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ARTICLE

Modeling the effects of EMT-immune dynamics on
carcinoma disease progression
Daniel R. Bergman1,6, Matthew K. Karikomi1,6, Min Yu2,3, Qing Nie1,4✉ & Adam L. MacLean 1,2,5✉

During progression from carcinoma in situ to an invasive tumor, the immune system is

engaged in complex sets of interactions with various tumor cells. Tumor cell plasticity alters

disease trajectories via epithelial-to-mesenchymal transition (EMT). Several of the same

pathways that regulate EMT are involved in tumor-immune interactions, yet little is known

about the mechanisms and consequences of crosstalk between these regulatory processes.

Here we introduce a multiscale evolutionary model to describe tumor-immune-EMT inter-

actions and their impact on epithelial cancer progression from in situ to invasive disease.

Through simulation of patient cohorts in silico, the model predicts that a controllable region

maximizes invasion-free survival. This controllable region depends on properties of the

mesenchymal tumor cell phenotype: its growth rate and its immune-evasiveness. In light of

the model predictions, we analyze EMT-inflammation-associated data from The Cancer

Genome Atlas, and find that association with EMT worsens invasion-free survival prob-

abilities. This result supports the predictions of the model, and leads to the identification of

genes that influence outcomes in bladder and uterine cancer, including FGF pathway mem-

bers. These results suggest new means to delay disease progression, and demonstrate the

importance of studying cancer-immune interactions in light of EMT.
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The majority of deaths from cancer are due to metastasis of
the disease1. It is thus of critical importance to understand
better the progression from in situ to invasive disease.

Underlying this progression are genetic and epigenetic events,
including mutations in pathways critical to the success of the
cancer cell (driver mutations)2. These pathways include cell
proliferation, apoptosis, and immunogenicity.

Cancer and the immune system interact in myriad ways. The
immune system modulates the tumor microenvironment (TME),
as immune signals that affect the tumor can be amplified or
repressed through feedback in response to local inflammatory
signals. This complex cell signaling occurs alongside the targeting
(and potential eradication) of the tumor by immune cells3.

The effects of the immune system on a tumor can be broadly
summarized into two branches. The cytotoxic branch of the
immune system, such as natural killer cells (NKs) and cytotoxic
T cells (CTLs), seek out and lyse tumor cells. These cells can lose
efficacy or deactivate upon carrying out their effector functions or
via PD1-PDL1 signaling4,5. The regulatory branch of the immune
system (Tregs, and other factors), inhibits the effective func-
tioning of the cytotoxic branch6. Inflammation can increase the
probability of cancer incidence and progression, with some of the
most pronounced effects seen for tumors originating in gastro-
intestinal and pancreatic tissues7,8. Recent work has shown,
contrary to the typical effects of inflammation on cancer, that
under certain conditions inflammation may not be oncogenic but
rather oncoprotective9.

Immunotherapies are beginning to realize their potential, and
show large impacts on patient health and survival10,11, and may
even provide a cure for certain hematopoietic cancers via anti-
CD19 CAR-T cells12. The presentation of antigens on tumor cells
is recognized by innate immune cells that are transported to
lymph nodes where T cells (and other components) can be
activated13. The tumor also engages in processes that can indir-
ectly modify the TME, for example by releasing transforming
growth factor-beta (TGF-β), which can shift the TME towards a
tumor-supportive environment by enhancing immunosuppres-
sion via activation of Tregs13.

Epithelial-to-mesenchymal transition (EMT) describes a
reversible process by which cells displaying an epithelial pheno-
type transition into cells with a mesenchymal phenotype. Epi-
thelial cells are—in part—defined by tight cell–cell adhesion.
Mesenchymal cells exhibit less adhesion, greater ranges of moti-
lity, and may possess stem-like properties14, although controversy
regarding “stemness” and EMT remains15,16. Recent work has
shown that—rather than being a binary process—at least two
stable intermediate EMT states exist17,18. Ongoing investigations
into the plasticity and stability of EMT overlap with discussions
elsewhere, e.g., of discrete vs continuous processes during cell
differentiation19. Intermediate states have emerged as a central
mechanism by which cell fates (and the noise inherent within
them) can be controlled20–22.

Two features of the mesenchymal phenotype are of particular
relevance in the context of cancer–immune interactions. (i)
mesenchymal tumor cells (MTC) proliferate less than epithelial
cells, we refer to this as mesenchymal growth arrest (MGA), and
can be considered related to (in the sense of quiescence) the
“stemness” phenotype of the MTCs23. (ii) mesenchymal cells are
less susceptible to immune clearance24. As a cell is targeted by
cytotoxic immune cells for clearance, a physical connection
between the two cells must be established. This immunological
synapse—mediated in part by T-cell receptors bound to antigens
and the major histocompatibility complex on the target cell—is
downregulated in mesenchymal cells, thus inhibiting the forma-
tion of the synapse24. We refer to this phenotype as mesenchymal
immune evasion (MIE).

In addition to the prominent role it has in metastasis, EMT has
more recently been shown to also regulate other aspects of tumor
progression14,25 and tumor dormancy26. TGF-β, a master reg-
ulator of EMT27, is at once implicated heavily in tumor-mediated
immune responses since Tregs release TGF-β upon arriving at the
tumor site24. In hepatocellular carcinoma, for example, there is
direct evidence linking Treg-secreted TGF-β with EMT28. Thus,
even by considering only the TGF-β pathway, we find compelling
evidence that these three core components (the tumor, the
immune system, and EMT) interact. It, therefore, strikes us as a
priority to develop models to understand how the interactions
between each of these three components affect cancer incidence
and progression. Although EMT can be induced by a host of
signaling factors in addition to TGF-β, to constrain model
complexity we consider only the effects of one signaling pathway
in the model developed.

