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Abstract

Statistical Methods for Dose-Response Assays

by

Frances Poyen Tong
Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Terence P. Speed, Chair

Dose-response assays are a common and increasingly high throughput method of as-
sessing the toxicity of potential drug targets on test populations of cells. Such assays
typically involve serial dilutions of the compounds in question applied to cell samples
to determine the level of cell activity across a broad range of concentrations. Another
factor in such experiments may be the change in activity under different enzyme com-
binations and the use of controls to adjust for interassay variations. Typically, the
decreasing number in the population of cells due to increasing concentrations of the
drug can be modeled with a logistic curve. Since the appropriate range of concen-
trations of the drug to test in order to see these reactions cannot be predetermined
fully, frequently the data available for a given experimental unit may not be enough
to fit such curves on their own successfully. Instead, the assay data as a whole can
be successfully analyzed with methods such as constrained fitting and mixed effects
models, where each set can borrow strength from each other in order to be fitted
while still taking into account individual significances of the specific experiment.

This dissertation illustrates variations of such methods on three major datasets
from the Joe Gray lab at Lawrence Berkeley National Laboratory, the Douglas Clark
lab at the Department of Chemical Engineering at UC Berkeley, and Bionovo, Inc. of
Emeryville, California. The first dataset from breast cancer cell line testing involves
the estimation of the National Cancer Institute concentration parameter called GI50,
the concentration of the drug at which it inhibits the growth of the population of cells
by half. We develop a method utilizing replicate data to estimate this parameter.
The second dataset involves the estimation of a more commonly used concentration
parameter called the IC50, which doesn’t take into account the initial cell population,
on special assays that mimic the liver metabolism in the body. The methods involve
mixed effects models that incorporate the specific enzyme conditions and types of
cells important to the experiment. The third dataset, involving different effects of
plant compounds on an osteosarcoma cell line, illustrates the usage of negative and
positive controls to appropriately adjust the observations for interassay variation.
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Chapter 1

Introduction

All substances are poisons: there is none which is not a poison. The right
dose differentiates a poison and a remedy.

- Paracelsus [1493-1541]

The pharmacological treatment of cancer and other diseases is complex. One
drug does not fit all, not even most. There are potentially hundreds of thousands of
compounds out there that can help in some way, but how do we weed through all the
ones that don’t and how do we determine who gets what, when, and how much?

For a compound to survive the long process to become an useful drug, years and
years of research and an enormous amount of money are required to test it and to
ensure its efficacy and most importantly, safety. The beginning stages of finding po-
tential drugs to focus on is often laborious and disappointing. Many seemingly good
candidates can later prove to be toxic to people. This step of the drug discovery
process is continually being sped up with better and better technologies that can de-
termine the reactions of many compounds on different cell samples at the same time.
The majority of these methods involve dose-response assays. These assays are typi-
cally either plates or chips that can interrogate the effects of varying concentrations
of these compounds with a variety of cell types under different conditions.

Dose response assays can be described as mini laboratories condensed onto small,
typically rectangular plates. While a good many varieties produced by biotech com-
panies and university research labs exist, the common purpose of such a tool is to
determine the status quo of a living organism outside of itself. In a way, it allows
testing of something hidden that may otherwise cause discomfort or injury to the
organism, a human patient in our case.

1.1 Drugs

A drug is simply defined as a substance that affects normal bodily function when
absorbed in a living organism. More specifically for the pharmacological purposes of
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this dissertation, a drug is a chemical substance that is supposed to prevent, diagnose
or treat an illness or a disease.

If the drug causes a response, then it is known as an agonist. The compounds
involved in reducing hot flashes of menopausal women in Chapter 4 are agonists.
On the other hand, if it does not cause a response but blocks an agonist-mediated
response, it is called an antagonist. Cancer drugs (Chapter 2 ) are often antagonists
that try to inhibit the activation of signalling pathways in cells. Other antagonists are
involved in the toxicity testing done in Chapter 3, where a large variety of compounds
are tested with liver cells to see whether they will become toxic inside the body. For
example, Tolcapone is a drug used to treat Parkinson’s that can cross the blood-brain
barrier to inhibit a specific enzyme.

1.1.1 Tykerb

An example of an antagonist drug involved in one of the datasets of this disserta-
tion is Tykerb, a drug produced by GlaxoSmithKline. Also known as lapatinib, it is
a small molecule dual inhibitor of both EGFR and HER2 that was recently approved
as a first-line treatment of metastatic breast cancer patients who are categorized as
triple positive, meaning ER+ / EGFR+ / HER2+.

The family of signalling ERBB/HER receptors is an important target of many
cancer drugs. Found in the cell membrane, they are four tyrosine kindase receptors,
ERBB1-4, also known as HER1-4, in which their basic functional unit in signalling
is a receptor dimer, formed from two of the same or different receptors after ligand
binding. One receptor can activate its partner through an allosteric mechanism which
rearranges and stabilizes both receptors.

While ERBB2 does not bind to any ligands, it is the preferred heterodimeric part-
ner of the other three receptors. As illustrated by Figure 1.1, lapatinib competitively
binds to the ATP binding pocket of the EGFR/HER2 protein kinase domain, thus
preventing the receptors’ self-phosphorylation, which in turn, disrupts the activation
of two major signalling pathways responsible for major cell activities such as survival,
growth, and proliferation.

1.2 Dose-response curves

A good informative assay will have the sufficient range of concentrations that
cover three areas: low concentrations to show the level at no inhibition, concentra-
tions where the reaction is happening, high concentrations to show the level at 100%
inhibition. Usually such data will follow a curve that has a sigmoidal “S” shape
(Figure 1.2).

The steps from the drug binding to a receptor and the final response that we
measure on these assays are numerous and complex. However despite this, systems
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Figure 1.1: Copyright c©Nature Publishing Group [7]. Diagram of various cancer
drugs and how they affect the signalling pathways in the cell.

commonly produce dose-response curves that are sigmoidal. The use of logistic curves
as an empirical model works sufficiently well in a majority of the cases. This perhaps
can be explained simply by the fact that there is a direct link between receptor binding
and the response so what we are seeing is a response proportional to receptor binding,
assuming that each intermediate step follows the law of mass action.

These “S” shaped curves are typically defined by 4 or fewer parameters: the
lower and upper asymptotes define the minimum and maximum response while two
more parameters, the slope and the x value at the midpoint between the lower and
upper asymptotes define the linear portion of the activity. While the logistic curve
is the most popular, another called the gompertz curve is also sometimes used [4].
The difference is that while the logistic curve is symmetric about the mid point, the
gompertz curve can be asymmetric and sometimes that is a more flexible option for
the data (Figure 1.3).

1.3 EC50, IC50, GI50

In typical dose response data like in Figure 1.2, the standard summary of the data
points is to find the concentration of the drug at which the response is effected or
inhibited by half. The EC50 is the concentration at which half the maximal effect is
observed; this is the usual measure for agonist assays. The IC50 is the concentration of
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Figure 1.2: Example of a unit of data. As the concentrations of the drug increase (to
the right), the more the growth is inhibited in the cell population, as measured by
the optical density from the scanner.

the compound or drug that is required to effectively inhibit biological or biochemical
function (in vitro) by half. The GI50 is similar to the IC50; it is the concentration at
which the growth of the cell population is inhibited by half.

1.4 Outline of the thesis

This dissertation develops and illustrates a few key methods in the analysis of
dose-response data. Table 1.1 is a reference to the different characteristics of each of
the three main datasets involved in this dissertation.

All plots in this dissertation except figures obtained from external sources were
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Figure 1.3: Example of gompertz and logistic curve with the same parameter values,
φ0 = 2 (lower asymptote), φ1 = 8 (upper asymptote), φ2 = 0 (IC50), and φ3 = −1
(slope).

generated by the ggplot2 package by Hadley Wickham [21].

Chapter 2
Chapter 2 discusses the estimation of a specific National Cancer Institute measure

called the GI50, the concentration of a compound required to inhibit half the growth
of the cell population. The dataset on breast cancer cell lines involved in this chapter
is provided by the Joe Gray laboratory at the Lawrence Berkeley National Laboratory.
This chapter serves to illustrate the method of constraining parameters in a model
to fit all replicate curves simulataneously.

Chapter 3
Chapter 3 introduces the usage of nonlinear mixed effects models to fit larger sets

of data according to specific common factors such as enzyme conditions or chips. The
dataset on testing compounds for toxicity involved in this chapter is provided by the
Douglas Clark laboratory in the Chemical Engineering Department of UC Berkeley.

Chapter 4
Chapter 4 extends nonlinear mixed effects models to incorporate external informa-

tion about the dilution series data such as controls to assess the intra- and inter-plate
variation. The methods in this chapter are illustrated with data provided from Xi-
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LBL MetaChip Bionovo
Doses 9 9 10
Dilution fold 2 - 5 3, 4 variable
Replicates per dose 3 5 3
Size of dataset variable variable 540 obs.
Plate / chip size 96 wells 1080 spots 96 wells
Cell origins Human breast

cancer cell lines
Human and rat
liver tissue

Human osteosar-
coma cell line

Control values on separate
plates

none on same plate

Type of controls positive none negative and
positive

Enzymes none yes none
Goal summary GI50 IC50 EC50

Table 1.1: Table of the different characteristics of each of the main datasets. (LBL
= Lawrence Berkeley National Laboratory).

aoyue Zhao of the Bionovo Corporation in Emeryville, California.

Chapter 5
Chapter 5 reflects upon the analyses in the three core chapters, Chapters 2, 3,

and 4, as a whole and discusses their similarities and differences in methods and data.
Advice and issues regarding the general usage of such methods on dose-response data
is also included.
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Chapter 2

Estimation of GI50: Constrained
fitting of replicate data

2.1 Introduction

A common measure of drug effectiveness is the IC50. This is the inhibitory con-
centration of a drug that will eliminate half the population of cells. Since the IC50
does not take into consideration the initial cell population at time zero, the National
Cancer Institute developed three new special concentration parameters to improve
the measure of drug effectiveness [1].

In a typical cell viability experiment, the initial samples from cell lines are given
drugs and then measured after 72 hours. For a given cell line and drug, the GI50
(growth inhibition) is the concentration of the drug that kills half of the growth from
the initial population of cells, while the TGI (total growth inhibition) is the concen-
tration that eliminates the all the growth. If the drug continues to kill into the initial
cell population, the LC50 (lethal concentration) is the concentration of drug that, in
addition to killing off all the growth, eliminates half of the initial population. The
difference between the calculation of these measures and the more common measure
of IC50 is that additional information is required, such as the initial cell count at
time zero and the cell count with no drug after some time t. The specific formulas
are included in Table 2.1, where the three measures are the concentrations in the log
scale that satisfy the equations.

Current methods of dealing with replicate data in growth inhibition analysis that
others use involve computing summary statistics of independently calculated GI50s
from each replicate, i.e. taking the mean or median of the resulting GI50s [1]. This
chapter discusses methods to include all replicate data in one model in order to
generate a growth inhibition curve that will be more robust than fitting each replicate
curve separately.
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Growth inhibition

GI50 : the concentration
of drug that causes 50%
growth inhibition

f(xGI50)− α
φ1 − α

= 0.5 (2.1)

TGI : the concentration
of drug that causes 100%
growth inhibition

f(xTGI)− α
φ1 − α

= 0 (2.2)

Lethal concentration

LC50 : the concentration of
drug that kills off 50% of the
initial population

f(xLC50)− α
α

= −0.5 (2.3)

f = function relating dilution to growth
α = initial cell count at time zero

φ1 = cell count with no drug after time t

Table 2.1: Table of NCI definitions of GI50, TGI, and LC50; they are the values of x
such that the equations on the right are satisfied.

2.2 Data

Significant work in the testing of scores of compounds on scores of breast cancer
cell lines has been conducted in the lab of Joe Gray at the Lawrence Berkeley Na-
tional Laboratory (LBL). All data for the breast cancer cell line viability is procured
using the Promega CellTiter-Glor Luminescent Cell Viability Assay. The basis of
such an assay relies on the fact that living cells contain and require ATP to remain
metabolically active [8]. A chemical reaction involving ATP and luciferin, a com-
pound that lights firefly tails, will produce light, and thus enables the quantitation
of the amount of ATP (Figure 2.1). The observed response is the optical density of
bioluminescence that is proportional to the amount of ATP in each well. Thus in
reality, the number of viable cells is measured only relatively (Figure 2.2). An exam-
ple of the correspondence between the intensities on the image and the quantitative
measure of the intensities is included in Figure 2.3.

Figure 2.1: The luciferase reaction: Mono-oxygenation of luciferin is catalyzed by
luciferase in the presence of Mg2+, ATP and molecular oxygen. [17]
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Figure 2.2: Cell number correlates
with luminescent output. See [17] for
more details.

Figure 2.3: Example of scanned image with
plot of intensities.

The data consists of two corresponding groups of 96-well plates. The first group
are the plates where the drugs are tested on cell line samples. One sample is typically
tested with three drugs on one of these drug plates. For each combination of cell line
and drug on a plate, a series of 9 dilutions of the given drug is administered with 3
replicates each. With three types of drug, these observations of the relative cell counts
72 hours after drug administration account for 81 wells on the plate. The other 15
wells are used to measure 3 replicates of vehicle controls, the number of living cells in
media after growing for 72 hours without any drugs; 4 replicates of untreated control,
which is only media; 2 blanks; and 6 dilutions for standardized ATP controls, which
are used to estimate the ATP standard curve. In this chapter, we refer to each set
of 27 observations of a specific replicate of a cell line and drug combination as units.
The plot of the raw values of an example unit is included in Figure 2.5.

The serial dilutions can be of any fold-difference apart, but are usually constant
within a unit. A lab may typically start with a larger range of concentrations first
to see where the range of activity may lie, and then repeat the experiment with a
narrow and more focused range of concentrations to maximize the information. The
dataset here involves dilutions of two- and five-fold.

Corresponding to each of these drug plates is a plate from the second group, called
the T0 plate, as it contains the data for the number of cells at time 0 hours. Along
with 2 blanks and 6 dilutions for standardized ATP controls, the rest of the 88 wells
are used for T0 values.

The locations of each of the units’ measurements are randomized throughout the
data plate, although each plate follows the same mapping. This mapping, shown in
Figure 2.4, reveals how the 96 wells are assigned to the 81 drug-related measurements
as well as the various control values and ATP standards. The first column of the T0
plate is reserved for the six dilutions of the ATP standard, while the remaining 88
interrogate the same thing.
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Drug 1 Drug 2 Drug 3

Dilution #1 #2 #3 #1 #2 #3 #1 #2 #3

1 D4 F10 H12 C12 E12 E4 B9 A12 E2

2 D3 D10 G7 F9 G12 E9 C10 F8 B5

3 H7 A8 B4 B2 E3 B8 E7 H9 C4

4 F3 E10 H3 C7 G2 A11 B11 D2 A4

5 E5 F5 A10 A5 F4 C3 F11 A6 E8

6 F7 B3 H4 D7 A9 F12 A7 A2 D11

7 D12 C2 D6 F6 G9 B6 G11 G4 D5

8 G6 E6 G8 G3 B12 H5 H6 F2 H11

9 D8 B7 H2 C6 B10 C5 C11 G10 C9

Blank A1 B1

Vehicle control D9 H8 A3

Untreated H10 G5 C8 E11

ATP C1 D1 E1 F1 G1 H1

Figure 2.4: Mapping of the drug plate.

A PostGreSQL database on the LBL servers currently contains data for 6,656
plates and 16752 cell line by drug combinations. All data can be easily accessed and
analyzed through the R package cellvia (currently still under improvements).

2.2.1 Concentration series

To convert the information in a table like Table 2.2 for use in working with the
replicates of any specific cell line and drug combination, we need to calculate the
starting concentration of the drug used. This can be found by multiplying the stock
concentration by the stock dilution factor, α. This starting concentraton, x0, will
be the highest concentration in the series and is plotted as the last dilution on any
plots of the raw data. It then is subsequently and serially diluted by this dilution
factor eight times to result in nine concentrations. Thus the entire series in the usual
increasing order for the combination is obtained

xi = x0α
i−9, i = 1, . . . 9 (2.4)

For the cell line UACC812 (id 10722) and the drug GSK Tykerb (id 33), the drug
group id determines which concentration series was used in each of their replicates.
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Figure 2.5: Example of a unit of data. As the concentrations of the drug increase (to
the right), the more the growth is inhibited in the cell population, as measured by
the optical density from the scanner. The values for the vehicle control are included
at the zero dilution.

In the first replicate listed in the table, the stock concentration of 5 mM was diluted
1/300th to 1.67 M. All nine dilutions result in the following concentrations:

1 2 3 4 5
4.3× 10−11 M 2.1× 10−10 M 1.1× 10−9 M 5.3× 10−9 M 2.7× 10−8 M

6 7 8 9
1.3× 10−7 M 6.7× 10−7 M 3.3× 10−6 M 1.7× 10−5 M
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1 10722 33 98 5 1:300 5.00 mM
2 10722 33 110 2 1:300 1.50 mM
3 10722 33 111 2 1:300 1.50 mM
4 10722 33 114 2 1:300 0.30 mM
5 10722 33 115 2 1:300 0.30 mM
6 10722 33 116 2 1:300 0.30 mM
7 10722 33 162 2 1:300 1.50 mM
8 10722 33 116 2 1:300 0.30 mM
9 10722 33 180 2 1:300 1.50 mM

10 10722 33 111 2 1:300 1.50 mM

Table 2.2: Example information table on stock concentrations, starting concentra-
tions, and dilution factors for the cell line UACC812 and the drug GSK Tykerb.

2.2.2 ATP curves

As described previously, each type of plate includes a set of 6 measures for the
ATP standard curve. These measures can be utilized for checking whether a plate is
functioning properly and compared with each other to identify any noticeable plate
effects that may bias the data. Although the dilution series data is randomized on
each 96-well plate, the ATP standards are assigned to consecutive wells in the first
column of each plate. In general, in our data, plots of the standard curves show close
matches between the data and T0 plate pairs (Figure 2.6), indicating little evidence
for plate effects. In cases where the curves may potentially differ significantly, it may
be possible for later techniques to use the differences between the curves to adjust all
the observations appropriately.

2.2.3 NCI data

The National Cancer Institute (NCI) has a long running program called DTP
(Developmental Therapeutics Program), involving a cancer screening project that
tests thousands of compounds on cancer cell lines [1]. Their experiments typically
involved 5 10-fold serial dilutions with samples incubated 48 hours. They compute
GI50, TGI, and LC50 from all these experiments and upload them online to be avail-
able for download. Biologists frequently use their values as is in their own research
papers [3].
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Figure 2.6: Comparison of ATP standard curves on drug plate (purple) and T0 plate
(green).

The data includes many replicates of different cell lines and compound combina-
tions; however they analyze each replicate by itself. Their method of computing the
special concentration parameters is to first convert their data into a GI% scale ac-
cording to the formula (Table 2.1), essentially subtracting the observations by initial
cell count at time zero and then scaling by the difference in the cell counts from time
0 to time t. They then linearly interpolate between the two data points closest to
the 50% horizontal line; Figures 2.7 and 2.8 illustrate this. This means that they are
not utilizing a large majority of their data when they only need two data points to
calculate a GI50. In addition, with this method, they are unable to calculate any
errors associated with their estimate.

Unfortunately, the raw data is unavailable for public use; thus we cannot attempt
any analysis that requires the untransformed data.
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60 Cell Screen Endpoints 

50% growth inhibition 

Total growth inhibition 

50% lethality 

GI50 TGI LC50 

Adriamycin 

Figure 2.7: National Cancer Institute’s method of estimating GI50, TGI, and LC50:
piecewise linear interpolation.

-8 -7 -6 -5 -4

40
50

60
70

80
90

GI values for Compound 682841 and Cell line BT-549
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NCI Published GI50 = -4.76

Figure 2.8: Example of how the National Cancer Institute estimates GI50 values.
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2.3 Methods

The goal is to summarize the observations from each unit into three important
measures: GI50, TGI, and LC50.
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Figure 2.9: Plot of fitted logistic curve on an example unit. The parameter estimates
are used later to obtain the GI50, TGI, and LC50 values.

