displayed clear patterns among polygon types and sampling dates (Fig. 1a, Table 1). When 
observations were averaged across the July–October 2013 season for each polygon type, mean CH4 fuxes were
6.8 nmol m−2 s−1 from FHC polygons and 64 nmol m−2 s−1from LC polygons. Averaged across all locations, mean 
CH4 fuxes peaked in August, increasing from 37 to 45 nmol m−2 s−1 from July to August, and then decreased to 
25 nmol m−2 s−1 in September and 18 nmol m−2 s−1 in October. LC polygons strongly infuenced this temporal 
trend, their CH4 fux dropping from 85 nmol m−2 s−1 in July and August to 39 nmol m−2 s−1 in October. During this 
period, FHC polygons' CH4 fux decreased from only 15 to 3 nmol m−2 s−1. To identify important predictors of 
CH4 fux, we generated a suite of models including all possible combinations of predictor variables: polygon 
type, position, soil temperature at 10 cm depth, soil moisture from 0 to 10 cm depth, and/or sampling month. 
We then compared these models' AIC values to select the optimal model. The final model (AIC = 194.4) 
included polygon type (P < 0.001), position (P < 0.01), soil temperature (P < 0.01), and the interactions 
between type and position (P < 0.001), type and temperature (P < 0.01), and temperature and position 
(P < 0.01) as predictor variables (Table 2). Based on AIC values, neither soil moisture nor sampling month was 
included in the final model. With a significance cutoff of P < 0.05, CH4emissions were significantly different 
between all but three pairs of polygon features (Table 3). These three exceptions were FHC polygon centers 
and rims (0.51 and 0.54 nmol m−2 s−1), LC polygon centers and troughs (88 and 87 nmol m−2 s−1), and LC polygon 
rims and FHC polygon troughs (17 and 20 nmol m−2 s−1). Soil temperature, a significant predictor of CH4 fux, 
peaked at the time of peak emissions: July in LC polygons and August in FHC polygons (Figs 1 and S1).
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Figure 1
Open in figure viewer

PowerPoint

Greenhouse gas emissions, classified by polygon type, position, and measurement month. (a) Net 
CH4 fux in nmol CH4 m−2 s−1 and (b) ecosystem respiration in μmol CO2 m−2 s−1 were measured from each 
feature of 4 fat/high centered (FHC) and 3 low centered (LC) polygons. Standard errors were ‐ ‐
calculated from field replicates.

Table 1. Mean surface greenhouse gas fuxes and deep pore water δ13CH4, averaged across all sampling dates 
for each polygon type and feature. Flux measurements were made from opaque static chambers in July, 
August, and September 2013 from 3 low centered and 4 fat/high centered polygons. δ‐ ‐ 13CH4 values were 
measured from water samples collected from the frost table in August 2012 and July–October 2013

Polygon type Feature CH4 flux (nmol m−2 s−1) CO2 flux (μmol m−2 s−1) δ13CH4 (‰)

Mean SD n Mean SD n Mean SD n

Low centered‐ LC center 88.4 46 12 0.727 0.37 12 −52.3 4.7 12

LC rim 17.4 13 12 0.771 0.54 12 −61.3 7.9 10

LC trough 87.0 50 12 0.843 0.61 12 −59.1 6.8 10

All LC positions 64.3 52 36 0.780 0.50 36 −57.2 7.4 32

Flat/high centered‐ FHC center 0.505 1.0 17 0.805 0.59 17 −79.8 4.7 10

FHC rim 0.538 0.95 16 0.940 0.81 16 −79.7 5.8 8

FHC trough 19.6 20 16 1.39 0.93 16 −68.3 4.5 8

All FHC positions 6.75 14 49 1.04 0.81 49 −76.2 7.2 26

Table 2. fixed effects included in linear mixed effects models for CH‐ 4 fux, CO2 fux, and deep pore water δ13CH4. 
Optimal models were chosen based on AIC values
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Model Fixed effect DF F value Pr > |F|

CH4 fux (AIC = 168.8) Polygon type 56.782 54.819 6.894e 10‐ ***

log10(temperature) 56.405 10.729 0.001807**

Position 51.832 6.052 0.004342**

Type × position 21.902 15.157 7.377e 05‐ ***

Type × log10 (temperature) 56.180 8.634 0.004778**

Position × log10 (temperature) 56.926 5.763 0.005256**

CO2 fux (AIC = 175.0) Month 64.041 28.946 5.997e 12‐ ***

δ13CH4 (AIC = 369.0) Polygon type 18.515 71.717 8.694e 08‐ ***

Position 19.038 2.536 0.1056001

Month 40.126 8.906 3.034e 05‐ ***

Type × position 18.529 9.856 0.0012151**

Month × position 39.756 4.216 0.0009954***

Significance codes: 0 ***0.001 **0.01 *0.05 .1.

