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Questions remain regarding the effect of baseline host and exposure factors on vaccine efficacy (VE)
across pathogens and vaccine platforms. We report placebo-controlled data from four Phase 3 COVID-
19 trials during the early period of the pandemic. This was a cross-protocol analysis of four randomized,
placebo-controlled efficacy trials (Moderna/mRNA1273, AstraZeneca/AZD1222, Janssen/Ad26.COV2.S,
and Novavax/NVX-CoV2373) using a harmonized design. Trials were conducted in the United States
and international sites in adults �18 years of age. VE was assessed for symptomatic and severe
COVID-19. We analyzed 114,480 participants from both placebo and vaccine arms, enrolled July 2020
to February 2021, with follow up through July 2021. VE against symptomatic COVID-19 showed little
heterogeneity across baseline socio-demographic, clinical or exposure characteristics, in either univariate
or multivariate analysis, regardless of vaccine platform. Similarly, VE against severe COVID-19 in the
etwork
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single trial (Janssen) with sufficient endpoints for analysis showed little evidence of heterogeneity.
COVID-19 VE is not influenced by baseline host or exposure characteristics across efficacy trials of differ-
ent vaccine platforms and countries when well matched to circulating virus strains. This supports use of
these vaccines, regardless of platform type, as effective tools in the near term for reducing symptomatic
and severe COVID-19, particularly for older individuals and those with common co-morbidities during
major variant shifts. Clinical trial registration numbers: NCT04470427, NCT04516746, NCT04505722,
and NCT04611802.

� 2023 Published by Elsevier Ltd.
1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
emerged in December 2019 causing a global pandemic that has
resulted in more than 768 million cases and 6�9 million deaths
worldwide as of June 2023. Early in the pandemic, the National
Institute of Allergy and Infectious Disease (NIAID) at the US
National Institutes of Health (NIH) partnered with multiple phar-
maceutical companies to expedite the development of an effective
vaccine to prevent the spread of SARS-CoV-2. In addition to this
unprecedented public–private collaboration, NIAID merged four
existing clinical trial networks to form the COVID-19 Prevention
Network (CoVPN). The CoVPN, along with the study sites affiliated
with contract research organizations (CRO), facilitated the rapid
enrollment of the tens of thousands of participants needed for
the Phase 3 vaccine safety and efficacy trials [1]. Four SARS-CoV-
2 vaccine candidates (mRNA-1273, AZD1222 ChAdOx1 nCoV-19,
Ad26.COV2.S, and NVX-CoV2373) have been evaluated through
double-blind, randomized, placebo-controlled Phase 3 clinical tri-
als, and were reported to be safe and efficacious in
adults � 18 years of age, with early estimates of overall vaccine
efficacy (VE) ranging from 56�3 % to 94�1 % [2–5]. The data from
these pivotal Phase 3 VE studies present a unique opportunity to
comprehensively evaluate modifiers of COVID-19 VE in preventing
symptomatic illness, as well as severe disease, through cross-
protocol analysis.

In general, VE is influenced by factors related to the infectious
agent (antigenic variants), the vaccine platform, the host (age,
sex, genetics, presence of comorbid conditions, and immune func-
tion), and the environment (exposure and transmission rate) [6–9].
For example, VE is lower among men and the elderly for influenza
vaccines [7], among the immune suppressed for the hepatitis B
vaccine [10], and among children living in low resource settings
for rotavirus vaccines [11]. In the individual CoVPN trials, no signif-
icant differences in VE based on selected host factors were
reported in the subgroup analyses [2–5]. However, these univariate
analyses varied between trials and no multivariate analysis was
performed. Here we present a cross-protocol analysis designed
with consistent methodology to assess the impact of these modi-
fiers on VE.
2. Materials and methods

2.1. Study design

We performed a participant-level data cross-protocol analysis
of the Moderna, AstraZeneca, Janssen, and Novavax trials using
[2–5] data accrued through the blinded, pre-crossover phases from
July 2020 through July 2021 (Appendix p. 17, Supplementary
Table 1). National populations were excluded if they were enrolled
during the circulation of the beta variant or Latin American sites
that were not of ancestral/alpha or other lineage due to mismatch
with vaccine target (Appendix p. 15, Supplementary Fig. 1).
2
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2.2. Vaccines and adjuvants