These measures are estimated from a logistic curve that is fitted on these obser-
vations. For our purposes, a general formula for a four-parameter logistic curve that
is decreasing is

f(x) = φ0 +
φ1 − φ0

1 + exp
(
−x−φ2

φ3

) (2.5)

where φ0 is the lower asymptote, φ1 is the upper asymptote, φ2 is the inflection point,
and φ3 is the slope or growth rate. For the independent fitting of each dilution series
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unit, the following model can be used:

yijk(r, s) = φ0,ijk +
φ1,ijk − φ0,ijk

1 + exp
(
xijk(r)−φ2,ijk

φ3,ijk

) + εijk(r, s) (2.6)

where yijk(r, s) is the number of living cells at replicate s of dilution r, xijk(r) (log
scale), of kth replicate of the cell line i and drug j. In addition, εijk ∼ N (0, σ2). We
include the three control values into the fitting as data at dilution 0, as they contain
no drug and will help anchor the estimate of the upper asymptote φ1,ijk. This model
can be easily fitted with nls() in R or other common nonlinear estimation programs.
See Figure 2.9 for the fitted curve from the example.

Once the curve parameters have been estimated, we can then transform each fitted
logistic curve into a GI (growth inhibition) curve by subtracting an estimate of αijk
(the number of cells at time 0 hours) and scaling by the difference between φ1,ijk (the
number of cells at time 72 hours) and αijk. The estimate of αijk here is the median
of its 88 observations. Similarly, an LC (lethal concentration) curve is produced by
subtracting and then scaling by α̂ijk. Consequently, the three special concentration
parameters, GI50, TGI, and LC50, can be estimated by solving for the dilution x
such that their three formulas hold (Table 2.1).

x̂GI50 = φ̂2 − φ̂3 log

(
φ̂1 − α̂

φ̂1 + α̂− 2φ̂0

)
(2.7)

x̂TGI = φ̂2 − φ̂3 log

(
φ̂1 − α̂
α̂− φ̂0

)
(2.8)

x̂LC50 = φ̂2 − φ̂3 log

(
2φ̂1 − α̂
α̂− 2φ̂0

)
(2.9)

This method is simple but is only appropriate for the cases where there is only
one set of dilution series data, and thus only one fitted curve, for a given cell line
/ drug combination. For cases with replicate data, fitting them each independently
will generate different GI50s, leading to the problem of how to summarize them
into one representative GI50. Figure 2.10 shows the resulting GI curves from the
individual curves in the original example. As we can see from the plot, the GI curves
of the same cell line and drug vary widely as the concentration of the drug increases.
Due to the nature of the transformation, any differences are then magnified; the
spread in the TGI estimates is much wider than the spread in the GI50 estimates
(where the curves intersect the gray horizontal lines at GI = 0 and 0.5, respectively).
Biologically, assuming the cells grow in satisfactory conditions and are not allowed
to reach confluence, any replicate of a particular combination of cell line and drug
should ideally lead to exactly the same GI curve, regardless of the size of the initial
cell population.
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GI curves of replicates of cell line SUM225CWN and drug GSK1 (AKTi)
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Figure 2.10: Individual GI curves of the replicates of the cell line SUM225CWN
and drug GSK1 (AKTi). The separate GI50 and TGI estimates are found at the
intersections of the curves at the horizontal lines at the y-intercepts of 0.5 and 0,
respectively. Notice that two of the TGI estimates will end up being nonexistent.

2.3.1 Joint estimation across replicates

We now discuss the steps involved to produce a model that will be able to fit all
replicate data together while enforcing a common GI curve. At present for a replicate
of a given cell line / drug combination, we have a combined set of 27 observations
for 9 drug dilutions and 3 observations for the number of cells at time 72 hours.
Corresponding to these 30 observations from the drug plate, there are 88 observations
of the number of cells at time zero. To try to use all the data in one model, we first
need to establish a relationship between the number of cells at time 72 hours given no
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drug treatment (φ1) and the number of cells at time 0 hour (α). We can assume the
relationship is a basic exponential growth equation where at time t, the population
is an exponential function of the population at time 0 with a parameter δ controlling
the growth rate.

N(t) = N(0) exp(δt) (2.10)

Since the time t is constant at 72 hours, φ1 is a product of α and a scale factor, β1,
that is common across replicates of a given cell line, i.e.

φ1 = β1α (2.11)

Two additional assumptions are made: that the parameters φ2 and φ3 are equal
across the replicates of a particular combination. Without loss of generality, we
shall show results for the case of two replicates, and so, φ2 = φ′2 and φ3 = φ′3.
Relationships between the parameters φ0 and φ′0, and φ1 and φ′1 can be revealed
if we set the GI curves of the two replicates equal to each other. If we let z =
1/(1 + exp(−(x− φ2)/φ3)), then

GI:
φ0 + (φ1 − φ0)z − α

φ1 − α
=
φ′0 + (φ′1 − φ′0)z − α′

φ′1 − α
(2.12)

=
1
α′
{φ′0 + (φ′1 − φ′0)z − α′}

φ′1
α′
− 1

(2.13)

=
1
α′
{φ′0 + (φ′1 − φ′0)z − α′}

φ1

α
− 1

(2.14)

=
α
α′
{φ′0 + (φ′1 − φ′0)z − α′}

φ′1 − α
(2.15)

=
α
α′
φ′0 + α

α′
(φ′1 − φ′0)z − α
φ1 − α

(2.16)

Thus, φ0 =
α

α′
φ′0. Since this holds for any arbitrary pair of replicates, we can extend

this to a variable number of replicates, n, to say that the ratio
φ0,k

αk
for every replicate

k is equal. Substitution of φ0,k = αkβ0 and φ1,k = αkβ1 into the basic logistic model
leads to a model that involves all the data for a given cell line / drug combination.

yk = αk

β0 +
β1 − β0

1 + exp
(
−x−β2

β3

)
+ εk (2.17)

The resulting model is also a logistic curve; each fitted replicate curve is composed
of a base curve, common to all replicates, that is scaled by its own value of the
initial cell population, αk. That each fitted curve will produce the same GI curve is
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proved easily, as the replicate-specific αk parameter will be canceled out during the
transformation to the GI curve.

GI(x) =
1

β1 − 1

β0 +
β1 − β0

1 + exp
(
x−β2

β3

) − 1

 (2.18)

Similarly, the LC (lethal concentration) curve is the same for all replicates.

LC(x) = (β1 − 1)GI(x) =

β0 +
β1 − β0

1 + exp
(
x−β2

β3

) − 1

 (2.19)

The three special concentration parameters can be estimated from this model as

x̂GI50 = g1(β̂) = β̂2 − β̂3 log

(
β̂1 − 1

β̂1 + 1− 2β̂0

)
(2.20)

x̂TGI = g2(β̂) = β̂2 − β̂3 log

(
β̂1 − 1

1− β̂0

)
(2.21)

x̂LC50 = g3(β̂) = β̂2 − β̂3 log

(
2β̂1 − 1

1− 2β̂0

)
(2.22)

Thus, to estimate the special concentration parameters, we need to estimate n+4
parameters such that the constrained fitting of the n sets of replicate data will result
in the same growth inhibition and lethal concentration curves.

2.3.2 Likelihood

To initiate the discussion of how the parameters are estimated, we present the
likelihood of the data as follows. All the data involved come from three sources
across two different plates: the measurements for the dilution series, for the vehicle
control and for the T0 values. The first set provides the information for how the
different levels of drug are affecting the cells, the second set on the population in the
absence of the drug, and the third on the population at time zero. We assume the
following model for our measurements:

yijk(r, s) ∼ N (f(xijk(r),βij, αijk), σ
2
ij) (2.23)

yijk(0, s) ∼ N (αijkβ1,ij, γ
2
ij) (2.24)

aijk(s) ∼ N (αijk, τ
2) (2.25)
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where βij =


β0,ij

β1,ij

β2,ij

β3,ij

, aijk are the replicates of the corresponding T0 values for the

kth replicate of the cell line i and drug j, f is the four-parameter logistic curve func-
tion, σij is the standard deviation of the errors εij(r, s), γij is the standard deviation
of the vehicle controls yijk(0, s), and τ is the standard deviation of the aijk values.
Recall that r and s specify the sth replicate of the rth dilution for each unit.

Thus, the likelihood as a function of the parameters is

L(βij, αijk, σ
2
ij, γ

2
ij, τ

2
ij|yijk(r, s), aijk(s)) = (2.26)

nij∏
k=1

3∏
s=1

P (yijk(0, s)|β1,ij, αijk, γij)P (aijk(s)|αijk, τij)
9∏
r=1

P (yijk(r, s)|βij, αijk, σij)

Maximizing this likelihood is equivalent to minimizing the following penalized sum
of squares.

h(βij, αijk, σij, γij, τij) =

nij∑
k=1

9∑
r=1

3∑
s=1

Aijkrs +

nij∑
k=1

3∑
s=1

Bijks +

nij∑
k=1

88∑
t=1

Cijkt (2.27)

where

Aijkrs =
(yijk(r, s)− f(xijk(r),βij, αijk))

2

σ2
ij

(2.28)

Bijks =
(yijk(0, s)− αijkβ1,ij)

2

γ2
ij

(2.29)

Cijkt =
(aijk(t)− αijk)2

τ 2
ij

(2.30)

These sums of squares can again be minimized with the function optim() in R
or other common optimization tools. The four logistic curve parameters, β0,ij, β1,ij,
β2,ij, β3,ij, and the nij scale factors, αijk, k = 1, . . . , n will be estimated at alternate
steps from the variance parameters, σ2

ij, γ
2
ij, τ

2
ij, until convergence.

Initial values and iterative estimation
Reasonable starting values can be easily found by first setting α0

ijk to be the
medians of the 88 observations for each replicate k. Then β0

0,ij, β
0
1,ij, β

0
2,ij, β

0
3,ij are

estimated from the ordinary nonlinear least squares fitting of the logistic curve to
one of the k replicate data using α̂0

ijk. Once optim() provides the next set of these
estimates, the variance parameters can be then be updated.
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2.3.3 Heteroscedasticity and robustness

The variance of observations from dose response assays commonly increases as a
function of the observations. To ensure the equal contribution of points, except for
outliers, to the fitted curve, we include weights in the sums of squares that will be
updated at each iteration of the method. This gives

hw(βij, αijk, σ, γ, τ) =
nij∑
k=1

9∑
r=1

3∑
s=1

w1,ijk(r, s)Aijkrs +

nij∑
k=1

3∑
s=1

w2,ijk(s)Bijks +

nij∑
k=1

3∑
s=1

w3,ijk(t)Cijkt

(2.31)

where

w1,ijk(r, s) =
bijk(r, s)

ȳijk(r)2
, r 6= 1 (2.32)

w2,ijk(s) =
bijk(0, s)

ȳijk(0)2
(2.33)

w3,ijk(s) =
cijk(t)

āijk(t)2
(2.34)

The Tukey biweights, bijk(r, s) and cijk(t), in each iteration are calculated from the
residuals of the prior iteration’s fitted values.

2.3.4 Standard errors

Standard errors of the GI50 estimates are calculated with the delta method. The
results from using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method in optim()
include an approximation to the Hessian, the matrix of second derivatives of the
objective function h(βij) (Eqn 2.27) at the minimum. Since the Fisher information
matrix is the negative Hessian and the inverse of the covariance matrix, the covariance
matrix of βij, Σβij

, is thus found as the inverse of the negative Hessian.

Σβij
=

−(∂2hw

∂β2
ij

)T (
∂2hw

∂β2
ij

)−1

(2.35)

Then the standard errors of x̂GI50, x̂TGI, and x̂LC50 are the square roots of(
∂gl
∂βij

∣∣∣∣bβij

)T

Σ̂βij

(
∂gl
∂βij

∣∣∣∣bβij

)
, l = 1, 2, 3 (2.36)
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2.4 Results

2.4.1 Influence of T0 values

Attempts to fit the model on various sets of replicate data resulted in fitted curves
whose lower and upper asymptotes do not follow the observations of the dilution series
closely (Figure 2.12). This is due to the inclusion of the T0 values. We can see that a
relationship between the two variables is clear but not strong enough that the use of a
direct relationship between φ1,ijk and αijk (Eqn 2.11) results in smaller discrepancies
in the fitted curves from the observations. The fact that there are 88 aijk values
means considerably more weight is given to the estimates of αijk being the robust
mean of these 88 values than from the observations in the dilution series near where
the upper asymptotes, φ1,ijk are estimated. As a result, both sets of lower and upper
asymptotes estimates are constant multiples of the mean of the aijjk values.

How the dilution series data are adjusted by the T0 values is seen in Figures
2.11 and 2.12. The first plot shows the medians of the T0 values for each replicate
plotted against the values of the upper asymptotes as fitted on the dilution series
observations only. The distances and locations of these points relative to the best fit
line corresponds to the distances and locations of the fitted curves to their respective
set of observations. For instance, the replicates whose points appear above the best fit
line have fitted curves that underestimate the observations and similarly, replicates
whose points are below the best fit line have fitted curves that overestimate the
observations.

The fitting of the dilution series data without the corresponding T0 values results
in curves that fit the observations as well as individual fitting can (Figure 2.15).
Although we are unable to judge whether the original fitted curves are in any way
better than these, both sets of estimates from constrained fitting with and without
the T0 values end up with IC50 and slope estimates that are quite similar, -15.72 vs.
-15.63 and -0.72 vs. -0.66, in addition to hitting quite close to the weighted means
of the individual estimates, -15.62 and -0.61 (Tables 2.3 and 2.4). This is because it
is in effect averaging the ratios of φ1,ijk and αijk; thus, the estimates of the common
parameters, βij will be still be quite close.

More complex methods, such as mixed effects models, may be better at addressing
the balance between observations from the two different plates. Forcing the direct
relationship between them may not be as appropriate as modeling them more flexibly.
Techniques from later chapters can be adapted here for future analysis. Because of
this, we continue to focus on fitting the dilution series data separately from the T0
data.

The LBL database currently contains data for up to 14 replicates per cell line and
drug combination. We illustrate some results of the constrained fitting method on the
set of six replicates for the cell line SUM225CWN and the drug GSK1 (AKTi), one of
the few sets where every single replicate can be fit independently. Comparisons of the
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Replicate φ̂0 φ̂1 φ̂2 φ̂3

1 910.80 1710.28 -15.72 -0.72
2 1797.30 3374.93 -15.72 -0.72
3 1843.20 3461.12 -15.72 -0.72
4 768.15 1442.41 -15.72 -0.72
5 2008.80 3772.08 -15.72 -0.72
6 3889.80 7304.18 -15.72 -0.72

Table 2.3: Table of estimates from constrained fitting of cell line SUM225CWN and
drug GSK1(AKTi) using T0 values

resulting estimates from both the models show very close values (Figures 2.13, 2.14) ,
while plots of the fitted curves show that the logistic curve fits the observations quite
well (Figures 2.15 and 2.16) and the residual plots do not reveal anything amiss in our
assumptions (Figure 2.17). Because of the way the constrained model is constructed,
these resulting estimates (Table 2.4) will lead to a single GI curve and thus, one GI50
and TGI value for this set. However the individual fittings will lead to six different
GI curves and the issue of how to summarize across these curves in an appropriate
way, especially when they look like the curves in Figure 2.10.

Individual Constrained

Replicate φ̂0 φ̂1 φ̂2 φ̂3 φ̂0 φ̂1 φ̂2 φ̂3

1 590.69 1206.32 -14.70 -0.80 682.94 1258.20 -15.63 -0.66
2 1457.27 2469.72 -16.18 -0.48 1305.04 2404.30 -15.63 -0.66
3 1704.56 3064.60 -15.65 -0.68 1664.30 3066.18 -15.63 -0.66
4 873.56 1893.68 -15.83 -0.73 960.02 1768.66 -15.63 -0.66
5 2942.99 5549.59 -15.54 -0.84 3002.05 5530.74 -15.63 -0.66
6 3715.71 6769.13 -15.63 -0.59 3688.39 6795.18 -15.63 -0.66

Weighted mean -15.62 -0.61

Table 2.4: Table of individual and constrained (without using T0 values) nonlinear
least squares estimates for cell line SUM225CWN and drug GSK1(AKTi)

Since the results of the constrained fitting match well with the individual esti-
mates, one may question why joint estimation is even necessary when we can simply
fit each replicate individually and then take the mean. First of all, even if we ob-
tain the same estimates from both methods, the error involved in summarizing the
individual cases would be greater than the error of the estimate obtained using all
the data at once. More importantly is that for practical reasons, individual fitting of
the replicates will not suffice in general. There are too many cases where the data of
one single unit is not good enough to be able to illuminate the entire curve. This is
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true for all the real and large datasets that we have come across. A majority of the
time, it is a tricky problem where the biologist does not know exactly in which range
of concentrations the main activity will lie, but requires such information in order to
run an experiment to figure this out. Thus, valuable spots on the experimental plates
will not be used optimally, and there will be insufficient information in some areas.

Figure 2.18 displays an example of a set of data where the individual model is
unable to fit 5 out of the 12 replicates. The first two replicates have a much wider
range of concentrations used than the others and must have been a guide for later
replicates that focus more on the area where the IC50 and slope parameters are
fitted. Even so, a few of the newer sets do not have enough information to cover the
estimation of either or both of the asymptotes. However, together they have more
than enough to cover the important range of the curve where the IC50 and slope lies.

Figure 2.20 shows that the constrained model is able to fit all 12 of the replicates.
We can tell from these fitted plots and the residual plots (Figure 2.22) that the
majority of the replicates are fit quite reasonably and that replicate 9 is an outlier;
we can check from the database whether this is due to experimental conditions such
as who performed the work or when.

Both sets of estimates from individual and constrained fitting are included in Table
2.5. The weighted mean of the possible estimates of IC50 from individual fitting is
-14.13 while the estimate from the constrained fitting on all the data is -14.31. The
slope estimates are close as well: -0.70 vs -0.86. We compare the lower and upper
asymptote estimates in Figures 2.23 and 2.24 to see that the constrained fit is not
forcing the asymptote values to be too different from the individual fits.

2.4.2 Goodness-of-fit

Although we have seen visually that the constrained fitting of the data works well,
we can try to justify this model quantitatively with a goodness-of-fit test. Because it
requires fewer parameters, the constrained model is the null one, while the individual
model is the alternative. The F test determines whether the larger model provides a
significantly better fit than the smaller model.

F =
((SSnull − SSalt)/(dfnull − dfalt))

SSalt/dfalt
(2.37)

Does the closer fit of the observations we get from fitting each replicate separately
justify the extra parameters? The number of parameters for the constrained model
varies additively as the number of replicates varies (n + 4), while the number of
parameters for the individual model varies multiplicatively (4n). We calculate the F
statistic [Eqn 2.37] to the example with 6 replicates (180 observations) in this chapter
that was able to have all replicates successfully fit independently.
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Individual Constrained

Replicate φ̂0 φ̂1 φ̂2 φ̂3 φ̂0 φ̂1 φ̂2 φ̂3

1 NA NA NA NA 2418.44 6230.58 -14.31 -0.86
2 NA NA NA NA 1958.98 5046.89 -14.31 -0.86
3 1395.21 4831.63 -14.00 -0.90 1852.95 4773.73 -14.31 -0.86
4 2191.20 5448.42 -13.99 -0.59 2203.93 5677.93 -14.31 -0.86
5 2211.77 5301.63 -14.53 -0.79 2042.42 5261.86 -14.31 -0.86
6 NA NA NA NA 2198.20 5663.17 -14.31 -0.86
7 2020.91 5688.89 -14.36 -0.79 2194.96 5654.84 -14.31 -0.86
8 279.70 5172.66 -13.09 -1.90 1886.70 4860.67 -14.31 -0.86
9 NA NA NA NA 1364.13 3514.38 -14.31 -0.86

10 1372.78 4667.71 -14.40 -1.24 1704.62 4391.57 -14.31 -0.86
11 NA NA NA NA 1189.79 3065.24 -14.31 -0.86
12 1945.40 4387.32 -14.35 -0.53 1748.53 4504.70 -14.31 -0.86

Weighted mean -14.13 -0.70

Table 2.5: Table of individual and constrained nonlinear least squares estimates for
cell line HCC1954 and drug GSK1 Tykerb.

