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ScienceDirect
Rodent decision-making research aims to uncover the neural

circuitry underlying the ability to evaluate alternatives and

select appropriate actions. Designing behavioral paradigms

that provide a solid foundation to ask questions about decision-

making computations and mechanisms is a difficult and often

underestimated challenge. Here, we propose three dimensions

on which we can consider rodent decision-making tasks:

ethological validity, task complexity, and stimulus-response

compatibility. We review recent research through this lens, and

provide practical guidance for researchers in the decision-

making field.
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“[T]here is nothing intellectually inherently good

or bad about the integration of ‘field’ and ‘closet’

approaches to the study of behavior. All depends on

the questions one is trying to answer.”

— Bennett Galef, Jr., 1989 [1]

In the history of behavioral research, there has often been a

divide between ‘field’ and ‘closet’ biologists [2]. Modern

systems neuroscience is almost exclusively in the closet —

we develop controlled, albeit artificial paradigms as a

means of distilling animal behavior into quantifiable vari-

ables. Yet, the full behavioral repertoire of an animal is

complex and incompletely reproduced in a laboratory
$ Funding for this work was provided by NIH EY022979 (AKC), the Simo

(AKC), the Klingenstein-Simons Foundation (AKC) and the Science and T
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setting. Recently, several groups have commented on the

importance of behavior in neuroscience, arguing that reduc-

tionism and an emphasis on technology have created a

significant bias in our experimental design [3,4]. They

recommend that the behavior of an animal should be

understood before engaging in studies of the neural mecha-

nisms which implement it.

Few would disagree that it is wise to consider an animal’s

ecological niche when designing a behavioral paradigm.

Classic work in rodent psychology relied on natural beha-

viors such as navigation and foraging to establish funda-

mental principles of habit formation [5], cognitive maps

[6], and spatial learning [7]. The challenge for more

modern approaches is in figuring out exactly how to blend

the natural approach with the need for experimental

control. What features of the animal’s natural environ-

ment or actions can and should be recreated in the lab?

What is the ideal compromise between experimental

demands and naturalistic behavior? What are the risks

of imperfectly recreating a natural environment? What

other dimensions of behavior should be considered?

Recent technological advances in rodents have given us

unprecedented access to circuits and cell types in the

mammalian brain [8,9]. Mice and rats exhibit many of the

same characteristics during decisions as primates — they

are sensitive to risk [10], optimally accumulate perceptual

evidence [11], and estimate their own confidence [12].

Indeed, advances in rodent decision-making paradigms in

parallel with innovative molecular targeting and popula-

tion recordings have allowed researchers to find neural

mechanisms of decision-making in specific cell types

within multiple brain regions [12–14,15�,16��,17].

Here, we consider the implications of the ethological

approach in the field of rodent decision-making, which

seeks to elucidate the neural circuits and computations

that allow an animal to choose between options. As an

alternative to evaluating all behaviors through the lens of

ethological validity, we lay out three dimensions that

capture much of the variance across rodent decision-mak-

ing tasks. Then, we examine recent progress in rodent

decision-making research through this framework, arguing

that current behavioral tasks, taken together, strike a

balance between complexity, naturalness and stimulus-

response compatibility. Lastly, we offer practical insights
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to those seeking to study decision-making in quantifiable

yet ethologically valid ways.

Evaluating behavioral paradigms according to
multiple metrics
How should researchers adjudicate between a fully etho-

logical approach and the realities of current neuroscience

methods? Below, we argue that ethological validity alone is

an insufficient metric for designing and evaluating a behav-

ior and promote an alternative framework in its place.

Ethological validity of the stimulus and response

The simplest definition of ethologically valid behaviors is

that the stimuli and/or response are within the scope of

stimuli and responses that the animal would typically

encounter or do (Figure 1, vertical axis). For example,

mating calls would be considered ethologically valid,

whilst pure tones would not. We can consider the animal’s

response on a similar axis: some actions are not in an

animal’s natural repertoire (e.g. manipulating a joystick),

while others are (e.g. running).

