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Abstract

This paper extends the theoretical framework for exploring the diffusion of new
technologies through firms and industries. It is assumed that information about new and
profitable technologies is not immediately available to all of the agents in the economy;
this information spreads through the economy by means of a network. The pattern of
diffusion will depend on the structure of this network. Ideally, firms or agents would
balance the costs and benefits of information transfers to establish networks that optimally
process information: a profit-maximizing outcome. The problem of determining optimal
structures, however, is beyond reasonable computational limitations in many situations of
interest. Furthermore, the decision to establish information links is often made by
individual agents seeking to optimize their own payoffs; externalities in information
processing may create differences between individual and group payoffs. The proposed
alternative to the profit-maximizing outcome is that observed structures will be the result
of a gradual co-evolutionary process. The focus of this paper is to identify how these
evolutionary outcomes compare with optimal solutions.

The situation considered in this paper is a specific example of a more general class
of problems. For this general class, the conditions necessary to guarantee that an
evolutionary process will converge to an optimal outcome from any starting point are
quite stringent, and are unlikely to prevail in this situation. Thus, it is useful to determine
the set of initial population states that do converge to an optimal outcome. The
distribution of costs and benefits among the agents within an information processing
structure plays a critical role in defining this set. These distributional arrangements can be
thought of as representing alternative institutional regimes. With this insight, it becomes
apparent that the analysis of evolutionary outcomes hinges on the relevant institutional
regime. This leads directly to the identification of institutional changes that can improve
outcomes, free the flow of information, and encourage the diffusion of profitable new
technologies.
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1. Introduction

Modern economies involve an almost boundless variety of products and services.

Changes occur frequently as new items become useful and old items become obsolete.

Firms operating profitably in such a fluid landscape must be prepared to update their

production plans as better technologies become available. Readiness is costly, however,

because processing information about new technologies requires resources that must be

diverted from other productive activities. At some point diminishing returns from

information processing makes it unprofitable to devote additional resources to that

activity. Striking a balance between the costs and benefits of information processing is a

fundamental problem in a dynamic system. The point of this paper is to explore whether

that balance actually occurs in an economy, with particular attention to the question of

how institutional arrangements (corresponding to specific distributions of costs and

benefits of information processing) determine market outcomes.

A useful technique for studying information processing is to construct a network

that models the flow of information through an economy (DeCanio & Watkins, 1998).

The links of the network represent channels through which information flows between

agents located at the nodes. Depending on the scope of the analysis, the nodes represent

an appropriate level of abstraction for decision-making. For example, an analysis of firm

decisions might have individual managers at the nodes, with the network representing a

complete firm. For an industry analysis, however, the nodes could be individual firms and

the network the entire market.
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This approach places the study of the diffusion of new technologies within the

large class of the study of networks in economics. Two important aspects of networks are

particularly relevant here. The first is that the structure of a network may be determined by

the individual actions of nodes within the network, and not by the directed efforts of a

“manager” overseeing the entire network. It may not be true that the actions that result in

better outcomes for agents at the nodes will also result in structures that work best for the

entire group (Jackson & Wolinsky, 1996; Dutta & Mutuswami, 1997). The second is that

the problem of finding the optimal network for a given situation can be computationally

demanding, even to the point where it is unrealistic to assume that a “manager” could

actually solve this problem (Decanio et al, 1998).

Due to these two aspects of networks, it is not credible to assume that the

networks that form in an economy will necessarily be the ones that optimize the flow of

information. This analysis will rely on an alternative presumption: an evolutionary process

drives the development of networks (DeCanio et al, 1998; Kirman, 1997). The types of

networks that emerge in the long run are determined by how the evolutionary dynamics of

the system drives the behavior of the individual nodes within the network. Using

techniques from evolutionary game theory (Weibull, 1995), it will be shown that

evolutionary convergence to the optimal network structure is typically the exception

rather than the rule.