F =
(8558306− 7782805)/[(180− 10)− (180− 24)]

7782805/(180− 24)
= 1.11 (2.38)

The p-value we obtain from this test statistic and the F14,156 distribution is 0.35,
too large to consider rejecting the null hypothesis that the constrained model is the
correct one. It can fit all the data almost as well as the individual fitting can, while
using fewer parameters, enforcing the summarization of all replicate data at once.

Although this shows that the constrained model is the preferred one for this spe-
cific dataset, we cannot easily generalize this for all other data without looking at a
few more results of this test. However, this requires sets of individual estimates to be
complete, something that is less common than we expected.

2.5 Discussion

Because we are working with replicate data where the goal is just one set of spe-
cial concentration estimates, constrained fitting makes sense and by sharing strength
across the units, all the data can be used. The units that fail to be fitted by individual
methods are usually not a complete loss. They often contribute much information
to the pool and only need to be helped a little by other units in order to be fitted
reasonably. This is why we cannot settle for doing the simplest method of fitting each
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unit independently, somehow summarizing their results, and ignoring the ones that
cannot contribute in this way.

Through some key informative assumptions, we are able to formulate a model
that can tackle all replicate data as a whole to provide the most intuitive way to
ultimately calculate the GI50, TGI, and LC50 values.

More work is needed to incorporate the T0 values in an appropriate way; we
suggest the use of mixed effects models, which we introduce in the next chapter, that
can model this data more flexibly.
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T0 vs vehicle control
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Figure 2.11: Plot of individually estimated upper asymptote φ̂1 values against the
median of T0 values, including the best fit line for cell line SUM225CWN and drug
GSK1 (AKTi).

Cell_SUM225CWN_10613_Drug_GSK1(AKTi)_30 : Constrained fit with T0 values
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Figure 2.12: Fitted curves from the constrained fitting of cell line SUM225CWN and
drug GSK1(AKTi) using T0 values.
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Lower asymptote estimates: 
 constrained vs individual
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Figure 2.13: Cell line SUM225CWN and
drug GSK1 (AKTi) : Constrained vs in-
dividual estimates of lower asymptote. A
gray line with intercept 0 and slope 1 is
included for reference.

Upper asymptote estimates: 
 constrained vs individual
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Figure 2.14: Cell line SUM225CWN and
drug GSK1 (AKTi) : Constrained vs in-
dividual estimates of lower asymptote. A
gray line with intercept 0 and slope 1 is
included for reference.
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Cell_SUM225CWN_10613_Drug_GSK1(AKTi)_30 : Constrained fit
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Figure 2.15: Fitted curves from constrained fitting (no T0 values used) for the six
replicates of cell line SUM225CWN and drug GSK1(AKTi).
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Cell_SUM225CWN_10613_Drug_GSK1(AKTi)_30 : Constrained fit
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Figure 2.16: Fitted curves from constrained fitting for the six replicates of cell line
SUM225CWN and drug GSK1(AKTi).
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Cell_SUM225CWN_10613_Drug_GSK1(AKTi)_30 : Constrained fit residuals
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Figure 2.17: Residuals from constrained fitting for the six replicates of cell line
SUM225CWN and drug GSK1(AKTi).
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Cell_HCC1954_9852_Drug_GSK_Tykerb_33 : Individual nls fit
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Figure 2.18: Fitted curves from individual fitting for the 12 replicates of cell line
HCC1954 and drug GSK Tykerb.
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Cell_HCC1954_9852_Drug_GSK_Tykerb_33 : Individual nls fit
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Figure 2.19: Fitted curves from individual fitting for the 12 replicates of cell line
HCC1954 and drug GSK Tykerb.
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Cell_HCC1954_9852_Drug_GSK_Tykerb_33 : Constrained fit
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Figure 2.20: Fitted curves from constrained fitting for the 12 replicates of cell line
HCC1954 and drug GSK Tykerb.
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Cell_HCC1954_9852_Drug_GSK_Tykerb_33 : Constrained fit
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Figure 2.21: Fitted curves from constrained fitting for the 12 replicates of cell line
HCC1954 and drug GSK Tykerb.
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Cell_HCC1954_9852_Drug_GSK_Tykerb_33 : Constrained fit residuals

dilution

R
es

id
ua

ls

−1000

−500

0

500

1000

1500

2000

−1000

−500

0

500

1000

1500

2000

−1000

−500

0

500

1000

1500

2000

−1000

−500

0

500

1000

1500

2000

 1

●●●

●

●● ●

●

● ●

●

●

●

●
● ●●

●
●

●

●

●●●

●
●●

●●●

 4

●
●
●

●

●●

●
●●

●

●
● ●●

● ●

●
●

●
●●

●●

●
●●

●

●●●

 7

●
●●

●

●
●

●

●
● ●●● ●

●●
●●● ●

●●
●●
● ●●● ●●●

10

●
●●

●

●
●

●

●
●

●

●● ●●

● ●
●●

●
●
●

●
●● ●

●●
●●●

0 2 4 6 8

 2

●

●

● ●

●

●
●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●

 5

●
●●

●
●●

●

●
● ●

●● ●●
●

●

●● ●
●● ●●

●

●●● ●●●

 8

●

●
●

●

●
● ●

●

●

●

●●
●
●

● ●

●●

●

●

●
●
●

● ●
●

●
●●
●

11

●
●●

●

●

● ●●

●

●

●● ●●

●
●●
●

●
●●

●

●●
●●● ●

●●

0 2 4 6 8

 3

●

●●

●
●

●

●
●●

●

●●
●
●
●

●
●●

●

●●

●●
●

●
●● ●●●

 6

●●
●

●

●
●

●

●
● ●

●

● ●
●
● ●●●

●

●●
●●●

●●
●

●●
●

 9

●●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●

12

●
●●

●

●● ●

●●

●

●●
●●

●

●
●●

●●

●
●
●
●

●

●●
●●

●

0 2 4 6 8

Figure 2.22: Residuals from constrained fitting for the 12 replicates of cell line
HCC1954 and drug GSK Tykerb.
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Lower asymptote estimates: 
 constrained vs individual
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Figure 2.23: Cell line HCC1954 and drug
GSK Tykerb : Constrained vs individual
estimates of lower asymptote.

Upper asymptote estimates: 
 constrained vs individual
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Figure 2.24: Cell line HCC1954 and drug
GSK Tykerb : Constrained vs individual
estimates of upper asymptote.
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Chapter 3

Estimation of IC50: Crossed and
nested mixed effects models

3.1 Introduction

The majority of drug screening assays assess the effects of toxicity on cell cul-
tures only; however, in reality, inside the human body, the liver may metabolize these
compounds into substances that can be more toxic than the parent compound. Typ-
ically, the enzymes responsible for the initial clearance of drugs from the body, called
P450, will make potentially harmful substances more water soluble to be eliminated
from the body easily; however, at other times, these enzymes can convert some com-
pounds, like the common pain reliever acetaminophen, into a toxic chemical. Other
compounds are prodrugs, which P450 enzymes must activate in order to be effective.

Current methods to screen for such effects involve using primary hepatocyte cul-
tures, sometimes even slivers of liver, and generating metabolites using liver micro-
somes for subsequent toxicity screening. This process tends to be inconsistent as well
as costly and time-consuming. So, as with the progress of biotechnology, the goal is
the same: high throughput and automated assays that are more cost-effective and
consistent.

The Clark lab at the Department of Chemical Engineering at UC Berkeley has
been working on developing a miniaturized in-vitro assay system that can assess
the toxicity of compounds and their metabolites and differentiate between them. The
system consists of the coupling of two types of chips: one that houses the cell cultures
and the other the contains the metabolizing enzymes.

3.1.1 DataChip and MetaChip

The DataChip (Data Analysis Toxicology Assay Chip) is a miniaturized 3D cell
culture assay, which houses 1,080 individual cultures of Hep3B, human hematoma
cells. In a mirrored format, the MetaChip (Metabolizing Enzyme Toxicology Assay
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Chip) houses the immobilized metabolic enzymes encapsulated in a sol-gel, which
are supposed to emulate the metabolic reactions in the human liver. In this way,
many drug candidates can be tested simultaneously. Once the DataChip has been
prepped and incubated on its own for 18 hours, it is stamped with the accompanying
MetaChip and incubated together for 6 hours. Afterwards, the MetaChip is removed
and discarded while the DataChip is placed in medium and incubated for an additional
18 hours before it is stained so a scanner can read the relative levels of living and
dead cells in each well. For more details, see [14], [11], [13], and [12].

Figure 3.1: DataChip: 3D array of cells
encapsulated in alginate gels.

Figure 3.2: DataChip slide: A sin-
gle chip can support 1080 nL-scale
metabolic toxicity assays - the equiva-
lent of eleven 96-well plates.

Enzyme conditions
Experiments involve four enzyme conditions:

• No enzymes

• Mix of P450s

• Mix of Phase II

• Mix of P450s and Phase II, also referred to as the “All Mix”

The isoforms of P450 are the most important as they catalyze first-pass (Phase
I) reactions that can lead either to activation or inactivation of the drug. Whereas
Phase I reactions can often result in active metabolites, enzymes that are involved in
Phase II are typically detoxifying in nature and eventually enhance excretion of the
compound [2].

Chip setup
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Figure 3.3: Procedure for DataChip and MetaChip to obtain measures of toxicity.
The DataChip contains the cell cultures, while the MetaChip contains the metabolic
enzymes. The two chips are then stamped together to produce a reaction. Afterwards,
the MetaChip is removed, and the DataChip is incubated once more, stained and then
scanned to obtain intensity values.

For the analysis, the layout of the chip consists of 1,080 observations. Each chip
can include all combinations of 6 different compounds and 4 different enzyme con-
ditions. Some chips may have a different format with 12 different compounds and 2
different enzyme conditions.

Each pairing of a compound and enzyme condition will be referred to hereafter as
a unit; thus a chip will contain 24 units, which are blocks of 9 serial dilutions with
5 replicates each, for a total of 45 observations (Figure 3.4). As a check, 24 blocks
multiplied by 45 observations equals 1,080.

All observations from each chip get outputted to an Excel file (Figure 3.5), where
it will be processed by R to be in a better format for analysis.

The example Excel file is easily read and converted to a data frame, where the first
6 lines are shown in Figure 3.6. Table 3.1 provides explanations for all the columns.

The data on a typical chip looks like the plot shown in Figure 3.7, where there are
24 units corresponding to 24 unique combinations of compound and enzyme condition.
Ideally, an unit would have optimal range of concentrations of the compound in order
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Name Description Values
compoundID unique identifier for compounds 1, . . . , 6

enzymeRep identifier for enzyme - replicate 1, . . . , 20
combination

dilution increasing number means increasing 1, . . . , 9
concentration

value intensity measuring cell viability positive real numbers
compound compound name factor
startConc starting concentration positive real numbers

concentration absolute concentration positive real numbers
logconc logged concentration (base 10) real numbers
enzyme enzyme condition factor

replicate identifier for replicate 1, . . . , 5
units concentration units concentration units

species specifies which species human, rat
file full file name with path string

sfile shortened file name string
funit unit ID within a chip 1, . . . , 24

fileID numeric identifier for file (chip) positive integers
unit unit identifier unique across entire positive integers

batch of chips
runit unit identifier for unique combinations positive integers

of compound and enzyme
enz.comp for use in nested modelling factor

weight weights for robust fitting [0, 1]

Table 3.1: The representation of the columns in the data frame for the complete
dataset.
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Figure 3.4: Layout of the MetaChip: The chip can test 6 compounds by 4 enzyme
conditions for a total of 24 dose-response curves that each consists of 5 replicates of
9 four-fold dilutions.

Figure 3.5: Direct output of data from the scanner consists of 4 columns of informa-
tion: 1) Block refers to one of the 6 compounds; 2) Column refers to the enzyme and
replicate (the order is determined by the set labeling of blocks on all chips); 3) Row
indicates the dilution; 4) The important stuff: the intensity values as measured by
the scanner. The first two lines in the file are added in to specify the compounds,
enzymes, starting concentrations, and units.
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Figure 3.6: Screenshot of R console where the first six lines of the working dataset is
displayed. See Table 3.1 for column descriptions.

to detect any activity. Sometimes there will be no effect as evidenced by a majority
of the units with no trend on the example chip shown.

3.2 Current working dataset

Experiments are typically run in batches of several chips, and data is continually
being generated on a massive scale. A method of analysis that can estimate IC50
values reasonably and quickly would be ideal. From viewing the data from the ex-
ample chip, we can expect that we may be unable to fit every curve independently
by unit. Nevertheless, we need a method that will be run on a set of several chips
at a time. We thus focus on analyzing a working dataset that is representative of
the data that is continually being produced in the lab. There are eight chips in this
set, with a total of 8,640 observations for 22 different compounds across 4 different
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Figure 3.7: Plots of raw data from a sample Excel data file, organized such that the
columns are by enzymes while the rows are by compounds. Smoothed lines through
the data are provided for easier trend viewing.

enzyme conditions. Further structure of the dataset is displayed in Figure 3.8, where
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the blue boxes indicate the locations of the compounds across the chips, and Figure
3.9, which indicates the frequencies of specific compound-enzyme combinations.

Frequency table of compounds across chips

Chip

C
om
po
un
d

Acetaminophen

Albendazole

Amiodarone

Amitriptyline

Buspirone

Carbamezepine

Chloroquine

Dapsone

Diclofenac

Fexofenadine

Flutamide

Lovastatin

Paroxetine

Pioglitazone

Pravastatin

Rotenone

Rotenone 

Simvastatin

Tamoxifen

Tolcapone

Troglitazone

Ziprasidone

Gal_A-1.xls Gal_A-2.xls Gal_B-1.xls Gal_B-2.xls Gal_E-1.xls Gal_E-2.xls Gal_F-1.xls Gal_F-2.xls

frequency
0

4

Figure 3.8: Mapping of 22 unique com-
pounds across 8 chips in current work-
ing dataset. Blue indicates the pres-
ence of the compound.
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Figure 3.9: Frequencies of compound-
enzyme combinations in the current
dataset of 8 chips.

Edge problems
As the diagram of the chip (Figure 3.4) shows, the spots are arranged in the same,

highly organized pattern on every single chip. What this means is that if anything
occurs to affect or damage any area on the chip, it may effectively cause the loss
of all information on a specific dilution since all the replicates are lined up next to
each other. One of these problems is edge bleeding of the chip. Caused by inefficient
drying of the chips in one of the experimental steps, edge bleeding means that the
spots located near the edges of the chip will leak outside of their normal locations and
thus, effectively diminish the intensity levels in those spots. This is clearly shown in
the first two dilutions of the unit shown in Figure 3.13; the scanner is unable to pick
up any signal from all 10 of spots. The obvious and common solution for this issue
originated in the microarray world years ago: randomize the spots! Unfortunately,
this data is not so, and we will discuss a fix for this in the analysis later.

3.3 Individual nonlinear least squares

The goal of the analysis of such data is to estimate IC50 values, the concentrations
of the compound required to inhibit half of the cell growth. The first step in cases
like this is to simply try fitting a logistic curve to each unit on its own and see what
happens.
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Intensities by compound
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Figure 3.10: Boxplots of raw intensity values of the current working dataset by com-
pound.

We randomly pick an unit where we can see a clear decreasing trend. This unit,
as shown in Figure 3.14, is labelled 132, with compound Paroxetine (more popularly
known as Paxil, an antidepressant), no enzymes, and on the chip Gal E-1. On visual
inspection of all units of data, the lowest values all tend to zero, so we will use a three
parameter logistic curve here, where we estimate the upper asymptote φ1, IC50 φ2,
and slope φ3.

yrs =
φ1

1 + exp
(
−xr−φ2

φ3

) + εrs (3.1)

where r and s reference the dilutions and replicates, respectively, and εrs ∼ N (0, σ2).
The parameters, φk, k = 1, 2, 3, can be estimated by minimizing the nonlinear

least squares:

9∑
r=1

5∑
s=1

(yrs − f(xr, φk))
2 (3.2)

where f is the three parameter logistic curve function. Nonlinear least squares has
been implemented in R [18] as the nls() function, whose default is the Gauss-Newton
algorithm. Initial values can also be provided automatically with its self starting
function for the three parameter logistic curve, SSlogis().
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Intensities by chip
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Figure 3.11: Boxplots of raw intensity values of the current working dataset by chip.

This function calculates initial values through a method that takes advantage of
the partial linearity of the logistic curve function. We can rearrange the equation
such that the right hand side is linear.

log

(
y/φ1

1− y/φ1

)
=

1

φ3

x− φ2

φ3

(3.3)

Then, if we let z = log
(

y/φ1

1−y/φ1

)
, we can rearrange once more such that φ2 and φ3

become linear parameters:

x = φ2 + φ3z (3.4)

Since we do not know what φ1 is, we substitute φ1 with φ̃1 = 1.05 ∗max(y) so that
we can fit the linear model 3.4 to obtain rough values for φ2 and φ3, φ̃2 and φ̃3.

These values, φ̃2 and φ̃3, will then be supplied as initial values for the fitting of a
two-parameter logistic curve with the original observations. The “plinear” algorithm
in nls() will estimate φ2 and φ3, as well as φ1, the linear parameter in the logistic
curve. The majority of the time, these initial values are extremely close to the ultimate
estimates.

By running nls(), we obtain the estimates, φ̂1 = 4936.25, φ̂2 = 5.41 and φ̂3 =
−0.46.
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Figure 3.12: Boxplots of raw intensity values of the current working dataset by en-
zyme.

Robust fitting of the data is available with robust M-estimators, using iterated
reweighted least squares (IWLS), through the nlrob() function in robustbase package.
Three ψ functions are available for use: Huber’s (default), Hampel, and the Tukey
bisquare. With the default ψ function, we obtain the following robust estimates,
which are quite similar to the original ones. The slope estimate seems the most
dramatically different.

Upper asym IC50 Slope
4870.71 5.37 -0.35

Both the ordinary and robust fitted curves are plotted in Figure 3.15, where they
seem to fit the points reasonably and similarly.

3.3.1 Results on working dataset

We continue with fitting the rest of the 192 units on the 8 chips that we are cur-
rently dealing with, where even with robust fitting, there are over half of the units
that cannot be fitted.
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Figure 3.13: Example of experimental problem of edge bleeding.

Fitted Failed Percent success
Ordinary 72 120 37.5%

Robust 93 99 48.4%

Figure 3.16 displays the results for the first of the 8 chips, where robust nonlinear
least squares can fit successfully only 6 out of the 24 units. Some units are so flat that
it is obvious why we are unable to fit a curve, while other units are a bit more difficult
to explain, but a majority of these cases occur because of identiafiability issues with
the IC50 and slope parameters. There just isn’t sufficient information in the area
where these two parameters have to be estimated from. Clearly, this is not the best
method of analyzing such data. We cannot rely on sufficient data for each unit to be
even able to fit a logistic curve on more than half of the dataset. The next step is
methods that involve the sharing of information throughout the entire dataset.
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3.4 Two-stage methods

In the rest of this chapter, we focus on methods that take advantage of the entire
dataset to fit logistic curves to each unit. These methods are generally done in
two stages: the first stage being individual nonlinear least squares and subsequent
summarization of its results, and the second stage being the utilization of these results
in a mixed effects model. One of these methods for nested structures called the global
two-stage method has been well developed and implemented by Davidian and Giltinan
[9]. We fit our data in a similar vein.

3.4.1 Model 0: Grouped by unit

We now discuss a naive approach as an intermediate step on the way to discussion
and implementation of more complex and complete models. In this situation, the
simplest way to try and fit curves on every unit by sharing information is to consider
the unit factor as a random effect. Instead of looking at each unit on its own, we now
specify that these units are a random sample from a much larger population of units,
which in a sense, is true in this case since we are not limited to this current working
dataset.