The upside of ethological stimuli and responses is two-

fold. First, they may offer a fast route to understanding

brain function since neural circuits are likely optimized

for stimuli and responses that have been present through-

out the organism’s evolutionary history. For instance,

auditory cortex evolved in part to process complex,

time-varying vocalizations. This may explain why neural

modulation tuning characteristics scale to encode natural

sound statistics in cat inferior colliculus [18] and why

neurons respond more reliably to real versus disorganized

vocalizations in rat non-primary auditory cortex [19�]. A

second upside of ethological stimuli and responses is that

they may be learned more rapidly. While the process of

mastering a novel movement can be illuminating [20,21],

the need to reduce training time is a major consideration

in some studies.

Despite these advantages, the use of ethological stimuli

comes at a price. Stimuli that are ethological may be

difficult to parameterize and vary systematically. The

opportunity to characterize and systematically manipu-

late the statistics of stimuli was critical in the develop-

ment of the deeply influential models of visual cortex

neurons [22]. Further, the use of non-natural stimuli can

allow illuminating comparisons that would otherwise be

impossible. For example, arbitrary electrical pulses have

proven essential in comparing the timescales of activity in

primary auditory, visual and somatosensory cortex [23].

Lastly, the mapping between stimuli and neural circuits is

likely experience-dependent, even for innate behaviors

[24] (Box 1).

Stimulus-response compatibility

The stimulus used to inform a decision and the response

used to report it can either be compatible (e.g. orienting
www.sciencedirect.com 
toward a mating call) or incompatible (e.g. orienting away

from a mating call; Figure 1, right axis). We can therefore

place these behaviors on a scale from �1 to +1, where �1

indicates stimulus-response pairs that are incompatible,

and +1 indicates pairs that are compatible. Some stimu-

lus-response pairs may be neutral, such as licking in

response to a visual grating, and can be assigned 0.

Low stimulus-response compatibility will likely increase

training time. Even when an animal has mastered a

stimulus contingency with low stimulus-response com-

patibility, a signature of the challenge of such behaviors

can remain. For instance, monkeys and rodents can be

trained to orient (e.g. turn head or saccade) away from a

visual target; although they can achieve very reliable

performance on these ‘anti-orienting’ tasks, their reaction

times are much longer compared to the more compatible

‘pro-orienting’ task [14,27]. Rats trained to switch

between the ‘pro’ and ‘anti’ rule also show several phe-

nomena related to asymmetric task-switching (i.e. switch-

ing back and forth between an easy and hard task) that

had previously been observed in humans [28]. This

rodent model allowed for experimental perturbations that

provided the first causal evidence (from any species) for

the task-set inertia theory of switch cost [14,28].

In many studies, a neutral relationship between stimuli

and response can be useful [29��,30]. Such studies allow

us to investigate learning and decision-making over time

from a neutral baseline, without the biases that innate

positive or negative stimuli-response relationships may

introduce. However, we should be wary that two different

seemingly neutral responses (e.g. a go/no-go vs two-alter-

native forced choice (2-AFC) odor discrimination) can

produce distinct behavior strategies [31].

Task complexity

A final key consideration in choosing a behavior is how

many independent variables the experimenter is modify-

ing and how many dependent variables can be recorded

(Figure 1, left axis). Here we summarize these two con-

cepts with the term ‘task complexity.’ For example, no-go

tasks with a single modality presented at a time (e.g. a go

tone) have low complexity [32,33]. Tasks such as foraging

in a virtual reality environment with multiple stimulus

modalities (e.g. auditory and visual) have high complexity

(sounds, sights, space, velocity).

More complex tasks take longer to learn, which is a

downside. However, their use has been critical in expos-

ing key principles of neural computation. For example,

monkeys trained to judge stimuli based alternately on

color or motion direction are slow to train and need

constant reinforcement of the proper stimulus-response

contingency [34]. However, animals who have mastered

this complex task offer an unprecedented opportunity to

understand how the context of a sensory stimulus
Current Opinion in Neurobiology 2018, 49:42–50
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Figure 1
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A 3-dimensional conception of behavior. Each axis describes an important dimension to consider when designing and using a behavioral

paradigm. Circles indicate examples of a tasks that vary along these axes.
influences neural responses. In this case, their well-con-

trolled behavior revealed that a leading model for con-

text-dependent decision-making, sensory gating, was

incorrect [34]. This critical conclusion relied on animals

trained to do this complex task.