Table 3. Results of Tukey's honest significant difference test for linear mixed effects models predicting CH‐ 4 fux, 
CO2 fux, and δ13CH4. Each row summarizes a test for differences between two levels of a categorical predictor 
variable, with P values < 0.05 indicating significant differences.‐  P values were calculated using Satterthwaite's ‐
approximation for degrees of freedom

Model Predictor variable Contrasted levels t value Pr > |t|

CH4 fux Type × position LC center–FHC center 11.028 <0.001***

Type × position LC rim–FHC center 7.417 <0.001***

Type × position LC trough–FHC center 10.992 <0.001***

Type × position FHC rim–FHC center −0.020 1.0000

Type × position FHC trough–FHC center 7.873 <0.001***

Type × position LC rim–LC center −3.474 0.0229*

Type × position LC trough–LC center −0.045 1.0000

Type × position FHC rim–LC center −11.077 <0.001***

Type × position FHC trough–LC center −3.745 0.0126*

Type × position LC rim–FHC rim 7.415 <0.001***

Type × position LC trough–FHC rim 11.037 <0.001***

Type × position FHC trough–FHC rim 7.907 <0.001***

Type × position LC trough–LC rim 3.431 0.0252*

Type × position FHC trough–LC rim −0.031 1.0000

Type × position LC trough–FHC trough 3.698 0.0139*
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Model Predictor variable Contrasted levels t value Pr > |t|

CO2 fux Sampling month August 2013–July 2013 1.714 0.3251

Sampling month September 2013–July 
2013

−2.482 0.0727

Sampling month October 2013–July 2013 −7.007 <0.001***

Sampling month September 2013–August 
2013

−4.196 <0.001***

Sampling month October 2013–August 
2013

−8.739 <0.001***

Sampling month October 2013–
September 2013

−4.499 <0.001***

δ13CH4 Position Rim–center 0.427 0.90493

Position Trough–center 3.706 0.00515**

Position Trough–rim 3.365 0.01031*

Sampling month July 2013–August 2012 4.253 0.00116**

Sampling month August 2013–August 
2012

3.407 0.01236*

Sampling month September 2013–August 
2012

2.979 0.03674*

Sampling month October 2013–August 
2012

2.846 0.05068

Sampling month August 2013–July 2013 −1.389 0.63596

Sampling month September 2013–August 
2013

−1.178 0.76153

Sampling month October 2013–July 2013 −1.431 0.60908

Sampling month September 2013–August 
2013

−0.012 1.00000

Sampling month October 2013–August 
2013

−0.231 0.99934

Sampling month October 2013–
September 2013

−0.190 0.99969

 Significance codes: 0 ***0.001 **0.01 *0.05 .1.

Reco varied temporally, but did not vary significantly among locations (Fig. 1b, Table 1). The optimal model 
predicting Reco (AIC = 175) included only sampling month (P < 0.001) as a significant fixed effect (Table 2). The 
highest Reco fuxes were measured in July and August (1.1 and 1.5 μmol m−2 s−1, not significantly different), then 
decreased between August and September to 0.71 μmol m−2 s−1 (P < 0.001), and decreased further from 
September to October to 0.44 μmol m−2 s−1 (P < 0.001) (Table 3). Notably, FHC polygon troughs had high Reco in 
July relative to other sampling months and polygon features (Fig. 1b).
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Dissolved gas concentrations