The first stage involves the fitting of each unit independently with nonlinear least
squares as shown in the previous section. The resulting estimates are then used
as data to robustly estimate the covariance components needed in a mixed effects
model that will fit the units together. Mixed effects here can be considered a way to
balance the individual fitting of each unit where some estimates can be extreme or
nonexistent, and the fitting of a common curve to every unit where there is sufficient
data but also loss of information from units individually.
Let us first define the notation:
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y observations
x dilutions (log scale)
φ linear combination of fixed and random effects
β fixed effects
b random effects
ε error
σ2 variance of error
σ2
b variance of the random effects

n total number of observations
i 1, . . . , ncomp indexes compound
j 1, . . . , nenz indexes enzyme conditions
k 1, . . . , nchip indexes chip
l 1, . . . , nijk indexes any replicates of a compound-enzyme

combination within a chip
r 1, . . . , 9 indexes dilution
s 1, . . . , 5 indexes replicates within a dilution

Since this current model will only be referring to the data by unit, we shall try to
simplify things by defining i∗ to index units, which in later sections will be implied
by any unique combination of the original indices i, j, k, l.

yi∗(r, s) = f(xi∗(r, s), φi∗) + εi∗(r, s) (3.5)

=
φ1,i∗

1 + exp
(
−xi∗ (r,s)−φ2,i∗

φ3,i∗

) + εi∗(r, s) (3.6)

=
β1 + b1,i∗

1 + exp
(
−xi∗(r,s)−(β2+b2,i∗ )

β3+b3,i∗

) + εi∗(r, s) (3.7)

εi∗ ∼ N (0, σ2) (3.8)

This model fits a logistic curve to each unit i∗ with three parameters, φ1,i∗ (upper
asymptote), φ2,i∗ (IC50), and φ3,i∗ (slope). These are only parameters in the sense
that each are composed of a parameter that is common across all units called a fixed
effect and a random variable that takes on a value specific to the unit called a random
effect. The fixed effects parameter, β, can be viewed essentially as the mean vector
of the parameters, while the random effects are the deviations from the mean.

φi∗ = β + bi∗ (3.9) φ1,i∗

φ2,i∗

φ3,i∗

 =

 β1

β2

β3

+

 b1,i∗
b2,i∗
b3,i∗

 (3.10)
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The random effects are assumed to be normally distributed as such:

bi∗ ∼ N (0, σ2Σ) (3.11)

where Σ is a q × q relative covariance matrix. The dimension q is the total number
of random effects to be predicted, which in this case is the number of units (192)
multiplied by 3 parameters (576).

For the random effects, bi∗ , in the same unit i∗, the covariance matrix is

G = σ2

 σb,11 σb,12 σb,13

σb,21 σb,22 σb,23

σb,31 σb,32 σb,33

 (3.12)

where the diagonal elements are the variances of the random effects of the upper
asymptote, IC50, and slope, and the off-diagonal elements are the covariances. This
is true for all units, and the covariance of any two random effects that are not within
the same unit is zero.

Thus the structure of Σ in this case is elucidated as σ2Σ is just the Kronecker
product of G and the identity matrix Iq.

Note that if σb,11 = 0, this is equivalent to fitting a common upper asymptote to
all units; this similarly applies to all other parameters.

3.4.2 Likelihood

In order to eventually find the conditional means of these random effects given the
data, we first discuss the likelihood of this model. Recall that y is the n × 1 vector
of observations. Given the vector of random effects b,

y|b ∼ N (f(β,b), σ2In) (3.13)

Further the random effects have distribution

b ∼ N (0, σ2Σ) (3.14)

The likelihood of the data as a function of the parameters is given by

L(β,Σ, σ2|y) = p(y|β,Σ, σ2) (3.15)

where p(y|β,Σ, σ2) is the density of the random vector y given the parameters
β,Σ, σ2. Now note that

p(y|b,β,Σ, σ2) =
1

(2πσ2)n/2
exp

(
− [y − f(β,b)]T [y − f(β,b)])

2σ2

)
(3.16)

p(b|Σ, σ2) =
1

(2πσ2)q/2|Σ|q/2
exp

(
−bTΣ−1b

2σ2

)
(3.17)
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Then

p(y|β,Σ, σ2) =

∫
p(y|b,β, σ2)p(b|Σ, σ2)db (3.18)

=
1

(2πσ)(n+q)/2|Σ|q/2

∫
exp

(
− [y − f(β,b)]T [y − f(β,b)] + bTΣ−1b

2σ2

)
db

(3.19)

Given Σ, we then find the values of β and b that minimize the penalized sums of
squares [20]

[y − f(β,b)]T [y − f(β,b)] + bTΣ−1b (3.20)

3.4.3 Spherical transformation of random effects

The random effects, b, can be defined as a linearly transformed “spherical” nor-
mally distributed random variable, u, in which the contours of the density are con-
centric spheres centered at zero [5]. If we let Λ be the Cholesky factor of Σ such that
Σ = ΛTΛ, then

b = Λu, u ∼ N (0, Iq) (3.21)

And so the expression 3.20 is equivalent to

[y − f(β,b)]T [y − f(β,b)] + bT (Λ−1)T (Λ−1)b (3.22)

so that we now find the values of β and u that minimize

[y − f(β,Λ,u)]T [y − f(β,Λ,u)] + uTu (3.23)

3.4.4 Estimation of fixed effects and covariance components

The fixed effects, β1, β2, and β3, are estimated with weighted means of the in-
dividual nonlinear least squares estimates where the weights are the precisions from
those fits.

β̂h =

nunit∑
i∗=1

ŵi∗ × φ̂hi∗

nunit∑
i∗=1

ŵi∗

, h = 1, 2, 3 (3.24)

where

ŵi∗ =
1

σ̂2
i∗

(3.25)

We do not estimate the fixed effects with the random effects for a simple reason that
will be explained later.
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β̂1 β̂2 β̂3

Fixed effects estimates 4146.81 5.88 -0.37

We delay the discussion of the estimation of covariance components in a later
section when it can be more complete. The robust estimates of the covariance (Σ̂)
and correlation matrix of the random effects for this model, calculated from the
individual nonlinear least squares estimates, are

Robust covariance Robust correlation
b1 b2 b3 b1 b2 b3

b1 5435311.76 -1370.79 100.37 1.00 -0.21 0.10
b2 -1370.79 7.72 -0.65 -0.21 1.00 -0.54
b3 100.37 -0.65 0.18 0.10 -0.54 1.00

One particular thing to note from the correlation matrix is that the IC50 and slope
parameters are generally moderately correlated; depending on the dataset, we have
seen around -0.4 to -0.7. The correlation between the upper asymptote and these two
is much lower, around 0 to 0.2. Since the estimation of the asymptote and the IC50
and slope typically rely on data points in different areas of the logistic curve, this is
consistent with expectations.

3.4.5 Penalized least squares

There are many methods available to minimize the penalized least squares 3.23.
For this model, one of the simplest is to utilize the optimization function in R called
optim() and one of its available methods L-BFGS-B, which allows box constraints [6].

Given values for the fixed effects and covariance matrix, the minimization is in-
dependent of the units. So the prediction of the random effects, bi∗ for the i∗th unit
can be accomplished by minimizing the penalized nonlinear least squares with only
the unit data.

The predicted spherical random effects ûi∗ will minimize

[yi∗ − f(β̂, Λ̂,ui∗)]
T [yi∗ − f(β̂, Λ̂,ui∗)] + ui∗

Tui∗ (3.26)

and then the original random effects bi∗ are calculated

b̂i∗ = Λ̂ûi∗ (3.27)

The fitted curves of the first chip are included in Figure 3.17 as a visual check of
the results. The method was able to fit a curve to each unit, and through checking
all the fitted curves of the eight files (included in the appendix), we see that a great
majority of the units have fitted curves that follow the data points well. However
there are a few that have completely unreasonable fits even though they seem like it
would have been able to have been fitted. In addition, there are cases where the slope
estimates are somewhat too steep; there is potential for improved estimates.
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The advantages of this method can be seen in its computational simplicity and
speed. The fact that each unit is processed one at a time means that any unit that
happens to be an outlier and unable to be reasonably fitted will not be able to spoil
or interrupt the fitting of the rest of the units in the batch. It is not an all or none
proposition that may leave the lab with no results even if the majority of the data is
close to ideal.

However, it does not allow us to analyze how the IC50 values are affected by the
compounds and enzyme conditions. It does not take into account of the potential
differences that data on separate chips may encounter. So while this was a step up
from the failures of individual nonlinear least squares, there needs to be a balance
between a simple model that can estimate the IC50 easily without regard for the
inherent characteristics of the data and a complex model that interprets the IC50 in
the correct way but may not be practical in reality.

3.5 Model 1: Partially crossed random effects

The previous model was able to obtain decent IC50 estimates most of the time,
but we can hope to do much better by using more of the information that we have
about the dataset. It is time to take a closer look at how we can utilize information
about compounds, enzyme conditions, and even which chip observations lie on.

3.5.1 Design of model

This section will discuss the development of the model. In order to fit curves
specific to factors in the data, we have to determine how the three parameters in
the logistic curve are affected by the factors. Then we may be able to estimate the
parameters through components related to each factor. Through empirical analyses
of the individual nonlinear least squares estimates, we can see through scatter and
boxplots whether we need to include specific random effects. And of course, as with all
modelling, the decisions here are never definitive and may change during and/or after
fitting. Increasing complexity in the model means longer fitting time and perhaps less
chance of converging to reasonable estimates, since the same number of observations
are being used to estimate more and more things. The best way is to start simply
and then build up.

Upper asymptote IC50 Slope
Compound yes yes yes

Enzyme no yes no
Chip yes no no

Table 3.2: Table of the inclusion of random effects by factor for the three parameters.
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We suggest the entries in the table above (Table 3.2) because of the following
plots of the individual nonlinear least squares estimates. They can help but because
individual sets of estimates can tend to be extreme, the estimates are most likely more
varied than expected. Also, the model should be general enough to be sufficient for
similar datasets. Another option is to use the results from Model 0, as there are more
estimates available. This can be focus of comparison later, but at present, results
from individual estimates suffice. In general, we should take note of how well these
estimates are doing as well as on what proportion of the dataset.

There are four sets of plots to address the upper asymptote parameter. Boxplots
that compare the individual estimates by compound (Figure 3.18) show that there
is a clear difference. However because of the mapping of the compounds to chips,
we also have to be sure that this is not an artifact of the chips instead. Boxplots of
the estimates by chip (Figure 3.19) do indeed show a similar pattern. We can take a
closer look in Figure 3.20 to see that the pattern is mostly due to variation in chips.

Simple linear mixed effects models can be fit here to determine whether to include
the compound factor in our full model. The inclusion of both compound and chip
factors results in similar estimates of the variance. The exclusion of the compound
factor increases the residual variance considerably more than the variance of the chip
random effect.

Group With compound SD Without compound SD
Compound 1521.5 NA

Chip 1574.7 1765.5
Residual 1290.2 1937.0

We can do a simple check with a likelihood ratio test that shows that the inclusion
of the compound factor does significantly improve the likelihood. It would be best to
start with including both in our model.

Model Df AIC BIC logLik χ2 χ2 Df P(> χ2)
Without compound 3 1695.4 1703.0 -844.7
With compound 4 1659.0 1669.2 -825.5 38.4 1 5.8e-10

The enzyme factor does not seem to have an effect on the upper asymptote (Figure
3.21), which is reasonable since the starting population of living cells wouldn’t depend
on the enzyme conditions.

The model should allow for the estimation of a different IC50 for each compound
- enzyme combination but not for replicates within a combination. Plot of the in-
dividual estimates indicate that we may be able to obtain unique estimates for the
majority of the units (Figure 3.23), while there isn’t likely a need to adjust for chip
effects (Figure 3.24).

Although we would have expected that the slope parameter depends heavily on
the enzyme conditions, we do not see any differences in the estimates when separated
by enzyme levels (Figure 3.22). They do not vary by chip much either (Figure 3.26).
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So at present, we include a compound effect for the slope parameter (Figure 3.25).
The inclusion and exclusion of effects is never a set game plan; it depends on a lot of
factors and can continually change due to practical constraints in the fitting.

Recall that we consider all the observations in this dataset as yijkl(r, s) where
i = 1, . . . , ncomp, indexes the compounds,
j = 1, . . . , nenz, indexes the enzyme conditions,
k = 1, . . . , nchip, indexes the chip,
l = 1, . . . , nijk, indexes any replicates of a compound / enzyme combination

on the same chip
r = 1, . . . , 9, indexes the 4-fold serial dilutions of the compound
s = 1, . . . , 5, indexes the replicates for each dilution

The specific model is a logistic curve with three parameters that define the up-
per asymptote φ1, x-value of the midpoint φ2, i.e. IC50 here, and the slope at the
midpoint φ3. In following Table 3.2, we include random effects for the upper asymp-
tote by compound and by chip, for IC50 by compound and enzyme, and for slope by
compound.

yijk(r, s) = f(x(r, s);φijk) + εijk(r, s) (3.28)

=
φ1,ik

1 + exp
(
− (x(r,s)−φ2,ij)

φ3,i

) + εijk(r, s) (3.29)

φijk =

 φ1,ik

φ2,ij

φ3,i

 =

 β1

β2

β3

+

 a1,i

a2,i

a3,i

+

 0
b2,j
0

+

 c1,k
0
0

 (3.30)

= β + Aiai +Bjbj + Ckck (3.31)

where Ai is the 3× 3 identity matrix

 1 0 0
0 1 0
0 0 1

, Bj =

 0 0 0
0 1 0
0 0 0

 and

Ck =

 1 0 0
0 0 0
0 0 0

.

ai =

 a1,i

a2,i

a3,i

 bj =

 b1,j
b2,j
b3,j

 ck =

 c1,k
c2,k
c3,k

 (3.32)

ai ∼ N (0,Σa) bj ∼ N (0, σ2
b ) ck ∼ N (0, σ2

c ) (3.33)

εijk(r, s) ∼ N (0, σ2) (3.34)
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Σ =

 σ−2Σa ⊗ Incomp 0 0

0
σ2

b

σ2 ⊗ Inenz 0

0 0 σ2
c

σ2 ⊗ Inchip

 (3.35)

Random effects associated with different factors and with different levels of the
same factor are assumed to be independent and identically distributed. Σ for this
report is a q × q matrix, q being the total number of random effects and calculated
here as (number of compounds × 3) + (number of enzymes × 1) + (number of chips
× 1) = (22 × 3) + (4 × 1) + (8 × 1) = 78. The structure of Σ can be visualized in
Figure 3.27.

We can write the parameters of this model in matrix notation as

φ = Xβ + Z

 a
b
c

 (3.36)

of dimension pn × 1 with design matrices: X, dimension pn × p, and Z, dimension
pn× q, where p = 3, the number of fixed effects.
φ can be put into matrix form as Φ with dimensions n× p such that the elements

of φ fill column-wise. Each row of Φ is thus the set of {upper asymptote, IC50, slope}
values for a specific observation.

3.5.2 Estimation of covariance matrix

The estimation of Σ and σ is dependent on the results of the individual fits.
Because the compound factor is involved in all three parameters, a 3 × 3 covariance
matrix is needed in Σ. Since two of the parameters each have random effects by two
factors, the contributions have to be separated. This can be done through a linear
mixed effects model for each of these parameters. For the upper asymptote,

φ̂1ik,nls = β1 + a1,i + c1,k + ε1ik (3.37)

(3.38)

and for the IC50,

φ̂2ij,nls = β2 + a2,i + b2,j + ε2ij (3.39)

The estimates are considered the data here where they are decomposed into the mean
values, β1 and β2, the effects by compound, a1,i and a2,i, the effects by enzyme, b2,j
and the effects by chip, c1,k. If we define

â3,i = median(φ̂3)−median(φ̂3,i) (3.40)
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Compound Upper asymptote IC50 Slope
Flutamide 1747.00 0.34 -0.14
Rotenone 51.33 -1.89 -0.10

Tamoxifen -480.82 1.00 0.65
Acetaminophen -1097.65 -0.24 -0.18

Chloroquine -1755.48 -0.57 -0.00
Amiodarone -806.88 0.52 -0.08

Buspirone -42.36 -0.35 -0.11
Carbamezepine -65.88 -0.67 -0.24

Dapsone 211.32 1.91 6.96
Diclofenac -529.38 2.41 0.79

Fexofenadine 4217.70 1.55 1.58
Tolcapone -224.16 -0.45 -0.06
Paroxetine -809.26 -1.51 -0.25

Pioglitazone -562.82 1.18 1.13
Troglitazone -1400.36 1.78 0.16

Rotenone 312.32 -1.93 0.31
Amitriptyline 1793.66 -0.41 -0.19

Simvastatin 51.46 -1.37 -0.08
Lovastatin -751.41 -1.29 -0.73

Pravastatin 939.82 0.90 4.90
Ziprasidone -798.17 -0.91 -0.16

Table 3.3: Compound effects used to help estimate covariance matrix.

Then Σ̂a (Table 3.4) is defined as the robust covariance of the ncomp × 3 matrix[
â1 â2 â3

]
(Table 3.3).

To see whether these numbers in Table 3.4 are reasonable, we can look at the
square of the diagonal to see that the standard deviations, 1673.84, 2.74, and 0.27,
are within scale of the parameter estimates.

The estimates for the other two variances of the random effects, σ2
b and σ2

c are
obtained from the linear mixed effects results.

And lastly, σ̂ is calculated from the estimated residual errors of the individual
nonlinear least squares fittings.

σ̂ =

√√√√ 1

n#

n#∑
i#=1

σ̂2
i#,nls

=
√

1091311 = 1044.67 (3.41)

where i# indexes the n# units that were able to be fitted with nonlinear least squares.
Thus, the estimated covariance matrix to be used in the next stage is composed

of the elements in the table 3.6.
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Upper asym IC50 Slope
Upper asymp 2801728.01 -1832.57 -150.76

IC50 -1832.57 7.50 -0.16
Slope -150.76 -0.16 0.07

Table 3.4: Estimated covariance matrix of the random effects for compound.

Upper asym IC50 Slope
Upper asym 1.00 -0.40 -0.34

IC50 -0.40 1.00 -0.22
Slope -0.34 -0.22 1.00

Table 3.5: Estimated correlation matrix of the random effects for compound.

3.5.3 Estimation of u and β in a linear mixed effects model

Here we will elaborate on how u and β can be estimated directly in a linear mixed
effects model. This will adapted for the nonlinear model later.

The objective is to determine the values of the conditional mode ũ and conditional
estimate β̃ that, given Σ, minimize the residual sum of squares:

||y − f(β,u,Λ)||2 + ||u||2 (3.42)

where

f(β,u,Λ) = Xβ + ZΛu (3.43)

We can write this equivalently as∣∣∣∣∣∣∣∣[ y
0

]
−
[
ZΛ X
Iq 0

] [
u
β

]∣∣∣∣∣∣∣∣2 (3.44)

where Z and X are design matrices, of dimension n × q and n × p, for the random
and fixed effects respectively.

In order to obtain the minimum, we differentiate the above sum of squares with

respect to

[
u
β

]
.

Let’s first expand the sum of squares

S =

([
y
0

]
−
[
ZΛ X
Iq 0

] [
u
β

])T ([
y
0

]
−
[
ZΛ X
Iq 0

] [
u
β

])
(3.45)

= yTy − [ yT 0 ]

[
ZΛ X
Iq 0

] [
u
β

]
− [ u β ]

[
ΛTZT Iq
XT 0

] [
y
0

]
(3.46)

+ [ u β ]

[
ΛTZT Iq
XT 0

] [
ZΛ X
Iq 0

] [
u
β

]
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2801728.01 -1832.57 -150.76 0.00 0.00
-1832.57 7.50 -0.16 0.00 0.00
-150.76 -0.16 0.07 0.00 0.00

0.00 0.00 0.00 0.13 0.00
0.00 0.00 0.00 0.00 2479593

Table 3.6: Covariance components of σ̂2Σ̂ for random effects. The full matrix Σ̂ is
obtained by expanding each of the elements in this matrix as a diagonal matrix whose
size is the number of factor levels and dividing by σ̂2.

The derivative is

dS

d

[
u
β

] = −2

[
ΛTZT Iq
XT 0

] [
y
0

]
+ 2

[
ΛTZT Iq
XT 0

] [
ZΛ X
Iq 0

] [
u
β

]
(3.47)

= −2

[
ΛTZTy
XTy

]
+ 2

[
ΛTZTZΛ + Iq ΛTZTX

XTZΛ XTX

] [
u
β

]
(3.48)

Once the derivative is set to zero, the conditional mode, ũ and the conditional
estimate, β̃, can found as the solutions to the following sparse, positive-definite linear
system. [

ΛTZTZΛ + Iq ΛTZTX
XTZΛ XTX

] [
ũ

β̃

]
=

[
ΛTZTy
XTy

]
(3.49)

We can then adapt this for use in the fitting of nonlinear models where Z and X
are Jacobian matrices and we solve the system above to estimate the next step.