Mathematical oncology, that is, mathematical models of cancer
incidence, progression, and treatment, has become a well-
developed field; many models have offered insight into the cel-
lular interactions underlying cancer and its interplay with the
immune system, including older29–31 and more recent
works32–46. These studies have increased our understanding of
how tumors grow in the presence of various immune compo-
nents, and how treatment regimes can be designed to maximize
the efficacy of cytotoxicity while minimizing risks to the patient.
However, to our knowledge, no models have addressed how the
effects of EMT alter interactions between the immune system and
cancer, and the subsequent implications for treatment.

Here we develop a model with the goal of studying interactions
between the tumor, the immune system, and EMT. We seek to
describe a set of crucial molecular and cellular interactions in
epithelial tumor cells (ETCs), including effects owing to DNA
damage and mutation, to investigate the probability that in situ
tumors will progress and, if so, when. A recent model of
cancer–immune interactions9 described the effects of the TME on
the risk of cancer, and we build on the core cell cycle component
of this model, adding new interactions to the immune component
of the model (which was previously modeled by a single inter-
action), as well as adding the effects of EMT. In doing so, we shift
the focus of the previous model from cancer initiation to cancer
progression. We do this to reflect the fact that cancer progression
hinges on escape from the immune system and the fact that EMT
has a more well-defined role during progression and metastasis.
We seek to understand whether this more complex immune
module will change our understanding of inflammatory effects on
the tumor, and how the epithelial–mesenchymal axis
influences these.

To test the model, we perform high-throughput analyses of
data from The Cancer Genome Atlas (TCGA)47, using two
clinical endpoints: the overall survival (OS) and the disease-free
interval (DFI)48. To test model predictions on the effects of
mesenchymal cell properties, we take a two-pronged approach:
test whether EMT and inflammation can jointly separate clinical
cohorts for a selection of carcinoma sub-types; then for those sub-
types identified, we predict which genes regulate properties of
tumor invasiveness. In the latter part, we find multiple lines of
evidence that our model predictions agree with the literature, and
make a number of new predictions. Following guidelines48, we
investigated 14 TCGA tumor types recommended for analysis of
the DFI endpoint.

In the next section, we analyze the general properties of the
model, and we rigorously assess model behaviors via global “one-
at-a-time” sensitivity analysis, which identifies parameters that
are crucial for progression. We study these in more depth,
focusing on the competing effects of EMT and of the immune
system on progression, and discover that EMT intricately
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regulates progression: under certain regimes, a careful balance of
EMT- and immune-driven processes can prolong invasion-free
survival. We then test these predictions with a data analysis
pipeline we develop using TCGA. We find strong evidence for the
synergistic effects of inflammation and EMT for patients with
bladder and uterine cancers.

Results
A multiscale agent-based model of EMT-immune-tumor cell
interactions to study tumor progression. We begin by investi-
gating general features of the model to establish baseline condi-
tions and assess the impact of different model components on the
key measured outcomes: the probability of progression, and the
time to invasion. During the cell cycle, cell fate is determined by
rules that are influenced by EMT and immune interactions
(Fig. 1A), e.g., if a cell undergoes EMT, its probability of pro-
liferation is reduced; if it gains a mutation in the apoptosis
pathway, its probability of apoptosis is reduced. Meanwhile, NK
cells and CTLs attempt to clear malignant tumor cells, and
deactivate upon successful tumor cell clearance; Tregs inhibit this
cytotoxic activity (Fig. 1A Inset).

The inflammation cycling scheme for a typical in silico patient
consists of alternating high and low regimes with corresponding
effects on the cell populations (Fig. 1B). For this patient, after
warmup, mutations are observed at a rate low enough that they
are cleared by cytotoxic cells for ~700 cell cycles, after which the
mutated and thus invasive cell population begins to grow, leading
to large recruitment of CTLs and Tregs and a peak in the
concentration of TGF-β. After 841 cell cycles, the proportion of
invasive cells reaches 50%: the threshold defining progression,
thus this patient has a time to the invasion of 841 cell cycles or

631 days. Beyond this time point, we see a rapid increase in the
number of invasive cells until it comprises 100% of the tumor
population. Interesting EMT dynamics are also observed, the
proportion of MTCs peaks shortly after the tumor becomes
invasive, subsequently, the majority of cells transition back to an
epithelial state. We observe that although the NK population
varies little over the simulation, CTLs and Tregs both undergo
large expansions. CTLs and Tregs also appear to oscillate,
however, note that this is a direct result of the inflammation state,
and is not immune cell-intrinsic.

In order to quantify patient dynamics and invasion-free
survival at a population level, we simulate large cohorts of
patients similar to the single patient shown in Fig. 1B. For a
cohort of 500 patients, we simulate survival curves and see that
large number progress quickly to form invasive tumors, whereas a
few lie in the tail of the distribution after the mutagenic event that
a large number of tumors quickly progress while others take some
time before progressing Fig. 1C. By ~1200 cell cycles (2.5 years),
all tumors have become invasive.

Global sensitivity analysis identifies a hierarchy of parameters
in terms of their impact on model outcomes. Exploring the
parameter spaces of systems biology models adequately is—in
general—a hard problem. Fitting parameters via (Bayesian)
parameter inference is advisable wherever possible49. Here,
despite a wealth of data on tumor growth dynamics, a lack of
sufficient molecular measurements (i.e., immune cell dynamics)
precludes inference of the full model. In addition, although
inference schemes for agent-based models are developing50,51,
simulation times remain a hurdle52. Parameters for some com-
ponents of the model studied previously can be constrained9,
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Fig. 1 Overview of model structure and simulation outputs. A Schematic depiction of agent-based model components; each of the 10 columns represents
one tumor cell divided into three compartments representing the state of three pathways with tumorigenic potential; blue/red denotes baseline/altered
pathway activity. Black arrows depict cell fate regulation in each cell cycle. Inset depicts major interactions between the immune system and tumor cells.
B A representative simulation of one patient. The parameter values used can be found in Table S1. The inflammation cycling scheme (red) is shown above
the patient dynamics. The vertical dashed line denotes the end of the warmup period.Mutmalignant cells,Mes mesenchymal cells. C Survival curve for one
cohort of patients for parameter values given in Table S1.
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however, to characterize the full parameter space including new
elements of our model here we use sensitivity analysis.