For all polygon features, CH4 concentrations increased with depth in the soil to high concentrations at the frost 
table (Fig. 2a). These deep CH4 concentrations were highest in features with saturated or inundated surface 
soils: LC polygon centers and troughs of both polygon types. Even in FHC polygon centers and rims, however, 
where net surface CH4emissions were near zero, deep CH4 concentrations were >100 μM. Particularly in 
polygon rims and troughs, between type differences in surface CH‐ 4 fuxes were not mirrored by deep 
CH4concentrations. Instead, patterns in surface fux corresponded more closely with concentrations at 10 and 
20 cm. Of the six polygon features examined, the two with lowest net CH4 fuxes – centers and rims of FHC 
polygons – had average 10 cm CH4 concentrations only slightly greater than zero, at 1.3 and 1.0 μM, 
respectively. Among the remaining four features, the two with highest CH4 fux – centers and troughs of LC 
polygons – had high CH4concentrations at all depths. Between LC polygon rims and FHC polygon troughs, which
had intermediate CH4 fux rates, LC polygon rims had both higher CH4 emissions and higher 20 cm 
CH4 concentrations. The apparent disconnect between deep dissolved CH4 and surface emissions suggests that 
three possible mechanisms underlie differences in net CH4 fuxes: (1) different CH4 production rates in shallow 
soil, (2) different CH4 transport rates from deep soils to the atmosphere, and/or (3) different oxidation rates in 
shallow soils.

Figure 2
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Concentration depth profiles of (a) dissolved CH4 and (b) DIC in soil pore water. Results are classified by 
polygon type, position, and depth from the soil surface. Mean concentrations and standard errors 
include water samples collected in August 2012 and monthly from July–October 2013 from 4 fat/high‐
centered and 3 low centered polygons. Data presented here include water samples only and do not ‐
include gas samples.
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DIC concentrations varied less than did those of dissolved CH4 (Fig. 2b). DIC sources may include in situ CO2 
production by root respiration, aerobic or anaerobic respiration, fermentation, or methanogenesis, or 
transport to the sampling location by diffusion or advection. DIC sinks are primarily diffusion or advection in 
soil pore water or CH4 production via CO2 reduction. Mean DIC concentrations generally increased with depth, 
but in FHC polygon centers, LC polygon centers, and LC polygon rims, the highest DIC concentrations were 
measured at 20 cm, indicating higher CO2 production at 20 cm than at the frost table.

Methane production pathways
13C abundances in CH4 and DIC from deep pore water were used to compare CH4 production pathways among 
polygon types and positions (Fig. 3), following published approaches (Whiticar et al., 1986; Hornibrook et al., 
1997; Conrad, 2005; Hornibrook & Aravena, 2010). Because these samples were collected from deep, 
saturated soils with limited oxygen availability (Lipson et al., 2012), their δ13C values refect CH4 at the time of 
production, without isotopic fractionation due to bacterial aerobic CH4 oxidation. Similarly, we assumed 
anaerobic CH4 oxidation had a negligible effect on measured CH4 isotopes. While anaerobic CH4oxidation has 
been demonstrated in terrestrial soils, concurrent CH4 production is thought to proceed far more rapidly, 
particularly in highly methanogenic soils (Blazewicz et al., 2012; Gupta et al., 2013). Additionally, we assumed 
measured δ13C values of CH4 were not affected by kinetic fractionation during transport through the soil profile.
Ebullition and advection through plant aerenchyma tissues are nonfractionating processes, but isotopic 
fractionation may occur during diffusive transport through plants (Popp et al., 1999; Chanton, 2005; 
Hornibrook, 2009). It is possible that such fractionation may have occurred, isotopically enriching residual soil 
CH4. However, studies have shown that this fractionation occurs primarily within the plant tissues themselves, 
creating a δ13C gradient between heavier CH4within plant aerenchyma and lighter CH4 emitted from plant 
tissues to the atmosphere (Chanton et al., 1992a,b; Tyler et al., 1997), with little effect on soil pore space δ13C‐
CH4.

Figure 3
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δ13C of CH4 in water samples collected from the frost table. Data are classified by polygon type and 
position and include all sampling dates from August 2012 and July–October 2013. Box plots indicate 
median and first and third quartiles, with whiskers extending to the farthest values within 1.5 times the 
upper and lower quartiles. Outliers beyond this range are shown as points.

https://onlinelibrary.wiley.com/action/downloadFigures?id=gcb13281-fig-0003&doi=10.1111%2Fgcb.13281
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0100
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0016
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0044
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0014
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0085
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0037
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0067
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0045
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0046
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-bib-0110
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-fig-0003
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13281#gcb13281-fig-0002


