
UCLA
UCLA Electronic Theses and Dissertations

Title

Simulation of Deformable Objects for Sim2Real Applications in Robotics

Permalink

https://escholarship.org/uc/item/9259n6s8

Author

Choi, Andrew Sang-Jin

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9259n6s8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Simulation of Deformable Objects for Sim2Real Applications in Robotics

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Andrew Sang-Jin Choi

2023

© Copyright by

Andrew Sang-Jin Choi

2023

ABSTRACT OF THE DISSERTATION

Simulation of Deformable Objects for Sim2Real Applications in Robotics

by

Andrew Sang-Jin Choi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Demetri Terzopoulos, Co-Chair

Professor Mohammad Khalid Jawed, Co-Chair

From manipulators to self-driving cars, training robots in the real world is often tedious,

expensive, and results in hardware wear-and-tear. Due to the aforementioned reasons, the

concept of transferring useful skills from “sim2real” has become an extremely attractive

avenue for robotics researchers. Training purely (or partially) from simulation boasts

numerous immense benefits such as allowing researchers to explore dangerous state spaces,

learn faster than real-time, and even employ multiple agents to learn in parallel. Despite

this, there currently exists a prominent “sim2real gap”, where skills and/or models learned

from within simulation transfer poorly to the real world due to environment misalignment.

Given the scarcity of physically adequate models, this sim2real gap is especially prominent

in contact-rich scenarios as well as problem spaces concerning deformables, whether it

be the manipulation of deformable objects or soft robots themselves. In this thesis, I

present a culmination of our previous works tackling two key sequential research areas: 1)

development of efficient, physically accurate simulators for soft robots and structures and

2) full end-to-end sim2real solutions for robotic deformable material handling for tasks

such as stiff sheet folding and deformable linear object deployment. Throughout these

works, we showcase the immense benefits of developing solutions with physical insight in

the areas of simulation, perception, and robotic manipulation.

ii

The dissertation of Andrew Sang-Jin Choi is approved.

Achuta Kadambi

Bolei Zhou

Jungseock Joo

Mohammad Khalid Jawed, Committee Co-Chair

Demetri Terzopoulos, Committee Co-Chair

University of California, Los Angeles

2023

iii

To my mother and father,

who have supported me unconditionally in all aspects of life.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Contributions . 2

1.2 Overview . 4

2 Related Work . 6

2.1 Elastic Contact and Friction . 6

2.1.1 Impulse Methods . 7

2.1.2 Constraint-Based Methods . 7

2.1.3 Penalty Energy Methods . 8

2.2 Simulation of Deformable Objects for Robotics 8

2.3 Robotic Folding of Sheets . 10

2.3.1 Mechanical Design-Based Approaches 10

2.3.2 Vision-Based Approaches . 11

2.3.3 Learning-Based Approaches . 11

2.3.4 Model-Based Approaches . 12

2.3.5 Limitations of Prior Work for Paper Folding 12

2.4 DLO Perception . 13

2.4.1 Multi-DLO Instance Segmentation 14

2.4.2 Deep Learning Models for DLO Segmentation 14

2.4.3 Achieving Realtime Performance 15

2.4.4 Limitations of Prior Work for DLO Detection 16

2.5 Robotic Deployment of DLOs . 16

2.5.1 Vision-Based Approaches . 17

v

2.5.2 Model-Based Approaches . 18

2.5.3 Learning-Based Approaches . 18

2.5.4 Limitations of Prior Work for DLO Deployment 19

3 Discrete Elastic Rods (DER) . 21

3.1 Introduction . 21

3.2 Reduced-Order Model and Degrees of Freedom 22

3.3 Elastic Energies . 23

3.3.1 Stretching Energy . 23

3.3.2 Bending Energy . 23

3.3.3 Twisting Energy . 24

3.3.4 Elastic Forces . 25

3.4 Equations of Motion . 25

3.5 Time Stepping Scheme . 26

4 IMCv1: A Semi-Implicit Formulation for Contact and Friction 27

4.1 Introduction . 27

4.2 Contact Energy . 29

4.3 Analytical Distance via Lumelsky’s Algorithm 31

4.4 Smoothing Lumelsky’s Algorithm . 33

4.5 Semi-Explicit Friction . 36

4.6 Algorithmic Components . 39

4.6.1 Scaling . 39

4.6.2 Collision Limit . 39

4.6.3 Adaptive Contact Stiffness . 40

4.6.4 Hybrid Formulation . 42

vi

4.6.5 Newton Damper . 42

4.6.6 Viscous Damping . 43

4.7 Overhand Knot Tying Validation . 45

4.7.1 Theoretical Validation . 46

4.7.2 Pull Force Accuracy . 48

4.7.3 Runtime . 49

4.8 Conclusion . 51

5 IMCv2: A Fully Implicit Formulation for Contact and Friction 53

5.1 Introduction . 53

5.2 Improved Contact Energy . 55

5.3 Piecewise Continuous Distance . 57

5.4 Fully Implicit Friction . 59

5.5 Algorithmic Components . 62

5.5.1 Collision Detection . 62

5.5.2 Adaptive Contact Stiffness . 63

5.5.3 Line Search . 63

5.6 Flagella Bundling Simulation Results . 64

5.6.1 Parameters and Setup . 66

5.6.2 Comparison between IMCv2 and IPC 66

5.6.3 Friction Example . 69

5.6.4 Parametric Study for ω̄, ∆L/a, M , and, µ 71

5.7 Overhand Knot Tying Validation . 74

5.7.1 Tightening a Trefoil Knot . 74

5.7.2 Tightening Knots of Various Unknotting Numbers 74

vii

5.8 Granny vs. Reef Knot Validation . 76

5.8.1 Boundary Conditions and Setup 77

5.8.2 Knot Strength Evaluation . 78

5.8.3 Parametric Study for µ . 80

5.8.4 Parametric Study for E . 81

5.9 Conclusion . 82

6 DisMech: A Discrete Differential Geometry-Based Simulator for Soft

Robots and Structures . 84

6.1 Introduction . 84

6.2 Methodology . 86

6.2.1 Elasticity, Contact, and Friction 86

6.2.2 Elastic Joints . 86

6.2.3 Actuation via Natural Curvatures 87

6.2.4 Numerical Integration Scheme . 87

6.3 Theoretical Validation . 87

6.3.1 Dynamic Cantilever Beam . 88

6.3.2 Oscillating Helix under Gravity 89

6.3.3 Friction Validation . 91

6.4 Practical Demonstrations for Flexible Robots 92

6.4.1 Arbitrary Robot Prototyping . 92

6.4.2 Real2Sim Open-Loop Control . 93

6.5 Conclusion . 96

7 Learning Neural Force Manifolds for Sim2Real Robotic Paper Folding 98

7.1 Introduction . 98

viii

7.2 Problem Statement . 100

7.3 Reduced-Order Model Representation . 102

7.3.1 Simple 2D DER Formulation . 104

7.4 Generalized Solution and Scaling Analysis 105

7.4.1 Computing the Optimal Force . 106

7.4.2 Nondimensionalization via Buckingham π Theorem 107

7.5 Deep Learning and Optimization . 108

7.5.1 Data Generation . 108

7.5.2 Learning Force and Optimal Grasp Orientation 109

7.5.3 Constructing the Neural Force Manifold 109

7.5.4 Path Planning over the Neural Force Manifold 112

7.6 Robotic System . 113

7.6.1 Dual Manipulator Setup . 113

7.6.2 Perception System . 114

7.7 Model-Predictive Control via Visual Feedback 115

7.8 Experiments and Analysis . 118

7.8.1 Measurement of Material Properties 118

7.8.2 Baseline Algorithms . 120

7.8.3 Experimental Setup . 121

7.8.4 Metrics . 121

7.8.5 Parameters . 122

7.8.6 Results and Analysis . 122

7.8.7 Effects of Paper Width on Folding Performance 127

7.9 Additional Discussion . 127

7.9.1 Performing Multiple Folds on the Same Paper 127

ix

7.9.2 Importance of Single Manipulator Folding 128

7.10 Conclusion . 129

8 mBEST: Physics-Inspired Realtime Perception for DLOs 130

8.1 Introduction . 130

8.2 Methodology . 133

8.2.1 DLO Segmentation . 133

8.2.2 Skeletonization . 134

8.2.3 Keypoint Detection . 134

8.2.4 Split End Pruning . 135

8.2.5 Intersection Clustering, Matching, and Replacement 136

8.2.6 Minimal Bending Energy Path Generation 138

8.2.7 Crossing Order Determination . 140

8.3 Experimental Results . 141

8.3.1 Datasets . 141

8.3.2 Baselines and Parameters . 145

8.3.3 Results and Analysis . 145

8.4 Conclusion . 148

9 Sim2Real Neural Controllers for DLO Deployment 149

9.1 Introduction . 149

9.2 Generalized Solution and Scaling Analysis 152

9.2.1 Solving the Suspended Part . 153

9.2.2 Influence of Force and Friction . 154

9.2.3 Computing Optimal Grasp . 155

9.2.4 Nondimensionalization via Buckingham π Theorem 156

x

9.3 Deep Learning and Optimization . 157

9.3.1 Deployment in 2D Workspace . 158

9.3.2 Deployment in 3D Workspace . 162

9.3.3 Training the Neural Controller . 165

9.4 Robotic System . 167

9.4.1 Perception System . 167

9.4.2 Motion Planning with the Neural Controller 167

9.5 Experiments and Analysis . 169

9.5.1 Measurement of Material Parameters 169

9.5.2 Experiment Setup . 171

9.5.3 Metrics . 173

9.5.4 Results and Analysis . 175

9.6 Use Cases . 179

9.6.1 Cable Placement . 179

9.6.2 Knot Tying . 180

9.7 Conclusion . 182

10 Conclusions . 184

10.1 Summary . 184

10.2 Future Work . 185

References . 186

xi

LIST OF FIGURES

3.1 Discrete Elastic Rod Centerline . 22

4.1 IMCv1 Overhand Knot Tying Snapshots . 28

4.2 Edge-to-Edge Contact Schematic . 29

4.3 Smooth Approximation Functions for Lumelsky’s Algorithm 34

4.4 IMCv1 Contact Energy Plot . 41

4.5 IMCv1 Friction Model Validation . 45

4.6 IMCv1 Pull Force Comparisons for Different µk 46

4.7 IMCv1 vs. SPT Pull Force Comparison and Knot Inversion 49

5.1 IMCv2 Flagella Bundling Snapshots . 54

5.2 Flagella DER Schematic . 55

5.3 IMCv2 Contact Energy Plots . 56

5.4 IMCv2 Friction Scaler Plots . 60

5.5 IMCv2 vs. IPC Flagella Bundling Comparison and Boundary Conditions . . 67

5.6 IMCv2 Flagella Sticking-Slipping Snapshots 69

5.7 IMCv2 Flagella Bundling Parametric Study for ω̄ and ∆L/a 71

5.8 IMCv2 Flagella Bundling Parametric Study for Number of Flagella M . . . 72

5.9 IMCv2 Flagella Bundling Parametric Study for µ 72

5.10 IMCv2 Tightening a Trefoil Knot Comparison with Theory 75

5.11 IMCv2 Tightening Overhand Knots Comparison with Theory 76

5.12 IMCv2 Granny vs. Reef Knot Snapshots . 77

5.13 Granny vs. Reef Knot Differences and Boundary Conditions 78

5.14 IMCv2 Granny vs. Reef Knot Pull Force Comparison 79

xii

5.15 IMCv2 Granny vs. Reef Knot µ Parametric Study 81

5.16 IMCv2 Granny vs. Reef Knot E Parametric Study 82

6.1 DisMech vs. Elastica Dynamic Cantilever Beam Deflection Comparison with

Theory . 89

6.2 DisMech vs. Elastica Helix Oscillating under Gravity Deflection Comparison 90

6.3 DisMech Axial Friction Comparison with Theory 91

6.4 DisMech Spider Robot Model . 92

6.5 DisMech Active Entanglement Gripper Model 93

6.6 DisMech Real2Sim SMA-Actuated Soft Manipulator Model 94

6.7 DisMech Real2Sim Tip Position Error . 95

7.1 Intuitive vs. Optimal Folding Sliding Comparison 100

7.2 Paper Folding States . 101

7.3 Reduced-Order Discrete Models for Symmetrical Paper Folding 103

7.4 Coordinate Systems and Data Collection . 105

7.5 Neural λ and α Manifold Visualization with Nondimensionalized Optimal

Trajectories . 110

7.6 Redimensionalized Optimal Trajectories . 111

7.7 Paper Folding Experimental Apparatus . 114

7.8 Paper Folding Top-Down View and Detection 114

7.9 Paper Folding Model-Predictive Control Pipeline 116

7.10 Paper Material Measuring Scheme . 118

7.11 Comparison of Baseline Trajectories . 119

7.12 Paper Folding Fold Length and Spin Error θerr Boxplot Results 123

7.13 Soft Paper Folding Snapshots . 124

xiii

7.14 Stiff Paper Folding Snapshots . 125

7.15 Folding an Origami Cube Snapshots . 127

7.16 Folding Failures for Baseline Methods with Auxiliary Manipulator Snapshots 128

8.1 mBEST Pipeline . 132

8.2 Skeleton Refinement: Split End Pruning . 135

8.3 Skeleton Pixel Intersection Types and Examples 137

8.4 Intersection Clustering, Matching, Replacement, and Optimal Path Generation138

8.5 mBEST Segmentation Results for Complex Background Simple Tangles Dataset

(Easier) . 142

8.6 mBEST Segmentation Results for Complex Background Simple Tangles Dataset

(Harder) . 143

8.7 mBEST Segmentation Results for Simple Background Complex Tangles Dataset144

9.1 DLO Deployment Pipeline . 150

9.2 Intuitive DLO Deployment Schematic and Comparison of Results 152

9.3 Deployment Schematic . 153

9.4 Viable Manifold and Force Visualization . 159

9.5 DLO Stability Analysis . 161

9.6 Neural Controller Optimal Grasp Visualization 166

9.7 Example of Pattern Extraction via mBEST 167

9.8 DLO Deployment Experimental Apparatus 168

9.9 DLO Material Measuring Scheme . 170

9.10 DLO Deployment Results for Different Materials 173

9.11 DLO Deployment Results for Different Substrates 174

9.12 Cable Placement Snapshots . 180

xiv

9.13 Knot Tying Snapshots . 181

xv

LIST OF TABLES

2.1 Overview of Simulation Frameworks used by the Robotics Community . . . 8

2.2 Overview of 2D DLO Perception Algorithms 16

4.1 IMCv1 vs. SPT Overhand Knot Tying Runtime Comparison 50

5.1 IMCv2 vs. IPC Flagella Bundling Runtime Comparison 68

5.2 IMCv2 Flagella Bundling Runtime Comparison for Various µ 70

6.1 DisMech vs. Elastica Runtime Comparison 88

7.1 Offline Trajectory Computation Time Comparison with SOTA 120

7.2 Effects of Paper Width on Fold Length Comparison 126

7.3 Effects of Paper Width on Spin Error Comparison 126

8.1 mBEST vs. SOTA DICE Comparison . 146

8.2 mBEST vs. SOTA Runtime Comparison . 146

8.3 Effects of Skeleton Refinement . 147

9.1 DLO Material and Geometric Properties . 171

9.2 Canonical Pattern Deployment Accuracy . 175

9.3 Handwritten Pattern Deployment Accuracy 176

9.4 Canonical Pattern Deployment Computational Times and Error 178

9.5 Handwritten Pattern Deployment Computational Times and Error 179

9.6 Cable Placement and Knot Tying Success Rates 182

xvi

ACKNOWLEDGMENTS

My four year journey at UCLA pursuing my doctorate degree has been some of the

most fulfilling years of my life. Before delving deeper into the fun work I was able to

accomplish, I’d like to thank some people who were instrumental in my graduate journey.

To start, I’d be remiss not to thank each and every one of my advisors. Some students

are lucky to have a single advisor they get along with; I was blessed with three who have

always provided me with their wisdom and attention.

In no particular order...

First, I’d like to thank Professor Demetri Terzopoulos for his continuous mentorship

over the course of my Ph.D. program. I originally reached out to him to have an

M.S. degree requirement signed off. Though we did not know each other, he expressed an

immediate interest in my early work on discrete elastic knots and even offered to have

a phone call that very day. Considering his prestigious career and undoubtedly busy

schedule, I was taken aback by his kindness and attention. Since then, he has carefully

edited my publications and theses, helped me transfer into the CS Ph.D. program, and

offered me invaluable advice for graduating in a timely manner. Without him, my journey

to a Ph.D. degree would undoubtedly have been more arduous.

I’d like to thank Professor M. Khalid Jawed for essentially being my main-PI the past

few years as well as for graciously accepting me into the Structures-Computer Interaction

Laboratory. Not only did I feel like I thrived as a researcher under his tutelage, I also

met colleagues that I consider life-long friends. His constant generosity in the form of

lab dinners and outings created bonds within our lab that I believe many envy. As a PI,

he has always been very kind, compassionate, and extremely attentive. No matter what

the inquiry, I could expect a response from him within a few hours. Overall, I cannot

imagine a better PI to have worked for.

Finally, I’d like to thank Professor Jungseock Joo for his mentorship as my early

PI and essentially kick-starting my research journey. He took a chance on an unsure

xvii

and doubtful 23-year old Andrew and without him, I would not be the researcher I am

today. Furthermore, his experiences and insights concerning industry have helped me

tremendously through my job search.

In addition to my advisors, I’d also like to thank my dear friend and colleague Dezhong

Tong with whom I had the pleasure of completing several research projects. From

discussing NBA basketball to carrying out experiments in the wee hours of the night, he

was an ever-present colleague and collaborator during my Ph.D. I was extremely fortunate

to have a productive, symbiotic relationship where we could both grow as researchers.

I’d like to thank my dear friend Hudson for his continuous support during the past few

years. Any hint of imposter syndrome was erased due to his seemingly unending supply

of motivational speeches. Words cannot express just how grateful I am for his friendship.

I’d like to thank my partner Elizabeth for her continuous support and consideration.

Not only would she always express interest in my work, she would also provide encourage-

ment in times of immense stress and do whatever she could to make my life easier during

those times. I could always count on being able to laugh with her and relax in spite of

gloomy deadlines.

And, finally, I’d like to thank my parents. They immigrated to this country many

years ago without higher educations. The fact that I was able to obtain a Ph.D. degree

is a testament to the countless sacrifices they endured in granting me this opportunity.

Thank you to my father for his constant encouragement of me to further my education

and to my mother for always making sure I was well-fed and taken care of. Without them,

none of this would have been possible.

xviii

VITA

2014–2018 B.S. in Mechanical Engineering

University of California, Davis

Davis, CA.

2018–2019 Control Systems Engineer

Brock Solutions

Los Angeles, CA.

2019–2021 M.S. in Computer Science

University of California, Los Angeles

Los Angeles, CA.

2021 Robotics Software Intern

Vecna Robotics

Waltham, MA.

2022–2023 Teaching Assistant

Computer Science Department

University of California, Los Angeles

Los Angeles, CA.

2020–2023 Graduate Student Researcher

Mechanical & Aerospace Engineering Department

University of California, Los Angeles

Los Angeles, CA.

2021–2023 Ph.D. Candidate

Computer Science Department

University of California, Los Angeles

Los Angeles, CA.

PUBLICATIONS

A. Choi, D. Tong, M.K. Jawed, and J. Joo, “Implicit Contact Model for Discrete Elastic

Rods in Knot Tying,” Journal of Applied Mechanics, vol. 88(5), pp. 051010, 2021. (Choi

xix

et al., 2021)

A. Vepa, A. Choi, N. Nakhaei, W. Lee, N. Stier, A. Vu, G. Jenkins, X. Yang., M. Shergill,

M. Desphy, K. Delao, M. Levy, C. Garduno, L. Nelson, W. Liu, F. Hung, and F. Scalzo,

“Weakly-Supervised Convolutional Neural Networks for Vessel Segmentation in Cerebral

Angiography,” In 2022 IEEE/CVF Winter Conference on Applications of Computer

Vision (WACV), pp. 585-594, 2022. (Vepa et al., 2022)

A. Choi, M.K. Jawed, and J. Joo, “Preemptive Motion Planning for Human-to-Robot

Indirect Placement Handovers,” In 2022 International Conference on Robotics and Au-

tomation (ICRA), pp. 4743-4749, 2022. (Choi et al., 2022)

D. Tong, A. Choi, J. Joo, A. Borum, and M.K. Jawed, “Snap Buckling in Overhand

Knots,” Journal of Applied Mechanics, vol. 90(4), pp. 041008, 2023. (Tong et al., 2023a)

D. Tong*, A. Choi*, J. Joo, and M.K. Jawed, “A Fully Implicit Method for Robust

Frictional Contact Handling in Elastic Rods,” Extreme Mechanics Letters, vol. 58, pp.

101924, 2023. (Tong et al., 2023b)

A. Choi, D. Tong, B. Park, D. Terzopoulos, J. Joo, and M.K. Jawed, “mBEST: Realtime

Deformable Linear Object Detection Through Minimal Bending Energy Skeleton Pixel

Traversals,” IEEE Robotics and Automation Letters (RA-L), vol. 8(8), pp. 4863-4870,

2023. (Choi et al., 2023b)

D. Tong, A. Choi, L. Qin, W. Huang, J. Joo, and M.K. Jawed, “Sim2Real Neural

Controllers for Physics-Based Robotic Deployment of Deformable Linear Objects,” The

International Journal of Robotics Research (IJRR), 2023. (Tong et al., 2023c)

A. Choi*, D. Tong*, D. Terzopoulos, J. Joo, and M.K. Jawed, “Learning Neural Force

Manifolds for Sim2Real Robotic Symmetrical Paper Folding,” arXiv and in-review for

IEEE Transactions on Automation Science and Engineering, 2023. (Choi et al., 2023c)

A. Choi, R. Jing, A. Sabelhaus, and M.K. Jawed, “DisMech: A Discrete Differential

Geometry-based Physical Simulator for Soft Robots and Structures,” arXiv and in-review

for IEEE Robotics and Automation Letters (RA-L), 2023. (Choi et al., 2023a)

* denotes equal contribution

xx

CHAPTER 1

Introduction

With advances in both hardware and artificial intelligence, robots are increasingly expected

to exhibit or surpass human-level capabilities in a variety of tasks. One of the most difficult

problem spaces faced by the robotics research community are those related to deformable

materials. People possess an incredible innate understanding of soft dynamics; e.g., we

can use gravity to manipulate a shirt over our heads without ever having “learned” how.

Whether the problem pertains to manipulators dexterously handling deformable objects

or the control of soft robots themselves, instilling such intuition into robots remains an

important research problem and has the potential to breed numerous applications with

considerable economic and humanitarian potential.

As opposed to their rigid-body counterparts, deformable structures possess essentially

an infinite number of degrees of freedom and are capable of undergoing highly nonlinear

geometric deformations from even minute external forces. The complexity of such

structures has resulted in a scarcity of accurate, efficient, and robust simulators for

deformable objects, especially those directed towards the robotics community. These

limitations have resulted in the dreaded “sim2real gap”, an ongoing challenge where

the performance of skills and/or models learned through simulation deteriorate when

transferred to the real world.

With this in mind, we take a twofold approach to developing robust sim2real solutions.

We first focus on making physically accurate continuum mechanics simulations with

an emphasis on elastic contact. Then, we directly leverage these simulation tools to

tackle nontrivial sim2real deformable object manipulation problems, such as paper sheet

folding and deformable linear object (DLO) deployment. Developing physically insightful

1

solutions will be a key topic in this thesis as we explore such contributions in the areas of

simulation, perception, and robotic manipulation, as well as their interdependencies.

We next preview the contributions of this thesis in greater detail.

1.1 Contributions

Simulation of Deformable Objects

The first half of this thesis focuses on accurate simulation of deformable objects. One of

the key approaches to reducing the sim2real gap lies in developing simulation frameworks

that model the real world as accurately as possible. With this in mind, we tackle elastic

contact as well as develop robust, easy-to-use solutions for soft simulation. Known for

their physical accuracy and computational efficiency, we will be using discrete differential

geometry-based (DDG) simulation frameworks to simulate elasticity throughout this

thesis.

Elastic Contact and Friction (Choi et al., 2021; Tong et al., 2023b)

One of the key areas in which simulations will stray from the real world arises when

dealing with the highly nonlinear process of frictional contact. As such, the sim2real gap

is especially prominent for contact-rich scenarios. We formulate and physically validate

a fully implicit frictional contact model, the Implicit Contact Model (IMC), capable of

enforcing non-penetration and simulating Coulomb friction. IMC is designed to be easily

integrated into discrete differential geometry-based frameworks. Using IMC, we simulate

several difficult frictional contact scenarios pertaining to slender rods such as knot tying

and flagella bundling. Two variations (IMCv1 and IMCv2) are discussed in detail.

2

General Simulation Framework for Soft Robots and Structures (Choi et al.,

2023a)

Though DDG-based simulation has been employed by the robotics community, many

previous efforts have primarily used “one-off” simulations. In an attempt to create an

easy-to-use generalizable DDG-based simulation framework for the robotics community, we

developed DisMech. DisMech offers several functionalities such as arbitrary customization

of robot geometry, material, and environment, with elastic contact and self-contact

capabilities provided via IMC. Furthermore, continuum actuation is provided by an

intuitive natural curvature manipulation scheme. A generalizable framework for real2sim

modelling is presented. To the best of our knowledge, DisMech is the first general purpose

DDG-based 3D simulation framework.

Sim2Real Deformable Object Manipulation

The second half of this thesis will shift gears and focus on robust sim2real solutions

to deformable object manipulation problems, where we directly leverage the simulation

tools developed in the first half of the thesis for data generation. In particular, we place

emphasis on developing efficient physical solutions robust against changes in material

and geometry by leveraging scaling analysis and machine learning. We first formulate

a solution for sim2real paper sheet folding. Next, a physics-inspired DLO detection

algorithm, mBEST, is formulated. Finally, we directly utilize mBEST to formulate a

solution for sim2real DLO deployment.