3.6 Penalized iteratively reweighted least squares

Conditional on the covariance of the random effects σ2Σ, the estimates,

[
ũ

β̃

]
,

jointly minimize the residual sum of squares:[
ũ

β̃

]
= arg min

u,β
[(y − µ)′W (y − µ) + ||u||2] (3.50)

where µ = f

([
u
β

])
and W is a n × n weight matrix to take care of the het-

eroscedasticity.
We can determine ũ and β̃ through penalized, iteratively reweighted least squares.

Let

[
u(0)

β(0)

]
be the vector of initial values.
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The Jacobian matrices U (dimension: n×q) and V (dimension: n×p) are defined
as:

U(i) = W 1/2 df

dφ

∣∣∣∣
φ(i)

ZΛ (3.51)

V(i) = W 1/2 df

dφ

∣∣∣∣
φ(i)

X (3.52)

(The matrix df
dφ

is of dimension n× pn and looks like the horizontal concatenation of

p diagonal n× n matrices.)
where they are used in the following system of equations to obtain the increments of
the parameter vector at the ith iteration[

UT
(i)U(i) + Iq UT

(i)V(i)

V T
(i)U(i) V T

(i)V(i)

] [
δu(i)

δβ(i)

]
=

[
UT

(i)W
1/2(y − µ(i))− u(i)

V T
(i)W

1/2(y − µ(i))

]
(3.53)

where µ(i) = f

([
u(i)

β(i)

])
The system of equations can be easily solved with the Cholesky decomposition.

For a system Ax = a, if L is the Cholesky factor of A such that LLT = A, then we
can first solve for y in Ly = a, and then solve for x in LTx = y.

The new set of values for u and β can then be calculated by the addition of the
delta vector to the current set of values:

[
u(i+1)

β(i+1)

]
=

[
u(i)

β(i)

]
+

[
δu(i)

δβ(i)

]
(3.54)

However, if this update increases the residual sum of squares, the move is not
beneficial and cannot be accepted. So a simple change to the method involves de-
creasing a step factor (typically, halving it) until the residual sum of squares from the
proposed values are lower than the current sum of squares.

[
u(i+1)

β(i+1)

]
=

[
u(i)

β(i)

]
+ λ

[
δu(i)

δβ(i)

]
(3.55)

Start with λ = 1 and halve it until

(y − µ(i+1))
T (y − µ(i+1)) + ||u(i+1)||2 < (y − µ(i))

TW (y − µ(i)) + ||u(i)||2 (3.56)

to obtain the new set of values to be used in the next iteration until convergence.
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3.6.1 Initial values

There are quite a few ways of obtaining reasonable initial values. Since the lin-
ear mixed effects models for estimating the covariance components resulted in some
reasonable values for the fixed and random effects, those can be used as the initial
values.

3.6.2 Convergence: Relative offset criterion

We can determine the convergence of the iterations with the orthogonality con-
vergence criterion. In the case of a fixed effects model, convergence is reached if the
following is less than a suitably chosen value:

||QT
1 (y − f(β))||/√p

||QT
2 (y − f(β))||/

√
n− p

(3.57)

where QT
1 and QT

2 are the first p and last n− p columns respectively, of the Q matrix
from the QR decomposition of the Jacobian matrix V .

Work is needed to determine the comparable criterion for the mixed effects case;
we can not use 3.57 directly since random effects are not considered parameters but
random variables in the model. For now, we iterate our procedure until the sum of
squares is extremely small.

3.6.3 Using optim()

This method involves minimizing the sum of squares, given Λ,

||y − f(β,u,Λ)||2 + ||u||2 (3.58)

directly with numerical optimization methods such as those available in the optimiza-
tion function in R called optim().

3.7 Simulation testing

The task of fitting nonlinear models is generally difficult. Success or what can be
considered success depends on so many factors, including whether we have the correct
model, the choice of initial values, the quality of the data, and insufficient data.

So it is not surprising that the few attempts at using the nlmer() function in the
lme4 package failed. It is not a failure of the author, but a failure on the user’s part.
We need to truly understand our data, how this specific model should be fit, and
what we can do to use this methodology practically.

In this section, we fit a simpler nonlinear model on simulated data to see how well
we can estimate true effects. We simulate a dataset of 25 chips where the same 6
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upper asymptote β1 1000.00
IC50 β2 6.85
slope β3 -0.40
upper asymptote, compound σa,1 100
upper asymptote, chip σc,1 300
IC50, compound σa,2 0.5
error σ 100

Table 3.7: Values for simulation.

compounds occur on each chip (Figure 3.28). The parameters are set to values that
are roughly in the range of what the values in the dataset (Table 3.7).

The model in this case assumes that the upper asymptotes vary by compound and
chip, while the IC50 varies by compound. The slope remains constant.

yijk(r, s) = f(x(r, s);φijk) + εijk(r, s) (3.59)

=
φ1,ik

1 + exp
(
− (x(r,s)−φ2,i)

φ3

) + εijk(r, s) (3.60)

φijk =

 φ1,ik

φ2,i

φ3

 =

 β1

β2

β3

+

 a1,i

a2,i

0

+

 c1,k
0
0

 (3.61)

(3.62)

where Ai =

 1 0 0
0 1 0
0 0 0

, and Ck =

 1 0 0
0 0 0
0 0 0



ai =

 a1,i

a2,i

a3,i

 ck =

 c1,k
c2,k
c3,k

 (3.63)

ai ∼ N (0, σ2
a) ck ∼ N (0, σ2

c ) (3.64)

εijk(r, s) ∼ N (0, σ2) (3.65)

We obtain estimates for 574 of the 600 units through individual nonlinear least
squares, where they are used to provide estimates of the covariance components.
Estimation of covariance components

To estimate and predict the fixed and random effects respectively, we first need
to estimate the covariance components required for the random effects in this model.
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Because the compound factor is involved in the random effects of two of the param-
eters, upper asymptote and IC50, there is a 2× 2 covariance matrix to be estimated.
However the random effects of upper asymptote are separated into two groups, one
for the compound factor and the other for the chip factor. What we can do is to
separate the effects with a linear mixed effects model

φ̂1ik,nls = β1 + ai + ck + εik (3.66)

where the data is the estimates from the individual nonlinear least squares to be
decomposed into a mean value (β1) and random effects by compound (ai) and by chip
(ck). The estimated covariance matrix of the compound effects by upper asymptote
and compound is the robust covariance of the âi and the medians of the IC50 estimates
by compound (see Table 3.8 for these values and Table 3.9 for the estimated covariance
and correlation matrix).

Compound Upper asym effects IC50 effects
A -8.98 0.08
B -17.74 0.26
C 109.98 -0.50
D -41.33 -0.48
E -126.62 -0.00
F 84.69 0.04

Table 3.8: Table of compound effects by upper asymptote and IC50. The first one
was obtained through a linear mixed effects model on individual nonlinear estimates
of the upper asymptote. The second was medians of the IC50 estimates by compound
factor.

The chip factor is only involved in the upper asymptote parameter; we can easily
estimate the variance of the random effects with the estimated variance from the
linear mixed effects model 3.66, σ̂2

1,c = 110199.25, (σ̂1,c = 331.96).
And lastly, σ̂ is easily obtained as a summary of the estimated residual errors from

Covariance Correlation
upper asym 9187.52 6.59 1.00 0.20

IC50 6.59 0.12 0.20 1.00

Table 3.9: Estimated covariance and correlation matrix for compound factor in sim-
ulation testing.
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the individual nonlinear least squares fittings.

σ̂ =

√√√√ 1

n#

n#∑
i#=1

σ̂2
i#,nls

= 100.13 (3.67)

where i# indexes the n# units that were able to be fitted with nonlinear least squares.
Thus the estimated relative covariance matrix of the random effects (3.29) is

Σ̂ =

 1bσ2

[
σ̂2
a,1 σ̂a,12

σ̂a,12 σ̂2
a,2

]
⊗ Incomp 0

0
bσ2

c,1bσ2 ⊗ Inchip

 (3.68)

Results
The model is fit with penalized least squares where we obtain final results very

close to the true values. While the overall estimated linear combinations of the fixed
and random effects match the true values well (Figures 3.31 and 3.32), the estimated
fixed and predicted random effects separately are shifted from the true effects (Figure
3.30). This is due to the fact that the fixed effects are estimating the empirical means
of the parameters, and it is unlikely that the simulated data that is generated will have
values that are equal or even extremely close to the true values, thus the estimated
fixed effects will be some distance off from the true values and the predicted random
effects will compensate for this distance in the final estimates. The good results for
this simulation is dependent on a balanced dataset as well as simulating data where
over 95% of the units are successfully estimated with individually with just nonlinear
least squares.

Fitted estimates True values Initial values

β̂1 894.77 1000.00 984.56

β̂2 6.94 6.85 6.94

β̂3 -0.40 -0.40 -0.40

Table 3.10: Fixed effects estimates for simulated data.
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Raw data of Unit 132: Paroxetine, No enzyme, Gal E-2.xls
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Figure 3.14: Plot of raw data from Unit 132.

Fitted data of Unit 132: Paroxetine, No enzyme, Gal E-2.xls
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Figure 3.15: Plot of fitted curves, ordinary and robust nonlinear least squares, of Unit
132.
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Figure 3.16: Plots of attempted robust nonlinear least squares fitting of chip Gal A-1.
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Figure 3.17: Fitted curves from naive two stage method.
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Robust nls estimates of upper asymptotes by compound

Compound

U
pp

er
 a

sy
m

pt
ot

e 
nl

s 
es

tim
at

e

2000

4000

6000

8000

10000
Fl
ut
am
id
e

R
ot
en
on
e

Ta
m
ox
ife
n

A
ce
ta
m
in
op
he
n

C
hl
or
oq
ui
ne

A
lb
en
da
zo
le

A
m
io
da
ro
ne

B
us
pi
ro
ne

C
ar
ba
m
ez
ep
in
e

D
ap
so
ne

D
ic
lo
fe
na
c

Fe
xo
fe
na
di
ne

To
lc
ap
on
e

P
ar
ox
et
in
e

P
io
gl
ita
zo
ne

Tr
og
lit
az
on
e

R
ot

en
on

e 

A
m
itr
ip
ty
lin
e

S
im
va
st
at
in

Lo
va
st
at
in

P
ra
va
st
at
in

Zi
pr
as
id
on
e

Figure 3.18: Boxplots of the individual nonlinear least squares estimates of the upper
asymptotes by compound.
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Figure 3.19: Boxplots of the individual nonlinear least squares estimates of the upper
asymptotes by chip.
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Robust nls estimates of upper asymptotes by compound and chip
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Figure 3.20: Plot of the individual nonlinear least squares estimates of the upper
asymptotes by compound and chip.
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ear least squares estimates of the slope by
enzyme.
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Robust nls estimates of IC50 by compound and enzyme
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Figure 3.23: Plot of the individual nonlinear least squares estimates of the upper
asymptotes by compound and enzyme.
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Figure 3.24: Plot of the individual nonlinear least squares estimates of the IC50 by
chip.
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Robust slope nls estimates by compound
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Figure 3.25: Plot of the individual nonlinear least squares estimates of the slope by
compound.
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chip.
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Figure 3.28: Plots of raw data from the first chip in the simulated dataset. Smoothed
lines have been added to visualize the trend.
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Figure 3.29: Structure of the covariance matrix for simulated data.
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Upper asymptote: fitted estimates vs true values
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Figure 3.31: Plot of the estimated versus true values of the upper asymptotes. Lines
with intercept 0 and slope 1 are provided for reference.
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IC50: fitted estimates vs true values
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Figure 3.32: Plot of the estimated versus true values of the IC50. Lines with intercept
0 and slope 1 are provided for reference.

3.8 Fitting of Model 1 on current working dataset

Initial values generated had a sum of squares at 42,265,359,093, and this desired
model with this set of initial values got stuck at 29,772,027,791, and could not con-
verge. As a reference, the lowest sum of squares that we can obtain by fitting each
dilution at the median of values is 11,655,071,270. This could be due to many factors
such as the choice of initial values, the model, or the quality of the data. For now,
we proceed with simplifying the model to see what happens.
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3.9 Model 2: Partially crossed effects with con-

stant slope

As we can see, just because one model seems ideal for the data setup we have does
not mean that we will have any success with it. Fitting nonlinear models in general
is a complicated and messy business, and if we add on top of that, a reasonably large
set of data that is also not very nice, we are left with many dead ends and seemingly
promising solutions that do not pan out. Any reasonable success most likely requires
much compromise. In this case, we have to resort to dealing with a simpler model.
We notice that many of the underlying problems result from the lab not being able
determine the best range of concentrations before performing the experiment. We see
a lot of wasted dilutions that overcover one or both of the asymptotes while leaving a
huge gap in where the most interesting section is, the linear phase where we determine
the IC50.

As such, this means that we are missing much needed information for estimating
the two most important parameters in the logistic curve, the IC50 and the slope.
Thus, we can see how these two are linked strongly and that such problems lead to
identifiability issues; in such cases, we are clearly unable to obtain unique values for
either of them.

Even though we acknowledge that being able to estimate the slopes appropriately
makes much sense biologically, we have to focus on the fact that in this case the
key parameter here is the IC50 and in order to help estimate it, we will have to
place certain constraints and assumptions on the slope parameter. We note that the
asymptote parameter does not have much influence on either the IC50 or slope.
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Figure 3.33: Diagram of the structure of the design matrix Z for random effects. The
dimensions of the Z matrix is pn × q, where p is the number of fixed effects, n is
the total number of observations, and q is the number of random effects. The blue
shaded boxes refer to submatrices where the ith row consists of the vector ej, such
the jth entry is 1 if the ith observation corresponds to the jth level of the specific
factor and 0 otherwise. We can detect from the structure above that The example
above shows that the corresponding model does not include random effects for the
slope parameter, although we need to include the block of matrices for it, where all
entries are zero.

3.9.1 Results

After around 190 iterations, we obtain sum of squares equal to 23,795,437,805.
Visual check of all the fitted curves (also included in the appendix) show that in
general, the model is fitting the data reasonably well. We check carefully to see if the
constant slope is working well. Most of the units do not have sufficient data near the
area where the slope parameter is expected to be estimated but if they do, there does
not seem to be too much discrepancy between the fitted curve and the observations
there.
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Problem units
The set of units for the compound Paroxetine with the four enzyme conditions

across three different chips clearly have fitting issues (Figure 3.34). While the first
two chips Gal E-1 and Gal E-2 are similar, the third chip Gal F-1 has what looks like
the edge bleeding problem, where the first two dilutions of each unit are at near zero
intensity even though the rest have strong signals. These strong signals, however,
don’t coincide with the descent in the data in other units. The units on chip Gal F-1
are clearly outliers.

unit compound enzyme chip upper asymptote IC50 slope
105 Paroxetine AllMix Gal E-1.xls 3853.38 6.45 -0.33
106 Paroxetine PhaseII Gal E-1.xls 3853.38 6.41 -0.33
107 Paroxetine P450 Gal E-1.xls 3853.38 6.17 -0.33
108 Paroxetine Noenzyme Gal E-1.xls 3853.38 6.31 -0.33
129 Paroxetine AllMix Gal E-2.xls 5859.66 6.45 -0.33
130 Paroxetine PhaseII Gal E-2.xls 5859.66 6.41 -0.33
131 Paroxetine P450 Gal E-2.xls 5859.66 6.17 -0.33
132 Paroxetine Noenzyme Gal E-2.xls 5859.66 6.31 -0.33
153 Paroxetine AllMix Gal F-1.xls 3566.91 6.45 -0.33
154 Paroxetine PhaseII Gal F-1.xls 3566.91 6.41 -0.33
155 Paroxetine P450 Gal F-1.xls 3566.91 6.17 -0.33
156 Paroxetine Noenzyme Gal F-1.xls 3566.91 6.31 -0.33

Table 3.11: Table of fitted results for the compound Paroxetine for all enzyme levels
across three chips. See corresponding plots to see that the Paroxetine data on the
third file Gal F-1.xls is very different than on the other two files.
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Compound: Paroxetine
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Figure 3.34: Plots of the fitted curves for the compound Paroxetine across 3 chips.

Figure 3.35 shows another example of units that clearly differ from the majority.
It may seem to be an issue of different starting concentrations within this compound
Tolcapone, but all the starting concentrations are found to be the same.

We will take care of the outliers in a little bit. We notice that the other fitted
curves do not estimate the IC50 where it is visually expected on the data points.
Because of this, we question the assumption that the levels of the enzyme effects are
same across all compounds.
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unit compound enzyme chip upper asymptote IC50 slope
101 Tolcapone AllMix Gal E-1.xls 3907.89 6.92 -0.33
102 Tolcapone PhaseII Gal E-1.xls 3907.89 6.87 -0.33
103 Tolcapone P450 Gal E-1.xls 3907.89 6.64 -0.33
104 Tolcapone Noenzyme Gal E-1.xls 3907.89 6.77 -0.33
125 Tolcapone AllMix Gal E-2.xls 5914.16 6.92 -0.33
126 Tolcapone PhaseII Gal E-2.xls 5914.16 6.87 -0.33
127 Tolcapone P450 Gal E-2.xls 5914.16 6.64 -0.33
128 Tolcapone Noenzyme Gal E-2.xls 5914.16 6.77 -0.33
149 Tolcapone AllMix Gal F-1.xls 3621.41 6.92 -0.33
150 Tolcapone PhaseII Gal F-1.xls 3621.41 6.87 -0.33
151 Tolcapone P450 Gal F-1.xls 3621.41 6.64 -0.33
152 Tolcapone Noenzyme Gal F-1.xls 3621.41 6.77 -0.33

Table 3.12: Table of fitted results for the compound Tolcapone for all enzyme levels
across three chips. See corresponding plots to see that the Tolcapone data on the
third file Gal F 1.xls is very different than on the other two files. All the units
for this compound on that file seem to have been shifted on x-axis. This leads to a
conclusion that perhaps the range of concentrations for this compound across different
chips is different; however, a quick check of the data defeats this hypothesis. So we
are unclear as to why the data is so.

3.10 Model 3: Nested and partially crossed ran-

dom effects

We can see from the results of the crossed effects model that we are not getting
the best IC50 estimates. The IC50 values for the No Enzyme column seem to be
overestimated. This leads us to believe that while there is likely an enzyme effect
on the value, we should not be assuming that these effects are the same for every
compound. Instead, we should allow more flexibility in the enzyme random effects
but not to the extreme of an effect for every single unit of data. We now suggest a
model which incorporates enzyme effects that are nested in compound effects so that
we can determine each compound / enzyme relationship individually.

The methodology framework discussed earlier can accommodate both nested ef-
fects and crossed effects quite easily. Basically, the only difference in the model setup
is to specify the factor levels of the enzymes as distinct across all chips. The original
data setup have the same four labels for every compound. This is how crossed effects
are able to be estimated since these labels connect similar enzyme conditions across
different compound and chips. However, we now do not want this connection; we
want to be able to estimate four enzyme effects independently for each compound.

This is easily implemented by concatenating the compound level to the enzyme
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Compound: Tolcapone
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Figure 3.35: Plots of the fitted curves for the compound Tolcapone across 3 chips.

label to generate an unique enzyme condition that is specific to compounds. Any
replicates of compound / enzyme combinations will have the same estimate. The
only issue is that this will increase the number of random effects to be predicted by
the number of enzymes multiplied by the number of compounds subtracted by one.
For the current dataset, this is an additional (4 ∗ (22− 1) = 84) effects.

Estimation of covariance components
Because of the nesting, we increase the total number of random effects to 140,

thus the covariance matrix is also much larger than before (Figure 3.36). There is
insufficent data to estimate a variance of the random effects for the enzyme factor
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within each compound; even then such estimates are highly variable. Instead we
set the standard deviation of the nested enzyme effects to be the median of the the
median absolute deviations of the individual robust estimates scaled by 1.4826.

IC50 MAD * 1.4826
Flutamide 0.57
Rotenone 1.24

Tamoxifen 0.56
Acetaminophen 6.17

Chloroquine 0.18
Albendazole NA
Amiodarone 0.37

Buspirone 0.91
Carbamezepine 2.39

Dapsone 0.81
Diclofenac 1.99

Fexofenadine 4.15
Tolcapone 1.33
Paroxetine 3.41

Pioglitazone 10.77
Troglitazone 1.61

Rotenone 1.78
Amitriptyline 0.01

Simvastatin 0.44
Lovastatin 0.62

Pravastatin 0.00
Ziprasidone 18.49

Table 3.13: Table of the median absolute deviations of the individual robust nonlinear
least squares estimates of IC50 by compound scaled by 1.4826. We take the median
of these numbers, 1.24, to be the standard deviation of the nested enzyme factor.