The Moderna vaccine was stored between �50 �C an �15 �C and
was administered as two doses 28 days apart. The antigen admin-
istered was 100 lg mRNA-1273/0.5 mL. The AstraZeneca vaccine
was stored between 2 �C and 8 �C and was also administered as
two doses 28 days apart. The antigen was AZD1222 (5 � 1010 viral
particles)/0.5 mL. The Janssen vaccine was stored between 2 �C and
8 �C and consisted of a single dose of 5� 1010 viral particles/0.5 mL.
The NovaVax vaccine was also stored between 2 �C and 8 �C, was
administered as two doses 21 days apart, and the antigen consisted
of NVX-CoV2373 (5 lg of SARS-CoV-2 recombinant spike protein
adjuvanted with 50 lg of Matrix-M)/0.5 mL. The route of adminis-
tration was intramuscular in the deltoid muscle of the arm for all of
the vaccines. Needle length varied based on the population served
with 25–38 mm used for most adults.
2.3. Study outcomes

Symptomatic COVID-19 for this analysis was defined as signs or
symptoms consistent with COVID-19 and molecularly confirmed
by PCR testing, which was harmonized across the studies with
minor differences [1]. These were the primary endpoints from each
trial except for ENSEMBLE, for which this corresponds to a sec-
ondary endpoint of mild, moderate, or severe COVID-19 (a com-
panion paper lists the COVID-19 case definition used in each trial
[1]). Severe COVID-19 was defined as additionally having shortness
of breath at rest or respiratory distress, respiratory rate �30 per
minute, heart rate �125 per minute, or oxygen saturation �93 %
on room air, organ failure, ICU admission, or death.
2.4. Predictors of study outcomes

Potential predictors of the study outcomes included demo-
graphic characteristics (age, sex, race, ethnicity, and country);
comorbid conditions including asthma, cardiovascular disease,
hypertension, diabetes, smoking, obesity (BMI � 30 kg/m2), lung
disease, liver disease, kidney disease, and well-controlled HIV;
SARS-CoV-2 exposure risk (Occupational Safety and Health Admin-
istration [OSHA] risk category); and living situation risk score
(Appendix p. 14, Supplementary Methods).
2.5. Ethics approval

Institutional review board approval was obtained for the four
COVID-19 VE trials [2–5] (Moderna/mRNA1273: NCT04470427,
AstraZeneca/AZD1222: NCT04516746, Janssen/Ad26.COV2.S:
NCT04505722, and Novavax/NVX-CoV2373: NCT04611802).
Informed consent was obtained after the nature and possible con-
sequences of the study had been fully explained to the subjects.
VID-19 vaccine efficacy: Results from four COVID-19 prevention network
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2.6. Statistical analysis

The objectives of this study are to: 1) determine which baseline
characteristics modify COVID-19 VE in each trial; 2) determine if
combined baseline characteristics in each trial modify VE; 3) if
there is evidence of heterogeneity of efficacy seen within a study
based on baseline characteristics, rank the importance of baseline
characteristics compared to the combined impact on VE; and 4)
evaluate whether VE-modifying characteristics in three of the trials
yield improved prediction of VE in the fourth trial.

Analyses were prespecified in a statistical analysis plan (Appen-
dix p. 2–13). Cumulative incidence VE was estimated for each vac-
cine through a fixed time point after enrollment in the per-protocol
cohort. To ensure stable estimation, for each trial we selected the
latest time point where the risk set consisted of at least 10 % of par-
ticipants in both arms (Appendix p. 18–19, Supplementary Tables
2–3 for a summary of the amount of follow-up in each trial).
Inverse weighting was used to provide an interpretable and unbi-
ased analysis of how VE varies within covariate subgroups.
Weights were fitted via a proportional odds model, logistic regres-
sion, and stratified Kaplan-Meier estimator, respectively (details on
Appendix p. 14, Supplementary Methods).