Sim2Real Paper Sheet Folding (Choi et al., 2023c)

A full sim2real solution for single manipulator paper sheet folding is presented. An

accurate model of the external forces of a paper given a grasp position is learned from

simulation. This model is then used to formulate a near real-time model-predictive control

pipeline using visual-feedback. An extensive robotic case study involving a wide variety of

materials from origami paper to cardboard demonstrates the accuracy and generalizability

3

of our method.

Physics-Inspired DLO Detection (Choi et al., 2023b)

Though the state representation of a deformable object within a simulation is known,

objects in the real world must be detected. Furthermore, perception algorithms must

be real-time to enable high frequency visual-feedback control. Therefore, we formulate

Minimal Bending Energy Skeleton Pixel Traversals (mBEST), a robust, real-time DLO

instance segmentation algorithm. Using mBEST, we show that we can outperform state-

of-the-art algorithms using a remarkably cheap and physically insightful optimization

objective inspired by DDG-based simulation frameworks.

Sim2Real DLO Deployment (Tong et al., 2023c)

Finally, we tackle shape control of DLOs when deploying onto a 2D substrate. An

optimal control policy is formulated and learned from simulation. We use this neural

controller along with mBEST to deploy patterns for a wide variety of DLO and substrate

materials with superhuman precision. Using our optimal deployment scheme, we are able

to accomplish difficult tasks such as stiff cable placement, knot tying, and mimicking

human writing.

1.2 Overview

The remainder of the thesis is organized as follows:

In Chapter 2, we perform an extensive literature review of all relevant areas covered by

the thesis. We present the literature review in the same order as the thesis’s core material;

i.e., we cover frictional contact methods, continuum physics simulators for robotics, robotic

folding works, DLO perception algorithms, and robotic DLO manipulation strategies.

Chapters 3, 4, and 5, focus on the steps necessary to construct accurate and efficient

continuum physics simulators that make sim2real applications possible.

4

In Chapter 3, we first present a discrete differential geometry-based simulation frame-

work for slender structures from the computer graphics community, Discrete Elastic Rods

(DER), which will be a common tool used throughout the rest of the chapters. Next, we

present two versions of our elastic frictional contact model, the Implicit Contact Model

(IMC). In Chapter 4, we present the earliest iteration of our contact model, IMCv1, which

enforces contact implicitly and friction semi-explicitly.

Finally, we present the most recent version of our contact model, IMCv2, in Chapter 5.

IMCv2 supersedes IMCv1 with a fully implicit frictional contact formulation. Therefore,

IMCv1 is included simply for archival purposes.

In Chapter 6, we develop and present DisMech, a fully generalizable physical simulator

for soft robots and structures. This framework uses a combination of DER + IMC as the

mathematical backbone. We show extensive validation with comparisons against the state

of the art, several nuanced design simulations, and a generalizable real2sim strategy with

a real world validation using a dual soft limb manipulator. We then switch gears from

simulation to more robotics-focused projects, where we leverage the tools from earlier

chapters directly to develop sim2real solutions.

In Chapter 7, we present a full end-to-end sim2real solution for the nontrivial manipu-

lation task of single manipulator paper folding.

In Chapter 8, we present Minimal Bending Energy Skeleton Pixel Traversals (mBEST),

a robust real-time DLO detection algorithm that uses a physics-based optimization

objective inspired by DER.

In Chapter 9, we present a full end-to-end sim2real solution for DLO deployment and

its application for knot tying and mimicking human handwriting using mBEST.

Finally, in Chapter 10, we provide concluding remarks and discuss future research

directions.

5

CHAPTER 2

Related Work

In this chapter, we review the relevant state of the art concerning the simulation of

deformable objects as well as sim2real robotic applications.

2.1 Elastic Contact and Friction

In this thesis, we mainly focus on Coulomb friction, an adequate approximation of dry

friction. Note that Coulomb friction degrades when contacted surfaces are conjoined.

For engineering problems in which cohesion is important (e.g., cohesive granular media

simulation (Mandal et al., 2020; Bertrand et al., 2005; Thakur et al., 2014)), a more elabo-

rated contact theory such as Johnson-Kendall-Roberts (JKR), Derjaguin–Muller–Toporov

(DMT), or Maugis models (Johnson et al., 1971; Johnson and Greenwood, 1997; Maugis,

1992) are required. Some prior work uses these elastic cohesive contact models to simulate

incipient sliding of cohesive contacts (Borri-Brunetto et al., 2001; Gao et al., 2006).

Despite this, Coulomb friction is still the de facto friction model for non-cohesive contact

due to its simplicity and high empirical accuracy, where it can be seen implemented in

a wide variety of engineering applications, including, contact in elastic structures, most

granular media simulations, and more. We therefore build a novel numerical framework

based on Coulomb friction. We now delve into the types of Coulomb friction contact

handling methods, which can generally be divided into three distinct categories: impulse

methods, constraint-based optimization methods, and penalty energy methods.

6

2.1.1 Impulse Methods

As the name suggests, impulse methods compute contact forces based on the required

impulse to keep rod segments from penetrating, with an example being the impulse

force model by Spillmann and Teschner (2008). Although computationally efficient and

straightforward to implement, unrealistic visual jittering often occurs when simulations

use sufficiently large time steps as the generated forces are handled explicitly (Choi

et al., 2021). Therefore, impulse methods often must either deal with insufficient physical

accuracy or use sufficiently small time steps.

2.1.2 Constraint-Based Methods

Constraint-based methods treat frictional contact as a constrained optimization problem.

Jean and Moreau (1987, 1992) implemented convex analysis to propose using unilateral

constraints to solve dry friction in granular media. Alart and Curnier (1991) developed

the first approach to solving constraint-based contact dynamics using Newton’s method

to find the root of a non-smooth function. In graphics, Daviet et al. (2011) combined

an analytical solver with the complementary condition from Alart and Curnier (1991)

to capture Coulomb friction in elastic fibers. In Kaufman et al. (2014), the algorithm

from Daviet et al. (2011) was incorporated with a nonlinear elasticity solver to simulate

frictional contacts in assemblies of DERs. Based on previous work, Daviet (2020) proposed

a general constraint-based framework for simulating contact in thin nodal objects. Overall,

constraint-based methods can often produce physically realistic results but are inherently

more difficult to implement than impulse and penalty methods (though the growth of

open source code has alleviated this considerably). Arguably the largest drawback of

constraint-based methods, additional computational costs are incurred at each solving

iteration as frictional contact forces must be introduced as additional degrees of freedom

in order to satisfy the complementary condition between frictional contact responses

and the status of contact regions. This is in contrast to impulse and penalty methods

which can obtain contact responses directly based on just configuration-based degrees of

7

Table 2.1: Overview of simulation frameworks used by the robotics community. Exp and
Imp refer to explicit and implicit, respectively.

Framework Model
Continuum Physics Solver

Physics Complexity Type

Gazebo (Koenig and Howard, 2004) Rigid-body physics ✗ low Exp

MuJoCo (Todorov et al., 2012) Rigid-body physics ✗ low Exp or Imp

Bullet (Coumans and Bai, 2021) Rigid-body physics ✗ low Exp

SoMo (Graule et al., 2021) Rigid-body physics ✓− low Exp

SOFA (Faure et al., 2012) FEA ✓ high Exp or Imp

SoRoSim (Mathew et al., 2022) Cosserat Rod + GVS ✓ med-high Exp or Imp

Elastica (Gazzola et al., 2018) Cosserat Rod ✓ med-high Exp

DisMech (ours) Kirchhoff Rod + DDG ✓ med-high Exp or Imp

freedom.

2.1.3 Penalty Energy Methods

The final contact method type, penalty energy methods, utilize a formulated “contact

energy” whose gradient is treated as the contact force. Due to the requirement of a

smooth differentiable gradient (and Hessian for implicit formulations), such methods utilize

smooth differentiable functions to best approximate the behavior of frictional contact (Li

et al., 2020a; Choi et al., 2021; Patil et al., 2020; Tong et al., 2023b). These methods have

become popular in recent times as they have been shown capable of generating accurate

frictional contact (Choi et al., 2021; Patil et al., 2020; Tong et al., 2023b) while remaining

simple to implement (relative to constraint-based methods) and computationally efficient.

2.2 Simulation of Deformable Objects for Robotics

Though soft robotics research has been a popular and growing field (Majidi, 2014),

the presence of physical simulators capable of robustly capturing continuum mechanics

is scarce. Popular simulation frameworks used for sim2real training of robots include

Gazebo (Koenig and Howard, 2004), MuJoCo (Todorov et al., 2012), and Bullet/PyBullet

(Coumans and Bai, 2021), but such simulators focus primarily on rigid body dynamics

and fail to replicate physically accurate elasticity.

8

One avenue to remedy this involve frameworks such as SoMo (Graule et al., 2021),

which models deformable structures by representing them as rigid links connected by

springs. Frameworks such as this simply act as wrappers built on top of preexisting

rigid-body physics simulators (Bullet). Although plausible results have been shown for soft

grippers and control (Graule et al., 2022), the underlying rigid-body physics is unable to

simulate more complicated deformation modes such as twisting and elastic buckling (Tong

et al., 2023a). With this, accurate soft robot simulation requires simulation frameworks

more dedicated to soft physics.

Another avenue for simulating the continuum mechanics of soft robots involves the

classical finite element method (FEM) (Faure et al., 2012; Coevoet et al., 2017). Although

such methods are accurate, their high fidelity mesh representation often results in high

computational costs, requiring separate model-order reduction (MOR) techniques for

online control (Thieffry et al., 2019; Alora et al., 2023). These limitations focus the use

of FEM/MOR for offline tasks such as reinforcement learning (RL) (Schegg et al., 2022)

and through asynchronous techniques (Largilliere et al., 2015).

Finally, there are simulation frameworks that simulate elastic rods using either the

unstretchable and unshearable Kirchhoff rod model (Kirchhoff, 1859) or fully deformable

Cosserat rod model (Gazzola et al., 2018). Using the Kirchhoff rod model, the computer

graphics community has developed discrete differential geometry-based frameworks such

as Discrete Elastic Rods (DER) (Bergou et al., 2008, 2010). Originally meant for realistic

animation, DER has shown surprisingly great performance in accurately capturing the

nonlinearity of rods and has been rigorously physically validated in cases such as rod

deployment (Jawed et al., 2014), knot tying (Choi et al., 2021; Tong et al., 2023b), and

buckling (Tong et al., 2023a, 2021). Using a DER-inspired framework, Huang et al. (2020)

showed success at simulating and modeling soft robot locomotion, albeit with the omission

of twisting as locomotion occurred solely along a 2D plane.

Other frameworks have opted for using the Cosserat rod model as it incorporates the

influence of shearing effects. One such example involves SoRoSim (Mathew et al., 2022)

which models soft links using a Geometric Variable Strain (GVS) model of Cosserat rods.

9

This allows for the modeling of soft links with less degrees of freedom (DOFs) compared

to traditional lumped mass models (Bergou et al., 2008; Gazzola et al., 2018). Despite

this mathematical elegance, the framework can be difficult for users to setup due to the

prohibitively unintuitive representation of strains as the DOF.

Arguably the most prominent soft physics simulator based on Cosserat rod theory is

Elastica (Gazzola et al., 2018; Zhang et al., 2019) This framework also models soft links

as Cosserat rods but uses the more traditional lumped mass model similar to DER. This

framework has been extensively physically validated and its potential for reinforcement

learning methods has also been demonstrated (Naughton et al., 2021). Despite these

results, Elastica uses an explicit integration scheme requiring prohibitively small time

step sizes to maintain numerical stability. This is especially true when simulating stiff

materials as we will show later in Section 6.3. A summary of popular robotics simulation

frameworks can be seen in Table 2.1.

2.3 Robotic Folding of Sheets

Next, we will dive into the vast robotic folding literature. The majority of prior work

addressing the folding problem can be roughly divided into four categories: mechanical

design-based solutions, vision-based solutions, learning-based solutions, and model-based

solutions.

2.3.1 Mechanical Design-Based Approaches

Mechanical design-based approaches typically involve tackling the folding problem using

highly specialized manipulators or end effectors. Early approaches involved specialized

punches and dies for sheet metal bending (Kim et al., 1998). More recently, highly

specialized manipulators for robotic origami folding have also been developed (Balkcom

and Mason, 2008). Such methods can reliably produce repeatable folding but are often

limited to a highly specific fold, geometry, and/or material.

10

2.3.2 Vision-Based Approaches

Vision-based approaches involve folding deformable materials by generating folding motions

purely from visual input. These techniques are commonly applied to tasks such as folding

clothes, where the primary focus is on detecting the garments’ shape or key grasp points.

Techniques for key feature extraction involve random decision trees (Doumanoglou et al.,

2016), RGB-D sensing data analysis (Maitin-Shepard et al., 2010; Twardon and Ritter,

2015), and fitting strategies where the detected state of deformed clothes are compared

against precomputed shapes (Kita et al., 2011; Doumanoglou et al., 2014). Given the soft

nature of clothes, subsequent manipulations are often formulated intuitively. While some

prior works employ models to predict optimal manipulation sequences, these models are

typically oversimplified and lack physical details (Miller et al., 2012). Such approaches

can be effective and rather simple to implement, but do not transfer well to paper folding

as paper possesses a much higher stiffness when compared to fabric and will attempt to

restore its natural, undeformed state if not properly handled.

2.3.3 Learning-Based Approaches

Learning-based approaches involve the robot learning how to fold through training data.

The most popular has been to learn control policies from human demonstrations, also

known as learning from demonstrations (LfD). Prior research has demonstrated flattening

and folding towels (Lee et al., 2015b,a). Teleop demonstrations are a popular avenue

for training policies and have been used to learn how to manipulate deformable linear

objects (DLOs) (Rambow et al., 2012) as well as folding fabric (Yang et al., 2017). To

eliminate the need for expensive human-labeled data, researchers have also focused on

tackling the sim2real problem for robotic folding, with reinforcement learning being used

to train robots to fold fabrics and clothes completely from simulation (Petŕık and Kyrki,

2019; Matas et al., 2018; Lin et al., 2021). More recently, Zheng et al. (2022) used

reinforcement learning to train a robot to flip pages in a binder through tactile feedback.

Pure learning-based methods have shown promising performance, but only for specific

11

tasks whose state distribution matches the training data. Such methods tend to generalize

quite poorly; e.g., when the material or geometric properties change drastically.

2.3.4 Model-Based Approaches

Model-based approaches, where the model can either be known or learned, often use model

predictive control to manipulate the deformable object. Learned models involve learning

the natural dynamics of deformable objects through random perturbations (Yan et al.,

2020b). These models are generally fast, but they can be inaccurate when experiencing

new states. Theoretical models are often formulated to be as physically accurate as

possible, which enables the direct application of their predictive power in the real world.

Examples of this have been published for both strip folding (Petŕık et al., 2016, 2020) and

garment folding (Li et al., 2015). Physical models are often constructed using energy-based

formulations (Sanchez et al., 2018; Yin et al., 2021; Zhu et al., 2022), where various elastic

energies are computed based on the topological properties of the simulated objects to solve

their deformed shape under manipulation. For example, Wakamatsu and Hirai (2004)

modeled deformable linear objects (rods) with flexure (bending), torsion, and extension

(stretching), while Jia et al. (2014) introduced manipulation as a potential energy to

compute the deformations of deformable planar objects. However, theoretical models

are usually quite expensive to run and must often face a trade-off between accuracy and

efficiency.

2.3.5 Limitations of Prior Work for Paper Folding

Despite the large quantity of prior research focusing on 2D deformable object manipulation,

the majority of these efforts have limited their scope to soft materials such as towels and

cloth. Such materials are highly compliant and often do not exhibit complicated nonlinear

deformations, thus allowing for solutions lacking physical insight. We instead tackle the

scenario of folding paper of various stiffnesses with a single manipulator in Chapter 7.

Because of its relatively high bending stiffness and slippery surface, paper is significantly

12

more difficult to manipulate since large deformations will cause sliding of the paper on

the substrate. Such an example can be observed in Figure 7.1, where intuitive folding

trajectories that may work on towels and cloth fail for paper due to undesired sliding.

However, a few researchers have attempted to solve the paper folding problem. For

example, Elbrechter et al. (2012) demonstrated paper folding using visual tracking and

real-time physics-based modeling, with impressive results, but they required expensive end

effectors (two Shadow Dexterous Hands), one end effector to hold the paper down while

folding at all times, and the paper to have AR tags for visual tracking. Similarly, Namiki

and Yokosawa (2015) also achieved paper folding through dynamic motion primitives

and used physics-based simulations to estimate the deformation of the paper sheet, also

requiring highly specialized manipulators and an end effector to hold the paper down

while folding. By contrast, our method can fold papers reliably without any need for

holding down the paper during the folding operation and requires only a simple 3D printed

gripper.

Other researchers have also attempted to fold with a single manipulator while mini-

mizing sliding (Petŕık et al., 2016; Petŕık and Kyrki, 2019; Petŕık et al., 2020), but their

methods focused on fabrics whose ends were taped down to the substrate. Though these

methods have achieved favorable folding accuracy using a physical model for garments

and fabric, we have observed in our experiments that their generated trajectories perform

poorly when applied to paper folding. We believe that this is due to their local opti-

mization strategy of solving the subsequent grasp pose using only the current grasp. In

contrast, we generate our folding trajectories through global optimization, thus showcasing

the importance of considering both current and future deformation states during the

paper manipulation process.

2.4 DLO Perception

Although research into manipulation skills for DLOs has been prevalent, the perception

algorithms used in support of these efforts remain underdeveloped. For example, in the

13

work of Tong et al. (2021), attached markers are required to determine the configuration

of the manipulated DLO. Zhu et al. (2018) carefully adjusted the workspace to increase

the contrast between the manipulated DLOs (cables) and their background. Although

these prior efforts successfully completed their target manipulation tasks, the simplistic

perception algorithms restrict real world applicability.

Consequently, DLO detection algorithms featuring various methodologies have been

proposed. Keipour et al. (2022) evaluated both curvatures and distances to fit a con-

tinuous DLO. Using data-driven methods, Yan et al. (2020a) trained a neural network

to reconstruct the topology of a DLO based on a coarse-to-fine nodal representation.

Though these methods achieve good results for some datasets, they work under the strict

assumption that only one DLO exists within the scene, which dramatically restricts their

applicability.

2.4.1 Multi-DLO Instance Segmentation

One of the first perception algorithms capable of detecting multiple DLOs, Ariadne

(De Gregorio et al., 2018), segments images into superpixels and traverses the superpixels

belonging to DLOs in order to produce paths. The ambiguity of intersections is handled

using a multi-faceted cost function that takes into consideration color, distance, and

curvature. Despite its satisfactory performance, this early approach suffers from a large

number of hyperparameters, an overreliance on DLOs being a uniform color, and the

tedious requirement that the user manually select the ends of DLOs. Furthermore, the

processing speed of Ariadne is on the order of seconds, precluding real-time operation.

2.4.2 Deep Learning Models for DLO Segmentation

In recent years, data-driven computer vision methods have attracted increasing attention

and researchers have shown that image segmentation problems can be tackled efficiently

and accurately using Deep Convolutional Neural Networks (DCNNs), particularly instance

segmentation (Bolya et al., 2019, 2020; Chen et al., 2020; Tian et al., 2020). Furthermore,

14

techniques have been introduced to help synthetically generate large quantities of pho-

torealistic data in order to adequately train such models (Denninger et al., 2019; Qiu

and Yuille, 2016; Caporali et al., 2023b). Using DCNNs, Zanella et al. (2021) created

segmentations of DLOs such as wires; however, the segmentations did not distinguish

between each DLO.

2.4.3 Achieving Realtime Performance

Improving upon Ariadne, Ariadne+ (Caporali et al., 2022b) also utilizes a DCNN model

to extract an initial binary mask of the DLOs. This allows the algorithm to then apply

superpixel segmentation purely on the binary mask itself, significantly reducing the

computation time. Paths are then generated in a similar fashion to the original Ariadne

algorithm by traversing superpixels while intersections are handled using a neural network

to predict the most probable paths. Despite these improvements, Ariadne+ is sub-realtime;

i.e., less than 3 FPS.

Another algorithm, FASTDLO (Caporali et al., 2022a) improves upon the speed of

Ariadne+ by forgoing superpixel segmentation altogether. Instead, it uses a skeleton pixel

representation of the DLO binary mask for path traversals. Intersections are then also

handled by a neural network. By replacing superpixel segmentation with skeletonization,

FASTDLO is able to achieve a real-time performance of 20 FPS for images of size 640×360

pixels.

More recently, RT-DLO (Caporali et al., 2023a) detects DLOs by representing them

as sparse graphs where nodes are sampled from DLO centerlines and edges are selected

based on topological reasoning. This results in increased runtime efficiency and accuracy

compared to Ariadne+ and FASTDLO, but requires sampling along the centerlines of

the DLO to remain computationally competitive, often resulting in noisy segmentations.

Furthermore, several hyperparameters must be set.

15

Table 2.2: Overview of state-of-the-art 2D DLO perception algorithms.

Algorithm
Intersection

Rule
DLO

Representation
Real-time

Ariadne (De Gregorio et al., 2018) color, distance, curvature superpixels ✗

Ariadne+ (Caporali et al., 2022b) DNN prediction superpixels ✓−

FASTDLO (Caporali et al., 2022a) DNN prediction skeleton pixels ✓

RT-DLO (Caporali et al., 2023a) cosine similarity sparse graph ✓

mBEST (ours) curvature skeleton pixels ✓

2.4.4 Limitations of Prior Work for DLO Detection

Ariadne+, FASTDLO, and RT-DLO are considered state-of-the-art DLO perception

algorithms, but they have been evaluated only on scenes containing DLOs with relatively

smooth curvatures and minimal self-loops. Our experiments in Chapter 8 will show

that these algorithms struggle to resolve nontrivial configurations (e.g., DLOs with

highly variable curvatures resulting in many crossings and tangles and/or nearly-parallel

intersections). We argue that a physically principled approach can outperform both

sparse graphs and black box neural network approaches when dealing with intersections.

Our mBEST algorithm robustly solves complex scenes using the simple notion that the

most probable path is the one that minimizes cumulative bending energy. Not only

does mBEST outperform in accuracy, it also achieves real-time performance with a 50%

improvement over the next best algorithm and it has no hyperparameters to set. Table 2.2

summarizes the key algorithmic differences between mBEST and competing algorithms.

2.5 Robotic Deployment of DLOs

Constructing a mapping relationship from observations of a manipulated DLO to the

robot’s action space is the primary basis of controlling DLOs. To uncover this mapping

relationship, prior works usually implemented models to predict or perception systems to

observe the deformations of DLOs under various manipulations. Manipulation schemes

are then generated based on the predicted or sensed data. Therefore, model-based and

16

perception-based methods can be considered two of the main categories for tackling ma-

nipulation problems of deformable objects. Given the impressive performance of machine

learning algorithms for processing and generalizing data from models and perceptions,

learning-based approaches have become another mainstream solution. In fact, many prior

works take advantage of a combination of these three methods to develop hybrid schemes

for different manipulation tasks. Here, we carry out a systematic review of prior scholarly

contributions that have utilized techniques based on the three delineated categories to

manipulate DLOs and other deformable objects.

2.5.1 Vision-Based Approaches

Perception-based approaches involve utilizing sensors such as tactile sensors (She et al.,

2021) and cameras (Tang et al., 2018; Yan et al., 2020a; Lee et al., 2014; Maitin-Shepard

et al., 2010) to generate motions based on detected deformations. While sensors can

capture the deformations as the manipulation proceeds, perception-based methods are

usually not robust against the material and geometrical differences of the manipulated

objects. In Tang et al. (2018), a learning-based perception framework is presented based

on the Coherent Point Drift algorithm, which is able to register states of manipulated

DLOs with captured images. Yan et al. (2020a) developed state estimation algorithms

for DLOs based on images so that a robot can perform pick-and-place manipulation on

the detected configuration. However, those perception systems based on cameras fail to

extract accurate results when occlusions happen. To overcome this shortcoming, tactile

sensors have become prevalent in the robotics community. For example, She et al. (2021)

implements GelSight, a force feedback tactile sensor, to perform robotic cable management.

Since sensing data by itself cannot predict future deformations of the manipulated objects,

pure perception-based methods are typically insufficient for complex deformable material

manipulation tasks.

17

2.5.2 Model-Based Approaches

Model-based methods usually construct a physically accurate model to predict the behavior

of manipulated DLOs. Multiple methods exist for modeling DLOs (Yin et al., 2021;

Sanchez et al., 2018). A simple and widely-used model, mass-spring systems, are often

used to model deformable objects including ropes (Schulman et al., 2013; Kita et al., 2011;

Macklin et al., 2014), fabrics (Macklin et al., 2016; Guler et al., 2015), etc. However, due

to the simplification of mass-spring systems, such models usually suffer from inaccuracies

when undergoing large deformations and lack of physical interpretability. Position-based

dynamics is another type of modeling method that usually represents DLOs as chains

of rigid bodies (Servin and Lacoursiere, 2008; Terzopoulos and Qin, 1994; Müller et al.,

2007) and introduces constraints between the positions of those rigid bodies to simulate

deformations. Though this method is straightforward and fast, physical interpretability is

also lacking.

Finite element methods (FEM) are also popular for modeling deformable objects

(Haouchine et al., 2018; Kaufmann et al., 2009; Buckham et al., 2004). However, FEM

usually requires considerable computation resources and is hardly suitable for online

predictions. More recently, fast simulation tools from the computer graphics community

have attracted researchers’ attention. For example, Discrete Elastic Rods (DER) (Bergou

et al., 2008, 2010) has arisen as a robust and efficient algorithm for simulating flexible

rods. Lv et al. (2022) used DER as a predictive modeling tool and achieved promising

performance in DLO manipulation tasks. Though various ways to model deformable

objects exists, each has their respective strengths and weaknesses and often possesses a

trade-off between computational efficiency and accuracy.

