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Abstract

The seismic response of light secondary systems in a building is dependent on the
response of the primary structural system to the seismic ground motion with the result that
very high accelerations can be induced in such secondary systems. This response can be
reduced through the use of aseismic base isolation which is a design strategy founded on the
premise that the entire building can be decoupled from the damaging horizontal components of

seismic ground motion by use of some form of isolation system.

The paper presents a theoretical analysis of this phenomenon and a parallel experimental
program which show that the use of base isolation can not only attenuate the response of the
primary structural system but also reduce the response of secondary systems. Thus, the design
of equipment and piping in a base-isolated building is very much simpler than that for a con-
ventionally founded structure: inelastic response and equipment-structure interaction need not
be considered and multipie support response analysis is rendered unnecessary.

Although an isolation system with linear elastic bearings can reduce the acceleration of the
structure, it may be accompanied by large relative displacements between the structure and the
ground. A system using lead-rubber hysteretic bearings, having a force-displacement relation
which is approximately a bilinear loop, can reduce these displacements depending on the design
earthquakes. The experimental results show that these bearings can dissipate energy and limit
the displacement and acceleration of the structure but are less effective in reducing the
accelerations in the internal equipment.

The results of both the analysis and the tests show that base isolation is a very effective

method for the seismic protection of light equipment items in buildings.
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Chapter 1 INTRODUCTION

Earthquake loading is unique among the types of forces to which a building may be sub-
jected. The essential feature of this loading is that external load is applied directly to the struc-
ture only through its base. Forces developed at the upper levers are a consequence only of the
local acceleration which results from the earthquake motion introduced at the base. The magni-
tude of the story acceleration is directly dependent upon the stiffness properties of structure.
Thus, under the same earthquake, structures designed by different philosophies will be sub-

jected to different earthquake loadings and have different responses.

The current design approach is to ensure that the structure has sufficient strength to sus-
tain the forces induced by a moderate earthquake and has sufficient ductility under a strong
earthquake. Ductility allows the structure to develop inelastic hinges at beam ends during
strong ground motion. These hinges provide not only increased flexibility but also energy
absorbing capacity, both of which help to limit the earthquake generated forces. However, such
inelastic deformations require large interstory displacements and cause progressive breakdown
of the structural components as well as damage to mounted secondary systems and non-
structural components. Moreover, a structure strengthened to resist earthquake attack becomes
more rigid and a larger amplification of the ground acceleration at each floor level may result.
Thus, even if the structural members remain in the elastic range under a moderate earthquake,

the secondary systems may be more severely damaged and the danger to occupants increased.

Base isolation is a different antiseismic design strategy. In this approach, a system of
some kind is used to decouple the superstructure from the ground so that the damaging hor-
izontal components of earthquake ground motion cannot be transmitted into the building. In
general, an isolation system is equipped both with flexibility and an energy-absorbing capacity.
Flexibility in the horizontal direction will lower the fundamental frequency of the structure to
below the range of frequencies which dominate in the general earthquake input, so that the
earthquake-induced loading will be decreased. However, the low stiffness of the isolation sys-

tem could cause the displacements of the building to become too large. Hence, the isolation
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system should have some energy-absorbing capacity which in addition to attenuating the
transmission of energy into the building will also reduce the structural displacement. 1f the
energy-absorbing mechanism involves inelastic behavior, this will be confined to the base isola-
tion system and the damage during an earthquake can thus be confined to the isolation system
and not to the structural members. Such damage will not cause severe harm to the secondary

systems and occupants.

Many unimplemented base isolation systems have been proposed, but the concept has
become a practical reality in recent years with the development of multilayer elastomeric bear-
ings.! These bearings consist of thin sheets of rubber bonded to interleaving steel plates, sO that
they have sufficient vertical rigidity to sustain vertical loading and sufficient horizontal flexibility

{0 isolate the building from the horizontal components of ground motion.

Many buildings such as hospitals, power plants, telephone exchanges, and pumping sta-
tions for water or gas pipelines contain essential equipment which must be designed to be
integral with the primary structure under the earthquake-induced loading and must continue to
operate in the aftermath of a severe earthquake. Since these internal equipment iterns are con-
nected to the primary structure and driven by the structure during seismic motion, it is possible
that very high accelerations could be induced in them. A further complication arises when the
equipment has a natural frequency close to one of the natural frequencies of the primary struc-
ture, a situation referred to as tuning and one almost inevitable in a large system. Current
design practices account for this possibility by permitting inelastic action in the equipment and
its supports or by using energy-absorbing restrainers in the system. These, however, will make

the design of such buildings more complicated and expensive.

Base isolation can solve this difficulty by constructing the entire building on 2 base isola-
tion system. To evaluate the effect of base isolation on equipment response, an earlier series of
experiments has been carried out on the large-scaled shaking table at Earthquake Simulator
Laboratory of Earthquake Engineering Research Center, University of California, Berkeley.? In

these tests, there were three forms of base isolation system; a fully isolating system with rubber
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bearing only, a fail-safe skid isolating system and an energy-absorbing isolating system.

The fail-safe skid system consists of rubber bearings and skid systems.3 and serves a dual
purpose. The first of these purpose is to act as a fail-safe system. In the event of unexpectedly
large relative displacements, which could cause the bearings to fail, the system would not col-
lapse but would be caught on the skid system. The second purpose of the skid system is to
function as a Coulomb friction damper. After the base floor girders and the skids come into
contact at a certain value of relative horizontal displacement, 2 shearing force due to friction is
developed in the skids, and in addition vertical load is transferred from the bearings to the

<kids. This has the effect of limiting the maximum displacement.

The energy-absorbing system used in these earlier tests consists of rubber bearings and
tapered cantilever beams.* These beams are made of hot-rolled, low carbon mild steel and act
as hysteretic dampers. For small deformation, the steel beams are elastic and become high
stiffness members which reduce the structural displacement. But under more intense excita-
tion. the steel beams yield and produce large hysteresis loops as the structure oscillates. The
stiffness of the system drops dramatically and thus the effective frequency is reduced. Simul-
taneously their high energy absorption capacity is developed and very high effective damping is
introduced.

The lead-rubber hysteretic bearing is another type of energy-absorbing isolating system
recently developed. A four story reinforced concrete building using this type of isolating sys-
tem has been designed and constructed in New Zealand.’ The lead-rubber bearing consists of a
rubber bearing with a lead plug inserted in its center. The lead plug acts as a hysteretic damper.
It can provide a high stiffness to the bearing before yielding of the lead and form large hys-
teresis loops after yielding. Thus, the lead-rubber bearing can produce the required amount of
damping by the selection of the appropriate size of lead plug.

In a recent test series, a five story steel frame mounted on the lead-rubber bearings has
been tested on the shaking table and experimental results on the frame response have been

reported.® As an additional feature of this test series, oscillators representing light equipment
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Chapter 2 LEAD-RUBBER HYSTERETIC BEARING

2.1 Characteristics of Lead-Rubber Bearing

The lead-rubber bearing is a steel-reinforced multilayer elastomeric bearing with a hole in
its center to facilitate the insertion of a lead plug as shown on Figure 1. The lead plug is firmly
pressed into the hole and the lead forms a positive key between the steel plates within the bear-
ing. Thus, when the elastomeric bearing is deformed horizontally, the lead insert is forced by
the interlocking steel plates to deform over its whole volume in pure shear. In a single compact
unit, the lead-rubber bearing provides the combined features of vertical load support, horizontal
flexibility and energy absorbing capacity required for the base isolation of structures from earth-

quake attack and also prevents movement of the building under wind loading.

There are some reasons for choosing lead as the material for the insert in the bearings.’
First, lead yields in shear at the relatively low stress of about 1.4 ksi and behaves approximately
as an elastic-plastic solid. Thus a reasonable size insert can produce the necessary hysteresis
damping force for the base isolation system. Second, at ambient temperature when lead is
plastically deformed it is being 'hot worked’ and the mechanical properties of the lead are being
continuously restored by the interrelated processes of recovery, recrystallization and grain
growth which are occurring simultaneously. Lead therefore has good fatigue properties during
cycling at plastic strains. Third, because of its use in batteries, lead is readily available at the

high purity of 99.9 per cent required for its mechanical properties to be predictable.