An important innovation in this analysis is to show how the institutional

environment shapes the evolutionary outcome. Given that the evolutionary outcome can
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not be guaranteed to be optimal, it is helpful to know the effectiveness of different

institutional regimes (measured by how close the evolutionary outcome under a given

regime is to the optimal structure). The two components of the model that determine

evolutionary outcomes are the payoff structure (the net benefits of different strategy

profiles) and the evolutionary dynamics. Varying the characteristics of the payoff structure

(while retaining a commonly used and representative dynamic, the replicator dynamic)

provides insight into the expected outcomes for different institutional settings.

In the network model, different institutional regimes can be represented by

different distributions of the costs and benefits of information processing. Four polar cases

span the spectrum of possibilities. In the completely “private” case, each individual node

bears the full costs and full benefits of the chosen information processing strategy; this

corresponds to the nodes representing individual firms operating within a competitive

market with no collusion. At the opposite extreme, the completely “public” case, each

individual node equally shares the costs and benefits of the behavior of all of the other

nodes. A network with this arrangement might represent a particular firms, with

employees of the firm at the nodes. The other two cases are a mixture: “public” costs and

“private” benefits, or “private” costs and “public” benefits.

The last case is particularly important for policy analysis of the diffusion of new

socially beneficial technologies throughout a market place. Individual firms must bear the

information processing costs, but everyone benefits from adopting the new technology.

This describes the situation for a number of energy-saving technologies, particularly when
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there is a negative externality associated with energy production. The insight developed

here will improve the analysis of diffusion for these technologies and clarify the policy

interventions that can be most effective in speeding up or expanding this process.

The next section of the paper lays out the model in detail; this includes relevant

details from the evolutionary game theory literature and previous work on the diffusion of

new technologies, as well as the introduction of institutional regimes for the distribution of

costs and benefits. Section 3 presents some general propositions in the first part, followed

by a detailed analysis of a specific example (small organizations with three nodes).

Discussion of the results appears in section 4, including policy implications and links to

related research. Section 5 concludes the paper with some suggestions for future research.

2. The model

2.1. Evolutionary game theory background. Before delving into the specifics of

the technology diffusion network model, it will be useful to layout some notation and a

result from evolutionary game theory. The nodes of the organizations to be modeled

below will be identified as players in an n-person symmetric game. The set S contains the

pure strategies available for each player (for symmetric games, S is the same for all

players). The players belong to a large population, from which n members are randomly

selected for each iteration of play. The population state is defined by the proportion of the

population playing each pure strategy, so the space of population states is the unit simplex,

∆ , in n dimensions. Each population state, x, could also be interpreted as a mixed strategy
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played by all players. Payoffs are defined by the function ( )u x , which identifies the payoff

for any player when all players choose the mixed strategy x.

The set of symmetric Nash Equilibrium for this game will be denoted x N . These

points are strategy profiles for which no individual agent would receive a higher payoff

from a different strategy, given the same strategy played by the others. As such, these are

points that are individually rational. For the entire collection of n agents, however, the

total payoff could be higher with some alternative strategy profile. The highest possible

total payoff is achieved at the optimal population state:

Definition 1 (D1): The set of optimal population states, x∗ , is the collection of

points that maximize the total payoff for all agents, or, equivalently, the

average payoff for all players: ( ) ( ){ }x x u x u y y∗ = ∈ ≥ ∀ ∈∆ ∆    , .

It is worth noting here that it may be possible for more than one state to achieve the

unique maximal payoff in a given game. Nevertheless, the discussion presented here will,

for the sake of clear exposition, refer to an optimal state.

In an evolutionary game, the population state changes over time according to the

payoffs received by the agents. The dynamics of the evolutionary game define how these

changes occur by relating the growth rates of particular strategies to the corresponding

payoffs. For the general results derived in this section, attention will be restricted to

weakly payoff positive (and non-stochastic) dynamics. These are dynamics for which the

proportion of the population playing a strategy that does better than average grows, and
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the proportion playing a strategy that does worse than average shrinks (see Weibull (1995,

p. 151) for a precise definition). In later sections, attention will be further restricted to a

particular member of this class of dynamics, the replicator dynamics, where the growth

rate of the subpopulation playing a particular strategy is exactly equal to the difference

between the payoff for that strategy and the average population payoff.