The results of Morris one-step-at-a-time sensitivity analysis on
the 31 model parameters (Fig. 2) find a subset of parameters with
much higher levels of sensitivity than others. The two most
influential by this analysis are the recruitment rates of Tregs and
CTLs in the low inflammation state. The parameters influencing
EMT are also identified as influencing model outcomes. Since one
goal of our analysis is to assess the specific effects of EMT on
immune-cancer dynamics, parameters MIE and MGA are of
particular interest. In addition, inflammation parameters con-
trolling the duration of the high/low inflammation states (IHD
and ILD) are of interest because they show moderate influence
over model outcomes, and can readily be targeted by therapeutic
treatments. For immune cell dynamics, the secretion of TGF-β by
Tregs is found to be sensitive and thus will also be studied further
below.

Notably, many of the most-sensitive parameters relate to the
dynamics of immune cell populations; these prompt recommen-
dations of experimental designs that would allow for reductions
in the uncertainty in these parameters. In vitro, direct observation
of ETC vs. MTC states is possible, and measurement of the
relative clearance rates of ETCs vs MTCs by various immune
components (NK cells, CTLs) would be informative. In vivo,
although we may not be able to determine ETC vs MTC
phenotypes at single-cell resolution, the efficacy of immune
populations for tumor reduction, as well as (given its competing
roles) the effects of TGF-β on tumor size would provide valuable
information.

Model predictions reveal that properties of the mesenchymal
cell phenotype alter invasion-free survival times. To study the
effects on EMT and MTC phenotypes on tumor dynamics, we
analyzed the invasion-free survival times predicted by the model
in response to changes in three model parameters: MIE, MGA,
and the levels of TGF-β that are produced by Tregs. We varied
each of these three parameters over a prior range, and for each
parameter value, we simulated the model 1000 times, i.e., creating
an in silico cohort of 1000 simulated patients, where simulated
patients were censored after 2000 cell cycles. We then performed
survival analysis for each cohort by computing the Kaplan–Meier
(KM) curve associated with time to invasion. With all other
parameters held constant, we studied the effects of MIE on

invasion-free survival, varying MIE in the range (0.2, 0.8)
(Fig. 3A). As MIE increases, the invasion-free survival decreases
monotonically (Fig. 3D); i.e., as the subpopulation of invasive
cells becomes more resistant to immune clearance, the tumor as a
whole grows more resilient and thus can grow faster.

The relationship between MGA and invasion-free survival
times exhibits a different trend. With all other parameters held
constant, we studied the effects of MGA on invasion-free survival,
varying MGA in the range [0.1, 0.4] (Fig 3B). We found that
for smaller values of MGA, increasing MGA results in increasing
the invasion-free survival, however for larger values, increasing
MGA led to the invasion-free survival times decreasing
(Fig 3E). This non-monotonic relationship is explored in greater
detail below.

TGF-β varies according to its production by tumor cells and its
production by Tregs. We assess the effects of varying the
production of TGF-β by Tregs on invasion-free survival (Fig 3C,
F), and find that at lower production rates of TGF-β, the survival
curve initially declines faster, whereas higher production rates
result in a steeper drop off in survival later. Although lower values
of TGF-β production lead to a steeper initial decline, these
differences vanish for higher values of TGF-β. The steeper initial
decline may be owing to the rapid clearance of tumor cells by
adaptive immune cells before Tregs have had sufficient time to
modulate the TME through the secretion of TGF-β.

Analysis of simulation outcomes identifies a key EMT regime
that maximizes invasion-free survival times. To investigate how
competing interactions within the inflammatory TME affect
EMT, we explored the effects of varying inflammation on
invasion-free survival. Model simulations were used to create in
silico patient cohorts for different inflammation conditions. Three
conditions were compared: permanently low inflammation; per-
manently high inflammation; or variable (periodic high/low)
inflammation. For each inflammatory condition, we varied the
mesenchymal parameters (see Fig. 4), and for each choice of
parameters, we simulated 1000 patients, censoring them after
2000 cell cycles. We then performed survival analysis by com-
puting the KM curves associated with time to invasion. Com-
pared with the other inflammation states, permanently high
inflammation results in less-variable outcomes with respect to
differences in mesenchymal parameters (Fig. 4). When inflam-
mation was either permanently or temporarily in the low state,

Fig. 2 Global sensitivity analysis of model parameters. The sensitivity (μ*) denotes the average absolute change in the time to invasion over the range of
variation of the parameter.
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the invasion-free survival time was negatively correlated with
MIE (Fig. 4A, B). For varying MGA, the invasion-free survival
varied non-monotonically (Fig. 4C, D). For each inflammation
condition, a local maximum was found with respect to MGA,
with a peak close to ΔMGA= 0.2.

These differences in the mean invasion-free survival times lead
to predicted variation in clinical outcomes: tumors are contained
in situ for up to twice as long as they would have been otherwise
owing to variation in the rates of MGA. This points to possible
therapeutic outcomes: the model predicts that a patient
experiencing intermittent high inflammatory attacks will benefit
directly from EMT-directed therapies, however, patients for
whom a relatively high inflammation state is observed chronically
will not obtain this benefit.

In contrast, when MIE is varied under different inflammation
cycling schemes, for all the conditions studied, the model predicts
that increasing MIE will decrease the invasion-free survival (i.e.,
worsen cancer progression and prognosis). Thus, reductions in
MIE will lead to improvements in patient outcomes. To
summarize the mesenchymal properties of immune evasion and
growth arrest, we plot the joint density of these parameters
against the time to invasion (Fig. 4E). We see that for a given
value of MIE, there is a value of MGA that maximizes the time to
invasion.