Results
This modified model is fit in the same way as the previous model. While the

previous model resulted in the sum of squares of 23,795,437,805, this partially crossed
and nested model is able to fit the data a bit more closely, because of the flexibility
in the enzyme factor, with the sum of squares at 23,015,615,640.
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Figure 3.36: Structure of the covariance matrix of the random effects where the
enzyme effects are now nested in the compound factor. With 22 compounds and
4 enzyme conditions, we will be predicting 88 enzyme effects, the middle diagonal
matrix block.

3.10.1 Nested and partially crossed random effects after re-
moving outlier units

We now take the step of eliminating outlier units altogether in the analysis. Such
outlier units do not seem to provide any help in fitting any of the parameters, since
the upper asymptotes already vary by file, the slope is held constant, and the IC50
value is clearly different from the units in other files. In fact, they seem to affect the
estimation of the IC50s negatively as seen in a few cases. Compare Figures 3.35 and
3.38 where we can see that after we eliminate the bottom row of outliers in Figure
3.35, the fitted curves of the remaining units follow the data much closer in Figure
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unit compound enz.comp sfile d g b
105 Paroxetine AllMix:Paroxetine Gal E-1.xls 3933.77 6.66 -0.46
106 Paroxetine PhaseII:Paroxetine Gal E-1.xls 3933.77 6.73 -0.46
107 Paroxetine P450:Paroxetine Gal E-1.xls 3933.77 6.29 -0.46
108 Paroxetine Noenzyme:Paroxetine Gal E-1.xls 3933.77 5.82 -0.46
129 Paroxetine AllMix:Paroxetine Gal E-2.xls 5940.11 6.66 -0.46
130 Paroxetine PhaseII:Paroxetine Gal E-2.xls 5940.11 6.73 -0.46
131 Paroxetine P450:Paroxetine Gal E-2.xls 5940.11 6.29 -0.46
132 Paroxetine Noenzyme:Paroxetine Gal E-2.xls 5940.11 5.82 -0.46
153 Paroxetine AllMix:Paroxetine Gal F-1.xls 3682.61 6.66 -0.46
154 Paroxetine PhaseII:Paroxetine Gal F-1.xls 3682.61 6.73 -0.46
155 Paroxetine P450:Paroxetine Gal F-1.xls 3682.61 6.29 -0.46
156 Paroxetine Noenzyme:Paroxetine Gal F-1.xls 3682.61 5.82 -0.46

Table 3.14: Estimates for Paroxetine from Model 3.

3.38 than in Figure 3.35, the IC50 estimates are shifted in a better position.
For now, we determine outliers through visual inspection. From checking all fitted

curves, we take out the units that show clear differences from their set of replicates.
Future work will research methods to determine outliers based on the composition
of the entire dataset and perhaps a way to incorporate useful information from them
while downweighting the outlying parts.

3.11 Standard errors of fixed and random effects

in mixed models without concerning errors

acquired from estimation of covariance

If we assume the estimated covariance matrix of the random effects are given,
then the

E


[
β̂ − β
b̂− b

][
β̂ − β
b̂− b

]T =

[
XTX XTZ
ZTX ZTZ + Σ−1

]−1

σ2
ε (3.69)
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unit compound enz.comp sfile d g b
101 Tolcapone AllMix:Tolcapone Gal E-1.xls 3997.54 7.13 -0.46
102 Tolcapone PhaseII:Tolcapone Gal E-1.xls 3997.54 6.79 -0.46
103 Tolcapone P450:Tolcapone Gal E-1.xls 3997.54 6.12 -0.46
104 Tolcapone Noenzyme:Tolcapone Gal E-1.xls 3997.54 6.81 -0.46
125 Tolcapone AllMix:Tolcapone Gal E-2.xls 6003.50 7.13 -0.46
126 Tolcapone PhaseII:Tolcapone Gal E-2.xls 6003.50 6.79 -0.46
127 Tolcapone P450:Tolcapone Gal E-2.xls 6003.50 6.12 -0.46
128 Tolcapone Noenzyme:Tolcapone Gal E-2.xls 6003.50 6.81 -0.46
149 Tolcapone AllMix:Tolcapone Gal F-1.xls 3744.14 7.13 -0.46
150 Tolcapone PhaseII:Tolcapone Gal F-1.xls 3744.14 6.79 -0.46
151 Tolcapone P450:Tolcapone Gal F-1.xls 3744.14 6.12 -0.46
152 Tolcapone Noenzyme:Tolcapone Gal F-1.xls 3744.14 6.81 -0.46

Table 3.15: Estimates for Tolcapone from Model 3.

unit compound enz.comp sfile d g b
105 Paroxetine AllMix:Paroxetine Gal E-1.xls 3836.69 6.43 -0.25
106 Paroxetine PhaseII:Paroxetine Gal E-1.xls 3836.69 6.08 -0.25
107 Paroxetine P450:Paroxetine Gal E-1.xls 3836.69 5.99 -0.25
108 Paroxetine Noenzyme:Paroxetine Gal E-1.xls 3836.69 5.26 -0.25
129 Paroxetine AllMix:Paroxetine Gal E-2.xls 5838.56 6.43 -0.25
130 Paroxetine PhaseII:Paroxetine Gal E-2.xls 5838.56 6.08 -0.25
131 Paroxetine P450:Paroxetine Gal E-2.xls 5838.56 5.99 -0.25
132 Paroxetine Noenzyme:Paroxetine Gal E-2.xls 5838.56 5.26 -0.25

Table 3.16: Estimates for Paroxetine from Model 3 with outliers excluded.

where for the nonlinear case, the design matrices X and Z are of dimensions n × 3
and ntimesq such that each row k = 1, . . . , n is defined as follows:

X̂k =
∂fk

∂βT

∣∣∣∣
β̂,b̂k

(3.70)

Ẑk =
∂fk
∂bTk

∣∣∣∣
β̂,b̂k

(3.71)
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Compound: Paroxetine
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Figure 3.37: Plots of the fitted curves of paroxetine from Model 3.

3.11.1 Covariance matrix of random effects when fixed ef-
fects are not estimated

In this chapter, the fixed effects are not estimated along with the random effects.
As such, the distribution of the random effects given the data has mean

(ZTZ + Σ−1)−1ZTy (3.72)

and the variance

(ZTZ + Σ−1)−1σ2 (3.73)
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Compound: Tolcapone
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Figure 3.38: Plots of the fitted curves of tolcapone from Model 3.

where Z is a n× q design matrix, and Σ is the q× q relative covariance matrix of the
random effects.

3.12 Model selection

We can utilize the likelihood ratio test to compare nested models, where the term
nested in this case refers to when one model contains a proper subset of the other
model’s error terms. These models must have the same fixed effects terms since testing
for the fixed effects specification will result in inaccurate anticonservative p-values.

Unfortunately the likelihood ratio test is not valid when comparing a model with
nested random effects and another model with crossed random effects [16]. Further
work is needed to figure out a reasonable way to compare these models.

3.13 Discussion

This chapter has been an exercise in methods to find the right balance in the
complexity of the model and faithfulness of the data. Because data is continually and
rapidly being generated in sizeable batches, we need to find a model that can fit the
data in a reasonable yet general way that can sufficiently cover the inherent charac-
teristics of such data. In addition, even when ideal in theory, a model’s complexity
may prevent its fitting on less than ideal data.
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unit compound enz.comp sfile d g b
101 Tolcapone AllMix:Tolcapone Gal E-1.xls 4620.06 7.14 -0.25
102 Tolcapone PhaseII:Tolcapone Gal E-1.xls 4620.06 6.89 -0.25
103 Tolcapone P450:Tolcapone Gal E-1.xls 4620.06 6.27 -0.25
104 Tolcapone Noenzyme:Tolcapone Gal E-1.xls 4620.06 7.03 -0.25
125 Tolcapone AllMix:Tolcapone Gal E-2.xls 6621.93 7.14 -0.25
126 Tolcapone PhaseII:Tolcapone Gal E-2.xls 6621.93 6.89 -0.25
127 Tolcapone P450:Tolcapone Gal E-2.xls 6621.93 6.27 -0.25
128 Tolcapone Noenzyme:Tolcapone Gal E-2.xls 6621.93 7.03 -0.25

Table 3.17: Estimates for Tolcapone from Model 3 with outliers excluded.

The choice of a model is an evolving process. By involving the relationships found
by estimating each unit of data independently, we can construct potential models
that will incorporate such robust patterns for all the data simultaneously. Typical
model building involves starting with the simplest model and then gradually adding
more complexity. That can be a reasonable way to proceed here; however we can see
in our situation that it can be more intuitive to figure out what full model to aim for
first instead of adding terms haphazardly. Then it is a matter of seeing if we are able
to fit that model and if not, continue with making small concessions here and there
like independence of random effects, fewer random effects, etc. Through iterations of
fitting different models that may involve compromises, we can hopefully settle on a
general family of models that can work well on as many future datasets as possible.

Future work may involve developing methods that utilize work that has already
been done in sequential estimation, where new incoming data can benefit from existing
results and estimates of the fixed and random effects can be further refined each time
without having to fit the old and new data together in order to gain the strength.

With using more data to develop the models, we hope to gain more insight into
how the different enzyme conditions affect the activities of various compounds. And
future models can be further improved with the inclusion of external data on the
biological characteristics of the specific reactions of the compounds involved.
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unit compound enz.comp sfile d g b
5 Rotenone AllMix:Rotenone Gal A-1.xls 6135.11 4.85 -0.25
6 Rotenone PhaseII:Rotenone Gal A-1.xls 6135.11 4.01 -0.25
7 Rotenone P450:Rotenone Gal A-1.xls 6135.11 4.21 -0.25
8 Rotenone Noenzyme:Rotenone Gal A-1.xls 6135.11 3.86 -0.25
29 Rotenone AllMix:Rotenone Gal A-2.xls 4366.89 4.85 -0.25
30 Rotenone PhaseII:Rotenone Gal A-2.xls 4366.89 4.01 -0.25
31 Rotenone P450:Rotenone Gal A-2.xls 4366.89 4.21 -0.25
32 Rotenone Noenzyme:Rotenone Gal A-2.xls 4366.89 3.86 -0.25
69 Rotenone AllMix:Rotenone Gal B-1.xls 1935.19 4.85 -0.25
70 Rotenone PhaseII:Rotenone Gal B-1.xls 1935.19 4.01 -0.25
71 Rotenone P450:Rotenone Gal B-1.xls 1935.19 4.21 -0.25
72 Rotenone Noenzyme:Rotenone Gal B-1.xls 1935.19 3.86 -0.25
93 Rotenone AllMix:Rotenone Gal B-2.xls 965.25 4.85 -0.25
94 Rotenone PhaseII:Rotenone Gal B-2.xls 965.25 4.01 -0.25
95 Rotenone P450:Rotenone Gal B-2.xls 965.25 4.21 -0.25
96 Rotenone Noenzyme:Rotenone Gal B-2.xls 965.25 3.86 -0.25

Table 3.18: Estimates for Rotenone from Model 3 with outliers excluded.



93

Compound: Rotenone
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Figure 3.39: Plots of fitted curves for compound Rotenone from the nested model
where outliers are removed.
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Figure 3.40: Plots to compare the fitted curves from different models.
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Figure 3.41: Plots to compare the fitted curves from different models.
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Chapter 4

Estimation of EC50: Assessing
interassay variation with control
data

4.1 Introduction

When women become menopausal, many choose hormone replacement therapy
(HRT) to relieve significant and unpleasant symptoms caused by the change in hor-
mone levels. While the existing treatments like estradiol can alleviate some or all of
the symptoms, they can often be ineffective or cause dangerous side effects such as
increased risk for breast or endometrial cancer, since hormones like estradiol do not
discriminate the tissues they are affecting. The Bionovo corporation in Emeryville,
California has been researching therapies that will reduce these symptoms without
the negative effects, by looking into plant extracts that can mimic estradiol’s helpful
effect without affecting the mammary glands or uterus.

Their product candidates to combat hot flashes and vaginal dryness are estrogen
recepter beta agonists formulated from different compounds extracted from plants.
They do not activate the estrogen receptor beta (ERβ), known to be implicated in
both breast and uterine cancer formation.

4.2 Data

The working dataset for this chapter involves the 18 different preparations that
constitute the agonist drug Minerba, designed to reduce the effects of hot flashes.

A cell line named U2OS and cultivated from the bone tissue of a fifteen-year-
old human female suffering from osteosarcoma is used for these experiments. Cells
are electroporated with a reporter plasmid (ERE, estrogen response element) and a
receptor (ERβ) and then plated and treated with specific amounts of drug in 12 well
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Dilution 100 mg/ml
1:1000 0.1000
1:2000 0.0500
1:5000 0.0200
1:7500 0.0130

1:15000 0.0070
1:40000 0.0025

1:100000 0.0010
1:200000 0.0005
1:500000 0.0002

1:1000000 0.0001

Table 4.1: Table of dilutions for dataset.

plates. After a period of 24 hour incubation, they are transferred to a 96 well plate
to be read in a luminometer that detect the luciferase reagents.

Negative and positive controls are also included onto these plates where the overall
goal is to be able to utilize the negative and positive control values to normalize the
experimental data. Each plate contains 96 wells, where 90 are used for 3 experiments
that involve 10 dilutions with 3 replicates each, and the other 6 are split between 4
negative and 2 positive controls. Since we are dealing with a total of 6 plates, we
have 540 observations total for 18 experiments and 36 observations for controls. All
the control values are included in Table 4.2 for reference.

The positive controls are estradiol (E2) while the negative controls are simply
wells of cell samples alone.

The mapping of the wells is semirandom where every triplicate of dilutions in
each unit is physically next to each other on the plate and where the majority of the
controls are on the boundary of the plates and especially in the corners where it is
riskier for wells to be affected by some systematic factor of the experimental process.

One difference in this dataset from the other two that we have looked at is the
nonconstant intervals between the dilutions on the log scale (Table 4.1). This does not
cause any change in the usual methods, but we have to be careful to use the correct
x values during any model fitting and transformation back to absolute concentration
units.

We can visualize all the data on each plate through Figure 4.5 where all the dilution
series data is plotted together by common plate, and the negative and positive controls
are included on the left and right hand side of each plot respectively. These values
can be visually summarized through boxplots in Figure 4.1 and the logged data in
Figure 4.2, where the first three boxplots in each of the 6 plots contain the intensity
values for the three different experiments on each plate, while the last 2 boxplots
are for the negative and positive controls. Note that the boxplots for the positive



98

control values actually only contain 2 values. Even though all 18 experiments are
different, we do see a strange pattern where the majority of the observations for the
second experiment in five of the plates reside in a smaller range than the other two
experiments on the same plate. Perhaps this is an artifact of the location of the wells
where these measurements are taken, if the wells for each experiment are next to
each other and if there is spatial heterogeneity on the plate as a whole, caused by the
scanner or some other systematic effect.

In general, we do see that the control values, which ideally should be the same by
type across the plates, differ in roughly the same relationship as the experimental data.
This suggests that we may be able to normalize the data such that the distribution
for each plate will be roughly similar and at around the same mean. This can also
be easily seen in the boxplots of the raw dilution series data arranged by experiment
and plate separately (Figures 4.3 and 4.4).
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8496-09-02-028496-09-02-038496-09-02-04 neg pos

Figure 4.1: Boxplots of all raw data including controls separated into each plot by
the plate, and then by experiment or control. Note that the boxplots for the positive
controls actually only contain 2 values.

4.3 Analysis of individual nonlinear least square

estimates

We include some basic analysis of the individual nonlinear least squares estimates
of the four parameters, φ0 (lower asymptote), φ1 (upper asymptote), φ2 (EC50),



99

Experiment

Lo
g(
In
te
ns
ity
)

6.5

7.0

7.5

8.0

8.5

9.0

6.5

7.0

7.5

8.0

8.5

9.0

1

MF090908MF100808MF112508 neg pos
4

MF112608MF120908MF121008 neg pos

2

MF072108MF080608MF090408 neg pos
5

8496-09-01-018496-09-01-038496-09-02-01 neg pos

3

8496-08-04-018496-08-04-028496-08-04-03 neg pos
6

8496-09-02-028496-09-02-038496-09-02-04 neg pos

Figure 4.2: Boxplots of all logged raw data including controls separated into each
plot by the plate, and then by experiment or control. Note that the boxplots for the
positive values actually only contain 2 values and the negative ones contain 4.

φ3 (slope), Table 4.3. We also estimate these parameters robustly using the Tukey
biweight. Unlike data from the two previous chapters, each unit was successfully fit
here. The medians of the estimates of these four parameters are included in Table
4.4, where we can see that there is not much difference between the ordinary and
robust estimates in general.

An overview of where these estimates compare in regards to the control data is
included in Figure 4.6. It is expected that the variance of the upper asymptotes is
higher due to the higher values. Because of this, the plot of the logged values (Figure
4.7) may be more useful in evaluating potential relationships.

An interesting thing to see in the plot comparing the EC50 and slope estimates
(Figure 4.10) is that the larger the EC50 estimates, the steeper the slope. This is
most likely due to the fact that many of the units do not have enough data to estimate
an upper asymptote sufficiently and thus, individual nonlinear least squares will give
a larger than expected estimate for the upper asymptote that translates to a steeper
slope for the curve to climb to this asymptote and shifting the EC50 estimate to the
right (larger).

Ratios between asymptote estimates and control values
We can now revisit the issue of utilizing control values for normalization by looking

at relationship of the lower and upper asymptote estimates (from individual nonlinear
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Boxplot of raw values by experiment
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Figure 4.3: Boxplots of raw dilution series data by experiment.

Boxplot of raw values by plate
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Figure 4.4: Boxplot of raw dilution series data by plate.
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Negative Positive
Plate Rep 1 Rep 2 Rep 3 Rep 4 Rep 1 Rep 2

1 855 792 956 1091 6587 4867
2 565 666 711 628 5505 3795
3 771 941 824 735 6330 6181
4 519 826 430 539 4549 4278
5 587 411 683 660 3585 3188
6 727 713 723 1062 5462 4700

Table 4.2: Table of control data

least squares) and the negative and positive controls. The ratios of the medians of
these values are included in Table 4.5 where the positive controls are roughly 6 times
the negative controls (Figure 4.13) and the lower asymptotes are roughly the same
values as the negative controls (Figure 4.14; best fit line if intercept is set to zero has
slope 0.95.). The relationships between the upper and lower asymptotes (Figure 4.15)
is a bit more varied, perhaps due to the nature of estimating each independently,
similarly with the ratios between the upper asymptotes and the positive controls
(Figure 4.16).

4.3.1 Simple linear and log linear models for control values

Exploratory analysis of control values
To begin, we analyze only the control data to see how being on different plates

affect the values of the positive and negative controls. Individual nonlinear least
squares estimates may sometimes be a bit extreme depending on whether or not a
set of points has enough data to cover the asymptote areas sufficiently, so although
we can definitely include them here, we should take a look at the controls on their
own since those are actual observations.

Figure 4.17 provides a way to visualize the logged control values all at once. Since
the control values are not supplied as pairs of negative with positive values, we are
unable to produce regular scatterplots that show all the data. Instead, one thing to
do is to plot the medians of the negative values in each plate against the medians of
the positive values in the corresponding plates. Although it can show a general trend,
such a plot doesn’t show the spread of the points about the medians. Figure 4.17
show all the control values in a way that we can see the general trend in a scatterplot
and also see where all the points lie. We see that overall, the positive and negative
control values correspond pretty closely.

Linear model
For a simple linear model of the control values where we can adjust for plate effects,
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Raw data by plate
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Figure 4.5: Plots of original dataset by plate, including negative controls (left, red)
and positive controls (right, blue)

we assume that the effects are additive. We let tcjk refer to the kth control observation
on plate j, indexed by whether it is negative (c = 1) or positive (c = 2). Each
observation results from the true negative or positive control (τ1, τ2) being affected
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Values of positive, negative controls and lower, upper asymptotes
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Figure 4.6: Boxplots of the positive, negative controls along with individual estimates
of the lower and upper asymptotes.