Including all sampling dates, deep pore water δ13C CH‐ 4 values were 17‰ enriched from LC polygons relative to 
FHC polygons (P << 0.001), and significant interactions were found between polygon type and position 
(P < 0.01) and between position and sampling month (P < 0.001). Between type differences in δ‐ 13C CH‐ 4 were 
most pronounced for centers and least pronounced for troughs (Table 2), and δ13C CH‐ 4 was significantly higher 
in all 2013 months relative to August 2012, but did not change significantly over the 2013 season (Table 3). 
Including all sampling dates, 12 of 12 samples from LC polygon centers (mean δ13C CH‐ 4 = −52.3‰) and 8 of 10 
samples from LC polygon troughs (mean δ13C CH‐ 4 = −59.1‰) had δ13C CH‐ 4 values within the range characteristic
of acetate cleavage, −65 to −50‰ (Table 1) (Whiticar et al., 1986; Hornibrook & Aravena, 2010). In contrast, 10 
of 10 samples from FHC polygon centers (mean δ13C CH‐ 4 = −79.8‰), 8 of 8 samples from FHC polygon rims 
(mean δ13C CH‐ 4 = −79.7‰), and 6 of 8 samples from FHC troughs (mean δ13C CH‐ 4 = −68.3‰) had δ13C CH‐ 4 values
within the range typical of CO2 reduction, −110 to −60‰ in an ecosystem with C3 vegetation. δ13C CH‐ 4 values 
from LC polygon rims (mean δ13C CH‐ 4 = −61.3‰) were divided among the plausible ranges of both pathways, 
with six samples between −50 and −65‰ and 4 samples below −65‰, with both methanogenic processes 
likely operating concurrently (Whiticar, 1999).

The difference in δ13C between co occurring CH‐ 4 and DIC, referred to as the apparent fractionation factor, αDIC CH4‐ ,
provides an additional line of evidence that the dominant methanogenic pathways differed between polygon 
types. As shown in cross plots of δ‐ 13C DIC vs. δ‐ 13C CH‐ 4 (Fig. 4), αDIC CH4‐  values displayed the same patterns as δ13C‐
CH4, with acetate cleavage more important in LC than in FHC polygons. αDIC CH4‐  values from polygon centers and 
rims showed clear separation between LC and FHC polygons, with values clustering around 1.07 for FHC 
polygons and around 1.04–1.05 for LC polygons. Troughs displayed some clustering of αDIC CH4‐  values for each 
polygon type, but this separation between αDIC CH4‐  ranges of LC and FHC polygons was smaller than in centers 
and rims.
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Figure 4
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Cross plots showing‐  δ13C DIC and‐  δ13C CH‐ 4 of individual soil pore water or gas samples. Dark triangles 
are fat/high centered (FHC) polygons, and light circles are low centered (LC) polygons. Dashed ‐ ‐
diagonal lines show equal fractionation between CH4 and co occurring DIC, with the fractionation factor‐
(α) decreasing from top lef to bottom right of each panel.

Apparent fractionation factors between CH4 and CO2 below 1.055 are generally thought to indicate acetate 
cleavage, while values above 1.065 result from CO2 reduction (Conrad, 2005). In this analysis, δ13C was 
measured from bulk DIC rather than CO2. Because of equilibrium isotopic fractionation between dissolved 
CO2 and bicarbonate (Mook et al., 1974), our calculated αDIC CH4‐  values may thus be slightly higher than values 
calculated from δ13C CO‐ 2. At the acidic pH range typical of this study site (Zona et al., 2011), H2CO3 is the 
dominant carbonate species, so we would expect only small 13C differences between CO2 and total DIC. Even so,
we conducted an empirical sensitivity analysis to assess the potential for carbonate equilibrium fractionation 
to infuence αDIC CH4‐ . We measured both δ13C DIC and vial headspace δ‐ 13C CO‐ 2 from a subset of deep pore water 
samples, finding that isotope separation ranged from 0.2 to 5.7‰. To account for the maximum possible 
infuence on αDIC CH4‐ , we applied a 5.7‰ correction to δ13C DIC values to generate a conservative uncertainty ‐

band, which decreased calculated αDIC CH4‐  values by 0.0065. Including this range of error, αDIC CH4‐  values above 
1.059 can be interpreted to indicate CO2 reduction. With these considerations, we still found acetate cleavage 
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dominated all LC polygon features. CO2 reduction dominated in FHC polygons features, with acetate cleavage 
more important in FHC polygon troughs than in other FHC polygon features.