Testing this prediction in vivo is challenging since the
definition of MGA is based on tissue-culture assays23, the
equivalent of which is unavailable in animal models. Further-
more, the unimpeded cancer dynamics of progression that the

Fig. 3 Effects of mesenchymal tumor cell properties on the time to invasion. Trajectories of one patient per cohort including warmup and 2000 cell
cycles for A mesenchymal immune evasion (MIE); B mesenchymal growth arrest (MGA); C production of TGF-β by Tregs. D Average times to invasion for
a patient cohort of 1000 for changes in MIE. E Average times to invasion for a patient cohort of 1000 for changes in MGA. F Average times to invasion for
a patient cohort of 1000 for changes in Treg production of TGF-β.
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model simulates are clearly at odds with clinical practice. The
model also assumes precisely known onset of tumorigenesis—not
available in experimental or clinical models, and is confounded by
tissue-specific variation53. Thus, to assess mesenchymal
phenotype-associated model predictions against data, we resort
to the use of gene expression profiles across a range of tumors,
available through the cancer genome atlas.

Model predictions on the influence of mesenchymal pheno-
types on clinical outcomes are supported by TCGA data ana-
lysis. To test the prediction that MGA rates exert essential control
on invasion-free survival times (Fig. 4E), we performed an ana-
lysis of 14 cancer types from TCGA and assessed the importance
of mesenchymal proliferation-associated genes against clinical
outcomes. In order to do so, we must first connect clinical

Fig. 4 Effects of inflammation on the time to invasion under different cycling schemes. A, B As MIE varies, survival curves (each of 200 patients)
and corresponding bar plots to summarize the mean time to invasion for each cohort are shown. P values for log-rank tests on the corresponding
survival curves are shown. C, D. As MGA varies, survival curves and corresponding bar plots to summarize the mean time to invasion for each
cohort are shown. P values for log-rank tests on the corresponding survival curves are shown. E Summary of the effects of MIE and MGA on invasion-free
survival.
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outcomes with EMT-related phenotypes. This can be achieved
using either individual genes or gene signatures, e.g., via gene
ontology (GO) terms54,55. We chose to take an unbiased
approach (see Methods): first, to identify relevant cancer types,
we studied whether GO terms were statistically associated with
survival; and second, from this set of cancer types and GO terms,
we exhaustively searched all gene pairs for their (joint) impact on
the DFI as means to study how joint changes in immune- and
EMT-related processes impacted patient outcomes (Supplemen-
tary Fig. S5).

Using OS as an endpoint, and applying strict significance
thresholds (see Supplementary Methods Section 3.1), we found
that for three cancer types, EMT-inflammation-associated genes
predicted clear differences between patient groups. The three
significant tumor types were bladder (BLCA), uterine (UCEC),
and liver cancer (LIHC) (Supplementary Figs. S6–S8).

Using DFI as an endpoint, we modeled the relative effects of
EMT-inflammation-associated genes by clustering patients from
each tumor type into two groups (high or low) based on their DFI
(see Methods); these data contain 184 patients for BLCA, 114
patients for UCEC, and 311 patients for LIHC. For this clustering,
the predictive accuracies (obtained by leave-one-out cross-
validation) were 0.68 (BLCA), 0.69 (UCEC), and 0.621 (LIHC)
(Supplementary Figs. S9–S11). Several of the other 11 cancer
types tested also displayed mesenchymal proliferation-associated
effects, however, these cancers were filtered out at the previous
step, as they did not meet the significance thresholds set above.

We used Gaussian process classification to identify relation-
ships between mesenchymal proliferation genes based on their
ability to predict invasiveness (high or low-DFI). We focus on
interactions within the TGF-β and Wnt pathways, given their
important roles in mediating EMT56, and regulating cancer stem
cell identity57,58. TGF-β and Wnt pathways interact at multiple
points, including through the LEF1/TCF complex59, and via
dimerization of their respective membrane-bound receptors60.
We found that for both canonical and non-canonical Wnt
signaling, higher levels of signaling lead to worse outcomes
(Figs. 5A–C and 6A–C), in agreement with the literature57,58. The
prediction for each gene pair is summarized in the right-hand
column: a slice through the co-expression plot (purple line in
middle column) shows that as the co-expression of the Wnt
ligand and its receptor increases, the probability of a high-DFI
(better outcome) decreases. This is seen consistent across Wnt
ligand–receptor gene pairs, with the exception in UCEC of
WNT11 and FZD8 (Fig. 6B), where the co-expression effects are
less clear. Overall, these predictions agree with expected
tumorigenic roles for canonical61,62 and non-canonical60,63,64

Wnt signaling in the bladder (BLCA) and uterine (UCEC)
cancers.

Several other gene pairs also predicted differences between high
vs low-DFI patient groups (Figs. 5D–F and 6D–F). For the gene
pairs (FGFR2, FBXW4) and (FGFR2, FOXF1), the joint distribu-
tions of these gene pairs showed unimodal peaks, thus
recapitulates the distribution of MGA that was produced through
model simulations (Fig. 4E). We see that in independent TCGA
data analysis, as predicted in the model, there exists a “goldilocks”
region with respect to the MGA of the mesenchymal phenotype
that most benefits invasion-free survival.

The TCGA data analysis led to further predictions regarding
the effects of gene co-expression on patient outcomes. In Fig. 5D
(middle panel), we show that a tumor-suppressor effect of FGFR2
in bladder cancer is predicted by our model. Although FGF
signaling plays opposing roles in cancer, and FGFs can be
upregulated in tumors relying on FGF signaling for growth65,
FGFR2 is implicated as a tumor suppressor in prostate and
bladder cancer66,67. We also predict a suppressive role for FBXW4

(Fig. 5D, middle panel): for given FGFR2 expression, increasing
FBXW4 leads to better outcomes. This agrees with literature
suggesting that FBXW4 is lost or mutated in almost 40% of
urinary tract cancers68. This analysis predicted that FGFR2 and
FBXW4 act synergistically in BLCA, such that higher expression
levels of both lead to greater outcomes than the high expression
of either gene alone (5D, middle and right panels). In
comparison, for UCEC, the role is less clear, although the
tumorigenic effect of FGFR2 in uterine cancer is evident at high
levels of FBXW4 (6D), in line with previous studies reporting
mutations that provide constitutive activation of FGFR2 in a
subset of endometrial cancer69.