The relation between the shear force and shear displacement of lead-rubber bearing can
be expressed approximately by the bilinear loop as shown on Figure 2. In small ground
motion, the lead plug does not yield and provides a high stiffness to the elastomeric bearing.
As the intensity of the motion increases, the stiffness of the bearing drops to that produced by
the elastomer. Large hysteresis loops are formed due to yielding of the lead and significant
energy dissipation occurs. Thus, the lead plug acts as a mechanical fuse and energy dissipator

in the lead-rubber hysteretic bearing.
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items were attached to the structural model to assess the influence of the lead plug bearings on
the seismic response of light equipment items. These experimental results will be presented
here for the first time. In order to undersiand the efficiency of the lead-rubber bearings, the
other two kinds of foundation system, fixed base system and base-isolated system with the plain
rubber bearings, have also been tested. The response of oscillators on these three kinds of

foundation system are compared and discussed in the paper.

In addition, in this paper the theoretical response of the tuned equipment 00 the base-
isolated structure is approximately derived using a mass-lumped mathematical model. The bear-
ing in this model is assumed to be elastic and thus the model is entirely linear. The behavior
of tuned light equipment ina base-isolated structure can be studied \:sing this model to a high
degree of accuracy when plain bearings are used and approximately in the case of lead plug
bearings.

The correlations between the experiment results and the response of the mathematical
mode! are made and discussed for the fixed base system and the base-isolated system with the
plain rubber bearings. The responseé spectrum method is applied to calculate the response of
the mathematical model and modal damping ratio is required by this method. Thus, in order
to make a good correlation, a rational method is needed to evaluate the modal damping ratios

from the bearing damping and the structural damping, and this is also developed in the paper.

i
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easily solved.

To study the correlation between experimental results and the computer simulation, a two
dimensional frame isolated on the bilinear bearings was analyzed by this computer program.
The base displacements and base shear forces determined from the experiments and calculated
from the computer program are compared in Figure 5 through Figure 7. Since the hysteresis
loops of lead bearing after yielding are similar to the bilinear loop, the larger responses are
matched very well. There are however some differences in the small response. Small hys-
teresis loops are found in the experiment even if the bearings have not reached the yield level.
This does not occur in the bilinear model. It will remain in the linear elastic state, so that the

energy dissipation is less and the calculated response is larger than in the experiment for small

deformation.
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2.2 Shaking Table Test and Numerical Correlation

A series of experiments have been carried out on the large-scaled shaking table to study
the dynamic behavior of structures using the lead-rubber bearing isolation system and to com-
pare with system which uses plain rubber bearing without lead.® The experimental model was a
five-story steel frame mounted on the four bearings and was excited by several different earth-

quake inputs derived from historical earthquake records.

The test results show that the accelerations experienced by the frame on the lead-filled
bearing are always less than the input acceleration. They are higher than for the unfilled bear-
ing condition, but the relative displacements are lower. In contrast to the unfilled bearing case
in which the frame responded almost as a rigid body, the peak accelerations of each floor for
the lead-filled case do not occur simultaneously. The hysteresis loops for the unfilled bearing
and lead-filled bearing are shown on Figure 3 and Figure 4. Large hysteresis loops in the lead-

filled bearing are indicative of efficient energy dissipation.

Since the lead is nonlinear in its response, the magnitude of frame response is not propor-
tional to that of input. The increased input intensity is accompanied with the increased isola-
tion. In principle, a permanent deformation after yielding is possible. The nonlinearity also
implies that the response should be dependent on previous history of bearing deformation. In
fact, no severe permanent deformation was observed after a test and there was no dependence
on previous history.

A computer program for the stress analysis of base-isolated structures has been developed
at the University of California, Berkeley.? In this program, the bearing can be modeled to have
a bilinear force-displacement relation, so that the effect of the energy-absorbing mechanism on
the isolated structure can be calculated. The number of degrees of freedom for the superstruc-
ture, which is elastic, is reduced in this program by static condensation and the total number of
degrees of freedom used in the nonlinear iteration is greatly reduced and the computing effort
minimized. Because the program performs three dimensional analysis on the superstructure

using the substructure concept, torsional response of the structure on the nonlinear bearings is

'— M /M T T T
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where Y, is the generalized coordinate representing the amplitude of the i’th vibration mode

and &, is the vector of the respective mode shape. The mode shapes have the orthogonality

properties,

6'M¢,=0; ¢'K¢,=0 fori=j 3.7

These lead Ea. (3.1) to be decoupled as

V o+ w?Y, =—Li fori=1....5 (3.8)

in which the various modal properties are defined as follows:

Generalized mass

MI = ¢iTM¢I (39)
Modal frequency
r
‘Ko,
w, = (Lﬁi)ﬁ (3.10)
Participation factor
¢ Mr
L = 7 (3.1

3.2 Dynamic Behavior of Base-Isolated Structure

The theoretical model of the base-isolated structure is shown on Figure 9. The base of the
isolated structure is taken to be a lumped mass m; on a spring of stiffness k. Let u, be the
base displacement relative to the ground and u, be the i’th floor displacement relative to the
base, which is the deformation of superstructure and equivalent to the floor displacement rela-
tive to the ground in the case of the fixed base structure. The undamped equations of motion

subjected to a ground acceleration i, are expressed by

Mi + K = — MTi, (3.12)
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Chapter 3 MATHEMATICAL ANALYSIS OF ELASTIC MODELS

3.1 Basic Equations of Fixed Base Structure

A fixed base model of five stories is shown on Figure 8, which has the lumped mass m,

and stiffness &, on the i’th floor. When this model is subjected to a ground acceleration i, its

undamped equations of motion can be written as

Mu+ Ku=—Mri,

where M is the mass matrix, defined as

m 0 0 0 O
0 m; 0 0 O
M={0 0 m; 0 O
0 0 0 mgy O
0 0 0 0 mg

K is the stiffness matrix, defined as

ki+k, —k; 0 0 0
—~k, ketky —k3 0 0
K=| 0 —k; kytks —k¢ O
0 0 —ky ketks —ks
0 0 0  —ks ks

r is the displacement influence vector, defined as

r=[11111}7
u is the relative displacement vector with the components as
g = [U1 Uy Uy Uy u5]r

and u is the relative acceleration vector.

By the mode superposition method, the displacement can be expressed as

5
u-ZYi¢l

i=]

3D

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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u= Y+ Y2 (3.19)

After substituting Eq. (3.19) into Eq. (3.17) and (3.18) and multiplying ¢ and &7 to Eq
(3.18) respectively, the equations of motion can be simplified using the orthogonality properties

in Eq. (3.7) and the modal properties in Eq. (3.9) to (3.11) to take the form

My ML, M,L; g ky 0 0 Up my
ML, M, O ¥ l+4]0 Mow{ 0 Yt =—{ ML il (3.20)
ML, 0 M, Yz 0 0 M2w22 Y2 Myl

This is a generalized equation of motion in terms of generalized coordinates u,, Y1 and Y2

Although it is similar to Eq. (3.12), the number of degrees of freedom has been reduced.
The frequency of the i’th mode of the isolated structure will be denoted by @, which with

its mode shape can be found by solving the following eigenvalue problem,

(i)

wi 0 o]z 1 R\L, RoLy|] U
0 wt O {Y}=8L 1 0 Yo (3.21)
0 0 wil¥y L, © 1 Y5

. . Ml MZ ke
in which R;= —, Ry=— and w, = —_—
my my my

In general, the stiffness of the isolation level, k,, is much less than that of the various
superstructural levels; in other words, wb<<w\ Thus, the value of e=(-—-—)2 is very small.
Also, if the modal frequencies of the fixed base structure are well spaced, it is reasonable to
assume that (—:—i)2 has the same order of €. If the terms having an order higher than € are

neglected, the approximate values of the isolated modal frequencies can be derived as

W)= wp (3.22)

- 1 Py P\P; o ;

= 4 t(&y 2 (—)? (3.23

©r= AR, YN 2 e 2(1-—P|)2(w2 )
_ 1-P, PPy ey

@ T=Fep; | T 20-P) e (3.24)
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where
mp my omy; m3 mg ms
mymy 0 0 0 O
_ my 0 m; 0 0 O
M= my 0 0 m3; 0 O
my 0 0 0 my O
ms 0 0 0 0 ms
in which my = my+mi+matms+metms;
ky O 0 0 0 0
0 ki+k; —k, 0 0 0
_ 0 —ky; krki: —k; 0 0
K=l0 0 —ky kstke —k¢ O
0 0 0 —ky kgtks —ks
0 0 0 0 —ks ks

F=[100000]7

= [u, uy u; us us lls]T

(3.13)

(3.14)

(3.15)

(3.16)

By matrix partition, Eq. (3.12) can be rewritten in terms of the matrices M, K, r and u

which have been defined in Eq. (3.2) to (3.5),

Mfil.b + (MI)Tli+ kbub——-mfiig

Mrii, + Mii + Ku = — Mrij,

3.17

(3.18)

These are the coupled equations of base and superstructure. The deformation of superstruc-

ture, u, can be expressed in terms of the fixed base mode shapes as defined in Eq. (3.6). In

general, the contribution of higher superstructural modes to the deformation of superstructure

is much less than that of the lower modes. In order to get the closed-form solution of the fre-

quencies and mode shapes of the base-isolated structure, it is necessary to keep the number of

degrees of freedom in the eigenvalue problem no more than three. Thus, neglecting the contri-

bution of higher modes, the vector u is approximately expressed as the combination of the first

two fixed base mode shapes,

= ™ e e,
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the contribution of superstructural properties dominates in the higher modes of the base-
isolated structure.