For an initial population state x0  , the dynamics of the game completely determine

the population state at time t, denoted ( )x xt 0 . For weakly payoff positive dynamics, the

population state will eventually converge to either a limit point, ( ) ( )x x
t

x xt0 0= → ∞lim , or to

a set of points called a limit cycle. The basin of attraction for a limit point is the set of

initial states that lead to convergence to that limit point: ( ){ }X x x x xi i= ∈ =0 0∆  . Of

special interest is the basin of attraction for optimal points,

( ){ }X x x x x x x∗ ∗= ∈ ∃ ∈ =0 0∆    such that .

The following theorem follows directly from standard results in the evolutionary

game theory literature and will be very useful in what follows:

Proposition 1 (P1): For weakly payoff positive (WPP) dynamics,

( ) ( )∀ ∈ ∈x x x x x x N
0 0 0∆,  if  exists then .

Proof omitted (this proposition is just a restatement of Theorem 5.2c from Weibull

(1995, p. 208)).

Corollary 1 (P1.1): For WPP dynamics, X x x N∗ ∗= ⇒ ⊂∆
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Corollary 2 (P1.2): For WPP dynamics, x x XN∗ ∗∩ = ∅ ⇒ = ∅

From a social efficiency perspective, it would be comforting to know that the

system always converges to an optimal point, regardless of the starting point. At the very

least, it would help to know that some of the starting points converge to an optimum.

These two conditions are formalized for future reference:

Definition 2 (D2): An evolutionary game is strongly efficient if all the interior

starting points converge to an optimum: X ∗ = ∆ .

Definition 2 (D3): An evolutionary game is weakly efficient if there exists a non-

empty set of interior starting points that converge to an optimum:

X ∗ ≠ ∅ .

Proposition 1 states that within the large class of weakly payoff positive

evolutionary dynamics, it is necessary that each of the optimal points also be Nash

Equilibrium points in order for a game to be strongly efficient. There is no particular

reason for this correspondence to exist in a particular game. The Prisoner’s Dilemma is the

quintessential example of a game where this condition does not hold; the Nash Equilibrium

(and, in fact, strictly dominant) strategy profile does not provide the highest total surplus.

With P1, establishing that a socially optimal point is not a Nash Equilibrium rules out the

possibility that the game is strongly efficient. Furthermore, if all of the socially optimal

points are not Nash Equilibrium then the game is not even weakly efficient.

2.2. The technology adoption model as an n-person game. This section describes

the network model of technology adoption, represented within the framework of a game.
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For the technology adoption model, individual agents can represent firms within a market,

managers within a firm, or even individual employees within a particular production unit.

The collection of agents within a group of n agents play an n-person non-cooperative

game. Each agent selects how many connections to make to other agents; this is a

strategy. Making a connection provides an agent with access to information held by

another agent.

The strategy profile for all the players in a group defines the type of organization

that forms, which determines the success of the technology adoption process and thus the

payoff to the individual players. For this model, the strategy set is defined to contain

choices only over the number of connections, without specifying to which other agents the

connections are made1. The actual organization that occurs is then a random draw from a

small set of possible networks determined by the number of connections chosen by each

player. Once this draw occurs, the network remains the same until the group is disbanded.

For example, in 3-agent organizations, the strategy set is { }0 1 2, , . If all members of

the group choose the strategy “2 connections”, then a fully connected group would form

(with probability one). On the other hand, suppose each member of the group chooses

                                               
1 This arrangement means that the strategies of the players are independent of their position within the
organization, so this could be referred to as the position independent network technology adoption game.
It would also be possible to define relative position strategies (such as connect with the “next” 2 nodes), or
more generally position dependent strategies (such as, connect to node 2 if in position 1). These would
require an additional component to the model to arrange the position of the players, and allow more
complex structures to be considered. In the absence of compelling reasons to extend the model along those
lines, this general analysis considers only the position independent game. The main advantage of this
arrangement is that there are fewer strategies to consider (only n − 1, as opposed to  2 1n −  for the relative
position game, or n n2 1−  for the position dependent game), so the results are easier to develop and
interpret.
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strategy “1 connection”. Two possible groups could form, each with probability 0.50.