2.5.3 Learning-Based Approaches

Finally, learning-based approaches have become prevalent as they are capable of not

only predicting the shape of the deformable object but also higher-level information such

as forces (Choi et al., 2023c). Most prior works use human demonstrations or robot

18

explorations to train controlling policies for different tasks. Nair et al. (2017), Sundaresan

et al. (2020), and Lee et al. (2021) fed human-made demonstrations to robots for learning

control policies for shape control and knot-tying. Due to the tedium of constructing

manual demonstrations, some researchers take advantage of the robots’ automation to

learn a policy purely from robotic exploration (Yu et al., 2022a; Wang et al., 2019). To

acquire training data more efficiently, researchers have also looked into training policies

purely from simulation (Matas et al., 2018). Although learning-based methods have shown

promising performance for manipulating deformable objects, the trained policies are often

only valid for specific tasks whose state distribution matches that of the training set. In

other words, learning-based approaches often fail when parameters such as the material

and geometrical properties of the manipulated object change.

More relevant to the deployment task itself, Takizawa et al. (2015) implemented the

intuitive control method shown in Figure 9.2(a) for controlling the shape of a rope to make

a clove hitch knot. They achieve a success rate of 60% but require empirical hardcoded

adjustments to their controlling scheme, indicating the intuitive approach’s unsuitability

for extreme precision deployment. Additionally, Lv et al. (2022) uses a precise physical

numerical model to predict the DLO’s configuration during deployment. However, they

use a trial-and-error method to exhaustively solve the optimal deployment path, which is

computationally expensive and slow.

2.5.4 Limitations of Prior Work for DLO Deployment

Although the three discussed types of methods are suitable to be combined when solving

deformable manipulation problems given the complementariness of their pros and cons,

how to develop a combined approach to take advantage of different types of approaches

is still an open problem in the robotic community. We find that combining physically

accurate simulations and machine learning can endow the learned model with excellent

accuracy from the simulations and real-time performance because of the inference speed

of the neural network. In addition, scaled physics analysis, which is a vital tool from

19

the mathematical physics community, is valuable for augmenting the model with high

generality. In this thesis, we show how physical analysis can extract the true contributing

factors of the deployment problem and how a learning-based approach can generalize the

information from physics to offer real-time computation speed for the manipulation task.

20

CHAPTER 3

Discrete Elastic Rods (DER)

Note: As almost every part of this dissertation involves or is in part inspired by DER,

it would be remiss not to give a brief overview of the framework. Before delving further,

the reader can peruse this section to understand DER, which will provide a foundation

for understanding later chapters.

3.1 Introduction

Subsequent to the the pioneering work on physics-based modeling and simulation of

deformable curves, surfaces, and solids in computer graphics (Terzopoulos et al., 1987;

Terzopoulos and Fleischer, 1988b,a), the community has shown impressive results using

discrete differential geometry-based (DDG-based) simulation frameworks. In particular,

DDG-based simulations have shown surprisingly successful performance in capturing the

nonlinear mechanical behaviors of slender structures, e.g. rods (Bergou et al., 2008, 2010;

Audoly and Pomeau, 2010; Jawed et al., 2018b), viscous threads (Audoly et al., 2013;

Bergou et al., 2010), ribbons (Shen et al., 2015), and plates/shells (Baraff and Witkin,

1998; Grinspun et al., 2003; Batty et al., 2012). Discrete Elastic Rods (DER) algorithm

(Bergou et al., 2010; Jawed et al., 2018b) – originally developed in the computer graphics

community to simulate hair, fur, and other filamentary structures in the movies – has

been borrowed by the engineering community to solve a variety of problems involving

deployment of rods (Jawed et al., 2014; Jawed and Reis, 2014; Jawed et al., 2015b; Tong

et al., 2023c), propulsion of bacterial flagella (Jawed et al., 2015c; Jawed and Reis, 2016,

2017), elastic gridshells (Panetta et al., 2019; Baek et al., 2018; Baek and Reis, 2019),

21

Figure 3.1: Discrete schematic of an elastic rod showcasing nodes xi, reference frames
{di

1,d
i
2, t

i}, and material frames {mi
1,m

i
2, t

i}.

self assembly of carbon nanotubes (Jawed et al., 2018a), helix bifurcation (Tong et al.,

2021), overhand knot tightening (Choi et al., 2021; Tong et al., 2023b), overhand knot

buckling (Tong et al., 2023a), flagella buckling (Jawed et al., 2015c; Tong et al., 2023b),

and dynamic cantilever beams (Choi et al., 2023a). Given the vast literature validating

its physical accuracy, DER will be used extensively to produce realistic simulations as

well as sim2real solutions in this thesis. We now briefly go over its formulation.

3.2 Reduced-Order Model and Degrees of Freedom

Discrete Elastic Rods is a reduced-order model requiring only the discretized centerline

of the elastic rod. It expresses the centerline of an elastic rod with N discrete nodes:

x0,x1, ...xN−2,xN−1. This results in a total of N − 1 edges where ei = xi+1 − xi. Note

that for DER, we use subscripts to denote indices for quantities associated with nodes and

superscripts for indices for quantities associated with edges. Following this, each edge ei is

described using two orthogonal frames: a reference frame {ti,di
1,d

i
2} and a material frame

{ti,mi
1,m

i
2} as shown in Figure 3.1. The reference frame is arbitrarily predefined at initial

time t = 0s and is updated between time steps via time parallel transport (Bergou et al.,

2010). The material frame shares the same director ti = ei/∥ei∥ as the reference frame

and is obtainable through a twist angle θi with respect to the reference frame. A total of

22

N nodes, each represented by a Cartesian coordinate xi ∈ R3, and N − 1 twist angles

constitute a total of 4N − 1 degrees of freedom: q = [x0, θ
0,x1, ...,xN−2, θ

N−2,xN−1]
T ;

here, T denotes the transposition operator.

3.3 Elastic Energies

We now define the constitutive laws of the elastic energies whose gradients and Hessians

will be used to generate the inner elastic forces and Jacobians, respectively. With DER

based on the Kirchhoff rod model (Kirchhoff, 1859), the three main modes of deformation

are stretching, bending, and twisting.

3.3.1 Stretching Energy

The stretching strain of an edge ei is expressed simply by the ratio of elongation /

compression with respect to its undeformed state. Moving forwards, all quantities with

a¯ represent those respective quantities in their natural undeformed state. With this,

stretching strain can be defined as

ϵi =
∥ei∥
∥ēi∥

− 1. (3.1)

Stretching energy is then be computed as

Es =
1

2
EA

N−2∑
i=0

(
ϵi
)2 ∥ēi∥, (3.2)

where E is Young’s modulus and A is the cross-sectional area.

3.3.2 Bending Energy

Bending deformations occur between two adjacent edges and therefore, their respective

strain involves computing the curvature at each interior node. The bending strain can be

evaluated through a curvature binormal which captures the misalignment between two

23

edges:

(κb)i =
2ti−1 × ti

1 + ti−1 · ti
. (3.3)

Using this curvature binormal, the integrated curvature vector at node xi can be

evaluated using the the material frames of each adjacent edge as

κ1,i =
1

2
(κb)i ·

(
mi−1

2 +mi
2

)
,

κ2,i = −
1

2
(κb)i ·

(
mi−1

1 +mi
1

)
,

κi = [κ1,i, κ2,i]

(3.4)

Note that κi = 2 tan(ϕi/2) where ϕi = [ϕ1,i, ϕ2,i] is the turning angle vector (Fig-

ure 3.1). With this, we compute the bending energy of the rod as

Eb =
1

2
EI

N−2∑
i=1

(κi − κ̄i)
2 1

Vi

, (3.5)

where I = πh4/4 is the moment of inertia; h is the rod radius, and Vi = (∥ei∥+ ∥ei−1∥)/2

is the Voronoi length. Later, we will show how to manipulate the natural curvature κ̄ to

intuitively actuate soft robot limbs (Section 6.4.2).

3.3.3 Twisting Energy

Like bending, twisting is also a deformation mode that occurs between two adjacent edges.

Therefore the twisting strain at an interior node qi is computed as

τi = θi − θi−1 + βi, (3.6)

where βi is the signed angular difference between the two consecutive references frames of

the i and i− 1-th edges.

24

Finally, twisting energy is then defined as

Et =
1

2
GJ

N−2∑
i=1

(τi − τ̄i)
2 1

Vi

, (3.7)

where G is the shear modulus and J = πh4/2 is the polar second moment of area.

3.3.4 Elastic Forces

With each of the elastic energies defined, we can now compute the inner elastic forces (for

nodal positions xi) and elastic moments (for twist angles θi) as the negative gradient of

elastic energy:

Fint = − ∂

∂q
Eelastic, (3.8)

where Eelastic = Es + Eb + Et.

3.4 Equations of Motion

Following this, we can write the system of equations of motions as the sum of inertial

terms, internal forces, and external forces (e.g. contact, friction, gravity). This results in

the equation

F ≡Mq̈− Fint − Fext = 0, (3.9)

where M is the diagonal mass matrix, q̈ is the second derivative of the DOFs with respect

to time, Fext is the external force vector, and F is the total force. The four external forces

used in this thesis are (1) contact forces Fc, (2) friction forces Ffr, (3) viscous forces Fv,

and (4) hydrodynamic forces Fhy; and therefore we have Fext = Fc +Ffr +Fv +Fhy. The

formulation of contact and friction will be a key topic for Chapters 4 and 5 while viscous

and hydrodynamic forces are formulated in Sections 4.6.6 and the supplementary material

of Tong et al. (2023b), respectively.

25

3.5 Time Stepping Scheme

In DER, backward Euler is used to solve the 4N − 1 equations of motion in order to

update the DOF vector q. For the march from time ti to ti+1 = ti +∆t where ∆t is the

time step size, (3.9) can be rewritten as

M
∆t

[
q(ti+1)− q(ti)

∆t
− q̇(ti)

]
− Fint(ti+1)− Fext(ti+1) = 0 (3.10)

where q(ti) are the DOFs at time ti, and q̇(ti) are the velocities at time ti.

The old DOFs and velocities (q(ti), q̇(ti)) are known and the task at hand is to

compute the new DOFs and velocities (q(ti+1), q̇(ti+1)). As the Jacobian for (3.10) can

be computed, Newton-Raphson method is then used to solve for q(ti+1) iteratively. Each

element of the Jacobian matrix J at row i and column j is expressed as follows:

Jij =
mi

∆t2
δij +

∂2Eelastic

∂qi∂qj
− (Jc)ij −

(
Jfr
)
ij
− (Jv)ij , (3.11)

where Jc,Jfr, and Jv are square matrices representing the gradient of the three external

forces – contact, friction, and viscous – with respect to the DOFs. Once q(ti+1) is known,

the new velocity is simply q̇(ti+1) = (q(ti+1)− q(ti)) /∆t.

Normally, if the gradient of an external force, ∂F ext
i /∂qj, cannot be analytically

evaluated (e.g., for hydrodynamic forces F hy), this term is omitted during Newton

iterations and that external force is considered “explicitly” (Euler forward). This generally

requires a smaller time step size ∆t, leading to larger computation time. Later, we will

show that for IMC, the contact and friction Jacobians are analytically obtainable and

allow us to take aggressive time steps. Implicit treatment of contact (IMCv1 in Chapter 4)

and friction (IMCv2 in Chapter 5) is a key contribution of this thesis.

26

CHAPTER 4

IMCv1: A Semi-Implicit

Formulation for Contact and Friction

Note: In this chapter presents my first iteration of an implicit penalty-based contact

method. This method (IMCv1) uses a semi-implicit friction implementation as well as a

smoothed approximation of the Lumelsky’s min-distance algorithm (Lumelsky, 1985). Our

later formulation (IMCv2 in Chapter 5) outperforms IMCv1 in most ways. In particular,

IMCv2 uses a fully-implicit friction formulation. Additionally, the smoothed Lumelsky

algorithm was found to be unnecessary as there exists an analytical piecewise smooth

formulation for min-distance (Li et al., 2018). Therefore, this chapter is included only

for archival purposes of my research endeavors. For interested readers, I have provided

several footnotes throughout this chapter detailing “lessons” learned as well as areas of

direct improvement by IMCv2. Other readers may wish to continue directly to Chapter 5

after examining Figure 4.2.

4.1 Introduction

In prior works, DER has been used to handle contact during knot tying using a contact

method proposed by Spillmann and Teschner (2008). This model resolves contact by

computing the contact forces that will exactly lead to the desired, collision-free state.

Although computationally efficient, unrealistic visual jittering during knot tying occurs

for sufficiently large time steps due to its explicit nature.

Recall that DER discretizes the elastic rod into a number of “nodes”. Two consecutive

nodes are connected by an “edge”. To deal with contact, we define a contact energy

27

Figure 4.1: Knot tying process using DER and IMCv1 for overhand knots with unknotting
numbers (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. Red dots in (a) represent the
crossing points of the braid. Unknotting number n is equal to 1

2
× (number of crossing

points - 1). The end-to-end distance of a knot is e = L− x, where L is the total length of
the rod and x is the distance between the two ends of the knot. The knot starts off in the
configuration denoted by the left most column and is gradually pulled tight from both
ends leading to the configuration shown in the rightmost column. Physical parameters
are detailed in Section 4.7.1.

which will be used to derive the normal contact forces (responsible for enforcing non-

penetration) and Coulombic frictional forces. Instead of formulating this contact energy

as a function of the distance between nodes, we formulate it as a function of the minimum

distance between two edges, which results in more visually and physically realistic results.

Figure 4.1 presents snapshots from our simulations of the knot tying process, where the

two free ends of the “tails” of the knots are pulled .

Throughout this section, we consider open overhand knots (Jawed et al., 2015a); such

28

Figure 4.2: Illustration of two edges approaching contact. The green dots showcase the
nodes of the edges while the green dashed lines denote the centerlines of the edges. The
red dashed line denotes the vector D⃗ whose norm is the minimum distance D between the
edges. D⃗ is connected to edges i and j by ci = xi+βi(xi+1−xi) and cj = xj+βj(xj+1−xj)
where βi, βj ∈ [0, 1].

knots can be described by the unknotting number n, related to the number of turns in

the “braid” of the knot. Figures 4.1(a-d) show knots with n = 1, . . . , 4. Interestingly,

when the knots with n = 3 and n = 4 are sufficiently tight, they undergo snap-through

buckling and the “loop” of the knot suddenly transitions from a near-circular shape to a

distorted configuration. The simulation can reliably capture this behavior.

4.2 Contact Energy

Referring to Figure 4.2, denote xi,xi+1,xj,xj+1 ∈ R3 as the Cartesian nodal coordinates

of the i-th and j-th edges in a rod configuration. Next, denote an edge “combination”

as the following vector concatenation: xij := [xi,xi+1,xj,xj+1]
T . We denote the set of

all valid edge combinations as X ; two consecutive edges are always in contact and those

combinations are not included in this valid combination X .

From here, an arbitrary edge combination is denoted as simply x and all edge com-

binations are assumed to be valid: x ∈ X . The contact energy Ec is then expressed as

a differentiable analytical expression which takes the four nodes of the two contacting

edges as inputs, Ec(x) : R12 → R1. Under this formulation, we can see that the proposed

29

contact energy is only dependent on the nodal coordinates of the discretized rod and

not on the twist angles of the edges, θ, as the contact forces are computed based on the

minimum distance, D, between two contacting edges.

Following this, in order to calculate D, we utilize an efficient and accurate algorithm

for computing the minimum distance between two finite line segments in N dimensions

proposed by Lumelsky (1985). Originally a piecewise function, the algorithm is then

modified to become a twice differentiable smooth approximation. Using this completed

expression, we can then obtain the negative gradient of the energy −∇xEc as well as the

negative Hessian −∇2
xEc which are then used to evaluate Fc and Jc in (3.10) and (3.11).

The gradient of Ec produces contact forces that act in the direction of the contact normal

and whose magnitude varies with D which results in physically realistic forces when

dealing with rod-rod contact. Finally, as this method is essentially a penalty method, a

stiffness parameter k is then used to scale Fc and Jc appropriately.

By producing the contact forces in this way, dynamic friction can be calculated

according to Coulomb’s friction law. In the past, previous methods (Choe et al., 2005;

Spillmann and Teschner, 2008) have been unable to simulate Coulomb friction due to

the inability of obtaining its Jacobian. As we have access to the normal contact force

Jacobian, we can calculate Coulombic friction forces as well as the friction Jacobian.

By having access to the Jacobians of the normal and friction force, our contact model

reliably converges even in complex contact states. As the cost of producing the Jacobian

is relatively high and leads to having to solve a non-banded matrix, we introduce a hybrid

approach which ensures computational speed by only calculating the Jacobian when

necessary.

To model contact energy, we compute the minimum distance D between two edges

and feed this value into a smooth inverse ReLU function

Ec =
1

K1

log
(
1 + eK1(C−D)

)
, (4.1)

whose origin is based on the contact distance C (2h for self-contact where h is the

30

cross-sectional radius of the rod) and K1 is a stiffness term that determines how sharp

the curve is.

Intuitively, this function starts to gradually increases the contact energy between

two edges as D decreases while D > C and then sharply increases as D approaches C.

Although the gradients in the regionD > C are nonzero, the inclusion of these “cushioning”

forces greatly aid convergence and reduce any unwanted oscillating behavior that can

often occur in penalty methods. The effect of these nonzero gradients are explained in

detail in Section 4.7.2. Moving on, the key component of the contact model involves

obtaining a differentiable analytical expression for D which is difficult as computing the

minimum distance between two line segments is a highly nonlinear and noncontinuous

process. Next, we briefly describe Lumelsky’s min-distance algorithm as well as a new

modified smooth approximation that will be used as D(x).

4.3 Analytical Distance via Lumelsky’s Algorithm

Lumelsky’s algorithm produces the minimum distance between two line segments in RN

and contains three noncontinuous components; we can eliminate one of them by simply

taking the assumption that no edge can be reduced to a point. In other words, each

edge must have a finite length greater than zero. With this condition eliminated, we now

briefly layout the simplified min-distance algorithm for an arbitrary edge combination

xij. Note that here, we simply go over the steps of the algorithm. For further intuition

on how exactly the algorithm is computing the min-distance, please refer to the original

paper (Lumelsky, 1985).

To start off the min-distance algorithm, first, we add another “edge” vector eij = xi−xj

to the ones already previously formulated: ei and ej. With these vectors, we can then

calculate the necessary intermediary values as follows where i and j subscripts are left

31

out for clarity:

D1 = ei · ei,

D2 = ej · ej,

S1 = ei · eij,

S2 = ej · eij,

R = ei · ej,

λ = D1D2 −R2.

(4.2)

Next, denote a fix bound function

F (x) =


0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

, (4.3)

where all values above 1 are 1 and all values below 0 are 0. Anything between is outputted

identically. This piecewise function is the first of the two remaining noncontinuous

components. The rest of the algorithm is as follows where β1, β2 ∈ [0, 1] are the ratios that

determine at which point along the length of each edge the connecting min-distance vector

D⃗ lies as shown in Figure 4.2. With this in mind, the fix bound function F (x) is used to

ensure that these values do not go outside the appropriate range. As two edges become

increasingly closer to parallel, λ approaches 0 and becomes 0 when perfectly parallel. To

prevent division by zero, a piecewise function is used to describe the assignments of β1.

β1 :=


(S1D2 − S2R)/λ λ ̸= 0

0 λ = 0

,

β1 := F (β1),

β2 :=
β1R− S2

D2

,

βf
2 := F (β2).

(4.4)

32

The last noncontinuous component is a conditional assignment where if βf
2 ̸= β2 (i.e.

β2 < 0 or β2 > 1), the β values are reassigned as

β1 := F

(
βf
2R + S1

D1

)
,

β2 := βf
2 .

(4.5)

Finally, D can be computed as

D = ∥β1ei − β2ej − eij∥ . (4.6)

4.4 Smoothing Lumelsky’s Algorithm∗

To obtain the gradient and Hessian of the contact energy Ec(D(x)), D(x) must be

differentiable. In the previous section, we introduced an algorithm that can compute D.

Now, we modify the min-distance algorithm into a differentiable analytical expression.

As (4.2) is analytical, the only necessary modifications lie in (4.4) and (4.5). Firstly, the

fixbound function F (x) can be modelled by the smooth approximation

H(x, kh) =
1

kh

(
log
(
1 + ekhx

)
− log

(
1 + ekh(x−1)

))
, (4.7)

where kh is a hyperparameter which determines how stiff the curves are. A larger kh

value will result in a more accurate approximation but will result in “stiff” first and

second derivatives leading to reduced convergence, thus, this value should be determined

empirically. Next is the conditional reassignment in (4.5). As the reassignment only

depends on whether or not βf
2 ̸= β2, this is equivalent to the reassignment only occurring

∗Funny enough, a huge novelty of IMCv1 was this idea to smooth Lumelsky’s algorithm. At the time,
I was completely unaware of a piecewise smooth analytical solution to the edge-to-edge distance problem.
After discovering this solution and testing them both out, I discovered that the formulation in Li et al.
(2018) performed better. Still, smoothing Lumelsky’s algorithm was indeed a fun mathematical challenge.

33

(a) Smooth Fixbound Function (b) Smooth Boxcar Function

Figure 4.3: (a) Smooth fixbound function H(x) which models the piecewise function
in (4.3). (b) Smooth boxcar function B(x) which allows for an analytical conditional
reassignment. Both functions are plotted with a stiffness parameter of kh = kb = 50.

when β2 < 0 or β2 > 1. To model this, we can use a smooth boxcar function

B(x, kb) =
1

1 + e−kbx
− 1

1 + e−kb(x−1)
, (4.8)

which consists of two compounded logistic functions. Both functions H(x, kh) and B(x, kb)

can be viewed in Figure 4.3 for a value of kh = kb = 50 which is the value used to produce

the simulation results.

The last noncontinuous component of the algorithm lies in the piecewise function in

(4.4) which is actually left noncontinuous. Although this introduces a piecewise function

into the expression, this does not hurt convergence for the following reasons. First, it

should be noted that λ will almost never equal exactly 0 due to floating point arithmetic.

Therefore, the piecewise function is only required to prevent simulation crashes during

simulation starts with perfectly parallel rod configurations. Furthermore, the numeric

stability of this algorithm is maintained as whenever λ approaches zero, the numerator

S1D2 − S2R also approaches zero by a similar magnitude, effectively avoiding numeric

overflow problems (Lumelsky, 1985). In terms of performance, we have found that the

produced Hessian is an excellent indicator of gradient direction when approaching or

passing through parallel configurations when validating against finite difference for a wide

variety of edge configurations.

34

With these two functions and the above prevention of division by zero, we can then

replace (4.4) and (4.5) with the expressions

t1 =


(S1D2 − S2R)/λ λ ̸= 0

0 λ = 0

,

t2 = H(t1),

u1 =
t2R− S2

D2

,

u2 = H(u1),

β1 = (1−B(u1))
u2R + S1

D1

+B(u1)t2,

β2 = u2,

D = ∥β1ei − β2ej − eij∥ ,

Ec =
1

K1

log
(
1 + eK1(C−D)

)
.

(4.9)

As shown above, the min-distance D is fed into (4.1) which then leads to a fully differen-

tiable analytical expression Ec(x). It should be noted that an end to end differentiation

of Ec(x) ends up with an extremely large and complex equation when using symbolic

differentiation (Meurer et al., 2017). Therefore, to greatly simplify the expression and

improve computational efficiency, the gradient and Hessian for several of the intermediary

algorithmic values are taken and then chain ruled together.∗ Effectively, we can define

Ec(x) by the functional

f(ei, ej, eij, D1, D2, S1, S2, R, t2). (4.10)

Since the inputs for f(·) are all functions of x, chain rule tells us that we can obtain the

∗Later, we actually discovered that this chain ruling was unnecessary when switching over to more
efficient symbolic differentiation tools such as SymEngine (Čert́ık, 2019), which IMCv2 uses.

35

gradient of the contact energy as

∇xEc =
∂f

∂ei

∂ei
∂x

+
∂f

∂ej

∂ej
∂x

+
∂f

∂eij

∂eij
∂x

+

∂f

∂D1

∂D1

∂x
+

∂f

∂D2

∂D2

∂x
+

∂f

∂R

∂R

∂x
+

∂f

∂S1

∂S1

∂x
+

∂f

∂S2

∂S2

∂x
+

∂f

∂t2

∂t2
∂x

.

(4.11)

Here, we see that for any arbitrary edge combination x, the produced force −∇xEc

will be a vector of size 12 consisting of four concatenated 3-dimensional contact force

vectors for every node making up x. These 12 elements contribute to the 12 entries of the

(4N − 1)-sized Fc vector located at the following positions: 4i− 3, 4i− 2, 4i− 1, 4(i+1)−

3, 4(i+ 1)− 2, 4(i+ 1)− 1, 4j − 3, 4j − 2, 4j − 1, 4(j + 1)− 3, 4(j + 1)− 2, 4(j + 1)− 1.

Once the contact forces are computed for every contacting edge combination during a

time step, the force values are added to Fc and then incorporated into DER.

To obtain the Hessian, we simply take (4.11) and differentiate once again to obtain

−∇2
xEc. Once obtained, the Hessian is added to the (4N − 1× 4N − 1) sized Jacobian

matrix Jc in a similar manner. The derivation of the Hessian can be done by using the

product rule and its derivation is left out for brevity.

4.5 Semi-Explicit Friction

Just as we obtained contact force vectors of size R12, we produce frictional forces in a

similar manner where given an edge combination xij, we compute a friction force vector

Ffr
ij ∈ R12 according to Coulomb’s dynamic friction law. For each edge combination, this

12-sized vector is added to the appropriate entries of Ffr (3.10).

Coulomb’s friction law states the following:

1. Frictional force is independent of velocity, and

2.
∥∥Ffr

∥∥ = µkFn during sliding,

where µk is the dynamic friction coefficient and Fn is the normal force (more details

36

later in this section). From the contact model, we were able to derive −∇xEc which is

equivalently the normal contact forces Fc. As mentioned, the gradient of the contact

energy will always produce forces that are along the contact normal. Therefore, we can

obtain Fn at the i-th edge of the contact pair xij by simply summing up the contact

forces on the i-th and i+ 1-th nodes: Fn = ∥Fc
i + Fc

i+1∥. We can also use these contact

forces to obtain the contact norm n = (Fc
i + Fc

i+1)/Fn. The direction of friction is then

determined by the tangential relative velocity u of edge i with respect to edge j, which

can be obtained by

ve
i = 0.5(vi + vi+1),

ve
j = 0.5(vj + vj+1),

vrel = ve
i − ve

j ,

u = vrel − (vrel · n)n,

û =
u

∥u∥
,

(4.12)

where vi,vi+1,vj, and vj+1 are the nodal velocities of the i-th and j-th edges.