Logged values of positive, negative controls and lower, upper asymptotes
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Figure 4.7: Boxplots of the logged positive, negative controls along with logged indi-
vidual estimates of the lower and upper asymptotes.

additively by a plate effect mj and by random error εcjk, where εcjk ∼ N (0, σ2
τ ).

tcjk = τi +mj + εcjk (4.1)

We also have to set the constraint that
∑6

j=1mj = 0 in order to obtain estimates.
Using lm() in R, we obtain the following estimates in Table 4.7 (for reference). We

ascertain whether the model and fitted values are reasonable with Figure 4.18, which
provides a diagnostic check, while the upper left hand plot in Figure 4.20 shows the
fitted values against the observations. Both sets of plots suggest that this additive
model isn’t adequate. This leads to a multiplicative model that will be fitted as a log
linear model in the next section.
Log linear model

We make a minor change to the model above by defining the plate effects to be
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Ordinary Robust
unit plate φ0 φ1 φ2 φ3 φ0 φ1 φ2 φ3

1 1 955.66 8174.09 4.02 1.05 869.54 8282.43 4.07 1.18
2 1 733.94 8337.59 4.07 1.33 730.13 8145.97 3.99 1.31
3 1 939.74 7011.89 3.12 0.56 872.81 7043.64 3.22 0.69
4 2 834.69 6539.21 3.66 0.79 745.62 6649.72 3.73 0.92
5 2 402.95 14612.75 7.04 2.02 445.91 11498.72 6.13 1.77
6 2 633.18 5738.47 3.87 1.08 621.51 5704.51 3.83 1.08
7 3 1119.24 9004.37 4.39 0.77 942.61 9172.16 4.48 1.00
8 3 694.63 15230.45 5.93 1.59 714.02 13500.33 5.53 1.49
9 3 769.29 7867.41 3.42 0.92 789.68 7768.83 3.38 0.87
10 4 714.79 8751.61 4.73 1.13 638.00 8987.46 4.90 1.27
11 4 459.17 9286.84 5.34 1.71 467.45 8884.84 5.15 1.61
12 4 505.29 6568.14 3.36 0.94 519.41 6256.53 3.28 0.90
13 5 564.63 6794.75 4.60 1.35 562.42 6745.87 4.55 1.32
14 5 423.73 18776.38 8.29 2.03 449.94 14528.69 7.50 1.90
15 5 507.84 5488.04 4.04 0.91 523.98 5343.66 4.00 0.86
16 6 893.30 9185.37 4.87 0.70 900.06 8562.97 4.69 0.64
17 6 616.18 13511.32 6.03 1.62 674.28 10299.56 5.12 1.35
18 6 628.93 10263.56 5.22 1.39 669.10 9123.99 4.84 1.25

Table 4.3: Table of individual nonlinear least squares estimates (lower and upper
asymptotes, EC50, and slope). Estimates were also obtained robustly using the Tukey
biweight.

multiplicative effects. To fit this, we log both sides of the model to obtain:

log(tcjk) = log(τc) + log(mj) + log(εcjk) (4.2)

where the random error is now normally distributed on a log scale, log(εcjk) ∼
N (0, σ2

τ ), and
∑6

j=1 log(mj) = 0.
Results from this are better than from the previous model (Table 4.8), where we

can see in good diagnostic plots in Figure 4.19, and the fitted line in the lower left
plot in Figure 4.19. In the same figure in the right column, we see that using a mixed
effects model on the same data where the plate effect is random results in extremely
close values.

We can now continue with building a larger model to fit the experimental data
where the control data will be used to normalize the results. We assume that data
from each plate is scaled by a multiplicative factor that will be determined by the
control values.
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φ0 (lower asym) φ1 (upper asym) φ2 (EC50) φ3 (slope)
Ordinary 663.91 8544.60 4.50 1.11

Robust 671.69 8422.70 4.51 1.21

Table 4.4: Medians of the nonlinear least squares estimates of the four parameters
across all 18 experiments. We also include robust version of the 18 sets of estimates.
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Figure 4.8: Plot of the EC50 nonlinear
least squares estimates by plate
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Figure 4.9: Plot of the slope nonlinear
least squares estimates by plate

4.4 Mixed effects model

To implement this flexibly, we once again rely on using random effects in our
model. For the dilution series data, the observations yij are the intensities from
experiment i on the plate j, and they are modeled with a four parameter logistic
curve where the lower and upper asymptotes of each unit, φ0,ij and φ1,ij, are the
products of the mean asymptote values and their corresponding plate factor mj. To
accommodate the differences in each experiment, we include a random effect b2,i for
the key parameter φ2,ij, the EC50 value. The slope parameter φ3,ij remains constant
across all units unless there is evidence that there are significant effects from either
the experimental or plate factor.

yij = f(x,φij) = φ0,ij +
φ1,ij − φ0,ij

1 + exp
(
−x−φ2,ij

φ3,ij

) + εij (4.3)
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IC50 vs slope nonlinear least squares estimates
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Figure 4.10: Plot of individual nonlin-
ear least squares estimates of the slope
against the IC50, color coded by which
plate they belong on.
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Figure 4.12: Plots of the data of Plate 5 where two different fitted curves are com-
pared. The red dotted line is the original best fit curve through the dilution series
data only. The blue solid line is the best fit curve through the data and anchored
by the negative controls on the left side. Both sets of lower asymptote estimates are
included on each unit’s plot where the first is the estimate influenced by the negative
controls and the second is the original estimate.
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Plate 1 2 3 4 5 6
Positive / negative controls 6.32 7.19 7.84 8.34 5.43 7.01
Upper / lower asymptotes 8.66 10.24 11.53 16.70 13.56 18.62

Upper / positive 1.42 1.39 1.42 1.91 2.03 2.31
Lower / negative 1.04 0.98 0.96 0.96 0.81 0.87

Table 4.5: Table of ratios of median asymptote estimates from nonlinear least squares
and median control values by plate.

Within SS Between SS Total SS
Postive controls 3,358,198 (0.25) 10,283,575 (0.75) 13,641,773

Negative controls 308,053 (0.43) 409,610 (0.57) 717,664

Table 4.6: Table of within, between, and total sums of squares for negative and
positive control values by plate. The proportions of each sum are included in the
parentheses.

where

φij =


φ0,ij

φ1,ij

φ2,ij

φ3,ij



φ0,ij = β0mj; φ1,ij = β1mj; φ2,ij = β2 + bi; φ3,ij = β3

Because εij ∼ N (0, σ2
ε ), the observations are assumed to be normally distributed.

For the control data, the observations are a c × 1 vector t where its log is normally
distributed with mean as the sum of the logged true values τ and plate effects log(m)1

and variance as σ2
δ .

y|b,m ∼ N (f(x,φ(β,b,m)), σ2
ε In) (4.4)

log(t)|m ∼ N (X log(τ ) + Z log(m), σ2
δIc) (4.5)

where the design matrices X and Z are of dimensions n× 2 and n× 6.
The random effects b and log(m) are independent and also follow the normal

distribution with mean zero and variances σ2
εΣ1 and σ2

δΣ2.

b ∼ N (0, σ2
εΣ1) (4.6)

log(m) ∼ N (0, σ2
δΣ2) (4.7)

1Note that the log of a vector x is defined as the vector of the logged elements of x.
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Negative vs positive controls
 Intercept 867.20, Slope 5.75
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Figure 4.13: Plot of the median negative
vs median positive control values.
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Figure 4.14: Plot of the median negative
controls vs median lower asymptote esti-
mates.

Lower vs upper asymptotes
 Intercept 7354.57, Slope 1.36
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Figure 4.15: Plot of median lower asymp-
totes vs median upper asymptotes

Positive controls vs upper asymptotes
 Intercept 4705.52, Slope 0.72
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Figure 4.16: Plot of median positive con-
trols vs median upper asymptotes

The relative covariance matrices Σ1 and Σ2 are diagonal matrices of dimensions q1
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Logged Negative (4) and Positive (2) Controls 
 Intercept = 1.94, Slope = 1
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Figure 4.17: Plot of all logged negative and positive control data. Since there are
four replicates of negative controls per plate and two replicates of positive controls
per plate, we cannot use a typical scatterplot to visualize the relationship between
the two. Instead, for each negative control value, we pair it with the median of all
the positive controls in the same plate; so we see four negative values for each plate
on horizontal lines located at the median of the positive values of the corresponding
plate, and vice versa for the positive control values. The median values for both sets
of controls are distinguished by points surrounded by black borders. The best fit line
through these medians is included.

and q2, defined as

Σ1 =
σ2
b

σ2
ε

Iq1 (4.8)

Σ2 =
σ2
m

σ2
δ

Iq2 (4.9)
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 1126.90 237.21 4.75 0.00

control:positive 4193.29 197.37 21.25 0.00
plate2 -546.33 322.30 -1.70 0.10
plate3 105.67 322.30 0.33 0.75
plate4 -667.83 322.30 -2.07 0.05
plate5 -1005.67 322.30 -3.12 0.00
plate6 -293.50 322.30 -0.91 0.37

Table 4.7: Estimates from a simple linear model on control values by plate
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Figure 4.18: Regression diagnostic plots for simple linear model. The residual plot
in the upper left corner show heteroscedasticity in the points, the variance increasing
with the value.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.79 0.07 93.01 0.00

control:positive 1.92 0.06 31.60 0.00
plate2 -0.31 0.10 -3.13 0.00
plate3 -0.05 0.10 -0.46 0.65
plate4 -0.41 0.10 -4.14 0.00
plate5 -0.48 0.10 -4.88 0.00
plate6 -0.13 0.10 -1.34 0.19

Table 4.8: Estimates from a log linear model on control values by plate
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Figure 4.19: Regression diagnostic plots for simple log linear model. Compared to
the ones for the simple linear model, these plots suggest that a log linear model is
the more appropriate choice.
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Figure 4.20: Observed versus fitted plots for the simple linear and log linear model
and the linear and log linear random effects model. Smoothed lines through the points
are provided for visual ease.

The negative log-likehood is proportional to
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where Pi = set of plates which contain experiment i.

4.5 Penalized least squares

We want to be able to fit all the data at once, such that the control values can help
to normalize the data across all the plates. We attempt to minimize the following
sums of squares [4.11] in order to estimate 29 parameters/random effects:

• 3 parameters for the logistic curve: upper asymptote (β1), EC50 (β2), slope (β3)

• 2 parameters for the negative (τ1) and positive control (τ2), where the negative
control is also the lower asymptote (τ1 = β0)

• 18 random effects for the EC50, bi, i = 1, . . . , 18

• 6 random effects for the plates, in log scale (log(mj): j = 1, . . . , 6)

18∑
i=1

∑
j∈Pi

10∑
r=1

3∑
s=1

(
(yij(r, s)−mjf(x(r, s),β, bi))
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1 b
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+
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(
log(tljk)− (log(mj) + log(τl))

σδ

)2

+

(
[log(m)]TΣ−1

2 [log(m)]

σ2
δ

)
(4.11)

where Pi = set of plates which contain experiment i.

Estimation of variance components
Four variance components are involved in this model, where two (σb and σm)

are the standard deviations of random effects and the other two (σε and σδ) are the
standard deviations of errors from the two parts of the model.

σb is calculated as the median absolute deviation of the deviations between indi-
vidual EC50 estimates and the overall mean of the individual estimates. σε is obtained
from taking the square root of the mean of the individual estimates of the error vari-
ances from the R function nls(). σm and σδ are the estimated standard deviations
of the plate random effect and residuals, respectively, from the linear mixed effects
model 4.2 that was fitted by the R function lmer(). See Table 4.9 for all these values.

Initial values
Initial values are easily obtained from the same values that were used to estimate

the variance components in the previous section. Initial values for bi are the deviations
of the individual EC50 estimates from their overall means. Initial values for log(m)
are the predicted plate effects from the linear mixed effects model.



114

σb 1.36
σε 493.85
σm 0.19
σδ 0.17

Table 4.9: Table of estimated variances

Since all the units can be fit individually quite well, the initial values for the fixed
effects, β1, β2, and β3, are the medians of the individual estimates for upper asymp-
tote, EC50, and slope. The initial values for the controls, τ1 and τ2, are estimated
in the linear mixed effects model as the fixed effects. Recall that the lower asympote
parameter β0 is set equal to the negative control τ1.

Robustness
Because the complexity of this model involves balancing information of two dif-

ferent datasets together, including robustness in a common way through iteratively
reweighted least squares does not work as well here. Instead of punishing true outliers,
any discrepancies in the curve fitting from the observations gets continually weighted
down, and then the model is content with producing curves that stray from the data
points.

Instead, we take advantage of the fact that we already have independently fitted
curves. We apply the Tukey bisquare function to the residuals from these curves to
obtain weights (Figure 4.21) that are used in the full model fitting. Figure 4.22 of the
unit 3 data shows an example of where fitting robustly is helpful. The two highest
intensity values in this set are quite far from the rest of the points near the curve and
have the weights set at 0 and 0.73, respectively, where they are not allowed to pull
the fitted curve away from the other points.

4.5.1 Results

The parameter estimates that resulted are in Table 4.11. The lower and upper
asymptote estimates are about a multiple of 11 away from each other, equivalent to
2.4 difference on the log scale, and follow a relationship between plates through the
predicted plate effects on the log scale (Table 4.10). The predicted values in general
are close to and of the same sign as the initial values, except for plate 3, where the
pair is roughly the same distance in opposite directions from zero (Figure 4.23).

Fitting the mixed effects model on the dataset results in less extreme estimates
for the upper asymptotes through utilizing the negative and positive controls on
each plate (Table 4.11). Because the plots of the raw data show that those units with
significantly higher individual upper asymptote estimates are such due to lack of data
points in that area, the mixed effects model can take into account the information
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Figure 4.21: Histogram of weights generated from individual fitting of the data
through the Tukey bisquare function
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Plate Predicted Initial
1 0.04 0.12
2 -0.13 -0.21
3 0.17 -0.20
4 -0.10 -0.01
5 -0.25 -0.06
6 0.15 0.36

Table 4.10: Table of predicted and initial plate effects from mixed effects model.
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Figure 4.23: Plot of the predicted plate effects from the mixed effects model versus the
initial values of plate effects used. Gray line with intercept 0 and slope 1 is included
for reference.

from other units on the same plate and effectively adjust the estimates according
to the relationships of the controls across the plates. Figure 4.29 shows that the
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mixed effects estimates are similar to robust means of the individual estimates. It
is also easy to see that there exist the outliers in the individual estimates, which
ideally should have values closer to others within each plate. Even from the plots of
the raw data that included the control data (Figures 4.7, 4.5), we can tell that the
maximum values of the dilution series observations corresponded to the magnitudes
of the positive controls across all the plates.

unit plate φ0 (lower asym) φ1 (upper asym) φ2 (EC50) φ3 (slope)
1 1 756.21 8339.94 4.01 1.10
2 1 756.21 8339.94 4.12 1.10
3 1 756.21 8339.94 3.62 1.10
4 2 633.33 6984.69 3.72 1.10
5 2 633.33 6984.69 4.46 1.10
6 2 633.33 6984.69 4.59 1.10
7 3 856.80 9449.23 4.38 1.10
8 3 856.80 9449.23 4.42 1.10
9 3 856.80 9449.23 4.13 1.10
10 4 652.34 7194.33 4.11 1.10
11 4 652.34 7194.33 4.52 1.10
12 4 652.34 7194.33 3.76 1.10
13 5 563.28 6212.17 4.28 1.10
14 5 563.28 6212.17 4.63 1.10
15 5 563.28 6212.17 4.44 1.10
16 6 840.42 9268.58 4.84 1.10
17 6 840.42 9268.58 4.83 1.10
18 6 840.42 9268.58 4.93 1.10

Table 4.11: Table of estimates from fitting the mixed model with penalized least
squares.

The residuals from the mixed model are included in Figure 4.26. While at first
glance, there seem to be units that do not fit well under this model. However, with
comparison of the residuals from the individual fits (Figure 4.27), we can tell for
several units, for instance, unit 3, 7, and 10, that it is not a matter of difference
between the two models but of the logistic curve being unable to address the points
that are either outliers or perhaps non-monotonic, although that may be very unlikely
given that these jumps only occur within one dilution.

EC50 estimates: mixed effects versus individual fits
We now compare the estimates of EC50 we obtain from the mixed effects model

with the individual estimates with Figure 4.30. There is considerable shrinkage in
the mixed effects estimates; the figure clearly shows a much larger range of values in
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Fitted curves − IC50 random, slope constant
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Figure 4.24: Fitted curves from mixed model where the asymptotes are adjusted by
the control data and the slope is held constant.
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Figure 4.25: Fitted curves from mixed model where the asymptotes are adjusted by
the control data and the slope is held constant.
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Residuals from mixed model
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Figure 4.26: Residuals from mixed model.
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Figure 4.27: Residuals from individual model.
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the individual estimates than the mixed effects estimates. The high extreme values
of the individual estimates are from the units with the outlying upper asymptote
values. Because there is insufficient evidence of where the true upper asymptotes
should lie, artificially higher values result in larger EC50 values. The mixed effects
model effectively shares the information across units within the same plate to prevent
such extreme values.

Lower asymptote estimates: mixed vs individual

Mixed model estimates
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Figure 4.28: Mixed versus individual
estimates of lower asymptotes

Upper asymptote estimates: mixed vs individual
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Figure 4.29: Mixed versus individual
estimates of upper asymptotes

EC50 estimates: mixed vs individual
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Figure 4.30: Mixed versus individual
estimates of EC50

Histogram of individual and mixed model slope estimates
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Figure 4.31: Histogram of individual
estimates of slope, the mixed effects
estimate is included as the pink line.

Normalization of data
Once the plate effects have been predicted from the mixed effects model, we can
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see how this effectively adjusts the raw observations to be relatively comparable across
all the plates. Figure 4.32 is of boxplots of the raw data grouped by the plates. As
before, notice that there is clear differences between the plates that is mirrored by
the control values. Figure 4.33 shows the boxplots obtained after scaling with the
prediced plate effects. The medians of the values by plate are adjusted to be much
more similar now; however we do notice that the sixth plate has been adjusted in
the incorrect direction. We find that this is because the plate’s relationship between
the dilution series data and control data is not as in line with the relationships of
the other five plates. First of all, the ratio between the medians of the positive and
negative controls (7.01) for the sixth plate is fine.

Plate 1 2 3 4 5 6
Ratio 6.32 7.19 7.84 8.34 5.43 7.01

However, when we look at the ratios of the medians of the positive controls and
the dilution series data, we see that the value for the sixth plate is much higher than
the rest, resulting in the discrepancy that we see in the scaled boxplots.

Plate 1 2 3 4 5 6
Ratio 1.43 1.51 1.58 1.39 1.32 1.74

Standard errors of EC50
The standard errors of the EC50 estimates can be estimated from the covariance

matrix of the fixed and random effects given the data 2.

E


[
β̂ − β
b̂− b

][
β̂ − β
b̂− b

]T =

[
XTX XTZ
ZTX ZTZ + Σ−1

1

]−1

σ2
ε (4.12)

where we plug in the estimates of the matrices X and Z defined as

X̂k =
∂fk

∂βT

∣∣∣∣
β̂,b̂k

(4.13)

Ẑk =
∂fk
∂bTk

∣∣∣∣
β̂,b̂k

(4.14)

In our case, the matrices are of dimensions n × 4 and n × 18, for the 4 fixed effects
and 18 random effects of the dilution series data. At each observation k = 1, . . . , n,

2Note that this covariance matrix does not take into account the estimation error of the covariance
components of the model. There is no commonly agreed upon best analytical method to include this.
The recommended method by Douglas Bates is Markov chain Monte Carlo sampling of the posterior
distribution of the parameters (in a Bayesian model, the fixed and random effects are considered
parameters).
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the partial derivative of the four-parameter logistic curve f with respect to the EC50
parameter is evaluated at the observation’s specific set of estimated β̂ and b̂ values.