Because each trial assessed a separate vaccine platform that
may have its own heterogeneity profile, VE was assessed sepa-
rately for each trial. Univariate analyses of VE were conducted
via a nonparametric covariate-adjusted method. Multivariate anal-
yses were conducted via ensemble methods that use cross-
validation to combine predictions from a collection of candidate
algorithms. To assess heterogeneity, participants within each trial
were broken into tertile groups based on their covariate-
stratified VE estimates: those predicted to have the lowest VE,
those predicted to have the highest, and everyone else. VE within
each of these three subgroups was assessed using the observed
COVID-19 endpoints.

We assessed the potential benefits of pooling data from the four
trials using a leave-one-trial-out procedure. We pooled data from
the other three vaccines to estimate their pooled efficacy condi-
tional on baseline covariates. Then, we included this estimated effi-
cacy as an additional putative efficacy modifier in a repetition of
the multivariate analysis in the remaining trial. If the four vaccines
have similar heterogeneity profiles, pooling the data should
increase precision for assessing heterogeneity.

Missing data in the covariates were minimal and were imputed
by the median and mode for continuous and categorical variables,
respectively. For a given trial, we report both uncorrected and
Bonferroni-corrected 95 % confidence intervals for univariate anal-
yses of VE in supplementary tables, and only uncorrected intervals
in figures. Analyses were performed in R version 4.2.1.
3. Results

3.1. Study population

In total, 136,096 participants met the inclusion criteria and
were randomized within the four trials and, of these, 114,477 were
in the per-protocol cohort and not enrolled in South Africa (due to
dominant circulating beta variant) or intersex/unknown sex, and
therefore part of our analysis cohort (Appendix p. 16, Supplemen-
tary Fig. 2). Across the four trials 77,747 (68 %) participants were
18 to 59 years of age and 36,730 (32 %) were 60 or older (Table 1).
Women represented 52,651 (46 %) of the participants. In terms of
ethnicity, 34,878 (30 %) of the participants were Hispanic. The
racial composition of participants across the four trials was 6,188
(5 %) American Indian/Alaska Native, 4,891 (4 %) Asian, 10,542 (9
%) Black or African American, and 86,518 (76 %) White. Regarding
3
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clinical comorbidities, 42,790 (37 %) of the participants had at least
one of the following: diabetes, HIV, or cardiovascular, kidney, liver,
or chronic lung disease; 38,761 (34 %) of the participants were
obese. Tobacco use was reported by 14,347 (13 %) of participants.

3.2. Baseline covariates have little impact on VE against symptomatic
COVID-19 in univariate and multivariate analyses

In the analysis using harmonized case definitions, overall VE for
preventing symptomatic COVID-19 was 93 % (90–95 %) in Mod-
erna, 65 % (54–76 %) in AstraZeneca, 71 % (64–77 %) in Janssen,
and 91 % (87–96 %) in Novavax (Fig. 1, Appendix p. 20–21, Supple-
mentary Table 4). While VE showed little heterogeneity for partic-
ipants enrolled at sites within the US, VE ranged from 44 to 82 % for
participants in the Janssen trial across different countries (Fig. 1,
Appendix p. 20–21, Supplementary Table 4). No difference was
observed in VE between older adults and younger populations or
based on BMI, race, sex, underlying health conditions, and risk of
exposure (see Fig. 2).

When participants with the lowest predicted VE were com-
pared to participants with the highest predicted VE for each trial,
there was little variability in estimates of VE across the subgroups
defined by baseline covariates (Fig. 3). When tertiles of VE were
pooled from three trials, and then used to predict VE of the fourth,
and no heterogeneity was found in the subgroups formed by base-
line covariates (Appendix p. 22, Supplementary Table 5).

3.3. VE against severe COVID-19 remained high across all demographic
subsets

VE for severe COVID-19 was restricted to the Janssen trial due to
very few endpoints in the vaccine arm of the other three trials
(Appendix p. 23, Supplementary Table 6). VE without modeling
the effect of baseline covariates was 85 % (78–91 %) and did not
vary substantially by demographics, obesity, living conditions, or
geographic region (Appendix p. 26, Supplementary Table 7). In
multivariate analysis, there was also no evidence of heterogeneity
across tertiles of VE (Appendix p. 27, Supplementary Table 8).
4. Discussion