We formulate the friction force on edge i using a modified form of Coulomb’s friction

equation:

Ffr,e
i = −µkγûFn, (4.13)

where weight γ ∈ [0, 1] eliminates frictional forces between edges with extremely small

relative velocities that can cause unwanted behavior.∗ To maintain differentiability, it is

obtained using a smoothed Heaviside step function with the tangential relative velocity

as input:

γ =
1

1 + e−kf (||u||−c)
, (4.14)

where kf is the stiffness and c determines the limit for the step transition, which must take

into consideration the scaling of the model as explained in Section 4.6. In our experiments,

∗Originally, IMCv1 was created with kinetic friction in mind and γ was incorporated to prevent
large friction forces for small velocities. But this is essentially simulating sticking-sliding transitions!
As a young graduate student at the time, I did not realize that I was indirectly starting to simulate
sticking-slipping, something that is fully fleshed out in Chapter 5.

37

kf = 50 and c = 0.15. We can do the same for edge j to obtain Ffr,e
j . The computed

frictional forces are then equally distributed to each node and then concatenated four

times to form the final friction vector

Ffr
ij =

[
0.5Ffr,e

i , 0.5Ffr,e
i , 0.5Ffr,e

j , 0.5Ffr,e
j

]T
∈ R12×1. (4.15)

Once these friction force vectors are computed for every contacting edge combination

during a time step, we can then compute the friction force Jacobian matrix Jfr
ij as well.

These are then added to Ffr and Jfr in exactly the same way as the contact energy gradient

and Hessian.

It should be noted that several simplifications were made for the friction model.∗

Firstly, the relative velocities were computed using the midpoint of the edges rather than

the contact points. Likewise, the friction forces were evenly distributed rather than being

dependent on the contact points. This was done as it greatly simplifies the friction force

Jacobian, leads to improved convergence, and does not have any noticeable effects so long

as the rod is sufficiently discretized.

Furthermore, we treat friction semi-explicitly by using the known velocities from the

previous time step. This allows the friction direction to remain constant during Newton

iterations which improves convergence considerably. Although a fully implicit scheme is

possible, computing the necessary contact Hessian on every iteration is costly and the

overall speed of the algorithm greatly benefits from this formulation.

In terms of limitations, this method clearly does not enforce static friction and so

should only be used for continuous sliding scenarios such as knot tying. Furthermore,

friction occurring due to the rod twist θ is not modeled. When an edge undergoes enough

twist and is in contact with a receiving edge, friction forces occur slightly off the centerline

of this receiving edge. As our model assumes that all friction occurs precisely on the

centerline and formulates all contact only using x, such friction-twist coupling is neglected.

∗All such simplifications are remedied in Chapter 5.

38

Lastly, the produced friction forces can possibly overtake the pull forces when the pull

speed is very low leading to unrealistic sliding in the opposite direction. This must be

remedied by pulling at a sufficiently high speed.

4.6 Algorithmic Components

In addition to the force and Jacobian generation, there are several additional steps to the

IMCv1 algorithm that are explained in this section as well as several hyperparameters

that must be properly tuned for optimal performance and convergence which are listed

below.

1. δcol, the collision limit,

2. k, the contact stiffness,

3. K1, the contact energy stiffness, and

4. ω, the number of iterations before the hybrid algorithm computes the Jacobian

4.6.1 Scaling

First, the nodal coordinates are scaled by a scaling factor S = 1/h so that the adjusted rod

radius equals a unit value of 1 (i.e., C = 2 for self-contact). To ensure that the distance

at which two edges experience a force is very close to the rod surface, the following energy

function is used:

Ec =
1

K1

log
(
1 + eK1(2−D

h)
)
. (4.16)

4.6.2 Collision Limit∗

Following this, the collision limit δcol is the threshold value used to determine when two

edges are “in contact”. This value is fed into a collision detection algorithm which returns

∗Looking back, requiring the user to manually choose the collision limit δcol was a rudimentary
solution to say the least. IMCv2 resolves all such tedium in Chapter 5.

39

all edge combinations falling into this threshold which is denoted by the set

C =
{
xij ∈ X | Dij/h < 2 + δcol

}
. (4.17)

The minimum distance from this set is denoted by Dmin = minx∈C D(x), which will be

used later to adjust the contact stiffness k accordingly.

The collision limit δcol must be chosen carefully as a higher δcol value results in

additional computation due to more qualifying edge combinations whereas a δcol value

that is too low will produce non-smooth gradients that hamper convergence.

A good way to determine a proper δcol value is to observe the plotted contact energy

function from (4.16) for a chosen K1 value. By observing the contact energy curve, the

point at which the generated gradients are ≈ 0 can be found when the slope of curve is

nearly flattened out. Choosing a δcol value that encompasses this region ensures that the

generated gradients are sufficiently smooth. An example of this process can be found in

Figure 4.4.

The stiffness of the contact forces is determined by the contact energy stiffness value

K1. As this value becomes higher, the region above the contact surface at which two

edges experience a force decreases. This leads to stiff contact which is more physically

accurate as realistically the contact energy should be zero whenever D > C and shoot

to ∞ as soon as D = C. On the other hand, a K1 value that is too large will result in

convergence issues while a K1 value that is too low will have excessive oscillations between

the contact bodies. A value that was found to be a good compromise between physical

accuracy and convergence was K1 = 50.

4.6.3 Adaptive Contact Stiffness

The next hyperparameter that must be specified is the contact stiffness k, a scalar value

that is used to scale the contact force and Jacobian. This value is adaptively readjusted

every time step to ensure that excessive hovering or penetration is minimized and so only

40

Figure 4.4: Contact energy curve of (4.16) for K1 = 10. Scaling by S = 1/h results in the
curve being centered at a self-collision length of C = 2.0. As denoted by the solid blue
line, the curve starts to flatten out to zero at D/h = 2.5 which indicates that generated
gradients are ≈ 0. Therefore, a collision limit δcol = 0.5 would be suitable. Conversely,
δcol = 0.2 as denoted by the red line would result in the Newton solver potentially failing
to converge due to non-smooth force generation.

the initial value must be specified which can be found empirically. This initial k should

be reasonably close to the value that would result in Dmin = C. In our experiments, we

employed a simple algorithm that decreased or increased k by a fraction of a percent

depending on whether or not Dmin was < C − ϵ1 or > C + ϵ2 where ϵ1 and ϵ2 are limits

indicating an acceptable contact range. This algorithm updates k only when Dmin is

deviating from the region defined by [C − ϵ1, C + ϵ2] and is otherwise left constant to

prevent overshooting.

41

4.6.4 Hybrid Formulation∗

As mentioned previously, this algorithm applies a hybrid approach in which the Jacobian

of the contact and friction forces are only computed once the number of iterations passes

a limit ω. This is done because often convergence can be quickly obtained even without

the contact Jacobian and with the absence of the contact Jacobian, the overall Jacobian

matrix remains a banded matrix which can be solved significantly faster. Although the

Jacobian results in a decrease in iteration count, the consequent increase in computational

time outweighs this benefit as IMCv1 is able to reliably converge rapidly without it for a

majority of time steps. With this in mind, the Jacobian is crucial for completing volatile

contact states with high velocities and impacts that could otherwise end the simulation

prematurely. Therefore, this hybrid approach maximizes computational speed while

ensuring that the simulation can consistently reach the next time step during especially

difficult contact scenarios such as inversion and the initialization phase where the rod

rapidly reverts to its lowest energy state. The limit ω should be chosen empirically so

that the Jacobian is only generated when necessary. In our experiments, we used an ω of

20.

4.6.5 Newton Damper†

Lastly, although not a hyperparameter, a damping coefficient α is used to reduce the step

size of the Newton solver as the number of iterations increase for a particular time step.

For this, a simple decaying algorithm is used which reduces α by a factor of 2 every other

iteration. Overall, aside from the collision detection algorithm (which is only performed

on the first iteration of every time step), the time complexity of IMCv1 with and without

Jacobian generation is O(n) and O(n2) respectively, where n is the number of collisions

∗This hybrid formulation was created because our experiments showed that the Hessian of IMCv1
had sometimes little impact on the convergence. After the publication of IMCv1, it was discovered that
our Hessian chain ruling contained an error and was off by a scale factor. After resolving this error, the
Hessian aided convergence greatly and thus, the hybrid formulation was no longer needed.

†Replaced with Goldstein-Price line search in Section 5.5.3.

42

Algorithm 1: IMCv1

Parameters : k, δcol, ω, S
Input: x,v, n // from DER

Output: Fc,Jc,Ffr,Jfr, α
1 Function IMCv1(x, v, n):
2 scale x and v by S
3 if n == 0 then // run only on first iter

4 C, Dmin ← collisionDetection(x, δcol)
5 k ← updateConStiffness(k,Dmin)

6 end
7 if n < ω then // compute only forces

8 Fc ← genContact(C)
9 Ffr ← genFriction(C,v,Fc)

10 Jc ← zero square matrix
11 Jfr ← zero square matrix

12 end
13 else // compute Jacobian for convergence

14 Fc,Jc ← genContact(C)
15 Ffr,Jfr ← genFriction(C,v,Fc,Jc)

16 end
17 scale Fc,Jc,Ffr,Jfr by k
18 α← newtonDamper(n)
19 return Fc,Jc,Ffr,Jfr, α

detected. The full contact algorithm as well as its implementation in DER can be seen

in Alg. 1 and 2, respectively. In Alg. 2, the term “free” are the indices that correspond

to the free degrees of freedom of the elastic rod. The remaining degrees of freedom are

“fixed” and depends on the user defined boundary conditions.

4.6.6 Viscous Damping∗

Since IMCv1 is inherently a penalty method, the inclusion of damping forces greatly aid

the stability of the contact model. A simple viscous damping force is applied to the elastic

∗This viscous environmental damping was originally used to reduce unwanted oscillations. Once the
Hessian chain ruling error was remedied, damping was found to no longer be required. Still this damping
force can be very useful for providing stability in high energy settings, as shown later in Chapter 6.

43

Algorithm 2: DER with IMCv1

Input: q(ti), q̇(ti)
Output: q(ti+1), q̇(ti+1)
Require : boundary conditions → free

1 Function DER(q(ti), q̇(ti)):
2 Guess: q(1) ← q(ti)
3 n← 0, ϵ←∞
4 while ϵ > tolerance do
5 Fint ← genForces(·)
6 Jint ← genJacobian(·) // ∂2Eelastic

∂qi∂qj
in (3.11)

7 Fc,Jc,Ffr,Jfr, α← IMCv1(x(n), q̇(ti), n) // Alg 1

8 Fder ← left side of (3.10)
9 Jder ← left side of (3.11)

10 Ffree ← Fder(free) // Downsize to only include free DOFs

11 Jfree ← Jder(free, free)

12 ∆qfree ← (Jfree)
−1Ffree // Solve Jfree∆qfree = Ffree

13 q(n+1)(free)← q(n)(free)− α∆qfree

14 ϵ← ∥Ffree∥ // update error

15 n← n+ 1

16 end

17 q(ti+1)← q(n)

18 q̇(ti+1)← (q(ti+1)− q(ti))/∆t
19 return q(ti+1), q̇(ti+1)

rod by applying a force

Fv = −η
(
q(ti+1)− q(ti)

∆t

)
V (4.18)

on a node where η (Pa · s) is a viscosity coefficient and V is the Voronoi length.

The Jacobian of this damping force is then simply

Jv = −ηV

∆t
I, (4.19)

where I is the square identity matrix of size (4N − 1). This damping force was also added

to SPT for fair comparison. For all simulations, a viscosity value of η = 0.01 Pa · s was

used unless otherwise specified.

44

Figure 4.5: Model validation and comparison with theory. In the above half is the pull
force comparison for n = 2 with different pull speeds p and friction µk = 0.10. As shown,
the pull forces are identical in magnitude indicating that friction is independent of velocity.
In the bottom half is the n = 1 simulation data comparison with Audoly’s predictive
model (Audoly et al., 2007) shown in (4.20). Starting with an open trefoil knot, the
knot is tightened and then loosened with µk = 0.10 which is indicated by (+) and (−)
respectively. A moving average of 200 steps is used for the n = 1 pull forces to minimize
visually large variations caused by the lower end of the log scale.

4.7 Overhand Knot Tying Validation

In this section, we first validate the correctness of our contact model against theory.

Afterwards, to observe the benefits of using IMCv1, we compare simulation results

with the contact model (SPT) proposed by Spillmann and Teschner (2008) for knots of

unknotting numbers n ∈ [1, 4] which are shown in Figure 4.1. For both methods, the

contact model is used to simulate knot tying until a mutual termination state which is

shown in the rightmost column of Figure 4.1. Lastly, we compare the computational

efficiency and convergence properties between the two methods. All simulations for IMCv1

used a contact energy stiffness K1 = 50 and a collision limit δcol = 0.15 which was obtained

using the method mentioned in Figure 4.4.

45

Figure 4.6: Pull force comparison for n = 4 and different µk values. There is a clear
monotonically increasing relationship between pull forces and µk. Additionally, inversion
(indicated by the sudden drop in pull force) occurs earlier for higher µk values as expected.
A pull speed of 6, 9, and 12mm/s was used for µk = 0.1, 0.2, and 0.3, respectively.
This was necessary as higher friction coefficients induced the limitation mentioned in
Section 4.5 for higher pull speeds.

4.7.1 Theoretical Validation

Coulomb’s friction law states that friction is independent of velocity. To show that our

model abides by this, we plot the pull forces F in Newtons (N) when tightening a knot

with unknotting number n = 2 with friction coefficient µk = 0.10 for pull speeds p of 3,

6, and 9mm/s (pulled from both ends). A 1 meter long rod with cross-sectional radius

h = 1.6mm, density ρ = 1180 kg/m3, and Young’s Modulus E = 1.8e5Pa is used and

is discretized into 301 nodes. We plot a regularized pull force Fh2/EI against
√
h/R

where EI = πEh4/4 is the flexural modulus and R is the radius of the knot loop. The

radius R can be computed using the knot circumference from Figure 4.1 as R = e/(2π).

As Figure 4.5 shows, the magnitude of the n = 2 pull forces are approximately the same

for all pull speeds. Dynamic friction force in Coulomb’s model is independent of velocity

and therefore this observation supports the physical correctness of the generated friction

46

forces.

Next, the pull forces for a trefoil knot (n = 1) are compared with the predictive model

by Audoly et al. (2007). This model states the following theoretical equivalence

Fh2

EI
=

ϵ4

2
± µkσϵ

3, (4.20)

where σ is a numerical constant (σ = 0.492 for trefoil knots), ϵ =
√

h/R, and the ± term

is the frictional component from tightening (+) and loosening (−).

Using the same rod properties as mentioned, a trefoil knot is tightened and then

loosened at 3mm/s using IMCv1. Here we reduce η to 0.0005 as loosening can be sensitive

to small forces. As shown in Figure 4.5, the recorded pull forces roughly follow the

curves of the predictive model albeit with some displacements when tightening increases

sufficiently. This can be attributed to imperfections in the predictive model as (4.20)

is an elegant lightweight solution that does not perfectly model friction when the knot

becomes sufficiently tight, i.e.
√

h/R becomes large. Still, aside from the displacement,

the pull forces follow the rate of increase/decrease of the predictive model well which is a

good indicator of correctness.

Furthermore, in Figure 4.5, during the loosening, the trefoil knot can be seen being

locked by friction at a point ϵ0 =
√

h/R0 ≈ 0.1285. From the right side of (4.20), we can

rearrange the terms to obtain

µ =
1

2σ
ϵ0 = 1.02

√
h/R0. (4.21)

When plugging in our obtained ϵ0 value, we obtain µtheory = 0.1306 which is reasonably

close to the friction coefficient used in simulation, µk = 0.10.

Finally, we show that the pull forces monotonically increase with µk in Figure 4.6.

Here, we consider the n = 4 case. When recording the pull forces for µk of 0.1, 0.2, and 0.3,

we can see that the rate of increase is held constant while the magnitudes monotonically

increase. Furthermore, we can see that as friction increases, the inversion point occurs

47

sooner, which indicates that the point of inversion is highly dependent on µk.

4.7.2 Pull Force Accuracy

Simulations of knot pulling are performed for both IMCv1 and SPT using a pull speed

p = 6mm/s, time step ∆t = 0.5ms, friction coefficient µk = 0.10, and the same rod

properties from Section 4.7.1. With these settings, knot tying was simulated for each

method with the experienced pull forces being recorded at each time step. Figure 4.7a

plots these pull forces with respect to the end-to-end shortening. Here we see that for both

IMCv1 and SPT, as the end-to-end shortening decreases (knot is pulled tight), the pull

forces increase identically as expected. They also increase in magnitude as the unknotting

number n goes up and for n = 3 and n = 4, inversion occurs which is indicated by the

sudden drop in pull force. This is shown visually in Figure 4.7b for n = 4.

The largest difference between the methods can be seen in the considerable amount

of force jittering by SPT which occurs due to the time step being too large. This leads

to visually unrealistic results where the knot continuously “trembles” while being tied.

On the other hand, IMCv1 produces much smoother pull forces which directly translate

to visually smooth simulations for the same time step size. One caveat that should be

noted is that SPT ensures exact non-penetration during contact whereas IMCv1 allows

small penetrations and hovering to occur which is physically unrealistic. Still, through

the adaptive contact stiffness and the inclusion of damping, IMCv1 contains any hovering

to stay within 20µm above the contact surface while penetrations rarely exceed 5µm

(for comparison, cross-sectional radius is h = 1.6mm). Thus, this minor error is largely

indiscernible both visually and physically.

Overall, the enforcement of non-penetration at every time step limits the maximal

time step that SPT can take without experiencing significant force jittering whereas

IMCv1 produces smooth results in exchange for contact varying within a small region.

48

n=1

n=2

n=3

n=4

(a) IMCv1 vs. SPT Pull Force Comparison

(1) (2) (3) (4)

(b) Inversion Snapshots for n = 4

Figure 4.7: Simulation results comparison. (a) Pull force comparison for unknotting
numbers 1 through 4 using SPT (Spillmann and Teschner, 2008) and IMCv1 with
p = 6mm/s, ∆t = 0.5ms, and µk = 0.10. (b) Inversion occurring for n = 4 and the
corresponding drop in pull forces shown by the border box in (a).

4.7.3 Runtime

Next, we discuss run-time comparisons as well as convergence characteristics. Here, we

show that in addition to IMCv1 producing smoother results than SPT at sufficiently

large time steps, IMCv1 is also computationally competitive. Both models use the same

DER implementation which is written in C++. One discrepancy is that while SPT is

directly implemented into DER in C++, IMCv1 is written entirely in Python for ease

49

Table 4.1: IMCv1 vs. SPT (Spillmann and Teschner, 2008) run time data, µk = 0.10,
∆t = 0.5ms, p = 6mm/s. AIPT stands for average iterations per time step. ATPI stands
for average time per iteration. Iters indicates the total number of Newton’s iterations
that were necessary to complete the simulation. The time is the total computational time
to completion.

Model n AIPT ATPI [ms] Total Iters Time [s]

IMCv1

1 2.23 2.24 245824 551

2 2.67 2.20 245830 542

3 3.04 2.18 261707 570

4 3.24 2.12 239987 509

SPT

1 8.25 2.30 907541 2085

2 9.28 2.26 853935 1931

3 10.25 2.26 881907 1990

4 10.94 2.21 810160 1790

of prototyping.∗ To minimize any performance differences arising from using different

languages, we employed an LLVM-based Python JIT compiler (Lam et al., 2015) for

certain computational intensive portions of the code such as the chain ruling procedure

from (4.11).

The computational time for each iteration for both contact methods is recorded using

the ctime library. This timing was done so that any computational time arising from IO

usage recording the data and rendering the rod graphically were excluded. One thing to

note is that the timings for IMCv1 include all of the shared memory overhead between the

C++ and Python programs. Therefore, a significant performance increase for IMCv1 can

be expected when fully implemented in C++ and compiled without this overhead. Finally,

both methods used identical Newton tolerances for all simulations and all simulations

were run on a single thread on an Intel Core i7-9700K 3.60GHz CPU.

In Table 4.1, the runtime, total number of iterations, average iterations per time

step (AIPT), and average time per iteration (ATPI) are reported. For all knots, we can

immediately see that IMCv1 converges with a noticeably smaller amount of iterations

than SPT. While the ATPI between both methods are about equal, the simulations for

∗IMCv2 is coded entirely in C++.

50

IMCv1 finish approximately 4× faster than SPT for all knots. For both methods, AITC

increases as the knot complexity n increases as expected.

One observation was that the number of iterations to complete a time step increased

for IMCv1 as the knot loop became extremely small and/or tightly inverted. Dynamically

reducing the time step solves this issue but this was left out so that all reported results

were for a constant time step. For the same time step size, SPT can more reliably converge

when the knot loop becomes very small albeit with the large force jittering still present.

Therefore, it may be worth investigating performance differences between the two methods

when SPT uses a time step size that is small enough to compete with the smoothness of

IMCv1 while IMCv1 starts at a larger time step and dynamically reduces as convergence

becomes an issue.

Still, even for a constant time step size of 0.5ms, IMCv1 is seen to be more computa-

tional efficient when pulling the knots close to taut and for the majority of the knot tying

procedure, takes far less iterations to converge. This difference should only increase with

IMCv1 being implemented directly into DER in C++.

4.8 Conclusion

In this chapter, we introduced a novel contact model for DER simulations in which the

contact forces are handled implicitly using a smooth penalty force formulation. This

model was shown to be able to model dynamic friction and simulate knot tying accurately.

We showcased comparisons with previous methods (Spillmann and Teschner, 2008) and

concluded that our method was capable of producing more visually smooth realistic

results while also producing physically accurate data. Furthermore, our method was

stable, computationally competitive, and took minimal iterations to converge.

Although this method has shown promising results for knot tying simulations, it is

not without its drawbacks. Firstly, IMCv1 is largely unsuitable for contact scenarios that

frequently involve sudden excessively large velocities and impacts as these will result in

excessive penetration and possible overshoot of the contacting body without appropriate

51

damping. Where IMCv1 shines is scenarios with constant sliding contact such as knot

tying where contact forces may or may not gradually rise.

Additionally, to be absolutely physically realistic, contact forces should equal zero when

D > C whereas the usage of (4.1) produces a force Fc ̸= 0 when D > C. It has been shown

that employing a smooth approximation such as this can greatly improve convergence

in penalty methods (Durville, 2012) which is one of the goals for this algorithm. As the

contact forces approach zero as K1 becomes sufficiently large while D > C, this is not a

significant problem as discussed in Section 4.7.2. Still, the fact that Fc is not exactly zero

is something to consider. Lastly, the large amount of hyperparameters leaves something

to be desired as tuning may be necessary when switching between rod properties which

can be time consuming.

Some possible future research directions involve modifications that further improve

the realism of the contact model. One of these pertains to the contact stiffness parameter

k. A simplification that was employed is the usage of a global stiffness parameter. More

realistic contact can be simulated using local stiffness parameters as shown previously

by Durville (2012) in exchange for more computation. This addition may also fix the

problem where friction forces overtake the pull force of the knot if the pull speed is too

low as mentioned in Section 4.5.

Finally, another challenging problem that remains is the proper modelling of static

friction. Although dynamic friction is adequately modelled, ultimately, subtle frictional

threshold events such as the transition from sticking to sliding and vice-versa are necessary

to simulate realistic contact outside the realm of constant sliding. In the next chapter,

many of these concerns will be addressed with a more sophisticated frictional contact

formulation, IMCv2.

52

CHAPTER 5

IMCv2: A Fully Implicit

Formulation for Contact and Friction

5.1 Introduction

In this chapter, we formulate IMCv2, a fully-implicit penalty-based contact model for

frictional contact based on our previous work (IMCv1) in Chapter 4 (Choi et al., 2021). We

improve upon this iteration by (1) reformulating frictional contact to be fully-implicit for

enhanced physical accuracy, (2) squaring our contact energy term for more rigid contact,

(3) changing our smoothly approximated distance formulation to a more stable piecewise

analytical formulation, and (4) adding a line search method for increased robustness. Our

proposed numerical framework can generate contact for any rod-rod contact scenario and

can also generate contact for 3D meshes with proper alterations.

Similar to Chapter 4, we denote the following vector concatenation describing an

edge-to-edge contact pair: xij := [xi,xi+1,xj,xj+1]
T ∈ R12, where |j − i| > 1 to exclude

consecutive edges from consideration when enforcing contact. We describe the set of all

valid edge combinations as X . In future equations, we simply denote the subscriptless x

as an arbitrary edge combination for clarity. We design a contact energy Ec(D(x)) to

increase as the minimum distance D (Figure 4.2) between two edge centerlines approaches

a contact threshold C (2h for self-contact where h is the radius). With this, the contact

energy gradient −k∇xEc ∈ R12 is used as the contact forces while the contact energy

Hessian −k∇2
xEc ∈ R12×12 is used as the contact force Jacobian, where k is the contact

stiffness which scales the contact forces appropriately to enforce non-penetration. In

the upcoming sections, we will now formulate contact energy E(D), minimum distance

53

Figure 5.1: Rendered snapshots of flagella bundling with varying amounts of flagella.
Rows contain (a) M = 2, (b) M = 3, (c) M = 5, and (d) M = 10 flagella. Each column
indicates the flagella configuration at the moment of time indicated in the top row.

between two edges D(x), as well as friction.

54

0

1

N-1
N-2

i

i-1

i+1

1
i

1
i

2
i

2
i

i-1

i

Figure 5.2: Discrete schematic of a flagellar elastic rod. Nodes x0, x1, and the edge
between x0 and x1 is clamped along the dashed centerline and rotated with an angular
velocity ω. The rest of the nodes constitute the helical flagellum which revolves around
the centerline. A zoomed in snapshot of two edges showcasing their reference frame,
material frame, turning angles, and twist angles is shown.