For BLCA, our analysis predicts that high FGFR2 and FOXF1
co-expression will improve patient outcomes (Fig. 5E). The tumor
suppressor FOXF1 is a p53 target and it is epigenetically silenced
in breast cancer70,71, however, to our knowledge no previous
tumor-suppressive role for it has been reported in BLCA, either
alone or co-expressed with FGFR2. This effect is not seen for
UCEC (Fig. 6E), where our analysis predicts that the effects of
FGFR2 are tumorigenic in this region, but not affected by FOXF1
expression (i.e., no significant differences between high and low
co-expression). We also predict that high co-expression of FGFR2
and HAND2 improves outcomes in UCEC (Fig. 6F); in contrast
to the effects seen for the co-expression of FGFR2 with either
FBXW4 or FOXF1 (Fig. 6D, E), where, in each case, higher FGFR2
expression led to worse outcomes. HAND2 antagonizes FGF-
dependent epithelial cell proliferation and is a critical regulatory
component of both healthy and cancerous endometrial
proliferation72,73. For BLCA, we observe a less pronounced
although still suppressive effect owing to HAND2 expression
(Fig. 5F), in line with the previous reports74.

Discussion
Despite the importance of interactions between cancer and the
immune system, as well as the role of EMT in cancer, to the best
of our knowledge, no model has previously combined these three
components. We saw this as a particularly pressing need given the
shared factors influencing all these components, including TGF-β
and Wnt signaling. We developed an agent-based model to study
cancer, the immune system, and EMT, during the progression
from in situ tumor to invasive disease. The model predicted
mesenchymal growth rate as a crucial parameter in determining
invasion-free survival. Via TCGA data analysis, we studied the
effects of mesenchymal phenotype-associated genes on patient
outcomes and found that EMT-associated genes worsened
prognosis, in agreement with the predictions of the model. We
strived to constrain model complexity wherever possible, for
interpretability, and so that the model is of use to make biological
statements. Nonetheless, the solutions of the model that were
obtained through simulation rely crucially on the assumptions
that were made during model construction. As data were not
available for model fitting and parameter inference, the extent to
which model simulations reflect the underlying biology remains
to be carefully quantified. Below, we discuss the limitations of this
model and describe the future work that will be needed to
overcome them.

We found that the model recapitulated carcinoma dynamics.
Parameter sensitivity analysis identified model parameters
exerting key control over model behavior. Focusing on these led
us to identify that increasing MIE and increasing Treg TGF-β
production both lead to shorter invasion-free survival times.
However, varying the level of inflammation led to paradoxical
effects with regards to MGA: under regimes with periods of low
inflammation, an optimal level of MGA can improve outcomes
and maximize invasion-free survival. That EMT alters the
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Fig. 5 Genes predictive of invasiveness in BLCA. A For gene pair WNT2 and FZD8, the left panel shows the posterior variance on log–log expression plot
of the predicted probability overlaid with patient samples (red = low-DFI, black = high-DFI), 90% confidence interval box drawn for standardized
expression values (cyan); middle panel: posterior log probability of high-DFI over the same region as left, where the diagonal line (purple) shows the co-
expression trend (diagonal line through the 90% CI of standardized expression values); right panel: posterior log probability of high-DFI plotted against the
expression of FZD8, values simulated along the diagonal (purple) corresponding to the middle panel. B As above for WNT11 and FZD8. C As above for
WNT5A and FZD2. D As above for FBXW4 and FGFR2. E As above for FOXF1 and FGFR2. F As above for HAND2 and FGFR2.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02499-y

8 COMMUNICATIONS BIOLOGY |           (2021) 4:983 | https://doi.org/10.1038/s42003-021-02499-y | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 6 Genes predictive of invasiveness in UCEC. A For gene pair WNT2 and FZD8, the left panel shows the posterior variance on log–log expression plot
of the predicted probability overlaid with patient samples (red = low-DFI, black = high-DFI), 90% confidence interval box drawn for standardized
expression values (cyan); middle panel: posterior log probability of high-DFI over the same region as left, where the diagonal line (purple) shows the co-
expression trend (diagonal line through the 90% CI of standardized expression values); right panel: posterior log probability of high-DFI plotted against the
expression of FZD8, values simulated along the diagonal (purple) corresponding to the middle panel. B As above for WNT11 and FZD8. C As above for
WNT5A and FZD2. D As above for FBXW4 and FGFR2. E As above for FOXF1 and FGFR2. F As above for HAND2 and FGFR2.
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dynamics of cancer progression is well-established14,75; here, we
are able to identify particular properties of the mesenchymal
phenotype responsible.

To capture the essential characteristics of the model, we
summarized model simulation of in silico patient studies with a
single parameter: the invasion-free survival time. There are, of
course, many trajectories that result in progression to invasion.
Further analysis of the transient cell dynamics in tumors during
cancer progression is needed to gain insight into the EMT-
associated dynamics. A strong assumption of the model is that all
cells are well-mixed, i.e., we do not take into account spatial
effects. Although these are of course crucial, it is important to first
characterize EMT-immune–tumor interactions in a well-mixed
system, to define a baseline. An important extension of the model
will be to include spatial interactions among tumor and
immune cells.

We set out to study phenomena resulting from
tumor–immune–EMT interactions, and the model we developed
predicted that a specific property of the mesenchymal phenotype
—the MGA—exerted key control over tumor invasiveness. In
order to test this prediction, we employed a data analysis fra-
mework using gene expression data from TCGA. In support of
the model prediction, we found that mesenchymal-associated
genes controlled outcomes and predicted differences between
high vs. low-DFI analysis yielded predictions of the effects of
single genes or gene pairs, many of which corresponded to known
effects, including the effects of both canonical and non-canonical
Wnt signaling on tumor progression. Our modeling also pre-
dicted opposing roles for FGF signaling in the bladder and uterine
cancers: where FGFR2 exerts a tumor-suppressor effect in bladder
cancer yet a tumorigenic effect in uterine cancer. Evidence for
these opposing roles already exists in the literature, but notably,
through our modeling, we also predict entirely novel interactions
between FGFR2 and other transcription factors (FBXW4, FOXF1,
and HAND2) that act to enhance or suppress the effects of FGFR2
alone, and could offer novel therapeutic strategies.