Understanding the factors that impact VE is crucial to ensure
that vaccines are effective in a wide variety of hosts and settings.
The ability to evaluate host and environmental factors that may
modify VE is frequently limited by trial design, which often
excludes vulnerable populations or may be too small to allow for
subgroup analysis. Further, the lack of harmonization across differ-
ent efficacy studies often prevents larger scale, cross-protocol anal-
ysis. The COVID-19 pandemic and subsequent coordinated
worldwide engagement in the rapid development of vaccines cre-
ated an opportunity to evaluate host characteristics and environ-
mental factors in a novel cross-protocol analysis of pivotal
studies conducted early in the pandemic. In these trials, popula-
tions known to be at high risk for acquisition of the disease or
for developing severe disease were enrolled. Thorough baseline
information was recorded for all participants, allowing a more
nuanced view of VE in different subgroups during an extraordinar-
ily well-characterized period of global risk. This multi-national
harmonized collaboration offers an unprecedented chance to com-
pare COVID-19 VE in a large, diverse adult sample using a consis-
tent definition of disease, exposure risk, and statistical
methodology across vaccine platforms.

The COVID-19 pandemic highlighted the significant impact host
and demographic factors can have on health outcomes. The dra-
matic disparities in COVID-19-related morbidity and mortality
VID-19 vaccine efficacy: Results from four COVID-19 prevention network
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Table 1
Symptomatic Covid-19 endpointsa by subgroup and randomization arm in the per-protocol cohort of each trial excluding South African participants and intersex participants
(# endpoints / total # participants).

Moderna AstraZeneca Janssen Novavax

Placebo Vaccine Placebo Vaccine Placebo Vaccine Placebo Vaccine
Overall 741/14164 55/14287 181/8528 134/17617 538/17113 173/17111 77/8385 17/17272

Socio-demographic
Age (years)
18–29 88/1391 5/1417 29/1072 33/2209 96/1762 32/1774 26/1259 4/2735
30–39 138/2143 11/2169 31/1365 22/2756 71/1970 32/1992 14/1649 5/3338
40–49 180/2665 12/2597 42/1526 41/3281 112/3507 46/3526 14/1676 2/3601
50–59 170/2878 12/2969 39/1762 27/3658 136/3740 25/3680 14/1923 4/3757
60–69 109/3240 10/3339 33/1875 9/3818 90/4437 32/4360 7/1433 1/2946
�70 56/1847 5/1796 7/928 2/1895 33/1697 6/1779 2/445 1/895

Ethnicity
Hispanic/Latino 176/2787 10/2831 59/2064 59/4032 250/8889 93/8767 18/1801 9/3707

Not Hispanic/ Latino 565/11377 45/11456 122/6464 75/13585 288/8224 80/8344 59/6584 8/13565

Race
American Indian/Alaska Nativeb 5/113 0/109 20/372 26/747 65/1616 27/1641 6/522 1/1068
Asian 29/700 1/628 4/355 4/738 15/639 5/699 5/375 0/757
Black or African American 41/1352 4/1395 15/699 6/1401 30/1451 10/1416 8/947 1/1881
Other 30/422 1/464 3/164 2/338 24/621 6/589 1/54 0/146
Multiple 8/304 1/300 10/203 7/421 36/951 9/928 0/137 2/296
White 628/11273 48/11391 129/6735 89/13972 368/11835 116/11838 57/6350 13/13124

Sex
Female 365/6670 25/6848 66/3714 56/7732 239/7629 73/7617 50/4158 10/8283
Male 376/7494 30/7439 115/4814 78/9885 299/9484 100/9494 27/4227 7/8989

Health Characteristics Placebo Vaccine Placebo Vaccine Placebo Vaccine Placebo Vaccine
Body mass index (kg/m2)
Healthy weight or Underweight (<25) 150/3861 6/3970 41/2482 32/5275 163/5379 58/5501 29/2463 4/5220
Overweight (�25, <30) 267/4938 20/4857 62/3079 44/6406 245/7055 73/6901 14/2719 7/5610
Obese (�30) 324/5365 29/5460 78/2967 58/5936 130/4679 42/4709 34/3203 6/6442
Class 3 Obese (�40) 74/995 7/1015 12/473 10/976 17/601 7/643 7/572 3/1267
Cardiovascular Disease 196/4472 19/4468 49/2392 20/5057 116/4550 24/4422 18/2021 4/4059
Diabetes 76/1468 5/1484 19/873 10/1627 42/1587 17/1608 7/858 2/1622
HIV 5/87 0/93 6/134 1/278 7/274 3/240 1/49 0/135
Kidney Disease 4/74 0/73 2/45 0/131 3/113 0/106 1/56 0/125
Liver disease 5/101 1/113 9/160 1/308 6/168 2/169 0/62 1/134
Chronic Lung Disease 37/808 5/808 13/1055 14/2027 44/1150 16/1114 9/1264 1/2461