The participation factors can be formulated from the equation of motion in Eq. (3.20).
According to the generalized mode shapes in Eg. (3.25) to (3.27), the participation factors are

derived approximately equal to

L= 1-P(22)? (3.28)
w)
[,= P(2h)2 (3.29)
W)
- P2 wp
D= — 2 (=2)? (3.30
3T =Pt w2 )

The orders of L, L, and L3 are €% ¢'and € respectively, so that there will be a large contri-
bution to the rigid body mode from the earthquake input motion and its contribution to the
modes having superstructural deformation are minor. Since the rigid body mode creates little
stress in the superstructure, in the base isolation approach there is no need to design the super-

structure to resist the earthquake loading and this will thus reduce the cost of the superstruc-

ture.

3.3 Dynamic Behavior of Light Equipment on Fixed Base Structure

Figure 10 shows an equipment mass . with stiffness k, mounted on the fifth floor of the

fixed base structure. The undamped equations of motion for this system are
Mii+ Ku+ k. (us—u.) es=—Mri, (3.3D
mti, — kes+ kete = — Mg (3.32)
where M, K, r and u have been defined in Eq. (3.2) to (3.5) and

es=[0000 117 (3.33)
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where P=R L ? and P=R ,L#. The generalized mode shapes with respect (0 these three fre-

guencies are

abm i
0l =|L,(=2)? (3.25)
— @]
YZ(])
@
Lz(—"t',“)2
w)
a1 1
- L P
Fol=|-=* — (P (2 =2 ()2 (3.26)
_ P,y w) 1-P; w3
7o
._Ei_(.“ll)z
1"P1 w?
e 1
- 1-P—P
POl = I PSS Y ST (3.27)
_ 1-Py o
Y2(3)
_ (1""P1)L2 1-—- Pl(l"'Pl"Pz) (_(:)_1—)2
l P (1-Py)? @2

The above equations for frequencies and mode shapes illustrate the dynamic behavior of a
base-isolated structure. In Eq. (3.25), the component ?1“) is of the same order as € and Yz(” is
of order ¢2. They are much less than the component ii,,(”, which is of order €. The first mode
of the base-isolated structure is almost entirely a rigid body mode, in which there is no defor-
mation in the superstructure. The first mode frequency is nearly equal to the natural frequency
of a single degree-of-freedom system with the total structural mass as its mass and the stiffness
of isolation system as its spring constant. The component 75? in Eq. (3.26), which is of order
€, is much less than the other two components. Hence, the second mode of the base-isolated
structure is almost entirely the combination of the rigid body mode and the first superstructural
mode. Since the third mode frequency and its generalized mode shape in Eq. (3.24) and 3.27)
do not have the @, term, the third mode of the base-isolated structure is almost independent of

the isolation system. In other words, the influence of the isolation system becomes minor and

gl
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4@ = (3.40)

The respective participation factors based on Eq. (3.35) are

. L, 2-L,
L= 2 Jy (3.41)
. Ly 2-L
[y~ =L - —Vy (3.42)

2 4

From the above results, it is easy to show that the first mode of the original structure is split
into two modes when the tuned light equipment is included. One mode has a frequency slightly
lower than that of the original mode; and the other has a slightly higher frequency. These two
mode shapes are plotted on Figure 11. The tuned equipment has a large displacement in each of

these modes.
The mode superposition method

Y, ) o ) jo
=27 e + Z; 4@ (3.43)

Ue

can be applied to decouple Eq. (3.35). If each mode / is assumed to have a damping ratio £,

the decoupled equations of motion become

kot ~

7 4202 +022 =~Li, fori=12 (3.44)
If the input ground motion is harmonic, lig=Age™' in which A4 is the amplitude, the
solution of Eq. (3.44) becomes

. ~L,A,

i 2 -
o w2t 0w

e’ for i=1,2 (3.45)

and the absolute equipment acceleration,

G, = i, + .02+ 272, (3.46)
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Like Eq. (3.19), the structural displacements are approximated as = Y 4., in which the
contribution of higher structural modes has been neglected. Set the first structural mode shape

1o be
6 =10V 85" 03" oM 117 (3.34)

in which the fifth component is unit, SO that us=Y; Then, multiplying ¢{ to Ea. (3.31) and

applying the properties in Eq. (3.9) to (3.11), the undamped equations of motion become
M, 0|V [Muwitke =k || T ML)
0 me||u * —ke. ke Ue =T me “e (3.35)

To find the extreme response of the equipment, the most critical condition is when the

k
natural frequency of equipment, we—\/;’:, is tuned to the first mode frequency of struc-
e

ture; that is, w=w}. For light equipment with a mass which is much less than that of struc-

m .
ture, we define the mass ratio y-—-——-Me << 1. For such a system, the modal frequencies w, and
1

the generalized mode shapes satisfy the following eigenvalue equation,

(1+y)wf —ywl ¥ ) 7
o=@l .36
—wf wf 2l @t gl (3.36)

When the higher order terms in y are neglected, the frequencies can be found to be

approximately
(‘;)1 = wy 1""1‘\[;“"""1—7 (337)
2 8
oy = w1\1+}2-\/;+-§"y‘ (3.38)

and the generalized mode shapes are

lylm‘ l 1 \
S U B (3.39)

-

il
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in which $o,=5,(@,.€,).

The Complete Quadratic Combination (CQC) method!"1? has been shown to be a more
accurate approach for finding the maximum response by combining the modal maxima for
closely spaced modal frequencies than the SRSS method. The CQC method requires that the

modal maxima be combined by use of the following equation,

fﬂ,ma,x = (2 e(,/,LaxP,jfg(,j}y),ax)h (3.51)
‘o

where

- 8BY2¢ £ )V +E,B)
Pu = "(1-gD2+at £ B(1-B)+4(E +£))8’

(3.52)

@ i
with the frequency ratio Bs;—{- and modal damping ratios £, and ;. The quantity p,, has the

t

property that p ;=p and p,=1.

For the present case, it can be shown that

- 2 +E)EED?

01y =  a— (3.53)
P T R HEY]

The maximum elastic force acting on the tuned equipment can be found from the two modal
maxima in Eq. (3.49) and (3.50),

A

- keL - fad - ~ ~
= ! ( (Sa1)2+ (Saz)2"’ 2p125a15a2 (3.54)

—

fe,max 2(1)12\/;

If the damping force acting on the equipment is negligible, the internal force will almost equal

to the elastic force and the maximum absolute acceleration of tuned equipment becomes

L, - - . A )4
(S0 1+ (S0P = 21250154 3.55
2y (520 + (552 012941542 (3.55)

—
-

a
ae,ma.x

Since it is of order y~ 2 the acceleration of tuned light equipment in the fixed base structure

will be very large.
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- 4
will also be harmonic. Let &E-A,e“"’. The ratio of R called as amplification factor, will be
k4

the function of Ly, ¥, E, and frequency ratio X Figure 12 shows the curve of amplification
wi

factor versus frequency ratio for the case of L1=1.3, 7—0.0027 and 51-2 ,=1%. This curve
shows that the first mode frequency of original structure is split into twin peaks when tuned
light equipment is included. Since the frequencies of the twin peaks are Vvery close, the time
history of the equipment response when subjected to earthquake excitation will produce 2 beat
phenomenon. Figure 13 displays the acceleration response of tuned equipment for the same
case as Figure 12 but with w=3.2Hz and under the El Centro 1940 earthquake input. The
characteristics of beat and twin peaks for tuned equipment has been reported by Kelly and Sack-
man.?'? These phenomena result from the interaction of structure and equipment. More com-

plicated models have been analyzed in their reports.