5.2 Improved Contact Energy

In the ideal setting, contact energy must satisfy two properties: (1) it is zero for any

distance D > C and (2) it is non-zero at exactly distance D = C. A Heaviside step

function can essentially describe these properties. Such a function is non-smooth with a

very sudden discontinuous change in value, and therefore, cannot be solved reliably by

root-finding algorithms such as Newton’s method. To remedy this, IPC (Li et al., 2018)

uses the following energy formulation to smoothly approximate contact:

EIPC
c (D, δ) =


−(D − (C + δ))2 ln

(
D

C+δ

)
, D ∈ (C,C + δ)

0 D ≥ C + δ,

(5.1)

55

Figure 5.3: Plots for (5.2) with varying δ values. Note that some of the tolerances
displayed are unrealistically large for clarity.

where δ is the distance tolerance that defines the region (C,C+δ) for which non-zero forces

are experienced. This contact energy approaches ∞ when D decreasingly approaches C

and is therefore undefined for the region D ≤ C. Although this barrier formulation allows

IPC to strictly enforce non-penetration, the solver must be careful never to allow any

contact pairs in the penetration zone and/or venture into this undefined region during

the optimization process. This is ensured by the inclusion of a custom line search method

which conservatively sets an upper bound for the Newton update coefficient α.

In contrast to this, we design our energy formulation to allow for optimization into

the penetrated region, thus expanding the range contact forces are experienced from

D ∈ (C,C + δ) to D ∈ (0, C + δ). This in turn allows us to take advantage of more

aggressive line search methods, which leads to faster convergence for the flagella contact

problem. Although this in theory allows our model to be susceptible to penetration,

a sufficient contact stiffness k remedies this issue. In addition, to further ensure non-

penetration, we take our previous energy formulation from Choi et al. (2021) and square

56

it so that our gradient grows exponentially instead of linearly. In the end, we use the

smooth approximation

Ec(D, δ) =


(C −D)2 D ∈ (0, C −D](

1
K1

log
(
1 + eK1(C−D)

))2
D ∈ (C − δ, C + δ)

0 D ≥ C + δ,

(5.2)

where K1 = 15/δ indicates the stiffness of the energy curve.

We incorporate the piecewise term (C −D)2 for two reasons. First, this term equiva-

lently models our energy formulation for the region D ≤ C − δ and has a simpler gradient

and Hessian, resulting in computational efficiency. Second, and more importantly, the

piecewise term also ensures numeric stability by preventing the exponential term in (5.2)

from exploding. We show our plotted energy term in Figure 5.3 for various δ values. As

shown, the energy starts to increase at an exponential rate as D decreases towards the

contact limit which is shown as 0 here. As δ decreases, more realistic contact is achieved

(enhancing accuracy) in exchange for a stiffer equation (more difficult to converge).

5.3 Piecewise Continuous Distance

As mentioned in Li et al. (2020a), the minimum distance between two edges (xi,xi+1)

and (xj,xj+1) can be formulated as the constrained optimization problem

D = min
βi,βj

||xi + βi(xi+1 − xi)− (xj + βj(xj+1 − xj))|| ∋ 0 ≤ βi, βj ≤ 1, (5.3)

where βi and βj represent the contact point ratios along the respective edges. Minimum

distance between two edges can be classified into three distinct categories: point-to-point,

point-to-edge, and edge-to-edge. As the names suggest, these classifications depend on

which points of the edges the minimum distance vector D⃗ lies as described by βi and βj

shown in Figure 4.2.

57

In the previous chapter (Choi et al., 2021), we altered Lumelsky’s edge-to-edge

minimum distance algorithm (Lumelsky, 1985) (which implicitly computes the β values)

to be fully differentiable through smooth approximations. In this chapter, we now change

the distance formulation to use piecewise analytical functions as shown below in (5.4),

(5.5), and (5.6), similar to Li et al. (2020a), as we found more stable performance compared

to our smooth formulation despite the non-smooth Hessian when changing between contact

categories.

We now describe the conditions for each contact type classification. First, if D⃗ lies on

the ends of both edges (i.e. both β constraints are active), then the distance formulation

degenerates to the point-to-point case which can easily be solved using the Euclidean

distance formula

DPP = ||xa − xb||, (5.4)

where xa and xb are the nodes for first and second edges in contact, respectively.

If D⃗ only lies on one end of one rod (i.e. only one β constraint is active), then the

contact type degenerates to point-to-edge. This can be solved as

DPE =
||(xa − xb)× (xb − xc)||

||xa − xb||
, (5.5)

where xa and xb are the nodes of the edge for which the minimum distance vector does

not lie on an end and xc is the node of the edge which the minimum distance vector does

lie on. Finally, edge-to-edge distance (i.e. no active constraints) for the i-th and j-th

edges can be solved as

d = (xi+1 − xi)× (xj+1 − xj),

DEE = |(xi − xj) · d̂|,
(5.6)

where ˆ indicates a unit vector. With D fully defined, this concludes our contact energy

formulation. To correctly classify contact pairs, we use Lumelsky’s algorithm (details in

Section 4.3) to compute β values.

58

Algorithm 3: IMCv2

Input: x,x0, k, δ, ν
Output: Fc,Jc,Ffr,Jfr

1 Function IMCv2(x,x0, k, δ, ν):
2 v← (x− x0)/∆t // compute velocity

3 Fc,Jc ← genContact(x, δ) // (5.2)

4 Fc ← kFc // scale by contact stiffness

5 Jc ← kJc // Jc ≡ ∇xF
c

6 Ffr ← genFriction(x,v,Fc, ν) // (5.11)

7 ∇xf,∇Fcf ← genFrictionPartials(x,v,Fc, ν) // Ffr ≡ f(x,Fc)
8 Jfr ← ∇xf +∇Fcf∇xF

c // (5.14)

9 return Fc,Jc,Ffr,Jfr

5.4 Fully Implicit Friction

Similar to before, we model friction according to Coulomb’s friction law, which describes

the conditions necessary for two solids to transition between sticking and sliding. This law

states that the frictional force F fr is (1) equal to µF n during sliding, (2) is in the region

of [0, µF n) when sticking, and (3) is independent of the magnitude of velocity. Here, µ is

the friction coefficient and F n is the normal force experienced by the body.

Let us denote the following equivalencies for clarity: Fc ≡ −k∇xEc and Jc ≡ −k∇2
xEc.

Following this, for a contact pair xij, we can obtain the normal force on the i-th and

i+ 1-th nodes as F n
i = ∥Fc

i∥ and F n
i+1 = ∥Fc

i+1∥, respectively. This in turn allows us to

obtain the contact norm vector

ni =
Fc

i + Fc
i+1

∥Fc
i + Fc

i+1∥
. (5.7)

The direction of friction is then the tangential relative velocity between edges i and j. To

compute this, we must first compute the relative velocities of the edges at the point of

59

Figure 5.4: Plots for (5.10) with varying ν values. Note that some of the tolerances
displayed are unrealistically large for clarity.

contact, which can be done using βi, βj ∈ [0, 1] as shown below:

ve
i = (1− βi)vi + βivi+1,

ve
j = (1− βj)vj + βjvj+1,

vrel = ve
i − ve

j ,

(5.8)

where vi,vi+1,vj , and vj+1 are the velocities of the i-th, i+1-th, j-th, and j+1-th nodes,

respectively. The tangential relative velocity of edge i with respect to edge j can then be

computed as

u = vrel − (vrel · ni)ni, (5.9)

where û = u/||u|| is our friction direction.

Now, we must also make our contact model capable of simulating the transition

between sticking and sliding. Coulomb’s law tells us that ∥u∥ = 0 during static friction

and that ∥u∥ > 0 for sliding friction. Sticking occurs up until the tangential force

60

threshold µF n is surpassed, after which sliding begins. This relation (similar to ideal

contact energy) can also be described by a modified Heaviside step function. For the

same reasons as before, we replace this step function for another smooth approximation

described by

γ (∥u∥, ν) = 2

1 + e−K2∥u∥
− 1, (5.10)

where ν (m/s) is our desired slipping tolerance and K2(ν) = 15/ν is the stiffness parameter.

As shown in Figure 5.4, γ ∈ [0, 1] smoothly scales the friction force magnitude from

zero to one as ∥u∥ increases from zero. The slipping tolerance describes the range of

velocities (0, ν) for which a friction force < µF n is experienced. In other words, we

consider velocities within this range to be “sticking”.

Finally, the friction experienced by a node i for a contact pair xij can be described as

Ffr
i = −µγûTrelF n

i . (5.11)

With friction fully defined, we can now formulate the friction Jacobian ∇xF
fr. Note

that due to (5.8), our formulation depends on β(x), which means that the gradient ∇xβ

is required. We can avoid this computation through the realization that the magnitudes

of the contact forces Fc
i and Fc

i+1 have an underlying linear relationship with β where

Fc
i = (1− β)(Fc

i + Fc
i+1),

Fc
i+1 = β(Fc

i + Fc
i+1).

(5.12)

Therefore, we can obtain β by simply solving

β =
∥Fc

i+1∥
∥Fc

i + Fc
i+1∥

. (5.13)

We can now treat β as a function of Fc, resulting in a simplified chain ruling procedure.

Let us denote (5.11) as the functional f(x,Fc(x)). The friction Jacobian can then be

61

computed through chain rule as

∇xF
fr = ∇xf +∇Fcf∇xF

c. (5.14)

This concludes our fully implicit friction scheme. Full psuedocode for the IMCv2 algorithm

can be found in Alg. 3.

5.5 Algorithmic Components

In this section, we go over three key algorithmic components necessary for simulation:

collision detection, adaptive contact stiffness, and the use of line search. The full

pseudocode for the flagella simulation framework using IMCv2 can be seen in Alg. 5.

5.5.1 Collision Detection

For collision detection, we simply obtain the set of all edge combinations whose minimum

distance is less than C + δ, resulting in the contact set

C = {xij ∈ X | Dij < C + δ}. (5.15)

As this operation can be quite computationally expensive, we instead compute a candidate

set Ĉ = {xij ∈ X | Dij < C + δcol} at the beginning of each time step where δcol > δ by a

large enough margin. We then compute the actual contact set C from the candidate set Ĉ

at the start of each iteration, significantly reducing computational cost.

Note that if δcol is not set large enough, certain edge combinations not belonging to the

initial set Ĉ may enter the contact zone or even penetrate by the end of the optimization.

Our energy formulation in (5.2) is capable of dealing with this as minor penetrations

do not lead to simulation failure and will be remedied in the next time step. This is in

contrast to IPC, which may require a significantly larger δcol and/or more robust collision

checking (e.g., continuous collision detection) during each iteration of the optimization

62

process.

5.5.2 Adaptive Contact Stiffness

As a penalty method, a contact stiffness k is used to scale the contact force and Jacobian.

An appropriate value must be used to ensure that penetration (caused by too low of a

value) or excessive hovering (caused by too large of a value) does not occur. First, let us

denote the set of all i and j node indices of the contact set edge combinations xij ∈ C as

the set Ci. Then, to generate an appropriate scaling for the contact stiffness, we compute

the norm of the sum of forces (minus contact and friction)
∣∣∣∣Ftotal

i

∣∣∣∣ experienced by each

node in the contact set C. We can denote these forces as the set

F =
{ ∣∣∣∣Ftotal

i

∣∣∣∣ | i ∈ Ci } . (5.16)

The maximum force magnitude of these forces can then be used to determine the

contact stiffness

k = max(F)s, (5.17)

where s is a constant scaling factor. In all our experiments, we set s to be 1× 105. The

intuition behind this contact stiffness formulation is to achieve non-penetration through

force equilibrium. Furthermore, by using the maximum of F , if non-penetration can be

achieved for the edge with the largest value in F , then this k value should be large enough

to prevent penetration for all other contact pairs as well.

5.5.3 Line Search

Once the internal forces (e.g., bending force, twisting force, and stretching force), external

forces (e.g., viscous dragging force and contact forces), and their respective Jacobians are

computed, we can simply use Newton method to find the solution of the equations of

motion. However, due to the high nonlinearity of the governing equations, convergence for

Newton’s method may suffer without a line search method. To rectify this, we perform

63

Algorithm 4: Line Search

Parameters :αl, αu,m1 = 0.1,m2 = 0.9 // Initial interval for α
Input: q,∆q // DOFs from DER

Output: α // Newton search magnitude

1 Function LineSearch(q,∆q):
2 n← 0
3 α← 1
4 success ← False
5 d0 ← FT (∂F/∂q)∆q
6 while success is False do
7 if αm2d0 <= 1

2
∥F(q− α∆q)∥2 − 1

2
∥F(q)∥2 <= αm1d0 then

8 success ← True
9 else if 1

2
∥F(q− α∆q)∥2 − 1

2
∥F(q)∥2 < αm2d0 then

10 αl ← α
11 else
12 αu ← α
13 if |αl − αr| < small value or n > iterMax then
14 success ← True
15 α← 0.5(αl + αu)
16 n← n+ 1

17 end
18 return α

Goldstein-Price line search in the Newton direction to ensure that the square of the

Euclidean norm of total force ∥F∥2 in (3.9) decreases.

We design an inner loop for each Newton iteration where we deploy the line search

algorithm. This inner loop returns an optimal search step size α until ∥F∥2 is smaller than

a certain tolerance or until a maximum number of iterations is reached. As mentioned in

Section 5.2, our energy formulation allows us to use a more aggressive line search strategy

compared to Li et al. (2020a), resulting in larger search step sizes and faster convergence.

Pseudocode for the line search method can be found in detail in Alg. 4.

5.6 Flagella Bundling Simulation Results

In this section, we showcase extensive quantitative and qualitative results for IMCv2. First,

we discuss all our simulation parameters. We then conduct a detailed comparison between

64

Algorithm 5: Flagella Simulation Framework

Params : δ, δcol, ν, tolerance
Require : boundary conditions ← free

Input: q(ti), q̇(ti)
Output: q(ti+1), q̇(ti+1)

1 Function FlagellaSim(q(ti), q̇(ti)):
2 Guess q(0) ← q(ti)
3 n← 0, ϵ←∞
4 Fhydro ← RSS(·) // (Cortez, 2018)

5 Ftotal ← 0DOF

6 Jtotal ← 0DOF×DOF

7 while ϵ > tolerance do
8 Fint ← genForces(·) // (3.8)

9 Jint ← genJacobian(·) //
∂2(Es+Et+Eb)

∂qi∂qj

10 if n == 0 then // run only on first iter

11 Ĉ ← constructCandidateSet(x, δcol) // Section 5.5.1

12 k ← updateConStiffness(Ĉ,Fint) // Section 5.5.2

13 C ← collisionDetection(Ĉ, δ)
14 for x,x0 ∈ C do
15 Fc,Jc,Ffr,Jfr ← IMCv2(x(n),x0, k, δ, ν) // Alg. 3

16 Ftotal ← Ftotal + Fc + Ffr

17 Jtotal ← Jtotal + Jc + Jfr

18 end
19 Ftotal ← Ftotal + Fint + Fhydro

20 Jtotal ← Jtotal + Jint

21 Ffree ← Ftotal(free) // Downsize to only include free DOFs

22 Jfree ← Jtotal(free, free)

23 ∆qfree ←
(
Jfree

)−1
Ffree // Solve Jfree∆qfree = Ffree

24 α← LineSearch(qfree,∆qfree) // Alg. 4

25 q(n+1)(free)← q(n)(free)− α∆qfree

26 ϵ←
∥∥Ffree

∥∥ // update error

27 n← n+ 1

28 end

29 q(ti+1)← q(n)

30 q̇(ti+1)← (q(ti+1)− q(ti))/∆t
31 return q(ti+1), q̇(ti+1)

IMCv2 and the state-of-the-art contact handling method: Incremental Potential Contact

(IPC) (Li et al., 2020a). Afterwards, we showcase comprehensive results concerning

friction and display IMCv2’s ability to simulate the sticking sliding transition.

65

5.6.1 Parameters and Setup

In the simulation, we design the flagella as right-handed helical rods manufactured with

linear elastic material. We set the material properties as follows: Young’s modulus

was set to E = 3.00MPa; Poisson’s ratio was set to 0.5; density of the rod was set to

ρ = 1000 kg/m3; the cross-sectional radius was set to h = 1mm, and the fluid viscosity

was set to 0.1Pa·s. Here, a Poisson’s ratio of 0.5 was chosen to enforce the flagella to be

an incompressible material. The topologies of the flagella are helices with helical radius

a = 0.01m, helical pitch λ = 0.05m, and axial length z0 = 0.2m. These parameters were

chosen as they best mimic the geometries of biological flagella found in nature (Jawed

et al., 2015c; Jawed and Reis, 2017; Rodenborn et al., 2013; Huang and Jawed, 2021).

We explore the bundling phenomena with M flagella (M = [2, 3, 5, 10]) where the

rotating ends of each flagella is fixed along the z-axis as shown in Figure 5.2. These

rotating ends are treated as boundary conditions and are spaced out equidistantly so

as to form a regular polygon with M angles with side length ∆L = 0.03m as shown in

Figure 5.5b. We set the rotation speed of the flagella ends to ω = 15 rad/s which keeps

the Reynolds number in our numerical simulation to be always smaller than 4 × 10−2,

thus satisfying the Stokes flow.

Finally, we discretize each flagella into 68 nodes for a total of 67 edges. We found this

discretization to have the best trade-off between computational efficiency and accuracy.

Furthermore, we set the time step size to ∆t = 1ms. As the forces generated from our

fluid model are handled explicitly, we found 1ms to be the largest stable time step size

before convergence performance became hampered. A distance tolerance of δ = 1×10−5m

was used for all simulations.

5.6.2 Comparison between IMCv2 and IPC

Both IMCv2 and IPC were used to simulate 250 seconds of rotation for scenarios with

2, 3, 5, and 10 flagella, as shown in Figure 5.1. As the friction coefficient between

structures is usually trivial in viscous fluids, we consider purely contact without friction

66

IMCv2

 IPC

t = 0 s t = 50 s t = 100 s t = 150 s t = 200 s

(a) Flagella Bundling Comparison with IPC

(b) Boundary Conditions

N
o
rm

.
a
v
er

a
g
e

d
if
fe

re
n
ce

,
e

Time, t [s]

0 100 200
0

0.02

0.04

0.06

0.08

0.1

(c) Average Configuration Difference

Figure 5.5: (a) Rendered snapshots for M = 5 flagella simulated by IMCv2 and IPC. We
can observe that there is great qualitative agreement between both methods at the shown
time steps. (b) A top down visualization of boundary conditions applied to the highest
nodes (filled in red circles) of each flagella as well as the angular rotation ω applied to
them. The larger hollow red circles represent the rest of the helical flagella. (c) The norm
of the average difference in the nodal positions for the flagella simulated by IMCv2 and
IPC with respect to time.

(µ = 0). First, a side-by-side visual comparison for M = 5 is shown for IMCv2 and IPC in

Figure 5.5a. For various time steps, we can see that the configurations of the flagella are

near identical, indicating that both methods have comparable performance. To further

study this similarity, we define normalized average difference ē to measure the difference

67

Table 5.1: IMCv2 vs. IPC (Li et al., 2020a) run time data. Simulations are run for a total
of 250 seconds with a time step size of ∆t = 1ms and a rotation speed of ω = 15 rad/s.
The contact model used can be seen in the far left column. Next to this, M indicates
the number of flagella. AIPTS stands for average iterations per time step. ATPTS
stands for average time per time step. Total Iters indicates the total number of Newton’s
iterations that were necessary to complete the simulation. The Total Run Time is the
total computational time to completion. Finally, RTI stands for run time improvement
and is the ratio of improvement between IMCv2’s and IPC’s total run time.

Model M AIPTS ATPTS [ms] Total Iters Total Run Time [hr] RTI

IMCv2

2 3.00 10.2 6.01× 105 0.57 1.82

3 3.01 21.3 6.04× 105 1.19 1.82

5 3.02 67.5 5.39× 105 3.34 1.40

10 3.12 389.4 6.56× 105 22.77 1.22

IPC

2 4.00 18.75 7.98× 105 1.04 N/A

3 4.00 39.5 7.93× 105 2.17 N/A

5 4.01 95.3 7.09× 105 4.68 N/A

10 4.02 477.47 8.45× 105 27.88 N/A

in flagella nodal configurations between IMCv2 and IPC:

ē =
1

MNh

M−1∑
i=0

N−1∑
j=0

∥∥∥xi,IMCv2
j − xi,IPC

j

∥∥∥ . (5.18)

The relationship between normalized average difference ē and time t is shown in Figure 5.5c.

Here, we can find that the difference between the configurations is quite minimal, further

cementing the notion that IMCv2 has comparable performance to IPC despite the loss of

non-penetration guarantee.

Where IMCv2 starts to improve upon IPC is in terms of computational efficiency.

Detailed metrics for all runs can be seen in Table 5.1 which showcase the average iteration

per time step (AIPTS), average time per time step (ATPTS), total iterations, and total

run time. All metrics were recorded using time steps with at least one contact. Here,

we can see that IMCv2 was able to converge with less average iterations than IPC for

all flagella cases resulting in significant reductions in total run time. These run time

improvements are most drastic for M = 2 and M = 3 and start to decrease as M increases

68

Figure 5.6: Rendered snapshots for M = 2 with varying friction coefficients. Each column
indicates a moment in time as indicated by the time stamp in the top row. The first row
shows the frictionless case µ = 0 as a baseline. The second row has µ = 0.3 where minor
sticking can be observed as the point at where the flagella no longer contact is higher
than the frictionless case. Still, µ = 0.3 still has plenty of slipping allowing the flagella to
not become coiled. As we increase µ to 0.7 in the third row, we can see the amount of
sticking increase, ultimately resulting in the flagella becoming completing coiled.

further as the RSS force computation starts to become a bottleneck. Regardless, a clear

monotonic decrease can still be seen.

5.6.3 Friction Example

Although friction is usually negligible in a viscous fluid medium, influence of friction

on flagella bundling is still intriguing since the effect of friction can become significant

as the environment changes (e.g., granular medium). We assume an imaginary viscous

69

Table 5.2: IMCv2 friction results for varying friction coefficients. AIPTS stands for
average iterations per time step. Total Iterations indicate the total number of Newton’s
method iterations that were necessary to complete the simulation. Sim End indicates the
total simulated time. All simulations were set to run for 250 seconds. As can be seen,
simulations with µ ≥ 0.7 end earlier due to excessive tangling of the flagella.

µ AIPTS Total Iterations Sim End [sim s]

0.1 3.01 6.02× 105 250

0.2 3.01 6.04× 105 250

0.3 3.61 7.25× 105 250

0.4 4.89 9.83× 105 250

0.5 6.67 1.34× 106 250

0.6 8.71 1.76× 106 250

0.7 14.47 2.72× 106 235.89

0.8 14.16 1.89× 106 180.98

0.9 11.1 1.05× 106 142.72

1.0 11.65 1.02× 106 135.32

environment where the friction coefficient between structures is non-negligible. We present

simulation data for two flagella (M = 2) with friction coefficients µ = [0.1, 0.2, ..., 1.0]. For

all simulations, a slipping tolerance of ν = 1× 10−4m/s was used. All other parameters

are kept the same as before.

We first showcase the sticking slipping phenomena with snapshots for µ = [0, 0.3, 0.7]

in Figure 5.6. Intuitively, as µ increases, we also see the amount of sticking increase as

well. Convergence results for all friction examples can be seen in Table 5.2 where average

iterations per time step and simulation length are reported. Here, we notice two trends.

First, for µ ≥ 0.7, the time at which the simulation ends starts to decrease from 250

seconds. This is because µ = 0.7 is the point at which the flagella become completely

tangled as shown in the bottom right frame of Figure 5.6. As µ increases past 0.7, the

tangling happens earlier and earlier as shown. Furthermore, we observe that the number

of average iterations starts to increase as µ increases. This is in line with our expectations

as larger µ values result in greater sticking.

70

Rotation velocity,

A
ve

ra
ge

 p
ro

pu
ls

iv
e

fo
rc

e,

(a) ω̄ vs. Average F̄p

A
ve

ra
ge

 p
ro

pu
ls

iv
e

fo
rc

e,

Fixed end distance,

(b) Fixed end distance vs. Average F̄p

Figure 5.7: Simulation results showcasing the relationship between average propulsive
force F̄p and (a) rotation velocity ω̄ and (b) fixed end distance ∆L/a over 597 revolutions.

5.6.4 Parametric Study for ω̄, ∆L/a, M , and, µ

In this section, we perform a parametric study of flagella bundling using our simulation

framework. Motivated by scaling analysis performed in Kim et al. (2003), we choose four

main dimensionless groups to examine: angular velocity ω̄ = ωνz40/EI, fixed end distance

∆L/a (distance between neighboring flagella), rod number M , and friction coefficient µ.

We refer to all quantities with a ¯ as non-dimensionalized. Note that ω is the rotation

velocity of the fixed end; ν is the viscosity of the fluid media; z0 is the axial length of the

flagella; EI is the bending stiffness; ∆L is the distance between the neighboring fixed

ends, and a is the radius of helical geometry for one flagellum.

To evaluate the effects of our dimensionless groups, we define average propulsive force

F̄p. When flagella bundle, propulsive forces are generated on each fixed end. We compute

the average propulsive force on each fixed end during a fixed time period (defined as

number of revolutions at constant ω) and average this among the M flagella to obtain Fp.

With this, we can obtain

F̄p =
Fph

2

EI
. (5.19)

In Figures 5.7, 5.8, and 5.9, we showcase the influence of each dimensionless group.

71

A
ve

ra
ge

 p
ro

pu
ls

iv
e

fo
rc

e,

Number of flagella, M

(a) M vs. Average F̄p

T
ot

al
 a

vg
.
pr

op
ul

si
ve

 f
or

ce
,
M

Number of flagella, M

(b) M vs. Total Average F̄p

Figure 5.8: Simulation results showcasing the relationship between (a) average propulsive
force F̄p and number of flagella M and (b) the total average propulsive force MF̄p against
M over 597 revolutions.