Risk Characteristics Placebo Vaccine Placebo Vaccine Placebo Vaccine Placebo Vaccine
Workplace Risk of Exposurec

Low 49/2666 36/5204 497/16355 159/16390 39/4951 7/9956
Medium 368/6735 30/6760 93/3765 61/7734 14/229 3/249 27/2670 6/5607
High 373/7429 25/7527 39/2097 37/4679 27/529 11/472 11/764 4/1709

Risk from Living Conditiond

Low 113/2354 8/2322 78/4365 47/9044 232/8676 66/8739 57/6808 13/14002
Medium 564/10229 40/10348 33/1593 25/3227 189/4978 57/4923 16/1117 3/2274
High 40/1179 5/1165 29/1336 25/2744 97/2694 38/2683 2/339 0/733
Very High 24/402 2/452 41/1234 37/2602 20/765 12/766 2/121 1/263
Tobacco use 12/253 2/236 31/1705 22/3471 8/369 5/374 24/2609 6/5330

Geographic Location
USA 741/14164 55/14287 145/7423 89/15389 331/9121 95/9156 73/7887 16/16261
Argentina 44/1414 20/1400
Brazil 43/3385 12/3394
Chile 10/670 9/1358 6/539 3/528
Colombia 86/1862 34/1856
Mexico 5/218 2/207 4/498 1/1011
Peru 26/435 36/870 23/574 7/570

Excluded variants were: Beta, Delta, Epsilon, Eta, Gamma, Iota, Lambda, Mu, Kappa, and Zeta.
a All participants were right censored at time t0 regardless of whether they were observed to experience event after t0. Separate time points t0 were chosen for each trial

such that about 10 % participants are at risk in the vaccine arm.
b Category is defined across all clinical sites. Indigenous people from South America were classified together with the American Indian or Alaska Native United States and

Mexico demographic according to the FDA definition (American Indian or Alaska Native: A person having origins in any of the original peoples of North and South America
(including Central America), and who maintains tribal affiliation or community attachment). In this analysis, the Moderna, AstraZeneca, Janssen and Novavax trials included
222, 1119, 3257, and 1590 participants, respectively, who identified as American Indian or Alaskan Native from North America.

c Detailed derivation of exposure risk based on OSHA categories is provided in Supplemental Methods.
d Living condition encompasses housing type and household size, detailed derivation provided in Supplemental Methods.
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seen in elderly patients, populations of color, and those with vari-
ous comorbidities further underscores the need to understand the
potential impact of these factors on responses to available COVID-
4
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19 vaccines [12–16]. Our study revealed that these individual char-
acteristics that raised the risk of COVID-morbidity and mortality
did not impact VE against symptomatic and severe COVID-19.
VID-19 vaccine efficacy: Results from four COVID-19 prevention network
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Fig. 1. Estimates of vaccine efficacy against symptomatic Covid-19 within subgroups defined by categorical baseline covariates, with corresponding 95 % confidence intervals.
In the AstraZeneca an Novavax studies, the number of events among Black/African-American participants was too low to estimate VE.

C.B. Turley, L. Tables, T. Fuller et al. Vaccine xxx (xxxx) xxx
Our findings confirm those of real-world studies [17], which have
shown similar VE across populations and age groups.