δ13C depth profiles

Depth profiles of δ13C CH‐ 4 displayed spatial patterns similar to those of surface fuxes (Fig. 5). δ13C abundance in
pore space CH4 increased toward the soil surface in four of the six polygon features, a depth trend that would 
be expected from CH4 oxidation in shallow soil layers. Among these four features, the difference in mean δ13C‐
CH4 between 10 cm and the frost table was greatest in FHC polygon rims (Δδ13C = 18.4‰) and FHC polygon 
centers (Δδ13C = 13.1‰), where surface CH4 fux rates were lowest. By comparison, LC polygon rims and FHC 
polygon troughs had both lower surface CH4 fuxes and lower δ13C CH‐ 4 depth gradients (Δδ13C = 7.9 and 5.5‰, 
respectively). The only two features that did not display this δ13C CH‐ 4 depth gradient were those with the 
highest surface CH4 fuxes: LC polygon centers and LC polygon troughs. There, the highest δ13C CH‐ 4 values 
occurred at 20 cm depth. We note that these two features were inundated at all times, with mean water 
depths of 8.0 ± 2.1 and 6.7 ± 1.6 cm, respectively (data not shown), so their 10 cm samples were collected near
the sediment surface or from standing water.

Figure 5
Open in figure viewer

PowerPoint

Depth profiles of δ13CH4 within the soil pore space. Data are classified by polygon type, position, and 
depth from the soil surface. Shallow samples were collected from 10 cm below the surface, and deep 
samples were collected from the frost table. The middle depth increment includes samples collected 
from 20 cm below the surface if total thaw depth was >20 cm. If a soil profile's thaw depth was ≤20 cm,
any sample deeper than 10 cm was classified as deep.

Discussion
High latitude soils are a large source of atmospheric CH‐ 4 (Whalen & Reeburgh, 1992; McGuire et al., 2012; 
Mastepanov et al., 2013). Current Earth system models project that Arctic tundra CH4 emissions will increase 
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with climate change (Koven et al., 2011; Lawrence et al., 2015; Schuur et al., 2015). However, landscape scale ‐

processes may infuence CH4 emissions in ways that these models are only beginning to represent. To better 
understand the relationship between landscape change and CH4 dynamics, we combined measurements of 
surface CH4fux with subsurface CH4 concentration and δ13C profiles to assess (1) how CH4 production and 
consumption processes vary with permafrost degradation and microtopography, and (2) how these subsurface 
processes relate to net CH4 and CO2 fuxes. Beyond confirming that CH4fuxes from wetter, LC polygons are 
higher than from drier, FHC polygons, we found that the dominant CH4 production pathway differed between 
polygons types, with acetate cleavage more important in high production locations. In addition, CH‐ 4 emissions 
decreased with permafrost degradation, beyond the degree that would be expected from moisture changes 
alone.

CH4 fuxes were on average ~10 times higher from LC polygons than from FHC polygons (Table 1). While soil 
moisture (Fig. S2) mirrored the positive moisture–CH4 relationship that has been documented in Arctic polygon
tundra (Sachs et al., 2010; Kim, 2015), other tundra types (Torn & Chapin, 1993; Christensen et al., 1995; 
McCalley et al., 2014), and thermokarst landscapes (Walter et al., 2007; Desyatkin et al., 2009), the differences 
in CH4 fux between polygon types were greater than variations in moisture or temperature alone could 
explain. Specifically, we found that polygon type, geomorphic position, and soil temperature were the only 
significant main effects in our optimal model of CH4 fux (Table 2). Soil moisture did not emerge as a significant 
predictor variable, but this result does not imply that soil moisture and CH4 fux were unrelated. Instead, the 
predictor variables polygon type and position accounted for soil moisture information, along with additional 
explanatory power that modified the soil moisture–CH4 fux relationship. Pairwise comparisons between 
positions within the two polygon types highlight the kind of unexpected feature level differences that underlie ‐

this model result (Table 3). Rims from LC vs. FHC polygons had a 30 fold difference in mean surface CH‐ 4 fux, in 
spite of comparable temperatures, thaw depths, and moisture contents (Figs S1 and S2). Similarly, FHC polygon
troughs had only ~20% the CH4 emissions of LC polygon troughs, with nearly equal soil moisture. In contrast to 
CH4 fux, we found that surface CO2fux, equivalent to Reco, depended primarily on sampling month, a variable 
that captures temporal changes in temperature, plant productivity, and microbial community. The Recomodel 
did not find polygon type or position to be significant predictor variables, indicating that carbon availability and
turnover did not map strongly to microtopography or permafrost degradation and thus cannot account for 
observed CH4 fux variations.