A
ve

ra
ge

 p
ro

pu
ls

iv
e

fo
rc

e,

Friction coefficient,

(a) µ vs. Average F̄p (597 revolutions)

A
ve

ra
ge

 p
ro

pu
ls

iv
e

fo
rc

e,

Friction coefficient,

(b) µ vs. Average F̄p (322 revolutions)

Figure 5.9: Simulation results showcasing the relationship between average propulsive
force F̄p and (a) friction coefficient µ over 597 revolutions. Note that (a) only includes
µ ∈ [0, 0.6] as simulations with µ > 0.6 ended before the total 597 revolutions. Therefore,
we also plot (b) the average propulsive force F̄p against the full friction coefficient range
µ ∈ [0, 1.0] over 322 revolutions (the earliest exit sim time). We note that the abnormal
change between µ = 0.4 and µ = 0.5 for plot (b) can be attributed to insufficient data as
322 revolutions is nowhere near the simulation end of 597 revolutions.

All simulations used semicoiled helices (pitch / radius ∼ 5) as the flagella geometry. For

all simulations not studying the effects of friction coefficient µ, we consider frictionless

contact (µ = 0). In addition, simulations not studying number of flagella M used M = 2

72

while those not studying fixed end distance used ∆L/a = 3. Figure 5.7a studies the

influence of rotation velocity with the aforementioned parameters. In Figure 5.7b, the

influence of fixed end distance is studied with normalized rotation velocity ω̄ = 3056.

Next, we look into the influence of flagella number in Figure 5.8 where we set normalized

rotation velocity ω̄ = 611 (to minimize inertial effects). Finally, in Figure 5.9, we study

the influence of friction coefficient with rotation velocity ω̄ = 15280 since we want to

observe contact influence under extreme bundling.

Overall, we conclude the following preliminary results:

• Higher normalized rotation velocities result in higher propulsive forces.

• Larger normalized fixed end distances result in higher propulsive forces, but the

influence of fixed end distance taper off as the distance grows large enough.

• More flagella result in larger total average propulsive forces but lower per flagella

average propulsive forces.

• The propulsive force is nearly identical for µ ∈ [0, 0.3] (low friction cases) and then

starts to exponentially increase as µ increases past 0.3. We observe a near monotonic

increase in F̄p as µ increases, barring one abnormality explained in Figure 5.9.

We provide additional insights into the frictional data in Figure 5.9. First, as µ grows,

the sticking surface between flagella grows, eventually resulting in “one” flagellum. This

essentially results in a single flagellum with a higher effective stiffness, which translates

to higher thrust forces as a single flagellum has been shown to have higher propulsive

efficiency compared to multiple flagella with equal cumulative volume (Riley et al., 2018).

Overall, we showcase interesting preliminary results for flagella bundling provided

entirely by our simulation framework. We emphasize here that presented results have

not been validated with experiments. However, the results are quite intuitive and in

particular, ω̄ and ∆L/a have similar tendencies with prior works (Kim et al., 2003).

73

5.7 Overhand Knot Tying Validation

In this section, we provide validation for our generated frictional contact forces against

theory concerning the contact scenario of knot tying. We first showcase validation against

the theoretical relation for tightening trefoil knots formulated in Audoly et al. (2007),

similar to what was done in Section 4.7.1. In addition to this, we also validate our contact

model against the theoretical relation for tightening knots of varying unknotting numbers

formulated in Jawed et al. (2015a).

5.7.1 Tightening a Trefoil Knot

Recall that Audoly et al. (2007) formulated the theoretical relationship (4.20):

Fh2

EI
=

ϵ4

2
+ µσϵ3,

where F is the traction force induced by friction; h is the rod radius; EI is the bending

stiffness; µ is the coefficient of friction; σ is a constant (0.492 for trefoil knots), and

ϵ =
√
h/R where R is the knot loop radius.

We use IMCv2 to run a simulation of tightening a trefoil knot and record the traction

forces F for the parameters h = 0.0016m, E = 1.8e5Pa (EI = Eπh4/4), and µ = 0.1.

We non-dimensionalize traction force as F̄ = Fh2/EI and plot this against ϵ. As shown

in Figure 5.10, we observe excellent agreement between simulation results and the plotted

theory.

5.7.2 Tightening Knots of Various Unknotting Numbers

In addition to the validation of Audoly et al. (2007), we also provide a more rigorous

validation against theory for overhand knots of various unknotting numbers (Jawed et al.,

74

0.15 0.2 0.25 0.3
0

1

2

3

4

5

6
10-3

Theory

Simulation

Figure 5.10: Comparison of non-dimensionalized traction force F̄ between IMCv2 simu-
lation results and theory for tightening trefoil knots (Audoly et al., 2007). Simulation
results are colored while theory (4.20) is plotted as a dash line.

2015a). In this paper, Jawed et al. (2015a) proposed the relation

n2h

e
=

1

8
√
3π2

g

[96√3π2

µ
· n

2Fh2

EI

] 1
3

 , (5.20)

where n is the unknotting number; e is the end-to-end shortening, and g(·) is a known

nonlinear equation detailed in the paper.

We use IMCv2 to run simulations of tightening overhand knots for n ∈ [1, 4] and

µ = 0.07 (all other rod parameters are the same as in Section 5.7.1. We plot the

recorded non-dimensionalized traction force n2F̄ against the non-dimensionalized end-to-

end shortening ē = n2h/e. Once again, we observe excellent agreement between simulation

results and the plotted theory as shown in Figure 5.11, thus further cementing the physical

accuracy of IMCv2’s frictional contact forces.

75

10-2 10-1
10-4

10-3

10-2

10-1

100

n=3

n=4

n=2
n=1

Theory

Figure 5.11: Comparison of non-dimensionalized traction force F̄ between IMCv2 simula-
tion results and theory for tightening overhand knots of various unknotting numbers n
(Jawed et al., 2015a). Simulation results are colored while theory (5.20) is plotted as a
dash line.

5.8 Granny vs. Reef Knot Validation

In this section, we study granny and reef (square) knots, as shown in Figure 5.13a. The

reef knot is known famously as the one used for tying shoelaces. The granny knot differs

from the reef knot by a single over/under crossing order as shown by the circled regions in

Figure 5.13a. Despite the stark similarity in structure, the reef knot possesses significantly

higher “knot strength”, i.e. the knot stays fastened from self-friction when the ends are

pulled. While reef knots tend to stay fastened until breaking when pulled on, granny

knots will simply slip and unravel. We propose to study and analyze this mechanical

phenomenon by utilizing physically accurate simulation frameworks.

76

Figure 5.12: Snapshots for (a) granny knot with µ = 0.1, (b) reef knot with µ = 0.1, (c)
granny knot with µ = 0.5, and (d) reef knot with µ = 0.5. Each row indicates the type
of knot and µ. Each column indicates a snapshot after pulling for 0, 2, 7.5, 12, and 16
seconds from left to right.

5.8.1 Boundary Conditions and Setup

Once the initial geometric configuration of a reef / granny knot is achieved, the boundary

conditions for tying are relatively simple. First, boundary conditions are set on the ends at

which pulling will occur, which constitutes the first and last edges of the knot. These ends

will then be pulled in opposite directions and their experienced forces will be recorded as

the traction forces F .

In addition to the pull ends, we apply a third static boundary condition to the bottom

of the initial overhand knot, as shown in Figure 5.13c. Interestingly, the recorded traction

77

(a) Granny vs. Reef (Square) Knot Crossing Difference

(b) Boundary Conditions for Two Rods

(c) Boundary Conditions for One Rod

Figure 5.13: (a) Visualization of granny and reef (square) knots. The difference between
them is simply the overlay ordering of the circled crossings. (b) A traditional reef / granny
knot shown tied using two separate elastic rods. (c) A reef / granny knot tied using a
single elastic rod. This can be achieved by tying an initial overhand knot. Note that the
portion of the knot in the boxed region is a reef / granny like the one in (b). Boundary
conditions for the tying sequence are shown as red circles.

forces for both granny and reef knots without this final boundary condition are equivalent.

We conclude that this is a result of the knot degenerating to a simple overhand knot case

as the initial bottom overhand unravels on its own, resulting in the topology of the granny

/ reef knot being lost. Therefore, this static boundary condition is crucial to maintaining

our desired knot topology.

5.8.2 Knot Strength Evaluation

We evaluate the knot strength as the normalized traction force Fh2/EI experienced when

pulling a granny and reef knot taut, where h is the rod radius and EI is the bending

stiffness. We hypothesize that the knot strength of reef knots should be monotonically

higher than granny knots for all stages of tightening unless both are taut. To test this

theory, we conduct two sets of tightening simulations for both granny and reef knots. The

78

(a) Pull Forces at µ = 0.1

(b) Pull Forces at µ = 0.5

Figure 5.14: Normalized traction force comparison between granny and reef knots for (a)
µ = 0.1 and (b) µ = 0.5. The horizontal red line in (b) refers to the moment at which the
knots start to become taut.

79

first set of experiments involves light friction, µ = 0.1, while the second pair involves

high friction, µ = 0.5. The mutual parameters that were used were Young’s Modulus

E = 0.18MPa, rod radius h = 2mm, rod length L = 1m, density ρ = 1180 kg/m3, pull

speed (both ends) u = 10 cm/s, number of nodes N = 301, and time step ∆t = 2.5ms.

The traction forces for µ = 0.1 can be seen in Figure 5.14a as a function of pull time

(both knots have identical end-to-end shortenings at each pull time). Furthermore, the

tightening sequence can be seen visualized in Figures 5.12(a-b). Here, we see that the

reef knot’s normalized traction force is monotonically higher than the granny knot at

all stages of the tying process aside from the first five seconds. The values being the

same in the first five seconds is caused by negligible friction forces as both knots slip

considerably. Once the knot loop becomes tightened, the effects of friction become more

prevalent (t > 5 s) and the traction forces start to diverge.

In comparison, for µ = 0.5, the normalized traction forces diverge immediately once

pulling occurs as the friction forces are non-negligible from the start (Figure 5.14b). We

also note that due to the high friction, the granny and reef knots become taut much sooner

as sticking becomes much more prevalent than sliding (Figure 5.12(c-d)). This occurs

roughly at t ≈ 12.5 s as illustrated by the vertical dashed red line in Figure 5.14b. The

early closing of the knot loop is also a result of the traction forces for µ = 0.5 becoming

equivalent with enough pulling. Overall, results for both µ = 0.1 and µ = 0.5 excellently

match the common notion that reef knots possess higher knot strength than granny knots.

5.8.3 Parametric Study for µ

A parametric study is conducted comparing the effects of µ on the normalized traction

forces. To compare the forces between different µ, the average of the recorded normalized

traction forces was computed. A total pulling time of 13 seconds was used and µ was

varied between values of [0.1, 0.2, 0.3, 0.4, 0.5]. All the rest of the parameters used were

the same as the ones listed in Section 5.8.2.

Results for both the granny and reef knots can be seen in Figure 5.15. As expected,

80

Figure 5.15: Study comparing the average normalized traction forces for friction coefficients
of µ ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. Note that reef knots posses a higher average traction force
regardless of µ.

we can see that reef knots possess a higher average normalized traction force than granny

knots for all values of µ. Furthermore, the traction forces for both knots monotonically

increase as µ increases. This matches our intuition as increasing µ increases the magnitude

of the friction forces themselves.

5.8.4 Parametric Study for E

A parametric study comparing the effects of E on the average normalized traction force

is also conducted. A total pulling time of 6.4 seconds was used and E was varied between

values of [1.8e4, 1.8e5, 1.8e6, 1.8e7] Pa. All the rest of the parameters used were the same

as the ones listed in Section 5.8.2 aside from a lower time step of ∆t = 1ms.

Results for both the granny and reef knots can be seen in Figure 5.16. Once again, we

can see that reef knots possess a higher average normalized traction force than granny

knots for all values of E. Furthermore, similar to µ, the traction forces for both knots

81

Figure 5.16: Study comparing the average normalized traction forces for Young’s Moduli
of E ∈ [1.8e4, 1.8e5, 1.8e6, 1.8e7] Pa.

monotonically increase as E increases. This also matches our intuition as increasing E

increases the stiffness of the material, which will indirectly increase the magnitude of the

friction forces given the high curvatures of the knot loop.

5.9 Conclusion

In this chapter, we introduced an improved version of our fully-implicit and penalty-

based frictional contact method, the Implicit Contact Model. To test the performance

of our contact model, we formulated an end-to-end simulation framework for the novel

and difficult contact scenario of flagella bundling in viscous fluid. For this contact

problem, we showed that IMCv2 has comparable performance to the state of the art while

maintaining faster convergence. For friction, visually convincing sticking-slipping flagella

bundling results were presented and an extensive parametric study for flagella bundling

was performed. Furthermore, extensive validation of IMCv2’s frictional contact forces

82

was performed for numerous complex knot tying scenarios.

For future work, we wish to improve upon the stability and robustness of our friction

model. Despite the implicit formulation, the number of iterations necessary to converge

starts to increase as µ increases. Another interesting avenue of research is the use of deep

learning to learn physics-based dynamics for simulation. Neural networks, when properly

trained, have been known to be able to generate nearly identical outputs as numerical

simulations while achieving orders of magnitude reduction in computation. Thus, utilizing

the computational efficiency and differentiability of neural networks while maintaining

physical realism is a promising direction.

83

CHAPTER 6

DisMech: A Discrete Differential Geometry-Based

Simulator for Soft Robots and Structures

Note: As far as pure software engineering goes, DisMech has been quite easily my most

ambitious project as of writing this thesis. I am quite proud of this work in particular, as

it combines my extensive experience with soft simulation (DER in Chapter 3), elastic

contact (IMCv2 in Chapter 5), optimization, and robotics.

6.1 Introduction

Deformable materials are ubiquitous, from knots to clothing to new types of machines.

Despite the prevalence of deformable materials in everyday life, there is a lack of physically

accurate and efficient continuum mechanics simulations for complicated and arbitrarily-

shaped robots, particularly in hardware. As opposed to their rigid-body counterparts,

deformable structures such as rods and shells possess infinite degrees of freedom and are

capable of undergoing highly nonlinear geometric deformations from even minute external

forces, requiring specialized simulators.

Accurate and efficient soft physics simulators serve two key purposes in the robotics

community: they allow for 1) training traditional rigid manipulators to intelligently

handle deformable objects (Lin et al., 2021) with sim2real realization (Choi et al., 2023c;

Tong et al., 2023c) and 2) for the modelling, training, and development of controllers

for soft robots themselves (Huang et al., 2020). As the demands for efficient large-scale

robot learning necessitate viable sim2real strategies, the need for such simulators becomes

even more pressing. With this in mind, we introduce DisMech, a full end-to-end discrete

84

differential geometry (DDG)-based physical simulator for both soft continuum robots

and structures. Based on the Discrete Elastic Rods (DER) (Bergou et al., 2008, 2010)

framework, DisMech is designed to allow users to create custom geometric configurations

composed of individual elastic rods. Such configurations can be expressed quickly through

an elegant API, allowing for rapid prototyping of different soft robot builds. Actuation of

the soft robot is then readily achievable by manipulating the natural curvatures of the

individual elastic rods (i.e., limbs), enormously simplifying sim2real control tasks.

As opposed to previous simulation frameworks focusing on soft physics (Graule et al.,

2022; Mathew et al., 2022; Coevoet et al., 2017; Gazzola et al., 2018), DisMech’s equations

of motion are handled fully implicitly, allowing for far more aggressive time step sizes than

previous formulations. This allows our simulations to reach an order of magnitude speed

increase over previous state-of-the-art simulators while maintaining physical accuracy as

we show later for several canonical validation cases. Though prior work implemented a

DDG-based simulation for soft robot locomotion (Huang et al., 2020), this proof-of-concept

operated solely in 2D, lacked elastic contact and self-contact, and was specialized to only

one simple robot morphology. In comparison, DisMech is a generalizable DDG-based

framework for arbitrary soft rod-like robots in contact-rich 2D and 3D environments, and

includes an algorithm to map hardware motions to intuitive DDG control inputs. This

chapter therefore compares a DDG simulation against the contemporary suite of soft

robot simulators for the first time.

This chapter’s contributions are:

1. We introduce a methodology and open-source implementation∗ of DisMech as a

fully implicit simulator supporting soft physics, frictional contact, and intuitive

control inputs. To the best of our knowledge, DisMech is the first general purpose

DDG-based 3D simulation framework for easy use by the robotics community.

2. We numerically validate DisMech through several complicated simulations, and

compare with the state-of-the-art framework Elastica (Gazzola et al., 2018), showing

∗See https://github.com/StructuresComp/dismech-rods.

85

https://github.com/StructuresComp/dismech-rods

comparable accuracy while obtaining an order of magnitude speed increase.

3. We demonstrate generalizability of DisMech for design simulations of dynamic soft

robots, including a four-legged spider and an active entanglement gripper (Becker

et al., 2022).

4. Finally, we propose a generalizable gradient descent algorithm to map hardware

robot data to DisMech’s natural curvature parameters, validating their use as control

inputs in “real2sim” of real world soft manipulator (Pacheco Garcia et al., 2023).

Despite DER’s non-consideration of shearing, we argue that shearing effects are

negligible so long as the radii of the rod is small enough. Though this disqualifies DisMech

from accurately modeling structures such as muscle fibers, the DDG-based framework of

DisMech allows for an intuitive implicit formulation resulting in order of magnitude speed

increases while maintaining highly accurate results for a large array of soft structures.

In addition to computational benefits, DisMech’s framework also allows for the natural

incorporation of shell structures via the DDG-based framework Discrete Shells (Grinspun

et al., 2003), something that is rather nontrivial to accomplish in frameworks such as

SoRoSim (Mathew et al., 2022) and Elastica (Gazzola et al., 2018).

6.2 Methodology

6.2.1 Elasticity, Contact, and Friction

As mentioned previously, the soft physics of DisMech is based off of the DER framework

while contact and friction are handled using IMCv2. For brevity, we simply refer readers

wishing to understand the mathematical formulation to Chapters 3 and 5.

6.2.2 Elastic Joints

To allow for creating connections and grid-like structures, we introduce the concept of

“elastic joints”, i.e., nodes along a rod that have one or more other rods connected to

them. Such connections experience the same stretching, bending, and twisting energy

86

constraints formulated in Section 3.3 as individual rods. Bending and twisting forces at

joints are computed for every possible edge combination. Examples of elastic joints can

be seen in Figures 6.4 and 6.6 as blue spheres.

6.2.3 Actuation via Natural Curvatures

Given how the material frames are first setup, we can actuate a soft robot by manipulating

its natural curvature κ̄ or equivalently its natural turning angle ϕ̄. This in effect results

in a bending energy differential in (3.5) which produces contractions and/or relaxations

of the elastic rod along the respective material directors. Later in Section 6.4.2, we show

how this actuation can be framed as a control input, using a gradient descent method to

calculate κ̄ values for real2sim open-loop control of a hardware robot prototype.

6.2.4 Numerical Integration Scheme

Currently, DisMech has been outfitted to support both explicit (e.g., Elastica’s Verlet

position (Gazzola et al., 2018)) and implicit numerical integration schemes. For implicit

schemes, we offer both backward Euler and implicit midpoint. As backward Euler results

in artificial damping (Huang and Jawed, 2019), we opt to use implicit midpoint for

scenarios where energy loss is unwanted and backward Euler for scenarios where stability

is preferred. To further maintain numerical stability, DisMech is outfitted with both a

line search method (Tong et al., 2023b) (same as Section 5.5.3) as well as adaptive time

stepping as optional features when an implicit scheme is chosen.

6.3 Theoretical Validation

In this section, we perform physical validation of our model through several canonical

experiments. We compare our results with both theory (when appropriate) and the

state-of-the-art framework Elastica (Gazzola et al., 2018). Efficiency metrics such as

time step size and computational time for all experiments are listed in Table 6.1 while

87

Table 6.1: Simulation runtime comparison between DisMech and Elastica for various
simulation scenarios.

Simulation
Framework

Metrics [s]

Sim Validation Experiments

Parameters Beam F.6.1a Beam F.6.1b Helix F.6.2a Helix F.6.2b Friction F.6.3

N 201 201 100 100 26

h [m] 0.020 0.020 0.005 0.001 0.025

E [Pa] 1× 105 1× 107 1× 107 1× 109 1× 105

T [s] 100 20 10 2 1.5 (44 sims)

Elastica
Max ∆t — 2.5× 10−4 3× 10−5 4× 10−5 1× 10−6 1× 10−4

Comp. Time — 23.80 40.01 11.77 89.24 7.42

DisMech
Best ∆t — 5× 10−1 5× 10−2 6× 10−3 3× 10−3 5× 10−3

Comp. Time — 0.661 1.24 7.30 3.18 1.59

simulation results are plotted in Figures 6.1, 6.2, and 6.3. For Elastica, the largest time

step size before numerical instability arose was used while for DisMech, the time step size

that had the best tradeoff between number of iterations and computational time was used.

For all experiments, we assume a Poisson ratio of 0.5 and a gravitational acceleration

of g = 9.8m/s2 for those involving gravity. All simulations were run on a workstation

containing an Intel Core i7-9700K (3.60GHz×8) processor and 32GB of RAM.

6.3.1 Dynamic Cantilever Beam

The first validation experiment we conduct is comparing the deflections of a rod modelled

as a cantilever beam against Euler-Bernoulli beam theory. In absence of external loads,

we can refer to the free vibration equation

w(s, t) = Re
[
ŵ(s)e−iωt

]
, (6.1)

where w is the z-direction deflection at arc length s ∈ [0, L] at time t; ω is the frequency

of the vibration, and ŵ(x) is the natural frequency of the beam. We use the analytical

solution available for cantilever beams (Han et al., 1999) for an initial tip velocity of

5mm/s. With this, we conduct two simulations to showcase the effect of material

stiffness on time step size. For both experiments, we use a rod radius h = 2 cm, density

ρ = 500 kg/m3, and rod length L = 1m. A discretization of N = 201 nodes is also used.

88

(a) E = 0.1MPa

(b) E = 10 MPa

Figure 6.1: Dynamic cantilever simulation results for DisMech and Elastica compared
to Euler-Bernoulli beam theory. Deflection of the tip is shown for different material
properties.

For the first and second experiments, we then use a Young’s modulus E of 0.1MPa and

10MPa and a sim time T of 100 s and 20 s, respectively.

Deflections in Figure 6.1 show that both Elastica and DisMech have excellent agree-

ment with theory (6.1), and neither suffer from artificial damping. However, DisMech

achieves these results with time step sizes three orders-of-magnitude larger than Elastica,

corresponding to an order of magnitude speed increase.

6.3.2 Oscillating Helix under Gravity

The next experiment consists of a suspended helical rod oscillating under gravity. We use

the same experiment setup as Huang and Jawed (2019) with density ρ = 1273.52 kg/m3,

helix radius of 2 cm, pitch of 5 cm, and a contour length of 0.5m (resulting in an axial

length of ≈ 0.185m). A discretization of N = 100 is used. Like the previous section, we

89

(a) E = 10MPa h = 0.005m

(b) E = 1GPa h = 0.001m

(c) Equilibrium Point via Damping

Figure 6.2: Helix oscillating under gravity simulation results for DisMech and Elastica.
The bottom tip position of the helical rod is shown for different material and geometric
properties. We also show both DisMech and Elastica reaching the same static equilibrium
point when damping is introduced into the system as a sanity check.

also conduct two experiments with a Young’s modulus E of 10MPa and 1GPa, radius h

of 5mm and 1mm, and sim time T of 10 s and 2 s, respectively.

As an analytical solution for comparison is not available, we simply plot the oscillating

tip positions as shown in Figures 6.2a-6.2b. As shown, both simulation frameworks

produce results with identical frequencies for the first experiment and near identical

frequencies for the second. To confirm that the difference in results is not a result of

improper system representation, we also show that both DisMech and Elastica reach

the same static equilibrium point in Figure 6.2c after introducing damping. Therefore,

90

Figure 6.3: Axial friction simulation showcasing the kinetic energy of a rod as a function
of an enacted external force for a friction coefficient of µ = 0.4.

we presume that these slight frequency differences are numerical artifacts arising from

differences in integration schemes and/or time step size. As before, we also report being

able to take time step sizes of up to three orders-of-magnitude, correlating to an order of

magnitude speed increase.

6.3.3 Friction Validation

For the final experiment, we test axial friction on a rod. We use a rod with radius

h = 2.5 cm, density 509.3 kg/m3, length L = 1m, and Young’s modulus E = 0.1MPa. A

discretization of N = 26 is used. Floor contact was simulated using IMCv2 using a friction

coefficient µ = 0.4, distance tolerance δ = 5e−4m, and slipping tolerance ν = 1e−3m/s.

With this, we can compute the kinetic energy of the rod when experiencing a constant

uniform push/pull force Fp as

Ek =


0 ∥Fp∥ ≤ |µmg|,
t2

2m
(∥Fp∥ − µmg)2 ∥Fp∥ > |µmg|,

(6.2)

where m is the mass of the rod and t is the time after starting force exertion from a resting

configuration. We compute results for 44 simulations in parallel for a range of forces

∥Fp∥ ∈ [−10.6, 10.5]N. When observing results in Figure 6.3, we see excellent agreement

between DisMech’s simulated kinetic energy and theory for a sim time of T = t = 1.5 s.

For further more rigorous validation of the contact used by DisMech, we refer readers to

Sections 5.7 and 5.8.

91

Figure 6.4: Rendering of a four-legged spider-like soft robot constructed using DisMech’s
API. Moving chronologically from left to right, the robot is dropped from a height where
it then makes contact with an incline plane. After some initial sliding, the influence
of sticking friction results in the robot’s eventual equilibrium position in the rightmost
column.

6.4 Practical Demonstrations for Flexible Robots

Three demonstrations below showcase the accuracy and ease-of-use of DisMech over

competing frameworks in simulating complicated flexible and soft robots. We also provide

an algorithm that maps hardware robot motions to DisMech’s control inputs, emphasizing

its generalizability.

6.4.1 Arbitrary Robot Prototyping

6.4.1.1 Spider Robot

We showcase the ease-of-use and environmental contact capabilities of DisMech by simu-

lating a four-legged spider-like soft robot composed of interconnected rods (Figure 6.4).