Improved training techniques in recent rodent decision-

making studies have allowed task complexity to increase.

For example, rats have been trained to make decisions

informed by multiple sensory modalities [35], to accumu-

late evidence almost perfectly over long periods of time

[11], and to compare and report the intensity of two

vibrations separated by a delay [36]. Mice have been

trained to accumulate visual information over time in

virtual reality [37��] and to deploy cross-modal divided

attention in a four choice task, where the choices were

structured hierarchically to allow experimenters to
Current Opinion in Neurobiology 2018, 49:42–50 
investigate the role of thalamocortical circuits in cross-

modal attention (e.g. light vs. sound) versus sensory

detection (e.g. left vs. right) [16��,17]. These complex

task designs allow researchers to test models of decision-

making and are especially useful for population-level

analyses. Insufficiently complex behaviors might lead

investigators to underestimate the dimensionality of neu-

ral populations [38,39].

Current rodent decision-making studies
through the lens of multiple behavioral
metrics
A range of behavioral paradigms have been devised to

probe the psychological and neural mechanisms of deci-

sion-making in rodents [11–14,15�,16��,17,31,40,41].
Here, we highlight some recent work from rodent deci-

sion-making through the lens of the behavioral metrics
www.sciencedirect.com
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Box 1 Defining ‘ethological validity’

Ethology is the ‘scientific and objective study of animal behavior

especially under natural conditions’ [25]. A fully ethological study of

the neural basis of rodent decision-making would involve measuring

neural activity in a completely unrestrained animal exploring its

natural habitat. The technologies for these kinds of experiments are

not yet available, although they may soon be [26]. Here, we use the

term ‘ethological’ to describe laboratory tasks that borrow features

from natural behavior. We can consider behaviors to exist on a

spectrum, from those that are more akin to the experience of animals

in their natural habitats (‘ethologically valid’) to those that are far

removed from the natural environment and behavior of the animal. In

addition, we can trace ethological behaviors throughout the devel-

opmental and evolutionary lineage of the animal [25]. In comparison,

‘ecology’ describes the natural relations of an animal and its envir-

onment and the importance of such behaviors for survival.
defined above. The ease of training large numbers of

rodents has made rapid progress possible, with new

insights about the distinct contributions of frontal and

parietal cortex [13,14,37��,42,43] that has inspired pri-

mate work [44].

Value-based decisions

Value-based decision-making tasks (Figure 2, turquoise

circles) draw on animals’ natural ability to forage for food

or water. In foraging tasks, the animal is informed about

the spatial location, probability, timing and/or history of

rewards. Foraging tasks (e.g. [45,46]) draw on rodent’s

natural food-seeking behavior, and are usefully backed by

mathematical approaches developed in behavioral ecol-

ogy [47,48].

Certain statistics or structure of rewards and choices may

be more ethological. Asking animals (both rodents and

monkeys) to commit to wait for a reward seems incom-

patible with the animal’s natural foraging. This results in

estimates of temporal discounting that are far steeper in

‘commit to wait’ tasks than patch-foraging tasks where

animals must decide how long to stay at a patch while the

resources there are slowly depleted [49,50]. In contrast,

when offered probabilistic rewards, animals produce

adaptive responses to fairly complex reward structures

[41], and are able to vary their response actions (e.g. a

lever press or nose poke; [51,52]) and complete multi-

stage decisions [53].