In future work, further development of the inflammation
module is important given the large and at times paradoxical
roles that the inflammatory state exerts on tumor cells and
invasion-free survival. At present, inflammation is modeled as
cycling between high and low schemes of variable duration,
independent of other model components. Yet, several known
factors contribute to the inflammatory state. For example, model
extensions could assume that the level of inflammation depends
on the number of and the degree of mutations that tumor cells
harbor. The competing effects that TGF-β exerts on the tumor

and its microenvironment also warrant further investigation. We
found that—below a certain threshold—reduction of TGF-β
increases the time to invasion, i.e., reducing TGF-β in the TME
benefits survival. Experimental work in support of this result
includes a study of TGF-β tumor suppression in pancreatic
cancer through the promotion of EMT76. The TGF-β pathway is,
however, implicated in numerous other cellular signaling pro-
cesses besides EMT; changing TGF-β concentration even in a
local environment could have large off-target effects. Indeed, it
has been shown that TGF-β promotes invasion and heterogeneity
while suppressing cell proliferation in squamous cell carcinoma77.
To account for this complex signaling, future work should
incorporate the effects of signaling factors downstream of TGF-β
on the cancer dynamics. It is also important to note that in this
model, EMT is initiated entirely by TGF-β. Although TGF-β does
play a large role in cancer EMT, it is by no means the only factor
at play; in reality, cells must contend with and respond to a milieu
of EMT-associated signals. There are also other cells in the TME
that can express mesenchymal markers, most notably cancer-
associated fibroblasts78, thus presenting a possible confounding
variable in TCGA gene expression analysis; future analyses of
single-cell data sets will help to deconvolute these sources.

Tumor heterogeneity often helps the tumor to evade immune
effects and complicates our approaches to treatment. A rigorous
study of the consequences of the increased heterogeneity that
follows disease incidence (i.e., decanalization79) is too often
sidelined, despite mounting evidence in support of its prominent
role in cancer evolution80–82. Despite these challenges, great
progress in predicting disease complexity continues to be made.
As we are rapidly approaching a new generation of immu-
notherapies, it is these very complexities that we must better
understand in order to control or eradicate the disease.

Methods
We develop an evolutionary agent-based model to describe the relationships
between cancer, the immun
e system, and EMT, building on the cell cycle and tissue-cell components described
in ref. 9. We use simulation and sensitivity analysis to analyze the model, and
compare model outputs with clinical outcomes through TCGA data analysis.

In the agent-based model, agents are cells that initially comprise an in situ
tumor, i.e., one that exhibits no invasive properties. During model simulation,
tumor cells can acquire mutations altering one or more of three key pathways
(Fig. 1A), beginning a progression towards invasiveness. EMT affects tumor growth
dynamics: we model tumor cells as in one of two states: epithelial tumor cells
(ETCs) and MTCs and permit transitions between these states (we leave the
addition of intermediate EMT states as future work83,84). Tumor cells—along with
their individual mutational profiles and EMT status—are the central variables in
the model. In addition, three types of immune cells—NK cells, CTLs, and Tregs—
are included as continuous variables. In response to the recognition of neoantigens,

Table 1 Description of the model.

Component Variable Type Governing equations

Tumor cells NC Agent-based ρP ¼ pð1þ δPΔPÞð1� ζΔMGAÞ
1

1þ NC=K0
ð1aÞ

ρA ¼ dCð1� δAΔAÞ ð1bÞ
ρNK ¼ δMUT

NNK
NC
K1
þ NNK

ENK
1þ NTreg

K2

ð1� δIEΔIEÞð1� ζΔMIEÞ ð1cÞ

ρR ¼ 1þ ζpð1þ δPΔPÞΔMGA
1

1þ NC=K0
ð1dÞ

NK cells NNK ODE N0
NK ¼ σNK � dNKNNK ð2Þ

CTLs NCTL ODE N0
CTL ¼ σCTLN

�
MUT � dCTLNCTL ð3Þ

Tregs NTreg ODE N0
Treg ¼ σTregN

�
MUT

τ

1þ τ=K4
� dTregNTreg ð4Þ

TGF-β τ Algebraic τ= τMUTNMUT+ τTregNTreg (5)

Tumor cells (NC) are modeled discretely as agents; all other variables are modeled continuously. Each tumor cell exists in one of 23 states by mutation profile, see Methods for description.
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these populations engage in a set of interactions with one another and with the
tumor, shaping the disease trajectory. The local inflammatory conditions of the
TME in general, and the concentration of TGF-β, in particular, are included as
modulators of the immune system and of tumor–immune interactions, including
induction of EMT. An overview of equations governing the mode is given in
Table 1, and all parameter values used along with their descriptions can be found in
Supplementary Table S1. The procedure to simulate the model is given by pseu-
docode in Algorithm 1.

Model development: definition of model states and parameters. We developed
an agent-based model of tumor evolution consisting of three interacting dynamic
components: the tumor cells; the immune system; and the role of EMT.

Tumor cell dynamics and evolution. At each time step, tumor cell fate decisions are
made according to a set of probabilities given in Eq. (1) (Table 1). These define the
probability that a tumor cell will undergo proliferation (ρP), apoptosis (ρA),
clearance by NK cells (ρNK), or rest in GO (ρR).