Individual limbs are created as rods, with joints between them, using a single line of code

each. We simulate dropping the robot onto a floor (no actuation) with µ = 0.4, and

replicate an incline using gravity g = [0.707, 0.707,−9.8]m/s2. We can observe visually

plausible results of the robot colliding with the floor, rebounding, and then after an initial

sliding period, coming to static equilibrium via stiction.

92

Figure 6.5: Renderings of an active entanglement gripper (Becker et al., 2022). The top
row showcases contact-only entanglement whereas the bottom row showcases entanglement
with friction µ = 0.5. Note the influence of stiction causing more distorted helices in the
latter example.

6.4.1.2 Active Entanglement Gripper

Next, we further showcase the generality of DisMech by simulating an active entanglement

gripper (Becker et al., 2022), a highly nontrivial frictional contact case. To do so, we

simulate five fingers (rods) placed equidistantly along a circular perimeter, each with length

L = 0.3m, radius h = 5mm, density ρ = 1200 kg/m3, and Young’s modulus E = 0.3MPa.

Each rod is discretized using N = 60. Contact is simulated using δ = 5e−4m and

ν = 1e−3m/s. To simulate rapid entanglement, each edge is actuated via a random ϕ̄

value uniformly sampled from a range of [0, 40] deg.

Results for both contact-only and frictional contact (µ = 0.5) scenarios show convincing,

visually plausible results (Figure 6.5). When comparing between the two, friction causes

the rods to stick to each other during the coiling, resulting in more distorted helices.

Simulations such as these open up many opportunities for generating control policies.

6.4.2 Real2Sim Open-Loop Control

Finally, we provide a method to use DisMech to simulate an open-loop trajectory of

a real soft robot in hardware, as a form of open-loop control. Here, we use a shape

memory alloy (SMA) actuated double limb soft manipulator (Pacheco Garcia et al.,

93

Figure 6.6: Snapshots showcasing real2sim realization of a SMA actuated dual soft limb
manipulator (Pacheco Garcia et al., 2023). Using our gradient descent approach, we
showcase excellent agreement between the real and simulated curvatures for a wide variety
of geometric configurations.

2023) (Figure 6.6). The robot’s limbs are 76× 49× 9mm, and are constructed from a

silicone polymer (Smooth-On Smooth-Sil) with a density of 1240 kg/m3 and a Young’s

modulus of 1.793MPa. Despite the manipulator being quite wide, we can still represent

the manipulator as a rod since manipulation occurs primarily in 2D (Choi et al., 2023c).

For the rod radius, we used 10 cm to compensate for the ridges of the limbs. Two rods

are initialized with the aforementioned parameters to represent each limb, which are then

connected via an elastic joint.

6.4.2.1 Solving Natural Curvature via Gradient Descent

To achieve real2sim realization, we must first calculate the appropriate κ̄ values that gen-

erate geometric configurations of the robot corresponding to hardware data (Section 6.2.3).

Given the nonlinearity of the robot’s geometry, coupled with deformations produced by

gravity, solving for the appropriate natural curvatures analytically is nontrivial. Therefore,

we propose a gradient descent-based approach to solve for κ̄.

In our approach, we assume that the movement of the limbs is quasistatic and that

each limb has more-or-less a constant curvature along its length. We use the AprilTag

library to extract the arm’s position from video (Figure 6.6, green dots). Using these

positions, we can then compute the target curvatures κ∗ using (3.4).

94

Figure 6.7: Tip error between the target tip position x∗
tip and the simulated tip position

xtip when carrying out our gradient descent natural curvature actuation.

We then define a loss

λ(κ̄1, κ̄2) = |κ∗
1 − κ1|+ |κ∗

2 − κ2|, (6.3)

where κ1 and κ2 are the resulting simulated curvatures of the first and second limbs when

changing the natural curvatures to values κ̄1 and κ̄2, respectively. The gradient of λ with

respect to κ̄ can then be obtained using a forward finite difference approach:

∇κ̄λ =

 ∂λ

∂κ̄1
∂λ

∂κ̄2

 =
1

ϵ

λ(κ̄1 + ϵ, κ̄2)− λ(κ̄1, κ̄2)

λ(κ̄1, κ̄2 + ϵ)− λ(κ̄1, κ̄2)

 , (6.4)

where ϵ is a small input perturbation. Using this finite difference gradient, we can then

iteratively solve for the correct κ̄ by updating

κ̄ = κ̄− α∇κ̄λ (6.5)

until λ reaches below a set tolerance, where α is a step size. The full psuedocode for this

approach can be seen in Alg. 6.

We demonstrate excellent real2sim realization of the soft limb actuator through a

DisMech model both visually (Figure 6.6) and numerically (Figure 6.7), where we achieve

an average tip position error of just 2.9mm (1.5% of the robot’s length). Future work,

using more data, will derive separate actuator models (e.g. SMA voltages to natural

95

Algorithm 6: Real2Sim via Gradient Descent

Input: D← geometric configuration of robot
Output: τ κ̄ ← trajectory of κ̄s

1 Func SolveNaturalCurvatures (D):
2 κ∗ ← ComputeCurvature(D) // (3.4)

3 τ κ̄ ← [] // trajectory

4 κ̄← [0, 0]
5 for κ∗

1, κ
∗
2 ∈ κ∗ do

6 α← 0.1 // step size

7 λprev ←∞
8 while True do
9 κ1, κ2 ← F(κ̄) // DisMech Sim

10 λ← |κ∗
1 − κ1|+ |κ∗

2 − κ2| // (6.3)

11 if λ < tolerance then
12 break
13 end
14 if λ > λprev then
15 α← 0.5α
16 end
17 λprev ← λ
18 ∇κλ← finite diff with ϵ // (6.4)

19 κ̄← κ̄− α∇κλ // (6.5)

20 end
21 τ κ̄.append(κ̄)

22 end
23 return τ κ̄

curvatures), which in turn will allow for feedback controller design via sim2real.

6.5 Conclusion

In this chapter, we introduced DisMech, a fully generalizable, implicit, discrete differential

geometry-based physical simulator capable of accurate and efficient simulation of soft

robots and structures composed of elastic rods. We physically validated DisMech through

several simulations, using both representative examples and new and complicated robots,

showcasing an order of magnitude computational gain over previous methods. In addition,

we also introduced a method for intuitively actuating soft continuum robots by bending

energy manipulation via natural curvature changes, and demonstrated this actuation’s

96

use as a control input in real2sim of a soft manipulator.

Future work will involve integrating shells (Grinspun et al., 2003) into DisMech to

allow for more complex deformable assemblies. In addition to this, the incorporation of

shearing into DisMech will be a key research area to allow it to simulate all deformation

modes similar to Cosserat rod-based frameworks (Gazzola et al., 2018; Mathew et al.,

2022). In fact, shearing has previously been integrated into a DDG-based framework

when simulating a Timoshenko beam (Li et al., 2020b), albeit for just a 2D framework.

Finally, efficient pipelines for real2sim2real modelling and training through reinforcement

learning using DisMech will be a key research area moving forward, whether it be for soft

robot control or deformable object manipulation.

97

CHAPTER 7

Learning Neural Force Manifolds

for Sim2Real Robotic Paper Folding

Note: We now transition from purely simulation-based works to more robotic appli-

cations. To start, we will be focusing on the first of two nontrivial sim2real robotic

manipulation problems: single manipulator paper sheet folding.

7.1 Introduction

From shoelaces to clothes, we encounter flexible slender structures throughout our ev-

eryday lives. These structures are often characterized by their ability to undergo large

deformations when subjected even to moderate forces, such as gravity. Therefore, the

robotic manipulation of deformable objects is highly nontrivial as a robot must be able

to take into account future deformations of the manipulated object in order to complete

manipulation tasks successfully.

Prior research has focused primarily on manipulating either cloth or ropes (Sanchez

et al., 2018; Yin et al., 2021), and, as a result, the challenge of robotically manipulating

many other deformable objects still lacks robust solutions. This chapter addresses a

particularly difficult deformable manipulation task — folding paper. Paper is similar to

cloth but typically possesses a significantly higher bending stiffness and a slippery surface.

Therefore, when compared to folding garments and fabrics, the folding of paper requires

more delicate and insightful manipulations. In fact, in our experiments we observe that

state-of-the-art methods for robotic fabric/cloth folding (Petŕık et al., 2016; Petŕık and

Kyrki, 2019; Petŕık et al., 2020) perform poorly when transferred to paper.

98

To tackle these challenges, we propose a framework that combines physically accurate

simulation, scaling analysis, and machine learning to generate folding trajectories opti-

mized to prevent sliding. With scaling analysis, we make the problem non-dimensional,

resulting in both dimensionality reduction and generality. This allows us to train a single

nondimensionalized neural network, whose outputs are referred to as a neural force mani-

fold (NFM), to continuously approximate a scaled force manifold sampled purely from

simulation. Compared to numerical models that require the entire geometric configuration

of the paper, NFMs map the external forces of the paper given only the grasp position.

Therefore, we can generate trajectories optimized to minimize forces (and thus minimize

sliding) by applying path planning algorithms. Furthermore, the nondimensionality of

the NFM allows us to generate trajectories for paper of various materials and geometric

properties even if such parameters were not present in the training dataset. We show

that our approach is capable of folding paper on extremely slick surfaces with little-to-no

sliding (Figure 7.1).

Overall, our main contributions in this chapter are as follows:

1. We formulate a solution for folding materially homogeneous sheets of paper along

symmetrical centerlines in a physically robust manner using scaling analysis, resulting

in complete generality concerning the modulus and density of the material, size of

the paper, and environmental properties (e.g., friction).

2. Next, we generate accurate non-dimensional simulation data to train a “neural force

manifold” for optimal trajectory generation. We exploit the high inference speed

of our trained model with a perception system to construct a robust and efficient

closed-loop model-predictive control algorithm for the folding task in near real time.

3. Finally, we demonstrate full sim2real realization through an extensive robotic case

study featuring 360+ folding experiments involving paper sheets of various materials

and shapes. We compare our method against both natural paper folding strategies

as well as the previous state of the art in robotic rectangular fabric folding (Petŕık

et al., 2020, 2016).

99

(a) Manipulation via an Intuitive Trajectory

(b) Manipulation via our Optimal Trajectory

Figure 7.1: Half valley folding for A4 paper with (a) intuitive manipulation and (b)
our designed optimal manipulation. An intuitive manipulation scheme such as tracing a
semicircle experiences significant sliding due to the bending stiffness of the paper, resulting
in a poor fold. By contrast, our optimal manipulation approach achieves an excellent fold
by taking into consideration the paper’s deformation to minimize sliding.

Moreover, we offer demonstration videos and release all our code as open-source software.∗

7.2 Problem Statement

This chapter studies a simple yet challenging task in robotic folding: creating a predefined

crease on a sheet of paper of typical symmetrical geometry (e.g., rectangular, diamond,

etc.) as illustrated in Figure 7.2. Only one end of the paper is manipulated while the

∗See https://github.com/StructuresComp/deep-robotic-paper-folding.

100

https://github.com/StructuresComp/deep-robotic-paper-folding

Manipulated end

Manipulated

 node

Desired crease Desired crease

Free end

Free node

Target line

Target

 node

Rectangular paper Symmetrical paper (square)

x

z
y

o

0.5C C

(a) Initial State

(b) Folding State

(c) Folded State

Figure 7.2: States of the paper during the folding process. The manipulation process
involves two steps. The first (folding) step transitions the paper from the initial state (a),
where the paper lies flat on the substrate, to the folding state (b), where the manipulated
end is moved to the “crease target” line C. The second (creasing) step then transitions
the paper from state (b) to the final folded state (c), which involves forming the desired
crease on the paper.

other end is left free. Thus, extra fixtures are unnecessary and the folding task can be

completed by a single manipulator, which simplifies the workspace, but slippage of the

paper against the substrate must be mitigated during manipulation, which presents a

challenge.

101

The task can be divided into two steps. The first is manipulating one end of the

paper from the initial flat state (Figure 7.2a) to the folding state (Figure 7.2b), with

the goal that the manipulated edge or point should overlap precisely with the crease

target line or point C as shown in the figure. In the second step, the paper is then

permanently deformed to form the desired crease at C/2, thus achieving the final folded

state (Figure 7.2c).

As creasing the paper is trivial, the main challenge lies in minimizing the displacement

of the free end of the paper during the first step. The paper’s large nonlinear deformations

and slippery surface make accurate predictions of the folding paper’s status crucial for

minimizing displacement. Since permanent deformations are absent in the first step, we

model the paper’s nonlinear deformations using a 2D planar rod model with a linear

elastic assumption, which is discussed in detail in the next section. This physical model is

then combined with scaling analysis and machine learning to generate physically-informed

folding trajectories optimized to minimize sliding. With the first step concluded, simple

motion primitives are used to complete the final paper creasing.

7.3 Reduced-Order Model Representation

Paper is a unique deformable object. Unlike cloth, its surface is developable (Hilbert

and Cohn-Vossen, 2021); i.e., the surface can bend but not stretch. Furthermore, shear

deformations are not of particular importance as paper possesses a negligible thickness to

length ratio. Therefore, the primary nonlinear deformation when folding paper in our

scenario is bending deformation. We postulate that the nonlinear behaviors of paper arise

primarily from a balance of bending and gravitational energies: ϵb ∼ ϵg.

To further understand the energy balance of the manipulated paper, we analyze a

finite element of the paper, as shown in Figure 7.3b. The bending energy of this piece

can be written as

ϵb =
1

2
kbκ

2l, (7.1)

102

H

Rigid

substrate

(a) Schematic of Paper during Folding

g
Mesh S

h

a
l

(b) Finite Mesh of Paper

q0q1
qi-1
qi
qi+1 qN

(c) Reduced-Order Planar Rod Model

qi-1

qi

ti-1

ti

qi+1

(d) Discrete Rod Notations

Figure 7.3: Discrete models for paper folding. The top row showcases a (a) schematic
of paper folding discrete centerline with (b) a close up of the bending deformations of a
finite mesh element of the paper. The bottom row shows an equivalent (c) reduced-order
planar rod model (notice the overlay in (a)) with (d) DER notation.

where l is its undeformed length of the piece, κ is its curvature, and its bending stiffness is

kb =
1

12
Ewh3, (7.2)

where w is its undeformed width, h is its thickness, and E is its Young’s modulus. The

gravitational potential energy of the piece is

ϵg = ρwhlgH, (7.3)

where ρ is its volume density and H is its vertical height above the rigid substrate.

103

From the above equations, we obtain a characteristic length called the gravito-bending

length, which encapsulates the influence of bending and gravity:

Lgb =

(
Eh2

24ρg

) 1
3

∼
(
H

κ2

) 1
3

. (7.4)

The length is in units of meters, and we can observe that it scales proportionally to the

ratio of vertical height to curvature squared, which are the key quantities describing

the deformed configuration of the manipulated paper. Note that the formulation of

Lgb contains only one geometric parameter, the paper thickness h, which means that

other geometric quantities (i.e., length l and width w) have no influence on the deformed

configuration.

Additionally, due to the symmetrical geometry and material homogeneity of the paper,

the curvature κ should be identical for all regions at the same height H. Therefore, we

can simply use the centerline of the paper, as shown in Figure 7.3a, to express the paper’s

configuration. As deformations are limited to the x-z plane, this centerline is simply a

2D planar rod. This allows us to simulate paper folding with DER (refer to Chapter 3 for

review). In the next section, we quickly formulate a simplified 2D DER formulation.

7.3.1 Simple 2D DER Formulation

As shown in Figure 7.3c, the discrete model is comprised of N + 1 nodes, qi (0 ≤ i ≤ N).

Each node qi represents two degrees of freedom (DOF): position along the x and the z

axes. This results in a 2N + 2-sized DOF column vector q = [q0,q1, ...,qN]
T representing

the configuration of the paper sheet. Initially, all the nodes of the paper are located in a

line along the x-axis in the paper’s undeformed state. As the robotic manipulator imposes

boundary conditions on the end node qN , portions of the paper deform against the

substrate, as shown in Figure 7.4a. Finally, since deformations are limited to a 2D plane,

we can ignore twisting energies. The total elastic energy is therefore Eelastic = Es + Eb.

Indeed, a ratio ks/kb ∼ 1/h2 ≫ 1 indicates that stretching strains will be minimal,

which matches our intuition as paper is usually easy to bend but not stretch. Therefore,

104

q0qC

qN

(qN')

x

z

s

(a) Side View of Robot Paper Folding

Norm. x coord, x

s=4.10

N
o
rm

.
z

co
o
rd

.
z

l

(b) Sample λ Values

Figure 7.4: (a) Side view of a symmetrical paper during folding with coordinate frames
and relevant notations. (b) Sampled λ forces for a particular l̄s of 4.10. This showcases
one of the sampled “partial” force manifolds that we use to train our neural network on.

the stretching energy item in (3.2) acts as a constraint to prevent obvious stretching for

the modeled planar rod.

We can now write the equations of motion as a simple force balance

Mq̈+
∂Eelastic

∂q
− Fext = 0, (7.5)

where M is the diagonal lumped mass matrix, the dots denote time derivatives of q, ∂Eelastic

∂q

is the elastic force vector, and Fext are the external forces acting on the paper. With

the inclusion of gravity acting as the external forces, the full 2D planar rod simulation

framework is now complete.

7.4 Generalized Solution and Scaling Analysis

As mentioned in Section 7.2, the core of the folding task is to manipulate the end qN to

the target position C starting from an initially flat state shown in Figure 7.2a. To do

so, we analyze the physical system in order to achieve a solution capable of minimizing

sliding during manipulation.

105

7.4.1 Computing the Optimal Force

We first denote several quantities to describe the deformed configuration of the paper. We

introduce a point qC , which is the node that connects the suspended (z > 0) and contact

regions (z = 0) of the paper. We focus solely on the suspended region as deformations

occur primarily in this region. An origin o is defined for our 2D plane which is located at

the initial manipulated end qN , as shown in Figure 7.4a. For the manipulated end, the

robot end-effector imposes a position qN = (x, z) and an orientation angle α to control

the pose of the manipulated end, as shown in Figure 7.4a. We impose a constraint that

the curvature at the manipulated end is always zero so that sharp bending deformations

are prevented, which is crucial to preventing permanent deformations during the folding

process. On the connective node qC , the tangent is always along the x-axis. With these

definitions, we can now modify (7.5) with the following constraints:

Mq̈+
∂Eelastic

∂q
− Fext = 0,

such that qN = (x, z),

dqC

ds
= (−1, 0),

MN = 0,

ls ≡
∫ qN

qC

ds = qC · x̂,

(7.6)

where MN is the external moment applied on the manipulated end, s is the arc length of

the paper’s centerline, and ls is the arc length of the suspended region (from qC to qN).

We can solve (7.6) with the numerical framework presented in Section 7.3.1 resulting

in a unique DOF vector q. Note that when q is determined, we can then obtain the

external forces from the substrate along the paper Fsubstrate = Fx + Fz, orientation

angle α of the manipulated end, and the suspended length ls. Recall that through (7.4),

Young’s modulus E, thickness h, and density ρ were determined to be the main material

and geometric properties of the paper. Therefore, we can outline the following physical

106

relationship relating all our quantities:

λ =
∥Fx∥
∥Fz∥

,

(λ, α, ls) = f(E, h, ρ, x, z),

(7.7)

where f is an unknown relationship. It is then trivial to see that to prevent sliding the

relationship

λ ≤ µs (7.8)

must be satisfied, where µs is the static friction coefficient between the paper and the

substrate. Therefore, a trajectory that minimizes sliding is one that minimizes λ along

its path.

One glaring problem remains in that the relation f must be known to generate any

sort of trajectory. In the absence of an analytical solution, the numerical framework from

Section 7.3.1 can be used to exhaustively find mappings between the inputs and outputs

of f . However, generating tuples in this fashion requires solving the high-dimensional

problem in (7.6). Such a method would be horribly inefficient and would make real-time

operation infeasible. Instead, we opt to obtain a regression approximation of f by fitting a

neural network on simulation data. This approach has several shortcomings, however. For

one, directly learning f is time-consuming given that (7.7) is a high-dimensional mapping

that depends on five parameters as input. Furthermore, since the formulation directly

depends on intrinsic parameters of the paper (E, ρ, and h), an enormously exhaustive

range of simulations must be run to gather enough data to accurately learn f .

7.4.2 Nondimensionalization via Buckingham π Theorem

To proceed, we reduce the dimensionality of the problem by applying scaling analysis.

Buckingham π theorem is a fundamental principle in dimensional analysis, stating that a

physically meaningful equation involving n physical parameters can be expressed using a

reduced set of p = n− k dimensionless parameters derived from the original parameters,

107

where k represents the number of physical dimensions (e.g., mass, time, length, etc.).

Therefore, according to the Buckingham π theorem, we can construct five unitless groups:

x̄ = x/Lgb; z̄ = z/Lgb; l̄s = ls/Lgb; α; and λ = Ft/Fn, where Lgb is the gravito-bending

length (7.4). This results in the following unitless formulation of (7.7):

(λ, α, l̄s) = F (x̄, z̄) . (7.9)

Note that the mapping F is now independent of quantities with units; e.g., material and

geometric properties of the paper. As the dimensionality of our problem has been reduced

significantly, we can now express λ as a function of just two parameters x̄, z̄. Therefore,

training a neural network to model F is now trivial as non-dimensionalized simulation

data from a single type of paper can be used. Furthermore, the low dimensionality of F

allows us easily to visualize the λ landscape along a non-dimensional 2D-plane.

We will detail the steps to model F in the next section.

7.5 Deep Learning and Optimization

7.5.1 Data Generation

To learn the force manifold, we solve (7.6) for many sampled (x, z) points. An example

of the partial force manifold produced from this sampling can be observed for a single

suspended length in Figure 7.4b. For a specific (x, z) location, we apply incremental

rotations along the y-axis and find the optimal rotation angle α that results in MN = 0

on the manipulated end. For a particular configuration (x, z, α), we then record the

suspended length ls as well as the tangential and normal forces experienced on the clamped

end. This leads to a training dataset D consisting of six element tuples (Ft, Fn, α, ls, x, z).

We then non-dimensionalize this dataset to the form (λ, α, l̄s, x̄, z̄).

With our simulation framework, we generated a dataset D comprising a total of 95,796

training samples within a normalized suspended length of l̄s ≤ 6.84 (which adequately

covers the workspace of most papers), consuming 3.54 hours of compute time on an AMD

108

Ryzen 7 3700X 8-core processor.

7.5.2 Learning Force and Optimal Grasp Orientation

To train a neural network model of F ,

(λ, α, l̄s) = FNN(x̄, z̄), (7.10)

we employed a simple fully-connected feed-forward nonlinear regression network with 4

hidden layers, each containing 392 units. Aside from the final output layer, each layer

is followed by rectified linear unit (ReLU) activation. In addition, we preprocessed all

inputs through the standardization

x′ =
x− x̄D

σD
, (7.11)

where x is the original input, x̄D is the mean of the dataset D, and σD is the standard

deviation of D.

We used an initial 80-20 train-val split on the dataset D with a batch size of 128. Mean

absolute error (MAE) was used as the training error. We alternated between stochastic

gradient descent (SGD) and the Adam optimizer whenever training stalled. Furthermore,

we gradually increased the batch size up to 4,096 and trained on the entire dataset once

the MAE dropped below 0.001. Using this scheme, we achieved an MAE of less than

0.0005.

7.5.3 Constructing the Neural Force Manifold

The neural force manifold (i.e., λ outputs of FNN for the workspace set) is discretized into

a rectangular grid consisting of δ̄ × δ̄ blocks, where δ̄ = δ/Lgb. For each of the blocks,

we obtain and store a single λ value using the midpoint of the block. This results in a

discretized neural force manifoldM represented as a m× n matrix. For the purposes of

path planning, we add two components to our manifold. First, we do not allow exploration

109

(a) Neural λ Manifold with Generated Trajectories

(b) Neural α Manifold with Generated Trajectories

Figure 7.5: Visualization of the trained neural network’s non-dimensionalized λ force
manifold M (a) and α manifold (b). An extremely low δ̄ discretization is used to
showcase smoothness. For the force manifold, we observe two distinctive local minima
canyons. Note that regions outside the workspace W are physically inaccurate, but
are of no consequence as they are ignored. For the α manifold, we observe continuous
smooth interpolation throughout, which is crucial for producing feasible trajectories. Both
manifolds showcase the trajectories used in the experiments for folding paper in half for
Lgb ∈ [0.048, 0.060, 0.132]m.

110

(a) Redimensionalized Trajectories

(b) Folding Trajectories for Various Lgb

Figure 7.6: (a) The three trajectories shown in Figure 7.5 scaled back to real space. These
are the actual trajectories used by the robot. (b) Arbitrary trajectories for various Lgb

with identical start and goal states, highlighting the effect of the material property on
our control policy.

into any region not covered by our training dataset (l̄s > 6.84). We do so by defining

a workspace W as all (x̄, z̄) pairs within the convex hull of the input portion of the

dataset D. Secondly, we also exclude regions within a certain l̄s threshold. This is done as

positions with small suspended lengths and large α angles may result in high curvatures

that could cause collision with our gripper and/or plastic deformation, both of which

we wish to avoid. We denote this region as the penalty region Ls. Figure 7.5a shows

a visualization ofM with the workspace W and penalty boundary Ls regions. The α

values corresponding to the manifold are also shown in Figure 7.5b.