The dominant CH4 production pathway differed between high  and low emission areas. Based on δ‐ ‐ 13C‐
CH4 values, CH4 production in locations with high surface emissions (e.g., LC polygons and FHC troughs) 
occurred primarily by acetate cleavage, whereas production in areas with low emissions (FHC polygons) was 
dominated by CO2 reduction (Fig. 3, Table 2). The relationship between surface CH4 fux and deep pore water 
δ13C CH‐ 4 held not only between polygon types but also among positions within each polygon type. We 
observed the highest and lowest δ13C CH‐ 4 values in features with the greatest and least CH4 emissions, 
respectively (LC polygon centers and troughs vs. FHC polygon centers and rims).

This analysis assumes that measured δ13C CH‐ 4 values refect in situ production, with most sampled CH4 
produced in the soil column, not imported by lateral transport. Supporting evidence includes low fow rates 
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(Liljedahl et al., 2012) relative to in situ cycling rates within LC polygons and low CH4 concentrations in the 
runoff of FHC polygon centers.

In addition to our observed relationship between surface CH4 fux rates and subsurface δ13C CH‐ 4 values, several 
lines of evidence suggest that acetate cleavage is correlated with higher production rates. Acetate cleavage 
dominates methanogenesis when organic matter is abundant and surface fuxes are high (Galand et al., 2010; 
Hershey et al., 2014), whereas CO2reduction is more important in systems with low organic matter inputs, 
abundant terminal electron acceptors, and low surface fux rates, such as sulfate rich marine sediments ‐

(Oremland & Taylor, 1978; Crill & Martens, 1983; Whiticar et al., 1986). Similarly, laboratory incubations of 
high latitude soils have found higher rates of CH‐ 4 production when acetate cleavage rather than CO2 reduction 
dominates (Kotsyurbenko et al., 2007; Liebner et al., 2015). Moreover, theoretical reaction stoichiometries also
predict acetate cleavage will dominate CH4production unless electron fow to methanogens is limited by 
competition or biochemical inhibition (Conrad, 1999; Ye et al., 2012; Bridgham et al., 2013). Applied to our 
results, this relationship between CH4 production rate, CH4 fux, and δ13CH4 suggests that CH4 production rate 
was an important control on surface CH4 fux. In locations with high surface CH4emissions and less negative 
δ13CH4 values such as LC polygon centers and troughs, CH4 was produced rapidly via acetate cleavage. In FHC 
polygon centers and rims, acetate oxidation using dissolved oxygen, iron (III), or sulfate may have limited 
acetate availability to methanogens, leading to low rates of methanogenesis by CO2 reduction. Thus, we infer 
that a direct control on net CH4 emissions, CH4 production rate, maps predictably to polygonal tundra features.

Previous studies have noted that as much as 90% of CH4 production is oxidized in the soil profile (King, 1992; Le
Mer & Roger, 2001), so biotic oxidation can be an important determinant of surface CH4 fux rates. Based on 
subsurface CH4 concentrations, fux rates, and δ13C CH‐ 4depth profiles (e.g., Figs 3 and 5), we find that oxidation 
plays an important role in some but not all geomorphic positions, with the greatest degree of oxidation in FHC 
polygon centers and rims and the least infuence of oxidation in LC polygon centers and troughs. Deep 
subsurface CH4 concentrations indicate that substantial methanogenesis occurred at all locations, even those 
with minimal net surface emissions. Mediating the relationship between this subsurface production and 
surface emissions, steep depth profiles of δ13C CH‐ 4 show that CH4 oxidation attenuated this gross production in 
low emission sites.‐

While other studies have used δ13C CH‐ 4 depth profiles to derive quantitative estimates of CH4oxidation, we 
chose to use this dataset to infer qualitative differences in CH4 oxidation (Fig. 5). If the δ13C CH‐ 4 of production 
and the oxidation fractionation factor were known or assumed, δ13C CH‐ 4 depth profiles could be used to 
quantitatively calculate fractional CH4 oxidation (Liptay et al., 1998; Popp et al., 1999; Corbett et al., 2013). In 
high latitude wetlands, however, methanogenic pathway and thus its isotopic signature can change with ‐

depth, due to shifs in substrate availability, temperature, and pH (Hornibrook et al., 1997; Popp et al., 1999; 
Hornibrook & Aravena, 2010). Further, documented fractionation factors for CH4 oxidation range from 1.003 to 
1.031, varying by 0.011 within tundra soils alone (King et al., 1989; Happell et al., 1994; Chanton et al., 2005).