These two groups are depicted in figure 1.

The payoff for a given strategy profile is determined by the information processing

network model. Payoffs are a combination of costs (which are determined by the number

of connections) and benefits (which are determined by the speed of adoption). Each

network lasts long enough to face a long string of new innovations. The expected value of

net benefits from this sequence of innovations (with the expectation taken over the

different organizations that could form with a given strategy profile) determines a payoff

vector for each strategy profile.2

In the technology adoption model, an agent from the group is selected as the start

node, which adopts the technology in the first period.. Each node that has a link to the

start node adopts the new technology in the second period. Each node that has a

connection to any of the previous adopters will then adopt in the third period, and so on.

Thus, the time of adoption for every particular node is determined by the distance

(measured in the minimum number of links) from the start node. The value of technology

Figure 1: Two organizations that could
form with strategy profile {1,1,1}
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adoption is denoted by a parameter A. The benefit of adoption is this value discounted

according time the time that the adoption occurs. The time of adoption for node i, τ i

depends on the group structure, G, and the start node a. The adoption benefit is calculated

for a particular agent using each of the nodes as the start node, then the average gives the

benefit for that agent. The expectation taken over the possible structures that could be

created from a given strategy profile, x, determines the benefit for node i:

( )
( ) ( )B x E

A

r
i

G x n G a
a

n

i=
+=

∑1

1 1 τ ,
(1)

The cost of connections is a convex function of the number of connections for

node i:

( ) ( )
C x E

c
r

E c ri
s x

s

t
t

s x
s

i

i
i=

+
=

=

∞

∑
11

(2)

where c is a cost parameter, r is the discount rate, and s i  is the number of connections for

node i (the strategy chosen by agent i) .

Net benefits for each agent are contingent upon the prevailing institutional

arrangement for the distribution of costs and benefits, but the optimal strategy profiles (or

population states) are independent of the distributional arrangements. The following result

will help simplify the analysis in later sections:

2.3. Institutions (distributional arrangements). There are many ways that the costs

and benefits of each agents actions may be distributed through the group. If the

                                                                                                                                           
2 An alternative, but equivalent, approach is to assume that the random draw for the organizational form
occurs anew with each new innovation (while the strategies of the members of the organization stay the
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organization under study is a firm, then the individual nodes are simply employees of the

firm. The firm as a whole bears the costs of actions taken by employees and the firm as a

whole reaps the benefits. The net benefit then accrues to the shareholders of the firm, but,

in general, a profitable firm confers benefits to employees that unprofitable firms do not. In

fact, when all of the net benefits go back to the employees, then all costs and all benefits

are completely shared. An employee-owned firm is a good example of this category. At

the other extreme, consider a competitive industry with many interacting firms. Individual

network nodes in this case correspond to firms, not individuals. Each firm incurs the cost

of establishing information links on its own, and each firm will capture the benefit on its

own. This is the case of completely private costs and benefits.

The other two cases are mixtures. Many industries have professional organizations

that serve has information hubs. Within these organizations, the cost of information

transfer is often born by the organization as a whole (consider trade conferences), but the

benefits accrue to individual firms that are members of the organization. This is the case of

shared costs and private benefits. On the other hand, consider an industry that does not

have a professional organization but for which some network externality exists (from

standardization, for example). This would be the case of shared benefits and private costs.

This case is also important for the diffusion of new technologies that have a positive

externality. Energy-saving technologies, for example, benefit not only the firm adopting

the technology, but also other firms due to decreased environmental damage from the

production of energy.