The aging process is accompanied by senescence of the immune
system often characterized by dysregulated inflammatory
responses and impairments in the processes of B and T cell differ-
entiation [18]. The immune response to COVID-19 is a salient
example. Early in the pandemic, age � 65 years was recognized
as a risk factor for severe health outcomes associated with
COVID-19 [19]. Mechanisms hypothesized to explain differences
in the clinical course of COVID-19 by age include lower levels of
interferon gene expression and T cell diversity in older adults
[20]. It therefore became important to evaluate VE in the elderly
and to prioritize vaccinating them once an approved vaccine
became available. Older adults are still the age group with the
5
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highest number of incident COVID-19 cases, and the highest rates
of hospitalization and death and clinical treatment guidelines char-
acterize age as the most important risk factor for progression to
severe COVID-19. In this analysis of randomized controlled trials
conducted early in the pandemic, we did not observe a difference
in VE between older adults and younger populations. Similarly,
observational studies conducted early in the pandemic, reported
that the Moderna and Pfizer/BNT162b2 (Pfizer/BNT) vaccines were
found to be highly effective (94 %) in preventing hospitalization in
fully vaccinated individuals �65 years of age [21] and a single dose
of the Janssen vaccine was >84 % effective at preventing severe dis-
ease in older adults [22]. Thus, these highly effective vaccines using
the same dose as younger persons resulted in similar short-term
protection. Whether response to boosting, alteration in the
VID-19 vaccine efficacy: Results from four COVID-19 prevention network
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Fig. 2. Estimated vaccine efficacy by age and body mass index (BMI) across the four trials, with corresponding 95 % confidence intervals. Estimates and intervals are derived
according to a working model that enforced that the relative risk of a Covid-19 endpoint on vaccine versus on placebo must be log-linear.

Fig. 3. Estimated tertiles of vaccine efficacy (VE) against Covid-19 endpoint as defined by all baseline covariates, with corresponding 95 % confidence intervals (CIs). For each
vaccine, vaccine efficacy was first predicted using all baseline covariates, and then participants were broken into three subgroups as defined by this prediction: the 33�33 %
with lowest predicted VE (Lowest VE), the 33�33 % with the next lowest predicted VE (Middle VE), and the 33�33 % with the highest predicted VE (Highest VE). Vaccine efficacy
was then estimated in these subgroups using a cross-validation method. If needed, estimates were projected to satisfy the population-level constraint that efficacy should be
nondecreasing when moving from the first to the third tertile of participants.
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circulating virus transmission kinetics, or immune escape charac-
teristics alter our observations is unknown and worthy of contin-
ued monitoring and evaluation. In addition, observational studies
of the real-world effectiveness of the primary series of the Pfizer/
BNT vaccine reported no significant differences in vaccine effec-
tiveness based on individual characteristics like elevated body
mass index, hypertension, or type 2 diabetes; however, the pres-
ence of three or more comorbidities was associated with slightly
lower vaccine effectiveness [16].

A significant concern early in the COVID-19 pandemic was the
risk to individuals being regularly exposed to the virus. Our find-
ings showing that risk of exposure had little impact on VE in the
short term is supported by multiple reviews of workers in high-
risk occupations who were among the first to receive COVID-19
vaccinations. Several observational studies have explored the rela-
tionship between occupation and COVID-19 VE in health care per-
sonnel [23–26], first responders, and other essential frontline
workers [5,27]. Prior to the emergence of variants, vaccine effec-
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tiveness against COVID-19 in fully vaccinated health care workers
ranged from 85 % for Pfizer/BNT in Israel to 100 % for Moderna in
France [23,24]. All existing data confirm that personal or environ-
mental variables do little to blunt the short-term effectiveness of a
variety of formulations of COVID-19 vaccines in comparison to the
VE observed in the trials, and that effectiveness is comparable over
a range of vaccine recipients [1].

The number of severe endpoints across both arms was sufficient
to evaluate modifiers of VE only for the ENSEMBLE trial. In this
trial, which also was the only trial that evaluated a single dose vac-
cine regimen, VE against severe disease was 74�6 % �28 days after
vaccination [3], and did not vary substantially by age or comorbidi-
ties [28]. A recent review and network meta-analysis comparing
the VE of COVID-19 vaccines found no statistical difference in risk
of severe disease among the eight COVID-19 vaccine Phase 3 ran-
domized controlled trials, suggesting that there is limited hetero-
geneity across vaccine platforms [29]. Overall, vaccines against
COVID-19 are incredibly successful at preventing the most severe
VID-19 vaccine efficacy: Results from four COVID-19 prevention network
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outcomes of disease, which is encouraging as new platforms and
updated vaccines are rolled out and the virus continues to mutate
at a rapid pace.