Since the choice of ¢1 components, defined in Eq. (3.34), makes us= Y,, the elastic force
acting on the equipment becomes feske(ue-—h). The elastic force contributed by the i’th

mode of this base-fixed system is defined as

740 = k- ¥ Z (3.47)

If S,(w,€) is the acceleration response spectrum of the input acceleration ig, the maximum

response of 2, will be

s,,(a,,&,) for i=1,2 (3.48)

It follows that the maximum response of each mode can be found approximately as

7)) ‘1+ﬁ‘

¢ max 2\/- Sa1 (3.49)

‘7:-
fan ¥

. L k, -
o = ——-—‘—\1——‘5—\ ;—?-s,,z (3.50)

JU—
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For the light equipment, the mass ratio, y=——Mf—, is much less than unity and assumed to
1

have the same order of €2 The modal frequencies can be found approximately by neglecting

the higher order terms of vy and €,

W)= wp (3.61)
- ] P 1
61= =5 w1+ 7e 25 (3.62)
.1 Py 1
wy = =P, wil 1+ 3 €+ 25 (3.63)

"
P P
where &= (l—-l—]—)z—# + (—ile)2 , which is of order e. The generalized mode shapes are
T S

as following,

Up 1
Y= L€ (3.64)
ﬂe(” (a+L 1"P1)€
7.0 1
° L (1-P)QL-P)  (-P)
vl 1
= |-=|1- ——% 3.65
fb P, 2L—P) . LrP) ] (369
e 2L ~Py)
P,(P—25)
- (3) 1
" L (-P)QL~P)  (1=P)
g = -2 1- ! oY e 66
o P, 2L—P)  (L—P) (360
e 2L Py
P)(P 1€+25)
and the participation factors become
[,=1-Pe (3.67)
_ P P
f,= —tel-—%) (3.68)
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3.4 Dynamic Behavior of Liglit Equipment on Base-Isolated Structure

When the light equipment is mounted on the base-isolated structure as shown in Figure

14, the undamped equations of motion become

miiy + (Mr) Tii + m, il + kptip = —miiig (3.56)
Mriib+M'u'+ Ku+ke(u5—u,)e5——Mriig (3.571
m,(ii,,+ii,)+k,(u,-u5)-—m,iig (3.58)

where u, is the equipment displacement relative to the base; m, is the total mass of entire sys-
tem, egual to m,,+m1+mz+m3+m4+m dme, M, K, 1 and u have been defined in Eq. (3.2) o0
(3.5) and es defined in Eq. (3.33).

As in the derivation in the last section, the superstructure deformation is approximated as
u= Y¢, in which ¢, is chosen to be the same as Eq. (3.34) so that us=Y,. By multiplying
Eq. (3.57) by ¢/ and applying the properties in Eq. (3.9) to (3.11), the equations of motion

can be reduced to be

m, MLy me iy kp 0 0 Uy m,
ML, My Olinip+10 Muwitke —ke | Y1} =—{MiL1}is (3.59)
m, 0 m.liu, 0 —k. k. U, m,

In general, the natural frequency of light equipment is much higher than the frequency of

rigid body mode. To find the critical response of equipment, the natural frequency of equip-

k. Wy
ment, w,\/-::, is tuned to be equal to —==—=5"» which is the second mode frequency of
me Ji=F,

the base-isolated structure as shown in Eq. (3.23). For such a base-isolated structure with tuned
equipment, the modal frequencies @, and generalized mode shapes can be derived from the fol-

fowing eigenvalue equation

2 i i
@b 0 o |a 1+Ryy RiLy Ror|[%"
0 (1+~—1-_—‘_Y7;")wx2 "T}FTwlz ;’1(') =o'l L 1 0 ?1(') (3.60)
1 ﬂe(” 1 0 1 a(l)
0 bWl e ‘
1-P, i-p, |

[
e

lam e
i et

ml@mr::z::!
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case, the second mode frequency of the original base-isolated structure is about 1.8w; Twin
peaks occur near this frequency. There is an additional peak near 0.19«,, which corresponds to
the frequency of rigid body mode. When the input ground motion is a general earthquake
input, the acceleration time history of the tuned equipment will be similar to Figure 17, which
has the same condition of the case in Figure 16 but with w=3.2Hz and under El Centro record
excitation. Since there is a great deal of contribution from the rigid body mode to the response
of the tuned equipment, the beat phenomenon is not obvious in the time history of the equip-
ment response.

The maximum solution of Eq. (3.71) can be found from the acceleration response Spec-

trum of input excitation, S, @,,£),

. L .
7 max = —5 Sa(@, ) for i=1,2,3 (3.74)

[l

Like Eq. (3.47), the maximum contribution of each mode to the elastic force acting on equip-

ment will be

o k(=P ¢

e.max T 2 al (375)
wf
] (L —Pe k,(1-P)) -
FB =~ < 3.2 (3.76)
@ |
i (L ~Pe k,(1-Py .
FOo e ve kU-PY ¢ (3.77)

€, max 28 w]z al

in which §,=S,(@,.£,).
By the CQC method defined in Eq. (3.51) and (3.52), the maximum elastic force on the

tuned equipment can be found as
%
. - - - . -
P = | G007+ P00+ G + 2623 nan] dna (3.78)
in which the terms of p; and p3 which are of order ¢¥* have been neglected and

_ 2EHEY EE)

pa3 = = 3.79
P23 St G i) (3.79)
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I P
i,= -ile(l+-2i—§— (3.69)

As in the case of the fixed base structure, the original second mode of the isolated structure is
split into two modes when the tuned equipment is mounted. The first three mode shapes are
shown in Figure 15. The first mode is still a rigid body mode. The tuned equipment has a

jarge displacement in the second and third mode shapes, which is of the order e

However,
the participation factors of these two modes are of order € and the equipment response on this
base-isolated structure will not be very large.

Eq. (3.59) can be decoupled by using mode superposition

1) ab(Z)

Up i1, iy
Y\ =247 + 247+ 25 7 (3.70)
u, l-le(l) ﬁ,‘” ﬁt(J)

If each mode i is assumed to have a damping ratio E,, the decoupled equations of motion will

be

7 +2%,.2,+0Z = —~ L, fori=123 (3.71)

When the ground motion is harmonic, iig-Age“"’, the solution of Eq. (3.71) becomes

~-L.A,

o020

Zi= e’ fori=1,2,3 (3.72)

The absolute equipment acceleration, which is the summation of ground motion and mode

components as follows
G, = iy + (ﬂb(”-i»ﬁ,(”)z‘ + (ﬁbm+ﬂ,(2))22 + (ﬁb(”+ﬁem)2"3 (3.73)

- |,
is also harmonic, a=A.e*'. The amplification factor - will be the function of L, P v. €,
4

£, and frequency ratio X Figure 16 shows the curve of amplification factor versus frequency
w)

ratio for the case of L=13, P,=0.69, y=0.0015, €=0.035, £;=6%, and Ezség-l%. In this
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Chapter 4 EXPERIMENTAL PROGRAM AND RESULTS

4.1 Five-Story Frame Structural Model

The experimental model used is shown in Figure 18. Itis a five-story steel frame mounted
on two heavy base floor girders that are supported by four rubber bearings resting on load cells.
The load cells are anchored to the shaking table with high-tension stress rods. The model can
be considered as a section through the weak direction of a typical frame structure at a scale fac-
tor of approximately one third. The dead load provided by concrete blocks, which are tied
down to the frame at various floor levels, is 12 kips at each level. The total weight of the entire
structure is about 80 kips, including the weight of frame. Thus, a compressive force of approxi-
mately 20 kips is produced in each bearing. The dead load provided by the concrete blocks pro-

duces stress levels comparable to those in a full structural frame.

4.2 Elastomeric Bearings and Foundation Systems

The elastomeric bearings for the base isolation test, as shown in Figure 19, are of
polychloroprene rubber reinforced by steel plates. A cylindrical bearing design is used so as to
minimize the formation of localized stress concentration. A hole is provided in the center of
the bearing to facilitate the insertion of the lead plug. The dimensions of each bearing are as
follows: an outside diameter of 5.5 inches and an inside diameter of 2.0 inches; a total height of
5.5 inches; an effective elastomer height of 2.5 inches; 44 layers of elastomer, each layer
approximately 0.057 inch thick; 43 layers of steel plate, each layer approximately 0.06 inch

thick; and two end plates 7 inches by 7 inches square and 0.250 inch thick.
There were three different foundation systems in the test series, namely:

(1) fixed base.