Synthesizing isotope, fux, and moisture data, two clear regimes emerge relating soil moisture, CH4 production, 
and CH4 oxidation to net CH4 emissions (Fig. S3). First, hydrologically isolated features with persistently low soil 
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moisture, FHC polygon centers and rims, were dominated by CO2 reduction and had steep δ13C CH‐ 4 depth 
gradients, indicating that both low production and high oxidation contributed to low surface emissions. 
Second, persistently inundated features, LC polygon centers and troughs, were dominated by acetate cleavage 
with small or negative δ13C CH‐ 4 depth gradients. There, high CH4 production and low CH4 oxidation yielded high 
surface emissions. The two remaining features, FHC polygon troughs and LC polygon rims, do not fit clearly 
into either of these regimes. With roughly equal surface CH4 emissions but clear soil moisture differences, 
these features had notable differences in CH4 production and CH4 oxidation. Specifically, LC polygon rims had 
higher deep δ13C CH‐ 4 values and steeper δ13C CH‐ 4 profiles than did FHC polygon troughs, indicating higher rates 
of both production and oxidation. With comparable, moderate CH4 fuxes but different soil moisture contents 
and subsurface processes, these are key locations in the landscape where models based on soil moisture might
produce the wrong results, highlighting the importance of other upstream controls on CH4 production and 
oxidation.

The two proximate controls on surface CH4 fux – subsurface CH4 production and oxidation – are infuenced by 
upstream controls that link landscape processes to microbial activity. Two such upstream controls stand out as 
particularly important for the relationship between permafrost degradation and CH4 emissions. First, 
vegetation infuences CH4 production and oxidation through substrate availability, gas transport, and its 
infuence on subsurface pH, temperature, active layer depth, and other factors (Popp et al., 1999; 
Chanton, 2005), as seen in a positive relationship between surface CH4 fux and sedge cover or vegetation 
stature in wet tundra (Schimel, 1995; Ström et al., 2003; Von Fischer et al., 2010; Olefeldt et al., 2013). Based 
on vegetation surveys adjacent to our plots (Table S1), we find the same qualitative relationship between 
surface CH4 emissions and plant community composition or canopy height. In particular, percent cover of Carex
aquatilis, a sedge with aerenchyma known to transport CH4 (Popp et al., 1999; Ström et al., 2003; 
Chanton, 2005), has a spatial pattern matching our stable isotope and surface fux measurements. Carex cover 
and vegetation canopy height are high in LC polygon centers and troughs, intermediate in LC polygon rims and 
FHC polygon troughs, and low in FHC polygon centers and rims. The observed transition to lower stature, ‐

less Carex dominated vegetation across the permafrost degradation gradient suggests that vegetation changes‐

may play an important role in determining the response of CH4 emissions to future warming induced ‐

landscape changes.

A second upstream control, soil oxygen status, simultaneously controls substrate availability to methanogens 
(Chapin et al., 2011), electron acceptor oxidation state (Cappellen & Wang, 1996), and CH4 consumption rate 
(Mancinelli, 1995). In unsaturated soils such as FHC polygon centers and rims, oxygen is readily available, 
inhibiting CH4 production and promoting oxidation. In saturated soils, the abundance of dissolved oxygen and 
other electron accepting species depends on the combined infuence of hydrology and geochemistry 
(Fiedler et al., 2004; Herndon et al., 2015b). Differences in hydrology and redox active geochemical species ‐

between microtopographic features (Newman et al., 2015) correspond to the CH4 process differences we 
observed. Important redox indicators, pore water dissolved oxygen (DO) and sulfate concentrations are higher 
in high centered polygon centers and troughs than in any low centered polygon feature ‐ ‐

(Newman et al., 2015), and modeled runoff rates from high centered polygons are nearly twice as high as from‐
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low centered polygons (Liljedahl‐  et al., 2012). These geochemical and hydrological factors may explain the low 
CH4 emissions from FHC troughs relative to other saturated or inundated features. Higher fow into high‐
centered polygon troughs likely imports DO, which is used to oxidize organic substances, iron, and 
CH4produced at depth where more favorable electron acceptors are depleted. (Iron in particular has been 
shown to be an important redox control on CH4 production at this site (Herndon et al., 2015a; 
Miller et al., 2015), whereas sulfate is less likely to play an important role in anaerobic decomposition at this 
site because it is present only in low abundance.) Thus, we hypothesize that through its infuence on redox, 
hydrology is an important control on CH4production and oxidation, leading to differences in CH4 emissions 
among saturated polygon features.