Perceptual decision-making

Recent work in rodent perceptual decision-making (Fig-

ure 2, green circles) has borrowed psychophysical tech-

niques from non-human primates, in particular studies of

evidence accumulation [11,35]. The small size of rodents

has made virtual reality feasible, taking studies of per-

ceptual decision-making in new directions. In virtual

reality, the animal’s running movements on a ball are

coupled to visual stimuli such that running changes their

position or intensity [54]. Virtual reality tasks are etho-

logical in some ways, since they can include rich visual
www.sciencedirect.com 
stimuli, complex navigational environments, and a

closed-loop relationship between movements and sensory

stimuli. However, their overall effect on neural activity

could be complex because they create a perceptual (and

potentially confusing) mismatch between visual, vestib-

ular, and motor inputs (but see [55]).

The fact that virtual reality has nonetheless driven

a major advance in our understanding of cortex

[37��,46,54] and hippocampal function [56] argues that

ethological considerations are only one feature to consider

when evaluating a behavioral paradigm. An intermediate

option between head-fixed virtual reality and freely

moving animals is voluntary restraint [15�]. This approach

has the benefits of cellular resolution imaging but allows

rodents to make decisions and movement plans during

restraint that are then actually executed.

Learning

The use of non-ethological stimuli with neutral stimulus-

response compatibility is particularly useful in the study

of neural mechanisms of learning. Using an elegant

combination of electrophysiology and optogenetics,

Xiong et al. (2015) demonstrated that synaptic plasticity

between auditory cortex and striatum was necessary for

rats to learn to associate a ‘cloud’ of high-pitched tones

with orienting to the right and a ‘cloud’ of low-pitched

tones with orienting to the left (Figure 2, left green circle

[57]). This allowed the authors to probe the neural

mechanisms of instrumental learning, which, from an

ethological perspective, allows animals to adapt to new

stimuli or environments.

Prey capture and predator avoidance

Recent work has used innate behaviors in mice to dem-

onstrate that they use vision for prey-capture [58] and

have innate, robust responses to overhead predators

[59,60] (Figure 2, orange circles). One recent study capi-

talized on this innate behavior to demonstrate that mice

very quickly form a mental map of their environment [61].

These studies demonstrate that rodents do have useful

innate behaviors that we can utilize to study higher-level

processes such as perception or decision-making. How-

ever, looming evoked responses and prey-capture para-

digms, especially those with higher task complexity, are

somewhat underutilized (Figure 2, upper left region

largely unoccupied).

A practical guide for designing, quantifying,
and analyzing behavior
Having established that careful behavioral design is criti-

cal and that ethological validity is one of a number of

important considerations, what practical steps might a

researcher take in order to effectively design decision-

making experiments? As we develop tools to record from

more and more neurons, we should also dedicate efforts to

observing and quantifying as many behavioral variables as
Current Opinion in Neurobiology 2018, 49:42–50
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Figure 2
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Examples of common decision-making behaviors in the 3-dimensional space. Color indicates behavioral category. Turquoise: value-based

decisions; Green: navigation and perceptual decision-making; Orange: prey capture and predator avoidance.
possible [62]. If our neural data is rich, our behavior

should be too.

Designing stimuli and response parameters

As highlighted in multiple studies above, researchers

often have the opportunity to choose stimuli and

responses that are individually appropriate for the ani-

mal’s niche. Just as we choose stimuli that are within the

animal’s physical ability to perceive them, we can choose

stimuli and responses that are salient and relevant to

rodents. For example, since rodents naturally move

around to search their environment, rodents learn virtual

foraging discrimination tasks in as little as several days

[46]. In terms of reward structure, it may be better to give

positive rewards (even direct dopamine stimulation as in
Current Opinion in Neurobiology 2018, 49:42–50 
[63]) instead of punishment, as many mice are extremely

discouraged by time-outs and air puffs.

Deciding between freely moving and head-restrained

behavior

We must acknowledge the fact that rodents are quite

locomotive while awake, and naturally search their envi-

ronment by locomoting. Head restraint can be stressful,

reduces neural responses to cues and rewards [64–66],

and requires additional training time for habituation.