(2) base isolated by elastomeric bearing without lead plug (no-lead bearing).

(3) base isolated by elastomeric bearing with lead plug (lead bearing).
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Using Eq. (3.75) t0 Eq. (3.77), the maximum elastic force becomes

— — 2.2
je.max = ‘f‘&’;&l(Sax)2+—(——1:-l—4*§'i]‘)’“§"‘((Saz)2+(§a3)2“2ﬁ13§a}§a3)‘ (3.80)

w

If the damping force acting on the equipment is very small, its inertial force will about

equal to the elastic force and the maximum absolute acceleration of tuned equipment becomes

(L-P)%
Gemax = ‘( ‘,1)2+.-J-z5l——-—-((s D (80— zpusg,sa;)‘ (3.81)
It is of order 70. The isolation effect is obvious when comparing with the maximum accelera-

tion of the tuned equipment on the fixed base system in Eq. (3.55), which is of order y V2

Although the derivation in this chapter assumes that the light equipment is mounted on
the fifth floor, the results apply to those cases where the equipment is mounted on any other
floor. The only change is that ¢, defined in Eq. (3.34), should be reset to have its i’th com-
ponent unit if the equipment is mounted on the i'th floor. Also, the corresponded values M,
L, Riand P, will be changed. Since the basic equations remain the same, the behavior of the
tuned equipment will be the same as that discussed in this chapter even though it is mounted

on the other floor.
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full-scale structure to the historical earthquakes and the displacements in the model will

correspond to one third of those for the full-scale structure.

The four earthquake records used are the El Centro 1940 SOOE component, the Taft 1952
S69E component, the Parkfield 1966 N65E component, and the Pacoima Dam 1971 S14W com-
ponent. The El Centro and Taft records are typical California earthquake records, one
representing a long duration record and the other a short duration signal with dominant fre-
quencies in the 1 Hz to 5 Hz range. The Parkfield record is a short duration signal with consid-
erable low-frequency energy in the region below 1 Hz. Since the fundamental frequency of the
base-isolated structure is located in this region, this input is an extremely severe test for the
isolation system. The Pacoima Dam record has frequencies in a slightly higher range but has a
high-frequency pulse in the middle of the signal that produces a very high acceleration. The
normalized acceleration time histories of the four records, and their Fourier spectra, are shown

in Figure 20 and Figure 21.

The shaking table is a 20 ft x 20 ft x 1 ft prestressed concrete slab, driven independently
in the vertical direction and one horizontal direction by servo-controlled actuators. The control
signals for the motion in these two directions are in the form of analog displacement time his-
tories. The maximum table displacement and acceleration produced by the shaking table can be
varied by the span setting, which is directly related to the maximum table displacement. In this
shaking table system, a peak table displacement of %35 in, which is the limit of table motion, is
arbitrarily given a span setting of 1000. Lower span numbers correspond to proportionally lower

peak displacements.

4.5 Extreme Values of Oscillator Response
The individual values of peak acceleration for the three oscillators and the fifth floor to
which they are attached are tabulated in Table 1 for each of the three foundation conditions and

the four input signals with only horizontal input to the shake table.
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In the case of the lead bearing system, only two of the four bearings were filled. Since the table
motion is in one horizontal direction, no complication arises if two are filled and two are not.
The lead plug inserted in the central hole of the bearing is a cylinder with a diameter of 2.0
inches and a height of 5.5 inches. The yield stress of lead is 1.4 kip/inz. Thus, in the lead
bearing system, the volume ratio of lead to elastomer is one sixth and the norﬁinal yield base

shear is approximately 9 kips which is 11 per cent of the total weight of the model.

4.3 Oscillators to Simulate Light Equipment

Three oscillators were used in this test to simulate light equipment. The oscillators were
attached to the concrete blocks of the structural model at the fifth floor as shown in Figure 18.
They were Very simple vertical cantilevers with an added weight to which an accelerometer is
attached. The oscillator 1 was adjusted to have its fixed base natural frequency close t0 the fre-
quency of the lowest mode of the fixed base structural model. It was designed using a double
cantilever beam with four 20-1b weights and it was tuned to the frequency of 3.2 Hz. The oscil-
jator 2 was tuned to the second mode frequency of the base-isolated structure. It was a single
cantilever: beam carrying two 20-1b weights with the natural frequency of 5.5 Hz. The oscillator
3 was tuned to the third mode frequency of the base-isolated structure. It was a single cantil-
ever beam, carrying one 20-1b weight, having the natural frequency of 15.2 Hz. The second
and third oscillators were tuned to the two lowest structural modes of the isolated structure.
The rigid body isolated mode was neglected for the reason that it is highly unlikely that an item

of light equipment would have such a low frequency.

4.4 Earthquake Input Signals and Shaking Table Test

Four earthquake input signals, based on records of historical California earthquakes, were
used for this test series. Each was run in time scaled at a factor of J3. This time scaling of the
earthquake inputs corresponds to the geometrical scale of the model; in this scaling the

acceleration response of the model to these inputs will correspond to the actua! acceleration of a

'
v
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system, are calculated from Table 1 and summarized in Table 3. The mean values of reduction
factor for the system isolated by plain bearings is over 10. The reduction effect on peak oscilla-
tor acceleration is much larger than that for the system with lead bearings. Although the lead
bearings can reduce the relative dispivacement between the structure and the ground, its effect
on the reduction of the acceleration of the oscillators is not great. It seems probable however
that the amount of lead used in the bearings for this experiment is rather more than required
under optimum conditions. The presence of the lead increases the stiffness of the bearings and
by increasing the effective isolation frequency has a tendency to reduce the degree of isolation

of the system.

4.6 Influence of Vertical Excitation

The peak accelerations of the response to the three earthquake signals with combined hor-
izontal and vertical input are summarized in Table 4. No vertical signal is available for the
Parkfield record. The magnification ratios and reduction factors for the two kinds of base-
isolated system are calculated from Table 4 and illustrated in Table 5. On the system isolated
by the no-lead bearing, the magnification factors of oscillators 2 and 3 are much larger than

those under horizontal only input; and their reduction factors are much smaller.

The use of only four bearings to support the structural model which had eight columns
means that the columns and bearings are not lined up and thus the base girders carry large
bending moments which would not appear if eight bearings were used. These bending moments
in the base girders are particularly severe when vertical accelerations are included in the input.
They cause Spurious horizontal accelerations in the frame even when vertical input only is
applied and distort the horizontal accelerations when both horizontal and vertical motions are
applied simultaneously. This phenomenon has been discussed in a previous repon.(’ When bear-
ings are directly under the columns the horizontal acceleration due to vertical input are negligi-

ble. '3
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The ratios of the peak acceleration of oscillators and the fifth floor to that of the shaking
wable input, referred to as the magnification ratio, are calculated from Table 1 and listed in
Table 2. The mean values of the magnification ratios for the four input signals show clearly
that the ratios for the base-isolated systems are smaller than those for the base-fixed system,
even when the oscillators are tuned to the modal frequencies of the base-isolated structure. in
the case of the structure with no-lead bearings, the magnification ratios are all less than one.
This means the peak accelerations of the oscillators are smaller than those of the input signals.
This attenuation effect will always take place when the bearing is soft enough 1o lower the first
mode frequency of the base-isolated structure well below the dominant earthquake frequencies

and has been shown analytically in the last chapter.

As stated before that the Parkfield record is a severe input for the base-isolated system,
the magnification ratios of the fifth floor acceleration under the Parkfield record is 0.299 for the
system without lead and 0.958 for the system with lead plugs. These ratios are larger than those
for the other three records. In contrast, the magnification ratio for the Parkfield signal is 2.599

for the fixed base system which is the smallest value of the four input records.

Since the oscillator 1 was tuned to the first mode frequency of the base-fixed structure, its
magnification ratio is higher than the other two oscillators on the fixed base system. Similarly,
due to tuning to the modal frequencies of the base-isolated structures, the magnification ratios

of oscillators 2 and 3 are larger than that for oscillator 1 on the two base-isolated systems.