We have shown that CH4 production, CH4 oxidation, and net CH4 emissions depend not only on soil moisture 
and temperature, but also on microtopographic position along a permafrost degradation gradient. Importantly,
redox status and vegetation can vary among sites of similar inundation, infuencing substrate availability to 
methanogens and CH4 availability to methanotrophs. Indeed, as thermokarst affects hydrology and 
geochemistry through physical subsidence, it also infuences vegetation, with rapid changes in species 
dominance following drainage and subsidence events (Camill et al., 2001; Christensen et al., 2004; 
Schuur et al., 2007). In addition, soil carbon chemistry and stocks vary among polygon types and features 
(Ping et al., 1998; Bockheim et al., 1999; Minke et al., 2009; Zona et al., 2011), as thaw induced erosion ‐

redistributes stocks and alters conditions for organic matter accumulation (Anthony et al., 2014; 
Godin et al., 2014).

The geomorphic consequences of permafrost degradation depend on the quantity and organization of 
subsurface ice (Ulrich et al., 2014), overall topography (Czudek & Demek, 1970; Schuur et al., 2007; 
Godin et al., 2014), and other site specific properties (Jorgenson‐  et al., 2013). In some instances, permafrost 
thaw creates lakes or wetlands (Christensen et al., 2004; Wickland et al., 2006; Sannel & Kuhry, 2011; 
Johnston et al., 2014; Klapstein et al., 2014; Natali et al., 2015), but in other instances it drains these features 
(Yoshikawa & Hinzman, 2003; Smith, 2005; Schuur et al., 2007). The former of these two outcomes has 
received more attention with respect to CH4 emissions, but both have important – and different – implications. 
Whereas research in other Arctic tundra types has found increased CH4 emissions with permafrost thaw due to 
increased inundation following subsidence (Wickland et al., 2006; Johnston et al., 2014; McCalley et al., 2014; 
Natali et al., 2015), we report opposite trends in both CH4 fux and water status. Overall, the infuence of 
warming on local CH4 emissions will depend strongly on the interaction between temperature and hydrology. 
This interaction may change with time; short term thaw driven CH‐ ‐ 4 fux increases may be followed by longer‐
term drainage and drying. Given uncertainties regarding polygon succession processes (Ellis et al., 2008), we 
cannot predict the degree to which climate warming and permafrost thaw will shif low centered polygon ‐

terrain to drained, fat centered and/or high centered polygons. It is known, however, that such a directional ‐ ‐

change is possible, shifing polygon landscapes to drier, more high centered equilibria. This change has ‐

recently been observed (Jorgenson et al., 2006; Fortier et al., 2007; Godin et al., 2014), suggesting that 
continued warming should drive more such landscape transitions. To illustrate the potential magnitude of such
changes, if 25% of our study site area's low centered polygons transitioned to fat centered and high centered ‐ ‐ ‐
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polygons, a change consistent with projected changes in Alaska (Jorgenson et al., 2006), our results imply a 
19% decrease in local CH4 emissions.

In conclusion, our results demonstrate a local reduction in CH4 emissions with permafrost degradation, counter
to most published studies. We find that CH4 production and surface fux depend categorically on polygon type, 
even afer accounting for soil moisture differences. These findings show that changes in Arctic CH4 emissions 
will be site specific in sign and magnitude, depending on local geochemistry, topography, and patterns of ‐

subsidence. Changes in subsurface ice infuence hydrological fows, geochemical redistribution, and physical 
soil carbon uplif, which in turn affect microbial community and activity as well as vegetation, substrate 
quantity, accessibility, and chemistry, and electron acceptor availability (Christensen et al., 2004; 
Fiedler et al., 2004; Fortier et al., 2007; Lantz et al., 2009; Hodgkins et al., 2014; McCalley et al., 2014). These 
processes control CH4 emissions directly and indirectly, yet are rarely explicit in conceptual frameworks for 
sampling and understanding CH4 fuxes or in numerical models that represent them. Despite common 
predictions for increased Arctic CH4 emissions, this study documents a landscape scale mechanism by which ‐

the widespread permafrost thaw predicted throughout the Arctic could result in localized decreases in 
CH4 emissions.
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