Interrogation of VE within subgroups is a significant challenge
for individual studies let alone across large, multinational trials.
Our analysis offers several improvements over previous studies
of the heterogeneity of COVID-19 VE [2–5]. First, the trials ana-
lyzed here had a harmonized design utilizing very similar end-
points and sample sizes, and all were placebo-controlled. We
also used a consistent method to analyze randomized trial datasets
across the different vaccine regimens, ensuring that the endpoint
and covariate definitions were harmonized. Additionally, our anal-
ysis made use of all available blinded, placebo-controlled follow-
up data. To provide unbiased and generalizable findings, we used
inverse probability weighting in our analysis. Furthermore, we
conducted a multivariate analysis using a state-of-the-art machine
learning method to evaluate the extent to which multiple baseline
covariates can predict VE.

Our study had several limitations. First, while we found that VE
after the primary vaccination series was not influenced by baseline
host or risk characteristics in the four Phase 3 vaccine efficacy tri-
als, we have limited insight into whether the variables examined
have a long-term effect on VE due to the relatively short follow
up in the blinded/pre-crossover periods of these trials. Due to the
high efficacy of vaccines, the period for accumulating cases for
determination of VE was brief, limited to the interval in each study
prior to crossover to active vaccine and termination of the placebo-
controlled design and/or emergency use authorization and subse-
quent vaccine availability across populations. Second, the vaccines
were each designed with the same target on SARS-CoV-2, the Spike
protein, and had a good match with circulating strains at the time.
This protein, while important for establishing an immune response
in each of these vaccine platforms, has also been subject to rapid,
persistent mutation, and VE of these vaccines against less-
matched variants may decrease as virus variants emerge. There-
fore, our findings may not apply to future data where longer follow
up is observed in the context of emerging variants. Third, the Jans-
sen vaccine trial data referenced here was a single dose series,
while the other three studies used two-dose regimens, and none
included a booster dose, which is the current standard of care, in
the blinded/pre-crossover phase of the trials. Fourth, the trials
enrolled in a variety of locations worldwide; while this enhanced
the racial and ethnic diversity of the population within each trial,
the spread of viral variants was occurring at different times in dif-
ferent locales, likely affecting enrollment of trial participants, and
variability in VE estimates. Fifth, while we were able to analyze
most factors commonly cited as affecting VE, because of small par-
ticipant numbers we could not assess the effect of immunocom-
promising conditions like HIV or organ transplantation with
suboptimal responses to COVID-19 vaccines. Finally, as the four tri-
als had different start and end dates, differences in timing could
have introduced uncontrolled confounders. We attempted to
address this by controlling for the effect of variants in the statisti-
cal analysis.

Our study supports that VE was high early in the pandemic
independent of vaccine platform, host factors, and settings. The
recruitment of racially and ethnically diverse participants, and
the availability of placebo-controlled data enabled us to conclude
that the vaccines were effective for all, including those most at risk
for COVID-19. The responses to COVID-19 vaccines currently vary
based on interval since last exposure to the virus, the immunologic
background of the host, and the continued emergence of variants
of concern such as omicron sublineages predominating in China,
Europe, and the United States as the pandemic enters its third year.
This analysis provides strong support for development and use of
vaccines that are well-matched to circulating virus strains regard-
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less of vaccine platform type, as effective tools in the near term for
reducing symptomatic and severe COVID-19 infections, particu-
larly for high-risk individuals during major variant shifts in the cir-
culating SARS-CoV-2 strain [30]. This has broad implications for
future COVID-19 vaccination strategy development and provides
strong support that vaccination remains the best tool to prevent
the most severe and debilitating forms of COVID-19.

5. Data sharing

Access to data underlying findings described in this manuscript
may be allowed in accordance with the individual data sharing
policies of the pharmaceutical companies contributing data to this
analysis. As each of the clinical trials included in this meta-analysis
are ongoing, data availability will begin after publication of the
final study results in 2023 and 2024.
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