Following cell fate updates, the mutational signature of each cell is updated. To
define the signature, we consider three key phenotypes, as in9. The “proliferation”
mutation increases the probability of the cell exiting Go to proliferate; the
“apoptosis” mutation decreases the probability of a cell undergoing apoptosis; and
the “immune evasion” mutation decreases the probability that a mutated cell will
be cleared by immune cells. Initially, tumor cells do not harbor any of these
mutations, which are acquired during the simulation and faithfully passed on to
daughter cells. For a given cell, δP, δA, and δIE are boolean values that indicate if the
cell has the proliferation, apoptosis, or immune evasion pathway mutations,
respectively.

Immune system dynamics and inflammatory states. The immune system is modeled
by three immune cell types: NKs, CTLs, and Tregs. The population sizes of these
three components are given NNK, NCTL, and NTreg, respectively, and their dynamics
are given in Eqs. (2–4) in Table 1. NKs, part of the innate immune response, is not
affected by tumor growth but can clear tumor cells. CTLs, part of the adaptive
immune response, also clear tumor cells (with greater efficiency than NK cells), and
are recruited to the tumor in response to its growth. Upon tumor cell clearance, the
respective NKs and CTLs are deactivated and removed from the total immune
populations. Tregs act to suppress the function of NKs and CTLs. In addition,
Tregs release TGF-β (defined in the model by τ), which increases the probability
of EMT.

Inflammation is modeled as a cycling scheme between low and high
inflammatory states, as previously modeled9, with varying inflammation high and
low durations, controlled by the parameters IHD and ILD, respectively. The
inflammatory scheme is fixed for the entirety of the simulation. At the preset times
at which the inflammatory state switches (low to high, or high to low), the immune
activity parameters are updated according to the values given in Table S1.

The role of EMT on tumor dynamics. Each tumor cell exists in either an epithelial or
mesenchymal state. (partial EMT, while playing essential roles, is outside of the
model scope considered here.) Cells are modeled by a continuous EMT score
between 0 and 1, which is dependent upon its past state and the external TGF-β
concentration (Eq. (6) in the Supplementary Text). If the EMT score is above a
fixed threshold (given by TMES, Table S1) in a given cell cycle, the cell undergoes
EMT and is assigned as a MTC; otherwise, it becomes/remains an ETC. The
boolean parameter ζ indicates the cell fate: mesenchymal (true) or epithelial (false).
When a cell undergoes EMT or the reverse (MET), its responses to the TME are
affected. MTCs experience a decrease in proliferation probability relative to ETCs
(MGA) and an increase in immune evasiveness (MIE). The parameters that control
these changes are ΔMGA and ΔMIE. These parameters are both bounded on the
interval [0, 1] and represent the proportion change from the epithelial state. That is,
ΔMGA= 0 corresponds to no reduction in proliferation for MTCs and ΔMGA= 1 to
a complete reduction, i.e., no proliferation of MTCs. For ΔMIE, a value of 0 indi-
cates no additional evasion of the immune system and a value of 1 indicates
complete evasion of the immune system, i.e., MTCs will never be cleared by
immune cells.

Model development: algorithmic implementation and simulation
Initializing the model. Simulations are initialized with N0 in situ tumor cells. Given
that different parameters can give rise to different steady states, we simulate a
warmup period consisting of a fixed number of cycles where no mutations occur
and only NK cells are present (Algorithm 1). This allows the tumor to complete its
exponential growth phase and reach carrying capacity. We determined that the
tumor carrying capacity was reliably reached after 1000 cell cycles of warmup. We
then begin all in silico experiments from these post-warmup conditions. After the
warmup period, mutations are permitted and the adaptive immune response (CTL
and Treg populations) is turned on. Thus, any changes to the tumor after warmup
are owing to its evolving mutational profile and simultaneous changes in the
surrounding immune conditions.

Algorithm 1
Simulation of one tumor
Result:Determine time to progression
initialization;
for Pre-set number of warmup cycles do

Assign and apply tumor cell fate decisions (Eq. (1));
Update NK population (recruitment, apoptosis, and exhaustion);

end
while Proportion of mutant tumor cells < 50% of total do

Assign and apply tumor cell fate decisions (Eq. (1));
for Cells that proliferate do

if rand() < probability of mutation then
Cell acquires new mutation; reset cell-autonomous mutation probability to 0;

else
Increase cell-autonomous mutation probability

end
end
Update immune population dynamics over time span of one cell cycle (Eq. (2)–(4));
Update TGF-β concentration (Eq. (5));
Update the EMT score for each tumor cell;

end

Simulation of tumor cell dynamics. Each tumor cell is updated once every 18 hours
(the approximate length of one cell cycle). During each cycle, the fate of each cell is
assigned, based on its probability of undergoing proliferation (ρP), apoptosis (ρA),
immune clearance (ρNK), or resting in G0 (ρR), according to Eq. (1) in Table 1. The
probability of proliferation is increased by a mutation occurring in the proliferation
pathway and decreased if the cell is in a mesenchymal state. The probability of
apoptosis varies according to the mutational profile of the cell. The probability of
clearance by immune cells is affected by the number of mutations harbored: cells
with one or more mutations are assumed to be more immunogenic and have a
higher probability of being cleared by the immune system. Cells with mutations to
immune evasion pathways, or which are in a mesenchymal state, are in a state of
increased “immune evasiveness” and as a result, their probability of immune sys-
tem clearance is reduced.

During every cell cycle, all tumor cells that proliferate have a probability of
gaining a mutation in one of the three pathways investigated. This probability is
cell-specific and changes over time obeying two simples rules: gaining a mutation
resets this probability to 0; not gaining a mutation increases this probability by a
fixed amount, 10−4. The EMT score is also updated at the end of every cell cycle, if
applicable, causing cells to change fates from ETC to MTC, or vice versa.