                                                                                                                                           
same). In expectation, the payoffs are equivalent to the model described in the text.
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Costs
Shared Private

Shared

Benefits

I
employees in a firm

II
environmentally

sound technology

Private
III

professional group
IV

firms in a market

 Table 1. Institutional arrangements for distribution of costs and benefits

Using this framework for different institutional arrangements, the payoff for

individual nodes can be represented symbolically as follows:

( )( ) ( ) ( ) ( ) ( ) ( ) ( )u x B x B x C x C xi i
n

j

j

n
i

n
j

j

n

β γ β β γ γ, = + −








− + −











= =
∑ ∑1 11

1

1

1

(3)

( ) ( )
( ) ( )

I

III

: , ,

: , ,

 

 

β γ
β γ

=
=
0 0

1 0

( ) ( )
( ) ( )

II

IV

: , ,

: , ,

 

  

β γ
β γ

=
=

0 1
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The Nash Equilibria for institutional parameters ( )β γ,  will be denoted ( )x N
β γ, , and the

basin of attraction for the optimal point will be denoted ( )X β γ,
* .

3. Results

3.1. General results. Given the framework developed in the previous section, it is

straightforward to identify some universal properties of the technology adoption game.

The primary thrust of these general results is negative; these propositions identify
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limitations to what can be assumed about evolutionary convergence. In particular,

Proposition 2 shows that convergence to an optimal point cannot be assumed, no matter

what institutional arrangement holds for the organizations. Moreover, knowing that

convergence to an optimal point occurs under one institutional arrangement is not enough

to ensure that this occurs under an alternative regime, as is stated in Proposition 3.

Proposition 2 (P2): None of the institutional arrangements considered here result

in a strongly efficient game for all technology adoption parameter values;

i.e. ( ) { } { } ( ) ( )∀ ∈ × ∃ ≠∗ 0,1 0,1 ,    such that X ,β γ β γ, , ,A r c ∆

Proof (incomplete): According to P1, it is sufficient to identify parameter values

for which an optimal point is not a Nash Equilibrium (examples for size 3

are identified below in section 3.2). The structure of the proof is to start

with a set of parameter values exists for which NE and optimal coincide,

then show that gradually changing a parameter eventually knocks out the

optimality property without changing the NE property.

Proposition 3 (P3): For any pair of the four institutional arrangements listed here,

there exist technology parameters such that the game is strongly efficient

for one but not even weakly efficient for the other; i.e.

( ) { } { }∀ ∈ ×β γ1 1 0 1 0 1, , , , and ( ) { } { }β γ2 2 0 1 0 1, , ,∈ × , with

( ) ( )β γ β γ1 1 2 2, ,≠ , ( ) ( ) ( )∃ = = ∅∗ ∗  such that  and A r c X X, , , ,β γ β γ1 1 1 2
∆

Proof (incomplete): the structure of this proof is similar to that for P2.
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That fact that individual agents do not always act together to create an efficient

outcome (P2) is not particularly surprising. There are many instances in economics where

externalities inhibit efficiency. In this model, the interdependence of agents within the

information processing structure creates the externality. Sometimes the evolutionary

model will still converge to an optimal point, but this is merely a fortuitous coincidence.

What is more surprising, but equally common, is the importance of the specification for

the institutional arrangement (P3). Evidently the distribution of costs and benefits is quite

important in characterizing the effect of the externalities in this model, and a

misspecification in this regard could lead to the exact opposite of the correct conclusion.

3.1.1 Additional conjectures. A brief diversion into a more general model of

institutional arrangements is also considered here. Extending the parameter space for

( )β γ,  to the unit interval provides for an infinite variety of distributional arrangements. It

seems likely that the arguments used to prove Proposition 2 could be extended as well,

suggesting the following (unproved) conjecture:

Conjecture 1 (C1): ( ) [ ] [ ] ( ) ( )∀ ∈ × ∃ ≠β γ β γ, , ,0,1 0,1 ,   such that ,
*A r c X ∆ .