To demonstrate the nonlinear response of the lead bearing system, the model was sub-
jected to a series of El Centro input motions with steadily increasing span, corresponding to
increasing intensity from a peak acceleration of 0.115g to one of 1.463g. The magnification
ratios of oscillators and the fifth floor with respect to different horizontal spans are plotied on
Figure 22. There is a clear trend for the magnification ratios to decrease with increasing span,

so that the isolation effect of the lead bearing system increases with increased input intensity.

To compare the efficiency of different isolation systems, reduction factors, defined as the

ratio of the oscillator peak acceleration for the base-isolated system 10 that for the fixed base

TR
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characters but the beat phenomenon is clearer. As shown on the Fourier spectra of Figure 26
and 32, the amplitudes at the peak frequency for the three oscillators on this base-isolated sys-
tem are much smaller than those on the fixed base system. This shows that the energy intro-

duced into the oscillators on the isolation system is significantly less than in the fixed base case.

For the system isolated by the lead bearing system, the first three mode frequencies are
approximately 1.4 Hz, 6.7 Hz, 14.8 Hz. Due to the nonlinear behavior of the lead bearings, a
sharp peak does not appear at the first mode frequency in the Fourier spectra of frame response
as shown in Figure 27 and 33. Unlike the no-lead bearing case, all three oscillators do not have
a concentrated frequency content near the frequency of the first mode, as shown in Figure 28
and 34. There is a larger shift in the second mode frequency than that in the no-lead bearing
case from the first mode frequency of the fixed base system, and this leads to oscillator 2 not
being tuned. In the third mode, the influence of the isolation system is less and the superstruc-
ture behavior becomes dominant, as derived in the previous chapter. Thus, the third mode fre-
quencies are almost the same for both the lead bearing case and the no-lead bearing case. The
oscillator 3 in the lead bearing case shows both beat and double peak phenomena. Since the
lead plug acts as an energy dissipator, decay is shown in the time histories of oscillator
response. As shown on the Fourier spectra of Figure 28 and 34, the amplitudes of peak fre-
quency for the three oscillators on this base-isolated system are slightly smaller than those on
the fixed base system and much larger than those on the system isolated by the no-lead bearing.
In other words, the lead-rubber bearing isolation system used in these experiments is not very

efficient in reducing the energy transmitted from the table into the superstructure.
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4.7 Time Histories and Fourier Spectra of Oscillator Response

In order to show the differences in behavior among the three kinds of base conditions,
the acceleration time histories and Fourier spectra for the response of the frames and oscillators
are shown in Figure 23 through Figure 34 under the El Centro and Parkfield records with hor-
izontal only input. The Fourier spectrum of structural acceleration response can show the dis-
tribution of the energy introduced into the structure at different frequencies. The amplitude in
a Fourier spectrum can indicate relative amounts of energy at different frequencies if the dura-
tion and time intervals used for each record are the same. In order to compare the response of
the frame and oscillators for the three foundation systems, the duration of all time histories

used in the Fast Fourier Transform are set to be 20.48 seconds with an interval of 0.01 second.

The first mode frequency of the fixed base system Wwas found to be 3.2 Hz. Since the
natural frequency of the oscillator 1 is tuned exactly to this value, the beat phenomenon is very
clear in the acceleration time history of oscillator 1 on the fixed base system, as shown in Fig-
ure 24 and 30. Twin peaks also appear in the Fourier spectrum near its natural frequency.
These two characteristics of tuned light equipment have been referred to the last chapter.
Although the second and third oscillators are not tuned to the first mode frequency, their

Fourier spectra do show that some enecrgy is introduced into these oscillators at this frequency.

The frequencies of the first three modes of the system isolated by the no-lead bearings
were measured to be 0.6 Hz, 6.0 Hz, 15.0 Hz. The Fourier spectra of this isolation system, as
shown in Figure 25 and 31, reveal that the response of frame has a major frequency content
near the first mode frequency. The frequency contents of the response of all three oscillators,
as shown in Figure 26 and 32, also has some energy at the first mode frequency, even though
they were not tuned to that frequency. Since the oscillator 2 is tuned to the second mode fre-
quency, its Fourier spectra has a double peak near that frequency, but the beat phenomenon is
not clear in the time histories, due 10 the contribution of the first mode frequency to the oscil-
lator response which has been shown in the last chapter. The natural frequency of the oscillator

3 is tuned to the third mode frequency of the isolated system, SO that its response has similar
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superstructure mode, the modal frequencies and generalized mode shapes have been given in

Eq. (3.37) to Eq. (3.40). Like Eq. (5.3), the modal damping ratios can be derived as

E\=¢&;= Er;ﬁe .7

For the equipment on the base-isolated structure shown in Figure 14, the damped equa-

tions of motion can be written as

m,iib+(Mr)T'u'+mgiie+cbdb+kbub=-—m,iig (58)
Mrii, + Mii + Cii + ¢, (st Jes+ Ku+ k. (us—u,)es=—Mrii, (5.9
Motip + Meiie + Co (=11 s) + ke (ue—us) = —melig (5.10)

where ¢, is the damping of the bearing. Let u= Y1¢; and multiply ¢ to Eq. (59). The
damped equations of motion are simplified and similar to Eq. (3.59), except that the following

damping force term is added to the left side,

2t pwpmy 0 0 up
0 2 o M+ 26 weme —26cw.me |[{ Y (5.11)
0 =28 ,wom, 26w .m, U,

where € ,= ~ When the natural frequency of equipment is tuned to the frequency of the

Zwbmf
second base-isolated mode, the modal frequencies and generalized mode shapes have been

given in Eq. (3.61) to Eq. (3.66). Thus, the modal damping ratios can be derived as

E1=¢&, (5.12)
z _1_ P e §1+P1\/E§b _}11_6.
Er= > (1- % ) \/T;——ﬁ-] + (1+ % YE. (5.13)
. 1 P € +Pr/et, Pe
E3= 5 1+ % ) m +(1'~—‘§g*)§g (5.14)

Because the first mode is a rigid body mode, only the damping of the bearings contributes 10 £



- 30 -

Chapter 5 CORRELATION BETWEEN ANALYSIS AND EXPERIMENT

5.1 Evaluation of Modal Damping Ratios
The damped equation of motion for the fixed base model shown in Figure 8 can be writ-

ten as
Mii+C|'1+Ku—~Mriig (5.1
where C is the damping matrix of the superstructure. The mode shape, ¢/, is orthogonal with

respect to M and K as shown in Eq. (3.7) and in general not orthogonal with respect to C. In

order to decouple the damped equation of motion, it is usually assumed that

¢7Co; =0 foriFJ (5.2)
and the damping ratio is defined as
¢Co,
e vV (5.3
$7 ue M,

For the equipment on the fixed base structure shown in Figure 10, the damped equations

of motion can be written as
Mii+ Ci+ ¢, (Us—u)es+ Ku+k, (us—ues= —Mrii, (5.9

meii,_,+c,(t},——d5)+k,(u,-u5)—-m,iig (5.5)

where ¢, is the damping of equipment. Let U= Y$, and multiply ¢ to Ea. (5.4). The
damped equations of motion are simplified and similar to Eq. (3.35), except that the following

damping force term is added to the left side,

2€1w1M1+2§eweme —26 weMe Yl

—28 ,w M. 2 ,weme U,

(5.6)

where £ is the damping ratio of the first superstructure mode defined in Eq. (5.3) and

¢
£ ,s—z(—f;-n". When the natural frequency of equipment is tuned to the frequency of the first
€ [4

v~
[y
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The damping of the steel frame used in the experiment is small if the deformation is in
the elastic range. It is reasonable to assume that the damping ratio of the first superstructural
mode, £, is equal to 2.0%. Compared with the damping in the steel frame, the damping of
oscillators, &, is negligible. Thus, by Eaq. (5.7), &=£r~10% From Figure 35,
N,{(3.2Hz,1.0%) is found to be 2.76 and the magnification ratio, calculated from Eq. (5.17), is
45 1. This value is much higher than the mean value of the experiment results, 8.016, as
shown in Table 2.

The main reason for this inconsistency is that the base was not completely fixed in the
experiment. As shown in Figure 18, the base girders did not directly rest on the shaking table
in the fixed base test. The base girders were bolted to the transverse girders which were
mounted on the shaking table. If the base girder had been bolted perfectly, the base would be
completely fixed and the magnification ratio of the base would be equal to one. However, the
magnification ratio of the base obtained from the experiment, as shown in Table 2, has a mean
value of 2.365. This reveals that the base was not completely fixed. To match the mean value
of the equipment magnification ratio obtained from the experiment, an equivalent damping
ratio of 9% should be introduced into the analysis model. In other words, a great deal of

energy is dissipated in the frame due to the incompletely fixed base.