Simulation of immune population dynamics. Once all tumor cells have been
updated and fates chosen accordingly, non-tumor model components are updated.
Immune cell populations are updated in two steps. First, immune cell exhaustion
(via loss of efficacy or PD1 signaling) is calculated based on the number of tumor
cells cleared. Second, immune cells (NKs, CTLs, Tregs) are updated according to a
system of coupled ordinary differential equations that govern their population
dynamics (See Table 1). CTL and Treg recruitment rates are dependent on the
number of immune-cleared tumor cells, corresponding to their role in the adaptive
immune system relying on antigen stimulation; in addition, TGF-β enhances the
recruitment rate of Tregs. Finally, the concentration of TGF-β is updated; this
depends on the dynamics of Tregs and—to a lesser extent—invasive tumor cells, as
sources of TGF-β in the model.

Model development: summary statistics and analysis of outcomes
Summary statistics for the progression to invasive disease. When the proportion of
tumor cells that harbor at least one pathway mutation reaches 50% of the total
tumor size, the tumor is defined as having progressed to an invasive state. The
summary statistic tracked for all simulations is the “time to invasion,” i.e., the
number of cell cycles until the tumor enters an invasive state, after warmup. If this
threshold is never reached, the simulation ends when the maximum number of
cycles is reached.

Global sensitivity analysis and parameter estimation. To study parameter sensi-
tivity, we implemented Morris a one-step-at-a-time global sensitivity analysis.
Parameters are varied one at a time from a set of sampled “base” points and the
resulting simulations recorded85,86. For each run, we simulated 1000 patients and
initialized the Morris sampling with 30 points in parameter space (at least 10 are
recommended in ref. 86. Parameter sampling is a choice of prior parameter dis-
tributions. For many parameters, such as for the immune population dynamics,
measurements or estimates were available from literature87. For parameters such as
MIE and MGA related to the mesenchymal phenotype, little prior information was
available, thus these were sampled across all possible values in [0, 1]. Tumor size in
the model was scaled from cell numbers on the order of 109 cells87 to the order of
102, and parameter values were scaled accordingly. Where parameter estimates
existed, the prior for parameter θi is given as θi ~N(me, 2me), where me is the
previous estimate and we take twice this value as the variance to obtain a range of
samples that does not rely too heavily on previous work. The Morris algorithm
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computes the sensitivity, μ*, as the average of the absolute change of the output,
which in our model is the area under the survival curve (Fig. 2).

Analysis of tumor–immune–EMT model predictions via patient survival data
from TCGA. We obtained primary tumor bulk mRNA sequencing and censored
survival data for individuals monitored by cancer type from the TCGA88, accessed
through the Genomic Data Commons portal89. We developed methods to study: (i)
how the synergistic effects of EMT + inflammation compare to the effects of each
of these individually; and (ii) the importance of mesenchymal proliferation rates in
determining cancer prognosis (Supplementary Fig. S5), which allow us to test
predictions from the agent-based model.

Given our focus on tumor invasiveness, we identified the TCGA outcome
“disease-free interval” as the most relevant endpoint in our pathway analysis
pipeline. However, in order to narrow the search over tumor types, in step (i) we
use the “OS” endpoint. This choice is made since we use a proportional hazards
model: the core assumption of this model is violated more frequently for DFI data
than for OS data, due to challenges regarding clinical data curation. As Jatoi et. al
note90, the proportionality of hazards with regard to DFI is violated in 27% of trials
examined for BRCA, with regard to OS, it is violated in only 11% of trials.

Thus, for step (i), we use OS data to identify cases where synergistic effects due
to the combination of EMT and inflammation pathways have a greater influence
on survival than individual effects. For each cancer type, we obtained from
MSigDB91 gene sets that contain EMT or Inflammation-related genes and, for each
gene set, we tested whether EMT, inflammation, or the combination of these two
effects best predicts OS. We selected for those gene sets that exhibit strong
synergistic effects as identified by a Cox proportional-hazard (CPH) model. For
tumor types where synergistic effects were most evident, we asked whether
unsupervised clustering of patients, based on a low-dimensional representation of
the combined gene set, could predict statistically significant differences in overall
survival via the KM model. For tumor types where both the CPH and KM analysis
were consistent, we conducted further analysis (ii) of the role played by
proliferation on tumor invasiveness.

For step (ii), we use DFI data, as it best resembles the invasion-free survival
metric used in modeling (in many cases, the disease may be undetected until it
becomes invasive). We noticed that these times were bimodally distributed,
suggesting that the gene regulation controlling invasion could be learned via binary
classification. We determined the patient DFI class by fitting these invasion times
to a two-component Gaussian mixture model, which assigns each patient to either
high-DFI or low-DFI. We then used Gaussian process classification to learn the
regulatory structure of a group of mesenchymal proliferation genes based on their
ability to predict DFI class. Specifically, we clustered the genes based on the rank
order statistics of their respective maximum-a-posteriori factor-analysis distances.
Finally, we used simulations of the learned model to further examine the co-
regulation of these genes, highlighting the interaction between immunity, tumor
progression, and invasiveness in the context of treatment-response. Full details of
the methods used for this analysis can be found in the Supplementary Text.

Statistics and reproducibility. The multiscale model was developed in MATLAB
(tested on version R2019b) and the analysis of TCGA data was performed in R
(v4.0.1) using public data accessed from R using TCGAbiolinks and analyzed using
packages (mclust,dbscan) and custom scripts, all of which are available online.
Gaussian Process modeling with TCGA data was performed in MATLAB (R2020a)
using the package GPstuff92. In each in silico simulation experiment, 1000 inde-
pendent runs were performed. For survival analysis, KM and Cox proportional
hazards tests were used to compare patient cohorts. A p value of < 0.05 was con-
sidered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The code required to specify and simulate the model used in this study is available at:
https://github.com/drbergman/tumor-immune-emt-code. This includes the necessary
code to generate all of the data that comprise the main figures associated with the paper.
Data from the TCGA were downloaded from the GDC data portal: https://
portal.gdc.cancer.gov/.

Code availability
All software associated with model development, simulation, and analysis of TCGA data
are available under an MIT license, on GitHub at: https://github.com/drbergman/tumor-
immune-emt-code, and as a Zenodo archive: https://zenodo.org/record/4895005.
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