Likewise, there may be a parallel version of P3 asserting that each pair of

distribution parameters has some small space around it for which strong efficiency under

some set of technology adoption parameters carries over to other distribution parameters:

Conjecture 2 (C2): For any institutional parameters, there exist “similar”

parameters such that strong efficiency in the first case implies strong

efficiency in all nearby cases, and weak efficiency in a wider space; i.e.
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Given ( )A r c, , , ( ) { } { }∀ ∈ ×β γ, , , ,0 1 0 1 ∃ > >ε ε1 2 0 , such that

( ) ( ) ( ) ( )β γ β γ ε β γ β γ
, $ , $ , $ , $

− < ⇒ = ⇒ =


∗ ∗
2 X X∆ ∆  and

( ) ( )β γ β γ ε β γ β γ
, $$ , $$ , $$ , $$

− 



 < ⇒ = ⇒ ≠ ∅











∗






∗
1 X X∆

Finally, the specific examples developed in the next section will show that the Nash

Equilibrium for different institutional arrangements can surround the optimal point This

suggests an optimistic conjecture, that for a given technology adoption game an

arrangement within this continuous space exists that guarantees convergence:

Conjecture 3 (C3): For any set of technology adoption parameter values, there

exist at least one pair of distribution parameters such that convergence to

optimal is guaranteed; i.e. ( ) ( ) ( )∀ ∃ =∗A r c X, , ,  ,  such that ,β γ β γ ∆ .

3.2. Comprehensive analysis for n=3, with replicator dynamics. This section

describes detailed results for a specific case: when the number of nodes in the network is

three, and when the evolutionary dynamics are the replicator dynamics. This specific case

illustrates some of the pertinent implications of the general results, and reveals some

intriguing and unexpected complications. Recall that the replicator dynamic is defined as

follows: the growth rate for each strategy is exactly equal to the relative payoff of that

strategy compared to the population average. Qualitatively, the results will be the same for

any WPP dynamic.
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The results were obtained by selecting specific parameter values, evaluating the

corresponding game for Nash Equilibria (for each of the four institutional structures), and

then identifying the basin of attraction for each NE. Within this class of games, the only

available pure strategies are (0, 1, 2), and all NE are either pure strategies or a mixture

between (0,1) or (1,2). In other words, there is no mixed strategy NE with a support that

contains both 0 and 2. Thus, all of the equilibria can be represented by a point on the

interval [0,2]. In the event that multiple equilibria occur, then the average value was taken,

weighted by the relative size of the basin of attraction for each NE. This average can be

interpreted as an expectation of the outcome, when the prior distribution for initial starting

values is uniform. Figures 2 and 3 demonstrates this procedure for a particular set of

parameter values The parameter values represent a range of possible situations. Using a

fixed adoption benefit of A = 100, and a fixed discount rate of r = 10%, the cost of

establishing a link is varied from c = 1.1 to c = 7.

The results are displayed in Figures 4 and 5. The first graph, Figure 4, depicts the

actual strategies of the equilibrium, demonstrating the action of the expected long run

outcome. The vertical axis represents the strategy and the horizontal axis represents the

cost of establishing links. First, note that no matter what the cost, the four different

institutional arrangements always follow the same order, in terms of the number of links

chosen at equilibrium. The fewest links are chosen in II, when individual nodes must bear

the cost of communication, but share the benefit, and the most links are chosen in III,

when the situation is reversed. Occupying the middle ground are IV and I; there are fewer
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links when all costs and benefits are private (IV), and more when all costs and benefits are

shared (I). Second, note that none of the institutions match the optimal strategy profile for

all of the parameter values. In almost all cases, in fact, the equilibrium strategy has too

many or too few links.

Differences in strategies, however, are not identical to differences in payoffs.