Table 4.12 includes the standard errors of the EC50 estimates for all 18 units,
along with the corresponding standard errors for the EC50 estimates obtained from
the individual fitting. Figure 4.34 shows that all errors involved in the mixed model
are much lower than the individual errors, especially for units where the individual
fitting could not estimate the EC50 as well as it could with only unit data. Units 5
and 14 have errors of 1.52 and 2.82, well above the median individual error 0.25. This
can be explained by these units’ lack of information to estimate the upper asymptote.
Since the EC50 is determined as the concentration at halfway between the lower and
upper asymptote, unstable estimates of the upper asymptotes can lead to uncertain
EC50 estimates, reflected in estimates of standard error. The mixed effects model uses
the control information and other units’ data to better estimate all four parameters,
so that the standard errors are the same or smaller than individual errors.

Unit Plate Mixed standard errors Individual standard errors
1 1 0.10 0.23
2 1 0.10 0.27
3 1 0.11 0.17
4 2 0.13 0.17
5 2 0.12 1.52
6 2 0.12 0.20
7 3 0.09 0.14
8 3 0.09 0.53
9 3 0.09 0.10

10 4 0.12 0.30
11 4 0.12 0.42
12 4 0.12 0.23
13 5 0.14 0.27
14 5 0.14 2.82
15 5 0.14 0.15
16 6 0.09 0.12
17 6 0.09 0.81
18 6 0.09 0.42

Table 4.12: Standard errors from the mixed model and individual model

4.6 Simulation

To see how well the estimation procedure is working, we simulate a similar dataset
to test it on. We start first by assuming that all four parameters of the logistic curve



125

is the same for all experiments, which we can refer to as units since there are no
replicates. For each unit i,

yi = β0 +
β1 − β0

1 + exp
(
−x−β2

β3

) (4.15)

Then recall that, depending on which plate j the unit belongs to, the lower and upper
asymptotes are scaled by a multiplicative factor mj. In addition, we allow φ2 to vary
by experiment.

yij = φ0,ij +
φ1,ij − φ0,ij

1 + exp
(
−x−φ2,ij

φ3,ij

) (4.16)

where

φ0,ij = β0mj (4.17)

φ1,ij = β1mj (4.18)

φ2,ij = β2 + bi (4.19)

φ3,ij = β3 (4.20)

4.6.1 Simulating lower asymptotes

The lower asymptotes are simulated first. We set log β0 equal to 6.53, the log of
the mean of the lower asymptote estimates from individual nonlinear least squares.
We generate plate effects by sampling 6 numbers from a normal distribution with
mean 0 and standard deviation σ2

m = 0.19 (Table 4.13).

Plate log(m)
1 0.14
2 -0.23
3 -0.22
4 -0.04
5 -0.09
6 0.37

Table 4.13: Table of simulated plate effects with standard deviation σ2
m = 0.19.

By adding these plate effects and additional error that is normally distributed
with mean 0 and standard deviation σδ = 0.17 to log(β0), we can simulate a set of
lower asymptotes φ0,ij (Table 4.14).
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4.6.2 Simulating upper asymptotes

We assume the upper asymptotes are a constant multiple of their corresponding
lower asymptote values. To set a reasonable number for this, we look at the mean and
standard deviation of the ratios of the upper to lower asymptote estimates: 2.6 and
0.23. Since we assume that there are a few extreme values in the asymptote estimates,
by looking at the plots of the raw values, we adjust the value to 2.45; otherwise we
obtain upper asymptote values that are much higher than what we see in our data.
We then simulate ratios with this mean and standard deviation.

Plate 1 2 3 4 5 6
Upper / lower asymptote nls 2.19 2.58 2.55 2.67 2.83 2.77

These simulated ratios are then added to the simulated lower asymptotes to obtain
the simulated upper asymptotes.

4.6.3 Simulating EC50s

The empirical estimate of the standard deviation of EC50 values from individual
fitting is σb = 1.71. We simulate 18 different EC50 values from a normal distribution
with mean 0 and standard deviation σb.

Unit Plate log(φ0) log(φ1) φ0 φ1 φ2 φ3

1 1 6.66 8.60 776.77 5405.35 4.35 1.10
2 1 6.66 8.60 776.77 5405.35 3.84 1.10
3 1 6.66 8.60 776.77 5405.35 4.40 1.10
4 2 6.29 8.23 536.85 3735.78 3.84 1.10
5 2 6.29 8.23 536.85 3735.78 5.36 1.10
6 2 6.29 8.23 536.85 3735.78 5.46 1.10
7 3 6.29 8.23 541.18 3765.94 5.35 1.10
8 3 6.29 8.23 541.18 3765.94 5.30 1.10
9 3 6.29 8.23 541.18 3765.94 4.82 1.10
10 4 6.47 8.41 647.01 4502.39 2.49 1.10
11 4 6.47 8.41 647.01 4502.39 6.92 1.10
12 4 6.47 8.41 647.01 4502.39 2.28 1.10
13 5 6.42 8.36 616.07 4287.07 4.96 1.10
14 5 6.42 8.36 616.07 4287.07 2.41 1.10
15 5 6.42 8.36 616.07 4287.07 4.79 1.10
16 6 6.88 8.82 974.57 6781.80 4.95 1.10
17 6 6.88 8.82 974.57 6781.80 5.17 1.10
18 6 6.88 8.82 974.57 6781.80 6.01 1.10

Table 4.14: Table of simulated parameters
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4.6.4 Simulating control values

We simulate control values in the same way as the asymptote values; we first
assign the same lower asymptote value to the negative control: log(τ1) = 6.5. Then
we add the same simulated plate effects and a random error that we sample from the
normal distribution with mean 0 and standard deviation that we estimate from the
real control data, 0.19. (Here we use the within sum of squares divided by 6 * (4 -
1), for 6 plates and 4 replicates.)

The positive controls are also a multiple from the negative controls, where it is
a bit less than for the upper asymptote, as we can see from plots. The mean of
the log ratios of the positive to negative controls by plate (included below) turn out
to be 1.94, so we will add that to the logged negative control value to generate the
simulated positive control value log(τ2).

Plate 1 2 3 4 5 6
Log(Positive / negative) 1.82 1.97 2.04 2.06 1.77 1.85

We include all these values in Table 4.15 as reference; we’ll be able to visualize
them better in plots.

4.6.5 Visualizing the simulated data

We provide plots of the simulated data, Figure 4.35. We can see then that the
simulated data does not stray too far from the original data.

4.6.6 Results

Results indicate that the fitting method is working sufficiently well. Figure 4.40
provides a quick visual check as to whether all the fitted curves are reasonably applied
to the observations.
Comparison with individual estimates

Individual fits of the curves are conducted first, where a small proportion of the
units are unable to be fitted. Various adjustments to the sampling parameters also
resulted in a similar situation. Since these simulated sets look relatively similar to the
real dataset, we can hopefully proceed without this affecting the rest of the analysis.
The parameter estimates are listed in Table 4.16 while the fitted curves are displayed
in Figure 4.36.
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Boxplots of raw intensity values by plate
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Figure 4.32: Boxplot of the logged intensity values by plate

Boxplots of raw intensity values by plate scaled by 
 predicted plate effects
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Figure 4.33: Boxplot of the logged intensity values by experiment after scaling with
predicted plate effects from the mixed model.
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Plate Type of control Log(intensity) Intensity
1 neg 6.45 632.67
1 neg 6.70 814.28
1 neg 6.84 934.02
1 neg 6.26 521.33
2 neg 6.36 577.47
2 neg 6.37 585.08
2 neg 6.19 486.87
2 neg 6.19 489.21
3 neg 6.20 491.66
3 neg 6.14 465.19
3 neg 6.21 499.01
3 neg 6.12 456.70
4 neg 6.34 567.02
4 neg 6.48 654.14
4 neg 6.64 761.64
4 neg 6.45 634.99
5 neg 6.34 564.81
5 neg 6.27 527.66
5 neg 6.28 534.34
5 neg 6.83 928.95
6 neg 6.90 997.04
6 neg 6.80 896.57
6 neg 6.81 904.25
6 neg 6.96 1053.77
1 pos 8.82 6769.32
1 pos 8.68 5893.03
2 pos 8.19 3608.59
2 pos 8.27 3910.64
3 pos 8.45 4693.83
3 pos 8.53 5077.66
4 pos 8.39 4421.33
4 pos 8.55 5152.02
5 pos 8.51 4963.88
5 pos 8.31 4046.94
6 pos 9.11 9052.19
6 pos 8.70 5982.30

Table 4.15: Table of simulated control values
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Simulation: Raw data by plate
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Figure 4.35: Plots of the simulated dataset by plate, including simulated negative
controls (left, red) and positive controls (right, blue).
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Plate Unit φ0 (lower asym) φ1 (upper asym) φ2 (EC50) φ3 (slope)
1 1 840.21 4650.19 3.88 0.88
1 2 NA NA NA NA
1 3 451.01 5727.20 4.29 1.25
2 4 159.53 4141.11 3.77 1.52
2 5 604.83 3128.86 4.87 0.58
2 6 746.27 2734.23 4.84 0.69
3 7 354.84 6075.12 6.93 1.81
3 8 645.70 3194.61 4.86 0.63
3 9 365.02 4252.58 4.97 1.31
4 10 NA NA NA NA
4 11 NA NA NA NA
4 12 921.04 4629.32 2.58 0.82
5 13 753.15 3958.80 4.98 1.03
5 14 965.50 4163.59 2.51 0.72
5 15 661.01 3942.20 4.60 1.09
6 16 1081.59 6842.14 4.93 1.17
6 17 518.27 7815.27 5.49 1.47
6 18 NA NA NA NA

Table 4.16: Table of individual estimates on simulated data
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Fitted curves of simulated data
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Figure 4.36: Fitted curves of individual model on simulated data.

Even though the true value of the slope parameter is 1.1, individual nonlinear least
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squares picks up on the slightest patterns in the data, and the resulting range of these
estimates is quite large. Figure 4.37 is a histogram of the estimates, whose standard
deviation is 0.37. We can compare this histogram of the simulated results with the
histogram of the individual estimates of slope for the real dataset (Figure 4.31) to see
that the ranges are quite similar. This gives support to the model assumption that
the slopes be constrained equal for the real data. Because of the separate involvement
of all the data units and the noise, it is quite typical for individual estimation to result
in values more extreme than the true values; it does the best it can to fit as close as
it can to the data points it is allotted. But with the mixed effects model, the overall
patterns can be found from using all the data simultaneously, and the estimates are
less likely to be affected by the noise in the observations.

Histogram of individual slope estimates
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Figure 4.37: Histogram of the individual slope estimates

The estimated covariance components compare well with the true values in Table
4.17. This shows that the methods to estimate these covariance parameters are doing
quite reasonably. Future analysis can help ascertain under what conditions these
simple methods may not do as well.
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Parameter True Estimated
σε 400.00 394.41
σb 1.35 1.13
σm 0.19 0.22
σδ 0.17 0.17

Table 4.17: Table of true and estimated covariance components of simulation
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Figure 4.38 is composed of three plots comparing the estimates for the lower and
upper asymptotes and EC50 with their true values. Keeping in mind that the scales
are different, we notice that both sets of asymptote estimates correspond well with
their true values, with errors maxed at around 100, which is small relative to the
magnitudes of the upper asymptote values, but not to the magnitudes of the lower
asymptotes in the high hundreds. However, this does not seem to have affected the
most important parameter, the EC50, where the mean and standard deviation of the
errors is 0.02 and 0.23, respectively, resulting in unbiased and close estimates. Com-
pared to the mean and standard deviation of the errors for the individual estimates at
0.004 and 0.54, the mixed effects model does much better at estimating the EC50s in
this simulation, balancing between a mean estimate and the more extreme individual
estimates.

The predicted plate effects are plotted against the true plate effects in Figure 4.39.
Although the predicted effects do not follow the gray reference line with intercept 0
and slope 1, they do fall on a straight line, which means that the relationships between
the plates are correctly predicted, but the scale factors are off by a constant value.
This actually does not affect the end result as this discrepancy is just due to the
differences in the control estimates from the true values.

True Estimated
Negative (τ1) 665.1 578.6
Positive (τ2) 4628.6 5020.6

Figure 4.40 of the fitted curves and Figure 4.41 of the residuals from these curves
on the simulated dataset show that the fitting methods work relatively well. Despite
the lack of individual fits on some of the units, fitting the mixed effects model resulted
in reasonable fitted curves for all units in the dataset.
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Simulation: Comparison of 
 estimated and true values
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Figure 4.38: Plots of estimated versus true values of parameters for simulated data.
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Comparison of predicted and true plate effects of simulation
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Fitted curves of simulated data
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Figure 4.40: Fitted curves of mixed model on simulated data.
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Simulation: residuals from mixed model
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Figure 4.41: Residuals from the mixed model on simulated data.
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4.7 Discussion

We saw from Figure 4.33 that the model is able to adjust the raw values such
that their observations are not as affected by the plate effects as they were originally
(Figure 4.32). In general, this depends on moderately strong relationships between
the control and experimental values within and between each plate. This then allows
shrinkage estimates of the EC50 that are more reasonable and less dependent on
uncertain asymptote estimates than estimates of the EC50 from individual fitting of
the units.

The fitting of these types of models rely on good initial values. Using random
sampled values for the initial random effects, the early runs of this model took as
many as 600 iterations in optim(), and sometimes with nonconvergence. Further
work is needed to investigate more practical implementations of the fitting method.

Testing on larger and different data sets would be very helpful here; we used a
relatively small dataset with only 540 observations on 18 experiments on only 6 plates
with no replicates by experiment. Having experiments replicated across multiple
plates will help with the construction of better and better models. In particular, the
assumption that the slopes are the same may be relaxed. With smaller datasets, it
may not be possible to fit the ideal model.

Another important issue in the fitting of any models on this dataset is the odd
occurrence of significantly higher upper asymptotes of the second experiments on each
plate. Since the data for the upper asymptote are on the other two experiments for
each plate show much similarity and follow the relationship with the control data, we
cannot simply assume that each set of upper asymptotes should vary independently.
But because of this, fitting reasonable curves on all data involve a balance between
extreme values of the predicted random effects to accommodate these experiments
and loosening the relationship of the controls across plates. If this issue cannot
be explained by biological or experimental artifacts, further work will be needed to
explore how this balance can be achieved such that these methods can be useful for
a larger set of similar data.
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Chapter 5

Conclusion

As we can see from the examples in this thesis, fitting nonlinear curves to dose
response data and obtaining useful information is tricky and different from case to
case. It requires immense involvement with the data itself and plenty of trial and error.
We want a model that is specific enough for the data at hand but general enough to
accommodate future data. We also need to balance between the complexity of the
model and fidelity to the data.

5.1 General guidelines

We discuss some general tips on proceeding with analyzing dose-response data.
Many of the methods can be commonly applied to a majority of such datasets. The
key is to try to fully understand the unique characteristics of each dataset and to
work to tailor such techniques to optimally address them.

Raw data
Direct output from luminometers and other such machines that can detect the

light intensities from samples is frequently a flat file of these measurements listed
in a single column. Most likely there may be additional columns that indicate the
specific location of each measurement on the read chip or plate. Making sure to map
these values to the correct factors is extremely important. All the scripts written
to process raw data in this dissertation include many checks to confirm that the
resulting data frame to be used for analysis is correct. Any misassignments of things
such as compound level or even a shift in the numbering of replicates will ruin all
future attempts at exploring and understanding the data to be modelled. Because
randomization of the spot or well layout is preferred, functions are written to provide
simple visual checks for the experimenter as well.

Such a raw format should typically be the preferred and requested format. Data
obtained in a processed form may be subjected to errors in human handling or fre-
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quently, incompleteness, as the experimenter may feel that certain observations are
bad and chose to exclude them. Other times, data important to our work such as
control values may also be left out because the experimenter has already deemed the
values to be sufficiently within range and therefore useless for any other purposes.

However if the dataset is extremely large or has the potential to grow enormously,
then this raw format may not be the best. If the data can be correctly loaded and
managed on a relational database, we can pull out the data we require efficiently and
without the redundancy in the long data format of a typical R data frame.

Exploring the data
As with all data, we must take a look at it before we attempt to model anything.

Exploratory analysis can involve numerical summaries such as taking means and
standard deviations by different factors and various plots to uncover any patterns.

We suggest that the first plot to do is the data of one unit. This is a check that
the data is stored correctly and to see the general trend in the observations across the
concentrations of compound. The x-axis is the logged concentration while the y-axis
is the response, typically the optical density of the spots or wells we are measuring.
Then it should be easy to extend to a grid of plots organized by any important factors
such as specific compounds or enzyme conditions. It may be possible to detect some
patterns this way, but it may be difficult unless there are strong effects in the data.
This is more for looking over the data and seeing if there are any strange outlying
units. We also need to be careful in dismissing units as outliers especially if some
seem to be non-monotonic. Even though none of the datasets discussed here are like
this, it is indeed possible due to the complexity of the reactions involved. In such
situations, the use of logistic curves and the like will not be appropriate; some useful
methods include smoothing spline anova models [10].

Individual nonlinear fitting
Once we can assume that the logistic curve will work relatively well on the dataset,

we try fitting it on each unit separately. Choosing the three or four parameter model
depends on whether we think there is sufficient evidence to assume that the lower
asymptote of the curve is zero. We can always start with looking at the results of the
four-parameter model and checking if the estimate is near zero, although there may
be increased difficulty in fitting a more complex model.

Because each set of estimates depends on only each unit’s data, it is often that
these observations may not be enough to be able to estimate a full curve. The
recurring issue in all the datasets discussed in this thesis that causes the motivating
factor for labs to contact a statistician after large portions of the data has been
produced is the less than optimal range of concentrations of compounds used to
interrogate the cellular activity. As we have seen in the plots of the raw data, too
much real estate on the plates, chips, or slides have been wasted on interrogating the
flat areas where there is not enough compound to affect anything and where there is
too much and not utilized efficiently for the important stage of the activity.
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Fitting it robustly may help a little, but it should be clear from this dissertation
that individual nonlinear fitting is insufficient on its own for analyzing this data,
although it provides a good foundation to base subsequent global analysis on.

Through analyzing the set of parameter estimates that we are able to obtain from
individual fitting, we can design a model that will encompass the important charac-
teristics of the dataset as a whole. This is done through boxplots of the estimates by
specific factors and simple analysis of variance.

Global nonlinear fitting
Armed with what the ideal model should likely be, we can attempt to fit it on the

dataset using several different methods. Constraining the parameters is often a good
and easy method of fitting the data jointly. If the results from this is not ideal, mixed
effects models can offer much more flexibility in balancing between forcing parameters
to be equal and letting their individual characteristics be represented. However it is
quite typical that this is unsuccessful, either due to the fitting methods or the fact
that the data does not have enough information to support such a model.

Determining what error messages mean and how exactly the model is not fitting
is difficult. Minimization/maximization algorithms can often get trapped in local
optima. Compromises are sometimes necessary to be able to fit anything at all. We
have to determine whether such changes are appropriate and keep on iterating through
many different models to see what is best. The work in this dissertation illustrates a
few examples of model building, but it is highly dependent on each individual dataset.
The incorporation of external data that is pertinent to the issues at hand can also be
helpful.

Further improvements to the suggested models in this dissertation include finding
appropriate transformations of the parameters [19] and using better methods to deal
with the heteroscedasticity and robustness, such as transforming both sides [15].

5.2 Practical issues

Even if the advantages of fitting data jointly are clear in the results we’ve seen,
an extremely important consideration is the practical issues in computation. Data
is always continually being generated and should be processed quickly for input in
further analysis and experiments. If allowing colloborators to use the program, will it
run reasonably and relatively quickly for the majority of the time? Or will it result in
strange errors and halt that analysis until the writer of the code or other statisticians
are able to figure it out and either fix it simply or change the existing model to adapt
to the new data that it choked on? Ideally, we want programs that are efficient and
near fail-safe, but significant time and effort is needed to accomplish this.

Although current programs out there for applying nonlinear mixed effects models
to data are thoughtfully coded and their small examples run absolutely well, general
utilization is often unsuccessful. At this point, each dataset must be considered on its
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own very carefully to ensure that reasonable results, if any, will be obtained. This has
proved true for the datasets involved in this dissertation, as well as for other datasets
in the public literature [4].

5.3 Conclusion

The most important tool for the analysis of such data is perseverance. Nonlinearity
makes things complicated, and fitting nonlinear mixed effects models is no exception.
We should always be ready with new ideas to implement and improve the analysis at
each stage even if roadblocks abound.
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