5.3 Response of Base-Isolated System

The weight of base in the experiment model is about 15 kips and the total frame weight

becomes 80 kips. Thus

Ry= — = 0413 (5.18)

and

P,=RL{=0691 (5.19)
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5.2 Response of Fixed Base System

The mode shape of the superstructure can be obtained from the amplitude, at the respec-
tive frequency, of the Fourier spectra of each floor displacement measured for the fixed base
system. The mode shape for the first superstructure mode, for which modal frequency is meas-

ured as w =3.2Hz, is found to be

¢, = 10232 0482 0.696 0.875 1.000 17 (5.19

The weight of each floor is about 13 Kips. Thus, the modal mass of the first mode, calculated
from Eq. (3.9), is M =33.0kip/g and the participation factor, calculated from Eq. (3.11), is
L=1.294. The weight of Oscillator 1, which is tuned to 3.2 Hz, is 80 1bs. Including the weight

of accelerometer and support, the total weight of the simulated equipment is about 90 lbs.

Thus,

y = -)’&— = 0.00273 (5.16)

1

The magnification ratio of the tuned equipment on the fixed base structure which is

”
at max

defined as MR-———T—] can be derived from Eq. (3.55) by replacing Sa (w,£) with N, (w,£)
max g

S, (w,€) . . .
where Na(w,g)--—T— is the normalized acceleration response spectrum of the ground
max iig\

motion. In order to correlate this with the experimental magnification ratio given inT able 2,
normalized acceleration response spectra are obtained from the table input acceleration of the
four earthquakes used for the fixed base test. N, (w,§), as shown in Figure 35, is the averageé
of these four normalized acceleration response spectra. Since El-éz and & =00, Eq.

(3.55) can be further simplified as

MR = N, (@D 5.17

g BT R



LAt

L S8 SR

.35 -

be

E,=60%, Er=16%, £,=3.4% (5.2%)

and the value of fy3, obtained from Eq. (3.79), is 0.627
The magnification ratio of the tuned equipment on the base-isolated structure can be
derived from Fq (3.81) by replacing S, (w,£) with Ng(w,£). With the values of the variables

substituted, it becomes

‘A
MR = [(.181)2+(.0925)[(2_98)Z+(2.39)21~(.116)(2.98)(2.39)] =0.746 (5.26)

where @ry=@y~wy7=5.8Hz and N, (0.6Hz,6.0%)=0.181, N,(5.8Hz,1.6%)=2.98 and
N,(5.8Hz,3.4%)=2.39, which are obtained from Figure 36. This value is a little higher than
the mean value obtained from the experiment, 0.645, as shown in Table 2. The experiment

result is lower because Oscillator 2 was not precisely tuned on the frequency of the second

mode, 6.0 Hz, but was tuned on 5.5 Hz.
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The weight of Oscillator 2, which is tuned to 55 Hz, is 40 Ibs. Including the weight of

accelerometer and support, the total weight of this item of equipment is 50 1bs and

m,
y M, 0.00152 (5.20)

The frequency of the rigid body mode has been measured in the test of the base-isolated

system with the no-lead bearings, w,=0.6Hz, and

W

532 = 0.0352 (5.21)
1

e=(
w

Note that y is of order €2, which is an assumption made in Chapter 3, and 8, which is of order

€, becomes
%

Pl 2 Pl 2
8= |- + (GO =003 (5.22)

Using Eq. (3.23), the frequency of the second mode is calculated approximately to be

w

“2= TP,

=58 Hz (5.23)

This is very close to the measured frequency 6.0 Hz.

For a base-isolated structure, the response is almost entirely in the rigid body mode. The

magnification ratio of the base can be approximated as

MR = N,(w.£5) (5.24)

where N, (w,£), as shown in Figure 36, is the average of the normalized acceleration response
spectra that are computed from the table input accelerations of the four earthquakes used in the
test of the base-isolated structure with the no-lead bearings. The magnification ratio of the base
obtained from the experiment is 0.179 as shown in Table 2 and N, (0.6Hz,6.0%), obtained from
Figure 36, is equal to 0.181. Thus, it can be estimated that £ ,=6.0%. Assuming that the damp-
ing ratio of the first superstructure mode, £, is 2.0% and £, is negligible, the damping ratios of

the base-isolated structure with the tuned equipment are found from Eq. (5.12) to Eq. (5.14) to
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The size of these displacements can be reduced by integrating the bearing with an energy-

absorbing mechanism such as the lead plug system at the cost of higher equipment forces.

The response of equipment on the no-lead bearing system can be qualitatively described
very well by the approximated solution of the elastic models. The theoretical derivation shows
that the acceleration response of the tuned equipment on the linear elastic base isolation system
is the same order of the magnitude of the corresponding frequency in the acceleration
response spectrum of ground input. The results of this theoretical model are well correlated

with the experimental results of the no-lead bearing system.

The lead-rubber bearing can dissipate energy through the yielding of the lead. Results
using a bilinear model to simulate its force-displacement relation are satisfactory. The experi-
ments have shown that the displacement of the structure relative to the ground was decreased
using lead but the equipment accelerations were increased. It seems clear from the results that
the amount of lead in the bearing was somewhat greater than optimum. Had it been possible to
reduce slightly the amount of lead in the bearing, the accelerations experienced by the equip-
ment might possibly have been reduced and the degree of seismic protection increased while
maintaining displacements within safe limits for the bearing. The optimum volume ratio of
Jead to rubber in the bearing depends on the allowable maximum displacement, the total struc-

tural weight and the intensity of earthquake excitation.
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Chapter 6 CONCLUSIONS

The mathematical analysis and experimental program have shown that base isolation can
produce a very substantial reduction in the seismic response of light internal equipment. In
addition, due to the fact that the primary structure above the isolation system moves almost as
a rigid body, all support points of a piping system through multiple stories have very nearly the
same displacement time history and the effect of multiple support excitation is minimized. All
these are considerable implications for the seismic protection of buildings containing important
equipment or piping systems. For such a building, the seismic assurance of equipment and pip-
ing systems continues to be one of the most expensive and uncertain aspects of building design.
The use of an isolation raft for the entire building would reduce the design costs for equipment

and piping systems and provide increased protection.

The seismic protection of base isolation depends on shifting the f undamental {requency of
the structure out of the range of frequencies which dominate in the earthquake input. Hence,
the structural type of the building and the soil conditions at the site might affect the efficiency
of the isolation system. For general soil conditions for which earthquakes have dominant fre-
quencies in the range petween 1 Hz and 10 Hz, base isolation is applicable to buildings of rigid
construction, for example, masonry of reinforced concrete buildings below 14 stories. A build-
ing greater than 14 stories will have a fundamental frequency below the dominant range of the
earthquake and will in any case be resistant to lateral loads due to wind load requirements. For
buildings on very soft soil conditions for which the dominant earthquake frequencies are below
1 Hz, base isolation would not be suitable since it would shift the structural frequency into the

more critical range.