Figure 5 shows the average payoff of the expected equilibrium strategy. At a

communication cost of c = 1.5, for example, the type IV institution (fully private) is closer

in strategy to the optimal than the type II (private costs, shared benefits), but has a much

lower payoff. In the type IV case, agents reduce the number of connections (from what

would be optimal), they bear the full cost of making connections, but the lure of the

benefit is still strong. When the benefit is shared, as in the type II case, each agent tries to

free ride, and reduces the number of connections further. This turns out to be

advantageous; when the rest of the network is not chipping in with the optimal strategy

then it is better to drop down to a secondary local optimum. Note additionally that each of

the institutions performs very poorly at some parameter values (compared to the optimal

payoff), but the area of poor performance varies. The fully private case performs poorly

when communication costs are low, but the fully public case performs poorly when

communication costs are high.

4. Results
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As expected, the results of both the theoretical analysis and the simulation of a

specific case indicate that convergence to an optimal outcome is the exception rather than

the rule for evolving networks. Before continuing with some more general comments, let

us focus specifically on the situation for the diffusion of environmentally sound

technologies, using the simulation results to guide the discussion.

4.1. Discussion of results for Type II institutions. As mentioned earlier, the

diffusion of an environmentally sound is best represented by the Type II institutions. It is

clear from Figure 5 that there are situation where this institution will perform poorly,

particularly when communication costs are moderate. At very low communication costs,

the tendency to free ride is small and the outcome is very close to optimal. At moderate

costs, the free riding causes such a drop in the chosen number of links that no

communication occurs at all. When costs are high enough, this no communication

outcome is actually optimal.

There is another interesting result for the type II institutions that is not evident

from the figures. For the range of communications costs c = 1.7 to c = 2.7, the poor

outcomes actually consist of a mixture of two pure strategy equilibria; one of the equilibria

is to choose 1 link, and the other is to choose 0 links. The initial conditions determine

which equilibria occurs in the long run. As costs increase, the basin of attraction for the

bad equilibrium, everyone chooses 0 links, increases, even though the optimal outcome

remains everyone choose 1 link. This suggests an interesting possibility for intervention.

Policy could change the starting values (in other words, encourage more communication
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links at the very beginning). Also, policy could temporarily alter the institutional

framework (perhaps by forcing shared costs), which would change the dynamic and

encourage movement towards the good outcome. When the population is sufficiently

close to the good outcome, then a shift back to a type II institution will not be harmful.

Either way, there could be a permanent positive outcome from just a temporary policy

intervention.

4.2 Discussion of results in general. The results developed within this paper can

be viewed from both a positive perspective or a normative perspective. From a positive

perspective, these results could begin to explain the existence of different institutional

arrangements. It is evident from the simulation results and from the theoretical work, that

the relative value of costs and benefits of communication are very important for

determining which of the institutional frameworks will perform well. It is possible to

conjecture a larger evolutionary picture, where different markets are evolving under

different institutional structures for the same underlying parameters. Those markets for

which the institution is best suited to the parameter values will be more successful.

From a normative perspective, it has already been noted that the optimal outcome

is far from guaranteed by the evolutionary process, and some specific policy interventions

are briefly suggested in the previous section. More generally, this work opens the way for

better qualitative analysis of a wide variety of policy options, including policies that

change the relevant institutional framework, as well as those which affect the parameter
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values. Finally, and perhaps most importantly, it should be noted that this work helps

explain why some policies are not effective.

Consider a subsidy for adopting a new technology, for example. This is equivalent

to raising the benefit (the A parameter). While Figures 4 and 5 only show what happens

when the cost is changed (the c parameter), it is not difficult to imagine similar results for

changes in benefits. It is apparent that in many cases, when the situation has already

evolved to a long run equilibrium, changing the parameter values incrementally will not

result in any change in the outcome whatsoever.

5. Conclusion

The results developed in this paper provide a foundation for further research on

networks that spans both theoretical and applied work. The propositions fill in some of the

gaps for easier theoretical development, while the conjectures point the way that future

theoretical development might proceed. The simulations demonstrate how the model can

be put to practical use. It is shown that the long run outcome is quite dependent on the

relevant institutional regime (arrangement for distributing costs and benefits). Also, a

specific case demonstrates how different relative costs and benefits imply better or worse

performance for different institutions.