Further, neural responses in head-restrained animals

can be difficult to interpret, especially in areas that

encode movements. For example, collicular stimulation

in head-restrained and unrestrained monkeys leads to

similar evoked eye movements. This results in an
www.sciencedirect.com
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attenuated gaze shift in head-restrained monkeys, sug-

gesting that the colliculus does not accommodate for a

fixed head position [67]. However, neurons in cortex may

be more flexible with respect to the animal’s position:

recordings in rat visual cortex suggest that receptive fields

are constant regardless of whether the animal is restrained

or not [68].

Ultimately, the question of whether to develop a head-

fixed or freely moving behavior depends on the experi-

mental question and desired recording technique. It may

be imperative to use high-resolution two-photon calcium

imaging to mark excitatory cell types or identify the

spatial location of neurons. Similarly, if the experimenter

needs to precisely control the animal’s head in relation to

the stimuli, then a headfixed approach must be developed

(but see below). However, it is important to note that

freely moving configurations can be effectively used in

perceptual decision-making tasks; in fact these tasks may

be much faster to administer and for the animals to learn

than a headfixed task. In some sensory systems, it may be

necessary for the animals to be freely moving [69�].
Chronic freely moving recording using tetrodes, microd-

rives, silicon probes [70,71], head-mounted scopes

[72,73], photometry [74], as well as optogenetic manip-

ulations are now commonplace and a quite feasible in

mice and rats. With small changes to an experimental

setup, researchers can save significant training time and

reduce stress in animals while also developing more

ethologically valid behaviors.

Using automated tools to characterize behavior

Tracking and characterizing freely moving rodent behav-

ior can be a barrier to conducting such experiments.

However, multiple groups have followed the lead of

invertebrate researchers (e.g. [75–77]), using dimension-

ality reduction as well as unsupervised machine learning

to automatically characterize rodent behavior [78–81]. In

addition, multiple commercially available toolboxes (e.g.

Ethovision XT, Noldus) can robustly track events such as

grooming or rearing. Machine learning tools have tremen-

dous potential to surmount some of the challenges in

characterizing behavior in ethological paradigms [82,83].

In head-restrained configurations, experimenters should

consider measuring any variables that may give insight

into the animal’s state, such as pupil diameter [84],

locomotion velocity [52,65], face and whisker pad

movement, or muscle tone. Tools to automatically track

such variables in head-restrained mice are increasingly

available and widely implemented [85,86], and will con-

tinue to benefit from the development of unsupervised

approaches. Even if these variables are not directly

related to the experimental question, they can signifi-

cantly help tease apart complex behavioral and neural

datasets.
www.sciencedirect.com 
Isolating meaningful signals and quantifying latent and

task variables

Recently, multiple labs have reported that much of their

neural data can be explained by latent or state-dependent

variables. Isolating a pure sensory- or task-related signal is

largely aided by first measuring these variables and then

using one of various methods to quantify their contribu-

tion to the neural data [15�,33,87].

Especially for tasks with a small number of outcomes (e.g.

two-alternative forced choice tasks), the analysis can be

drastically improved by modeling multiple variables in

the decision-making process [15�,43]. Such approaches

are particularly useful when trying to determine the

precise effect of a perturbation. For example, Erlich

and colleagues (2015) modeled multiple variables in

the decision-making process to isolate the source of

animals’ bias on an auditory accumulation task [43]. In

combination with the behavioral variables mentioned

above, researchers can better characterize ‘lapse trials,’

errors judging stimuli known to be easily identified or

discriminated by the animal. Identifying states associated

with lapse trials could obviate the need for the extensive

training required to entirely eliminate lapse trials (often

greater than one year).

Conclusions
The explosion of powerful tools in modern neuroscience

has led to anxiety that behavior has become an after-

thought or a ‘hasty add on’ [3] and has inspired enthusi-

asm for more traditional, ethological approaches to behav-

ior. Here, we have argued that although the animal’s

ethological niche is important, it is one of a number of

dimensions that are critical to consider when designing

behavior. Further, although improvements are needed in

the study of behavior, the field is rich with examples of

compelling animal behaviors, ethological and otherwise,

that span the behavioral space we have defined and

inform our growing understanding of brain function.
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