Of the systems tested, the isolated system on the bearings without lead provides the
greatest protection to the equipment. The equipment accelerations are smaller than the ground
acceleration and no amplification of acceleration takes place. However, this advantage is

achieved at the cost of increased relative displacements between the structure and the ground.
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(a) Fixed Base System

.41 -

El Cen Taft Parkfd Pac Dm Mean Std Dev
BASE 4.407 0.866 1.688 2.497 2.365 1.313
FL. 5§ 4.371 3.060 2.599 4.367 3.599 0.787
0O5C. 1 9.300 9.384 6.585 6.793 8.016 1.329
0sC. 2 7.063 8.771 4. 826 6.833 6.873 1.399
0SC. 3 5.263 6.955 6.642 9.764 7.156 1.635
(b) No-lead Bearing System

El Cen Taft Parkfd Pac Dm Mean Std Dev
BASE 0.132 0.231 0.261 0.093 0.179 0.069
FL. 5 0.152 0.262 0.299 0.122 0.209 0.074
OSC. 1 0.349 0.472 0.581 0.480 0.471 0.082
0SC. 2 0.483 0.852 0.669 0.577 0.645 0.136
0SC. 3 0.469 0.683 0.720 0.534 0.602 0.103
(c) Lead Bearing System

El Cen Taft Parkfd Pac Dm Mean Std Dev
BASE 0.324 0.485 0.849 0.354 0.503 0.209
FL.5 0.442 0.611 0.958 0.519 0.633 0.197
0SC. 1 1.890 1.764 3.344 1.469 2.120 0.725
0SC. 2 4 454 5.618 5.072 1.888 4.258 1.429
0SC. 3 3.173 2.725 2.642 2.170 2.678 0.356

Table 2 Statistical Values of Magnification Ratios

for Horizontal Only Excitations
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(a) El Centro Record, Span: H=300, v=0 (Unit:g)

TABLE ‘ BASE ‘ FL.S 0sC. 1 \ 0sC.2 | 0SC.3

Fixed Base 0.820 3614 3.584 7.626 5.792 4.316
No-lead Bearing 0.835 0.110 0.127 0.291 0.403 0.392
Lead Bearing 0.851 0.276 0.376 1.608 3.790 l 2.700J

(b) Taft Record, Span: H=350, V=0 (Unit: g)

r TABLE | BASE \ FL.5 \ 0sC. 1 \ 0SC.2 \ 0OSC. 3‘l
Fixed Base 0.536 0.464 1.640 5.030 4701 3.728
No-lead Bearing 0.562 0.130 0.147 0.265 0.479 0.384
Lead Bearing 0.581 0.282 0.355 1.025 3.264 1.583

/
(c) Parkfield Record, Span: H=300, V=0 (Unit:g)

r TABLE \ BASE \ FL. 5 \ 0sC. 1 \ 0sC. 2 | OsC. 3J

Fixed Base 0.581 0.981 1.510 3.826 2.804 3.859
No-lead Bearing 0.375 0.098 0.112 0.218 0.251 0.270
Lead Bearing 0.377 0.320 0.361 1.261 1912 0.996

(d) Pacoima Dam Record, Span: H=300, v=0 (Unit: g)

r TABLE | BASE FL. 5 osC.1 | osc.2 | OsC. 3
Fixed Base 1.042 2.602 4.550 7.078 7.120 10.174
No-lead Bearing 1.292 0.120 0.157 0.620 0.746 0.690
Lead Bearing 1.330 0.471 0.690 1.954 2.511 2.886‘—J

Table 1 Peak Accelerations of Frame and Oscillators
for Horizontal Only Excitations

Qi
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(a) El Centro Record, Span: H=200, V=200 (Unit:g)

TABLE BASE FL. S OSC. 1 0SC. 2 0SC. 3
Fixed Base 0.559 4.270 1.703 4337 3.756 3.073
No-lead Bearing 0.562 0.171 0.208 0.370 1.051 2.009
Lead Bearing 0.543 0.260 0.345 1.207 2.334 3.054
(b) Taft Record, Span: H=350, v =350 (Unit:g)

TABLE BASE FL. S 0SC. 1 0SC. 2 0SC. 3
Fixed Base 0.536 0.464 1.640 5.030 4.701 3.728
No-lead Bearing 0.527 0.173 0.225 0.324 0.856 1.239
Lead Bearing 0.548 0.322 0.336 1.016 3.089 2.054
(¢) Pacoima Dam Record, Span: H=300, V=200 (Unit: g)

TABLE BASE FL.5S 0SC. 1 0SC. 2 0OSC. 3
Fixed Base 1.042 2.602 4.550 7.078 7.120 10.174
No-lead Bearing 1.287 0.210 0.220 0.537 1.301 2.012
Lead Bearing 1.282 0.466 0.716 1.728 2.613 3.761

Table 4 Peak Accelerations of Frame and Oscillators for
Combined Horizontal and Vertical Excitations
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(a) Oscillator 1

\ El Cen Taft Parkfd Pac Dm Mean \ Std Dev
No-lead Bearing 26.21 18.98 17.55 11.42 18.54 6.074
Lead Bearing 4743 4907 3.034 3.622 4077 0.900
(b) Oscillator 2
‘7 \ Ei Cen Taft \ Parkfd Pac Dm \ Mean \ Std Dej
No-lead Bearing 14.37 9.814 11.17 9.544 11.22 1918
Lead Bearing 1.528 1.440 1.467 2.836 1.818 0.680

(¢) Oscillator 3

r \ El Cen Taft Parkfd Pac Dm \ Mean Std DeiJ
No-lead Bearing 11.07 9.708 14.29 14.74 12.44 2.464
Lead Bearing 1.699 2.355 3874 3.525 2.838 1.051

Table 3 Statistical Values of Reduction Factors
for Horizontal Only Excitations
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STEEL PLATE

Figure 1 Lead-Rubber Hysteretic Bearing
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Figure 2 Bilinear Force-Displacement Relation



(a) El Centro Record, Span: H=200, V =200

Magnification Ratio

Reduction Factor

\ 0SC.1 | 0sC.2 | OSC. 3| 0sC.1 | OSC.2 0SsC. 3

No-lead Bearing
Lead Bearing

0.658 1.870 3.574 11.72 3.574 1.530
2.223 4298 5.624 3.593 1.609 1‘006‘_J

(b) Taft Record, Span: H=1350, V=350

Magnification Ratio

Reduction Factor \

0sC. 1

0SC. 2 | 0SC.3 | OsC. 1 \ 0SC. 2

0OsC. 3“

No-lead Bearing
Lead Bearing

0.615 1.624 2.351 15.52 5.492 3.009
1.854 5.637 3.748 4951 1.522 1.815

(¢c) Pacoima Dam Record, Span: H=300, v =200

Magnification Ratio

Reduction Factor

0OSC.1 | 0SC.2 | OSC. 3| 0SC.1| OSC.2 0sC. 3

No-lead Bearing
Lead Bearing

0.417 1.011 1.563 13.18 5.473 5.057
1.348 2.038 2.934 4.096 2.725 2.705‘J

Table 5 Mag
Com

nification Ratios and Reduction Factors for
bined Horizontal and Vertical Excitations
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Base Displacement (50/2L PC H300 Vo)

¢
AL
-
e
R e
ot
ll
Y

-

EXPERIMENT
CALCULATION

30

0

NI ‘LNIWIADV1dS1d

-3.0

|||||||||| N
R At b —
s -
.1-\..."”...' 5= 12
_ <z
W — iptyiviec, 8%
..... [ io
= =t
< -
g —— by
o .....nuA“n'lhn”nnmr... 1@
) i P e n T 1
P RN
DR~ o 7
poed]
(o] az
= - 325,
5 o . 6
b et i
. =~
g =
e N — o)
o~ ="
&
.m < i 4
-
/] PR AAA0 .!'\!ﬂlw.!'”
w .
@ Awn 0
==] 3
O ] i (@ «
N o ~
[}
SdI “1Dd04
e = \BHE )

TIME, SEC

Figure 7 Base Displacement and Base Shear Force under Pacoima Dam Earthquake



-48-

NI ' LNIWZOV1dS1d

sdIy ‘42404

| i g ﬁ E Ev. v i t .- ! = -
I . o
5 -“..u.u.mu.l.ﬂ..ﬂ....? =
22 1 | T e ]
> pas i
m L lﬂllﬁwli i lO-I
o~ o S = ..
(=) =W = A“M :
S 29 5 iz
= + S = \”
2 3 = ozelsze
: |z = |
: | s~
» _ 4 et
" P P Sugua ﬁl. 1™~
g . e Y
S { ~ =
l.m lm\ ] e mr.-cl 4 WO
= » m...h.-vn“m%!n
Q 5 I
g : .
5 :
: T e
= ’ A
] - T3 -3-tebtet i 17
= W 2 1 -~
D ﬂ.ov W Virees 2.
[ : |
4 : :
§ )
o~
o N :
o o N @ ° v
. ]

TIME, SEC



¥

B o4 N

IR

-51-

Figure 10 Theoretical Model of Equipment on Fixed Base Structure
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Figure 11 Mode Shapes of Fixed Base Structure with Tuned Equipment
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Figure 8 Theoretical Model of Fixed Base Structure

Figure 9 Theoretical Model of Base-Isolated Structure
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Figure 14 Theoretical Model of Equipment on Base-1solated Structure
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Figure 15 Mode Shapes of Base-Isolated Structure with Tuned Equipment
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Figure 24 Acceleration Time Historics and Fourier Spectra of Oscillators
on Fixed Base System under El Centro Earthquake
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