Continued work with simulations would help augment the results shown here. First

priority for further work along these lines would be to consider larger organizations.

While the techniques used here become impractical as the size of the organization
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increases, it is not difficult to create alternatives. With the evolutionary dynamic fixed (in

this case, the replicator dynamic), the actual evolution could be simulated several times

from a full range of starting values to indicate long-run equilibria.

A significant gap still exists between theory and practice in this research area. This

model presents some clear results. If the components of the model could be mapped into

real world situations, then these results would be testable hypotheses. That endeavor

would complete the loop for this research area by providing substantive tests of the model

against actual economic data.
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A r c
100. 0.1 2.2

x y z x+ y+ z+ x- y- z-
0. 0. 0. 30.3 30.3 30.3 10. 10. 10. 60.91
0. 0. 1. 30.3 30.3 44.08 10. 10. 22. 62.68
0. 0. 2. 30.3 30.3 85.4 10. 10. 48.4 77.61
0. 1. 1. 30.3 64.11 64.11 10. 22. 22. 104.53
0. 1. 2. 30.3 70.37 85.4 10. 22. 48.4 105.68
0. 2. 2. 30.3 85.4 85.4 10. 48.4 48.4 94.3
1. 1. 1. 70.37 70.37 70.37 22. 22. 22. 145.12 p = 0.95
1. 1. 2. 76.63 76.63 85.4 22. 22. 48.4 146.27
1. 2. 2. 82.9 85.4 85.4 22. 48.4 48.4 134.89
2. 2. 2. 85.4 85.4 85.4 48.4 48.4 48.4 111.

Complete sharing Complete private
0. 1. 2. 0. 1. 2.

p0p0 20.3 20.89 25.87 p0p0 20.3 22.08 37.
p0p1 20.89 34.84 35.23 p0p1 20.3 42.11 37.
p0p2 25.87 35.23 31.43 p0p2 20.3 48.37 37.
p1p1 34.84 48.37 48.76 p1p1 20.3 48.37 37.
p1p2 35.23 48.76 44.96 p1p2 20.3 54.63 37.
p2p2 31.43 44.96 37. p2p2 20.3 60.9 37.

x = (0, p, 1-p) p = 0.95 x = (0, 1, 0)

Private benefits, shared cost Shared benefit, private cost
0. 1. 2. 0. 1. 2.

p0p0 20.3 30.08 62.6 p0p0 20.3 12.89 0.27
p0p1 16.3 46.11 58.6 p0p1 24.89 30.84 13.63
p0p2 7.5 43.57 49.8 p0p2 38.67 40.03 18.63
p1p1 12.3 48.37 54.6 p1p1 42.84 48.37 31.16
p1p2 3.5 45.83 45.8 p1p2 52.03 57.56 36.16
p2p2 -5.3 43.3 37. p2p2 57.03 62.56 37.

x = (0, p, 1-p) p = 0.5 x = (1, 0, 0)
x = (0, 1, 0) p = 0.66

Optimal is: (0, 0.95, 0.05)
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Figure 2: Sample data sheet
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Private benefits, shared cost Shared benefit, private cost
0. 1. 2. 0. 1. 2.

p0p0 20.3 30.08 62.6 p0p0 20.3 12.89 0.27
p0p1 16.3 46.11 58.6 p0p1 24.89 30.84 13.63
p0p2 7.5 43.57 49.8 p0p2 38.67 40.03 18.63
p1p1 12.3 48.37 54.6 p1p1 42.84 48.37 31.16
p1p2 3.5 45.83 45.8 p1p2 52.03 57.56 36.16
p2p2 -5.3 43.3 37. p2p2 57.03 62.56 37.

x = (0, p, 1-p) p = 0.5 x = (1, 0, 0)
x = (0, 1, 0) p = 0.66

Figure 3: Sample data analysis
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Long-run strategy profiles for different costs
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Figure 4: Size 3 organizations, strategy graph
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Total payoff for long-run strategy profiles
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Figure 5: Size 3 organizations, payoff graph