111

Algorithm 7: Uniform Cost Search

Input: x̄s, z̄s, x̄g, z̄g,M
Output: τ ∗

1 Func UCS(x̄s, z̄s, x̄g, z̄g,M):
2 W ← valid workspace ofM
3 Ls ← ls penalty region
4 h← initialize min heap priority queue
5 c← initialize empty list
6 ns ← node with location (x̄s, z̄s) and cost 0
7 ng ← node with location (x̄g, z̄g) and cost 0
8 h.push(ns)
9 while len(h) > 0 do

10 ni ← h.pop()
11 if ni == ng then
12 τ ∗ ← path from start to goal
13 break

14 end
15 c.append(ni)
16 for (x̄j, z̄j) ∈ neighbors of ni do
17 if (x̄j, z̄j) /∈ W \ Ls then
18 continue
19 end
20 nj ← node with location (x̄j, z̄j) and cost λj fromM
21 if nj ∈ c then
22 continue
23 end
24 if nj ∈ h and cost of nj is higher then
25 continue
26 end
27 h.push(nj)

28 end

29 end
30 τ ∗ ← perform trajectory smoothing on τ ∗

31 return τ ∗

7.5.4 Path Planning over the Neural Force Manifold

Given the discretized manifold M, we can now generate optimal trajectories through

traditional path planning algorithms. Indeed, we can find that there exist two local

minima regions (dark blue in Figure 7.5a) in the neural force manifold M. However,

note that these two minima regions are not connected, which means improper local

112

optimization may result in undesired traversal through high force regions later. As

mentioned previously, prior mechanics-based work for folding shell-like structures (cloth)

have used either physical simulations or energy-based optimization to compute the optimal

subsequent grasp based solely on the current status of the manipulated object (Petŕık

et al., 2016, 2020). We show that this local optimization approach performs poorly for

paper folding in Section 7.8. In contrast, we generate globally optimized trajectories that

take into account both current and future states of the paper. To do so, we define an

optimal trajectory τ ∗ as one that reaches the goal state while minimizing the sum of λ:

τ ∗ = argmin
τ∈T

L−1∑
i=0

λi, (7.12)

where L is the length of the trajectory and T is the set of all valid trajectories from the

desired start to goal state. We define a valid trajectory as one that is contained within

the acceptable region

(xi, zi) ∈ W \ Ls ∀ (xi, zi) ∈ τ, (7.13)

and whose consecutive states are adjacent grid locations. Given the discretization of the

NFM, we can treatM as a graph whose edge weights consist of λ. Therefore, we use

uniform cost search to obtain τ ∗. Alg. 7 provides the pseudocode of the path planning

algorithm.

7.6 Robotic System

7.6.1 Dual Manipulator Setup

For our experiments, we use two Rethink Robotics’ Sawyer manipulators, as shown in

Figure 7.7. One arm has an elongated gripper designed for folding, while the other arm

has a spring-compliant roller for creasing and an Intel Realsense D435 camera for visual

feedback. The elongated gripper has rubber attached to the insides of the fingers for tight

gripping.

113

1
2

3

4

5

6

Figure 7.7: Experimental apparatus: Two robot manipulators, one for folding (1) and the
other for creasing (3). An elongated gripper (2) is used to grab the manipulated end of
the paper. A roller (5) with compliant springs (6) is used to form the crease. An Intel
RealSense D435 camera (4) attached to the creasing arm offers visual feedback during
the folding procedure. All gripper attachments were 3D printed.

Figure 7.8: Example of our perception system with a top down view of the folding
procedure. (a) Shows the intuitive baseline results while (b) shows our open-loop algorithm
for Lgb = 0.048m and C = 0.25m. As in Figure 7.2, the solid green line indicates the
desired end effector position while the dashed blue line indicates the crease location. For
this case, we observe that the intuitive baseline suffers from considerable sliding while our
open-loop algorithm has near-perfect performance.

7.6.2 Perception System

For perception, we take an eye-in-hand approach by attaching an Intel Realsense D435

camera to the roller arm. We do not use the range output of the camera as it points

down along the world z-axis and the distance from the camera to the table is known. To

114

determine the pose of the paper, we use simple color detection to segment the paper and

then use Shi-Tomasi corner detection (Shi and Tomasi, 1994) to obtain the position of

the bottom edge. Figure 7.8 shows an example of the top-down view as well as the poses

detected by the vision system.

7.7 Model-Predictive Control via Visual Feedback

Although we minimize λ with our proposed framework, sliding could still occur due to a

substrate’s low friction surface and/or jittering of the robot’s end-effector. Notice that

the optimal trajectory τ ∗ generated as described in Section 7.5.4 assumes that the origin

o of our coordinate system, shown in Figure 7.4a, is fixed. We can define the origin as

o = q0 − lx̂, where l is the total length of the paper. Any amount of sliding indicates

that q0 is moving along the x-axis and, therefore, the origin o also moves an identical

amount. When this occurs, our position within the manifold during traversal deviates

from the optimal trajectory. Furthermore, without adaptive replanning, the amount of

sliding ∆x will directly result in ∆x amount of error when creasing. To circumvent this,

we introduce a model-predictive control approach that mitigates the effects of sliding

through trajectory corrections via visual feedback.

We acquire visual feedback at N evenly spaced intervals along the trajectory τ ∗, as

shown in Figure 7.9. To do so, we first partition τ ∗ into N partial trajectories. Aside

from the first partial trajectory τ ∗0 , we extract the start and goal states of the other

1 ≤ i ≤ N partial trajectories resulting in a sequence of N evenly spaced out states

S = {(x1, z1, α1), . . . , (xN , zN , αN)} when accounting for overlaps. After carrying out τ ∗0 ,

we detect the amount of sliding ∆x and incorporate this error by updating the start state

and non-dimensionalizing as

x̄c
i =

xi −∆x

Lgb

. (7.14)

We then replan a partial trajectory τ ∗i from the updated start state (xc
i , zi) to the next

state (xi+1, zi+1) in the sequence and carry out this updated trajectory. This is repeated

until reaching the goal state. By properly accounting for sliding, we ensure that the

115

Figure 7.9: Overview of our robotic paper-folding pipeline. The top row shows offline
components while the bottom row shows online ones. On the offline side, we use our
trained neural network to generate the necessary force manifold for planning. Then, given
an input tuple (xs, zs, xg, zg, Lgb), we generate an end-to-end trajectory using uniform
cost search. This end-to-end trajectory is then split up into partial trajectories that are
carried out by the robot. At the conclusion of each partial trajectory, we measure paper
sliding and replan the next partial trajectory to rectify the error.

traversal through the NFM is as accurate as possible. Note that this scheme allows us to

obtain corrected partial trajectories in near real time once N becomes sufficiently large,

as each partial trajectory’s goal state approaches its start state, allowing for uniform

cost search to conclude rapidly. We refer the reader to our supplementary videos∗ which

showcase the speed of the feedback loop.

The sliding ∆x is not the only error we must rectify. Recall that we assume an optimal

∗See https://github.com/StructuresComp/deep-robotic-paper-folding.

116

https://github.com/StructuresComp/deep-robotic-paper-folding

Algorithm 8: Closed-loop Control Pseudocode

Input: (xs, zs), (xg, zg), Lgb, δ, N,FNN

1 M←DiscretizeManifold (FNN, δ)
2 x̄s, z̄s, x̄g, z̄g ← non-dimensionalize with Lgb

3 τ̄ ∗ ← UCS (x̄s, z̄s, x̄g, z̄g,M) // Alg. 7

4 update τ̄ ∗ with αs using FNN

5 τ ∗ ← convert τ̄ ∗ to real space with Lgb

6 τ ∗0 , ..., τ
∗
N−1 ← SplitTrajectory (τ ∗, N)

7 S ← extract start and goal states
8 carry out τ ∗0 on robot
9 for (xi, zi, αi) and (xi+1, zi+1, αi+1) ∈ S do

10 ∆x← detect sliding of paper
11 xc

i ← xi −∆x
12 x̄c

i , z̄i, x̄i+1, z̄i+1 ← non-dimensionalize with Lgb

13 αc
i ← FNN(x̄

c
i , z̄i)

14 ∆α← αi − αc
i

15 τ̄ ∗i ← UCS (x̄c
i , z̄i, x̄i+1, z̄i+1,M)

16 L← len(τ̄ ∗i)
17 αi ← obtain αs of τ̄ ∗i using FNN

18 αc
i ← αi +∆α[1, (L− 1)/L, ..., 1/L, 0]T

19 append τ̄ ∗i with αc
i

20 τ ∗i ← convert τ̄ ∗ to real space with Lgb

21 carry out τ ∗i on robot

22 end
23 crease paper with roller

grasp orientation α for each position within the manifold. When the origin of our NFM

moves, the true position does not match the intended position, resulting also in an angular

error

αc
i = FNN(x̄

c
i , z̄i),

∆α = αi − αc
i .

(7.15)

Simply applying a −∆α update to the first point in a partial trajectory results in a large

rotational jump that only exacerbates the sliding issue. Furthermore, so long as sliding is

not extremely large, the incorrect α at the current position within the manifold is still

117

lh

l

(a) Schematic of a hanging plate

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

N
o
rm

.
p
a
p
er

 l
eg

n
th

,
l

Cardboard paper

US Letter paper

A4 paper

Square origami paper

l

(b) Relationship between ϵ vs. l̄

Figure 7.10: (a) Schematic of a hanging plate deforming under gravity with fixed left
edge. (b) Relationship between the ratio ϵ = lh/l and normalized total length of the
paper l̄ = l/Lgb obtained via simulation. The papers used in the experiments can be seen
plotted.

fairly optimal. Therefore, the ∆α error is incorporated into the trajectory gradually:

τ ∗i = UCS(x̄c
i , z̄i, x̄i+1, z̄i+1,M),

αi = FNN(τ
∗
i),

αc
i = αi +∆α[1, (L− 1)/L, ..., 1/L, 0]T ,

(7.16)

where UCS denotes uniform cost search and L is the length of trajectory τ ∗i . This gradual

correction ensures that we minimize sliding while maintaining smoothness of the trajectory.

Alg. 8 provides the pseudocode for our full closed-loop method.

7.8 Experiments and Analysis

7.8.1 Measurement of Material Properties

To use our framework, we must develop a way to accurately measure the parameter Lgb.

Recall that Lgb is composed of the bending stiffness kb = Eh3/12 and density ρ. Therefore,

we need only measure this single quantity to describe the paper’s material properties. We

118

Figure 7.11: Comparison of trajectories computed by the folding algorithms for US letter
paper with C = 0.27m. Note the similarity between the SOTA baseline (Petŕık et al.,
2016) and the intuitive baseline.

next propose a simple way to measure the parameter.

As shown in Figure 7.10a, when one end of the paper is fixed, it will deform due to

the coupling of bending and gravitational energy. As Lgb encapsulates the influence of

bending and gravity on the paper, we have the following mapping:

L(ϵ) = l̄ =
l

Lgb

, ϵ =
lh
l
, (7.17)

where lh is the vertical distance from the free end to the fixed end and l is the total

length of the paper. We can obtain the mapping L(ϵ) using numerical simulations, which

is shown in Figure 7.10b. With this mapping known, simple algebra can be performed

to obtain Lgb. First, we measure the ratio ϵ = lh/l for a particular paper to obtain its

corresponding normalized total length l̄. Then, the value of Lgb can be calculated simply

by Lgb = l/l̄. Once we obtain Lgb, we can now use the non-dimensionlized mapping (7.9)

to find the optimal path for manipulating the paper.

119

Table 7.1: Offline trajectory computation time comparison with Petŕık et al. (2016, 2020)
for various papers and crease types.

Paper Type Crease Type
Generation Time [s]

Petŕık et al. (2016, 2020) Our Method

A4 C = 0.25m 59.46 3.28

A4 C = Half 51.15 4.13

US Letter C = 0.20m 68.14 1.80

US Letter C = Half 47.30 2.28

Cardboard C = 0.20m 80.07 1.27

Cardboard C = Half 77.28 4.19

Origami C = 0.30m 43.20 11.73

7.8.2 Baseline Algorithms

To demonstrate the benefits of our folding algorithm, we compared it to both an intuitive

and a state-of-the-art baseline. We can think of an intuitive baseline algorithm as one that

would work if the opposite end of the paper were fixed to the substrate. Naturally, such a

trajectory would be one that grabs the edge of the paper and traces the half perimeter of

a circle with radius R = C/2:

dθ = π/M,

τB = {(R cos(idθ), R sin(idθ), idθ) ∀ i ∈ [0,M]},
(7.18)

where M is an arbitrary number of points used to sample the trajectory. We chose

M = 250 for all our experiments.

Additionally, we conducted comparisons against the state-of-the-art mechanics-based

folding algorithm presented by Petŕık et al. (2016, 2020), which we refer to as the “SOTA

baseline”, that uses a beam model to compute folding trajectories for fabric minimizing

sliding. However, this baseline considers only the current status of the deformed material

when computing subsequent optimal grasp and, consequently, is unable to handle the

challenging task of paper folding. Examples of the computed trajectories are shown in

Figure 7.11.

120

7.8.3 Experimental Setup

We tested folding on 4 different types of paper:

1. A4 paper, Lgb = 0.048m,

2. US Letter paper, Lgb = 0.060m,

3. cardboard paper (US Letter dimensions), Lgb = 0.132m,

4. square origami paper, Lgb = 0.043m.

For the rectangular papers (1–3), we performed two sets of experiments. The first involved

folding the papers to an arbitrary crease location (C = 0.25m for A4 and C = 0.20m for

US Letter and cardboard), while the second involves folding the papers in half. For the

square origami paper, we chose an arbitrary crease location of C = 0.30m. This resulted

in a total of 7 folding scenarios. For each of the scenarios, we conducted experiments using

4 different algorithms—the intuitive baseline, the SOTA baseline, our open-loop approach,

and our closed-loop approach. We completed 10 trials for each of these algorithms,

resulting in a total of 280 experiments.

We also validated our model’s non-dependence on the paper’s width w (Section 7.3)

through additional experiments for narrow strip folding. We created strips of width

w = 2.5 cm for both A4 and cardboard and performed 10 trials for each algorithm,

resulting in 80 additional experiments for a total of 360 experiments in our extensive case

study.

7.8.4 Metrics

The metrics used for the experiments were the average fold length and the spin error. The

average fold length was calculated by simply taking the average of the left and right side

lengths up until the crease. The spin error was calculated as the angle θerr that results in

the difference between the left and right side lengths. For square papers, the fold length

was defined as the perpendicular length from the tip to the crease and the spin error was

the angular deviation from this line to the true diagonal.

121

7.8.5 Parameters

The neural force manifoldM was discretized using δ̄ = 0.0548 as we found this discretiza-

tion to be a good compromise between accuracy and computational speed. All rectangular

papers used a penalty region Ls defined by l̄s < 0.958 while the square paper used one

defined by l̄s < 1.137. This discrepancy is due to the fact that the diagonal paper has a

smaller yield strength compared to the rectangular paper; i.e., to prevent extremely high

curvatures, a larger suspended length l̄s range must be avoided.

For closed-loop control, we chose to split all trajectories into N = 5 intervals regardless

of trajectory length. Furthermore, we used a slick (i.e., low friction) table to showcase the

robustness of our method. Note that smaller friction coefficients result in a significantly

harder manipulation problem due to the lower threshold for sliding. This is made evident

by the excessive sliding of the baseline algorithms shown later. Using an empirical method,

we conducted measurements to determine the static coefficient of friction between the

papers and substrate, yielding an approximate value of µs = 0.12. For comparison, the

static coefficient of friction for lubricated steel on steel is typically µs = 0.15.

7.8.6 Results and Analysis

In Table 7.1 we report the offline trajectory computation times for all experiments using a

single Intel i9-9900KF CPU, demonstrating on average a 15× speed improvement over the

SOTA baseline. In Figure 7.12, all experimental results are reported as box plots where

we show the achieved fold lengths and spin errors. From the achieved fold lengths, we

see significant improvement over the two baselines for all folding scenarios. As expected,

the SOTA baseline demonstrates better performance compared to the intuitive method

with the exception of cardboard paper where the former fails to fold it at all. Due to

the large gap in performance, broken axes are used to properly display the variance of

the recorded data. Note that not only do our algorithms achieve significantly better

performance on average, the variance of our approach is also much lower as shown by the

decreased y-axis resolution after the axis break. We attribute the high variances of the

122

Figure 7.12: Experimental results for all folding scenarios. Each column indicates a
folding scenario with the top and bottom plots showing the fold length and spin error
results, respectively. Boxplot results are shown color coded for the intuitive baseline, the
SOTA baseline (Petŕık et al., 2016), open-loop control, and closed-loop control algorithms.
Medians are shown as orange lines, means as turquoise circles, and the desired target
value as a light blue horizontal line. Both our open-loop and closed-loop algorithms yield
significant improvements over the intuitive baseline and the SOTA baseline, as shown by
the broken axis for fold length boxplots. Our algorithms also exhibit significantly less
variance.

123

Figure 7.13: Isometric views of different folding scenarios. (a) C = Half folding for
Lgb = 0.048m paper with the intuitive baseline (a1), the SOTA baseline (a2), and our
open-loop algorithm (a3). (b) C = 0.30m diagonal folding for Lgb = 0.043m with the
intuitive baseline (b1), the SOTA baseline (b2), and our closed-loop algorithm (b3).

baseline algorithms to the increased influence of friction, which can often cause chaotic,

unpredictable results. In other words, truly deterministic folding can only be achieved

when sliding is nonexistent.

For the vast majority of cases, incorporating visual feedback yields a clear improvement

over the open-loop algorithm. Intuitively, we observe a trend where the performance gap

between our open-loop and closed-loop algorithms grows as the material stiffness increases

for rectangular folding. For softer materials (Lgb = 0.048m), the open-loop algorithm has

near perfect performance as shown when folding a paper in half in Figure 7.13(a3). By

comparison, Figure 7.13(a1)–(a2) shows the intuitive and SOTA baselines failing with

significant sliding.

124

Figure 7.14: Isometric views for folding C = Half with the stiffest paper (Lgb = 0.132m):
(a) shows the intuitive baseline, which fails drastically as the stiffness of the paper causes
excessive sliding during the folding process, (b) shows the SOTA baseline, which is unable
to fold cardboard at all and experiences a high energy snap caused by the large induced
deformations, (c) shows our open-loop algorithm, demonstrating significant improvements
over both baselines with minimal sliding, and (d) shows our closed-loop algorithm, which
improves upon our open-loop results and achieves near perfect folding.

The sliding problem is only exacerbated by increasing the stiffness of the material

(Lgb = 0.132m). Figure 7.14(a) shows the intuitive baseline algorithm failing to fold the

cardboard paper in half by a margin almost as long as the paper itself, while Figure 7.14(b)

shows how the SOTA baseline method experiences complete failure due to a high energy

snapping caused by excessive deformation. By comparison, our open-loop algorithm is

capable of folding the cardboard with significantly better results albeit with some sliding,

as shown in Figure 7.14(c). As the material stiffness increases, the benefits of visual

feedback are more clearly seen as we are able to achieve near perfect folding for cardboard,

as shown in Figure 7.14(d). All of our findings for rectangular folding also match the

results of our diagonal folding experiment shown in Figure 7.13(b1)–(b3), where the

closed-loop approach once again achieves minimal sliding when compared to the baselines.

Overall, the matching findings across all our experiments demonstrate the robustness of

our formulation against material and geometric factors.

We observed one oddity for the folding scenario of Lgb = 0.048m and C = Half, in

125

Table 7.2: Fold length results for narrow and wide papers for A4 and cardboard.

Paper (C/2) w [cm]
Fold length mean± σ [cm]

INT-base SOTA-base Open-loop Closed-loop

A4 (14.85)
2.5 10.89± 0.69 14.66± 0.46 14.88± 0.07 14.83± 0.04

21 12.31± 0.63 13.51± 0.13 14.74± 0.05 14.64± 0.07

CB (14.0)
2.5 7.00± 0.45 N/A 13.31± 0.14 13.81± 0.08

21 5.88± 0.38 N/A 12.8± 0.27 13.75± 0.19

Table 7.3: Spin error results for narrow and wide papers for A4 and cardboard.

Paper (C/2) w [cm]
Spin error θerr mean± σ [deg]

INT-base SOTA-base Open-loop Closed-loop

A4 (14.85)
2.5 0.36± 1.65 0.02± 0.65 0.48± 0.47 −0.23± 0.48

21 6.56± 1.29 1.68± 0.97 0.27± 0.44 0.35± 0.38

CB (14.0)
2.5 0.07± 0.75 N/A −0.70± 0.31 −0.35± 0.82

21 1.25± 1.43 N/A 1.38± 1.06 1.45± 1.48

which the open-loop algorithm outperformed our closed-loop variant, but the decrease in

performance is on average only 1mm, which is attributable to repetitive discretization

error caused by N = 5 replanning. In fact, as we use a discretization of δ = 2mm for

the manifold, compounding rounding errors can easily cause 1–2mm errors. With this

in mind, our closed-loop method achieves an average fold length performance within a

1-2mm tolerance across all experiments.

In terms of spin error, we found that softer materials had the greatest error. As the

surface of the table is not perfectly flat, any amount of sliding will directly result in

uneven spin, as shown in Figure 7.13(a). As the material stiffness increases, the spin

errors became more uniform across the methods as the influence of friction is not enough

to deform the paper. Nevertheless, we can see that our open and closed-loop algorithms

resulted in less sliding than the baseline on average.

126

Figure 7.15: Folding a simple origami cube with open-loop control. The left image shows
the starting strip of paper (A4), the middle images show three folding steps to create each
corner, and the right image shows the resulting cube. Note that regrasps were performed
manually.

7.8.7 Effects of Paper Width on Folding Performance

Previously, we mathematically deduced that the paper’s width w should have no influence

on our folding scheme (Section 7.3). We now validate this claim through experiments.

Tables 7.2 and 7.3 report comparisons of fold length and spin error between narrow strips

and wide sheets of paper error for half folding A4 paper and cardboard. As expected,

both our open-loop and closed-loop methods have near identical performance regardless

of paper width. Aside from a slight exception for open-loop narrow cardboard folding

that actually benefits from a 5mm improvement, differences are almost imperceptible to

the human eye. Interestingly, both baseline methods experience significant changes in

fold length (> ±1 cm) when width is changed. The prevention of such nondeterministic

behavior is another benefit of our method.

7.9 Additional Discussion

7.9.1 Performing Multiple Folds on the Same Paper

Our optimal folding strategy can also be used to fold a single piece of paper multiple times

so long as our assumptions regarding material homogeneity and symmetrical centerline

hold. Given our method’s exceptional accuracy, a precise equilateral origami cube can

be created using solely open-loop control, and excellent results are shown in Figure 7.15.

Future work pertaining to performing arbitrary folds is discussed in Section 7.10.

127

Figure 7.16: Isometric views for folding C = Half with the stiffest paper (Lgb = 0.132m)
using an auxiliary manipulator: (a) shows the intuitive baseline while (b) shows the SOTA
baseline. Note the similarity in results to Figure 7.14 despite the use of an auxiliary
manipulator to prevent sliding.

7.9.2 Importance of Single Manipulator Folding

To emphasize the significance of single-manipulator folding, we next present results

for half-folding cardboard using both baselines with the incorporation of an auxiliary

manipulator used to prevent the opposing edge from sliding (Figure 7.16). The auxiliary

manipulator “holds down” the edge during the folding process and then moves out of the

way at the last possible point in the folding trajectory in order to avoid collision. Despite

the additional hardware, we can see that the results for both baselines are near identical

to the original experiments shown in Figure 7.14.

For the intuitive baseline, significant sliding occurs as soon as the auxiliary manipulator

lifts away due to the paper’s high energy state, ultimately yielding an end result that is

nowhere near the desired half-fold. This sliding is less noticeable for the SOTA baseline,

but the sheet still suffers from buckling. With this demonstration, we conclude that for

stiff materials, naive folding strategies can fail drastically despite the use of auxiliary

manipulators to explicitly prevent sliding. In fact, the use of auxiliary manipulators is

a rather expensive approach, both in terms of requiring additional hardware as well as

introducing more overall motions into the pipeline, which our folding strategy completely

avoids with its inherent sliding prevention.

128

7.10 Conclusion

In this chapter, we have introduced a novel sim2real robot control strategy capable of

robustly folding sheets of paper of varying materials and geometries along symmetrical

centerlines with only a single manipulator. Our framework incorporates a combination of

techniques spanning several disciplines, including physical simulation, machine learning,

scaling analysis, and path planning. The effectiveness of the framework was demonstrated

through extensive real world experiments against both natural and state-of-the-art paper

folding strategies. Furthermore, an efficient, near real-time visual feedback algorithm

was implemented that further minimizes folding error. Our closed-loop model-predictive

control algorithm successfully accomplished challenging scenarios such as folding stiff

cardboard with highly consistent accuracy.

In future work, we hope to tackle the difficult problem of creating arbitrary creases

along sheets of paper with non-symmetric centerlines. Such non-symmetric paper sheets

can no longer be represented as a reduced-order 2D elastic rod model, hence requiring a

more sophisticated shell-based formulation. Additionally, precisely folding paper with

preexisting creases and folds will be a crucial step to accomplishing elaborate folding tasks,

such as robotic origami. We believe that our optimal symmetrical folding trajectories

can serve as a valuable “seed” or initial guess when optimizing for asymmetrical folds.

Moving forward, we anticipate exploring solutions that take advantage of generalized

problem formulations with data-driven control schemes, such as reinforcement learning.

129

CHAPTER 8

mBEST: Physics-Inspired

Realtime Perception for DLOs

Note: This perception algorithm was developed by “accident” when I was originally

trying to find a working DLO perception module for robotic knot tying experiments

(Chapter 9). It was to my surprise that most state-of-the-art DLO perception algorithms

performed poorly and were often needlessly complicated (e.g., using complex blackbox

neural networks to perform instance segmentations at intersections and tangles). Given

my extensive experience with the DER algorithm, it dawned on me that minimizing

bending energy may be a cheap and robust way of performing DLO instance segmentation.

And thus, mBEST was born. In this chapter, algorithm names will be italicized for clarity.

8.1 Introduction

Among various deformable objects, deformable linear objects (DLOs) — typically referred

to as “rods” by the mechanics community — are a special group, including everyday

objects such as cables, ropes, tubes, and threads. Due to their distinctive geometric

characteristic (width ≈ height ≪ length), DLOs are widely used in various domestic

and industrial applications, including surgical suturing (Schulman et al., 2013), knot

fastening (Mayer et al., 2008; Choi et al., 2021), cable manipulation (Zhu et al., 2018;

Yu et al., 2022b), food manipulation (Iqbal et al., 2017), mechanics analysis (Tong et al.,

2021), and more. Because of their flexibility, DLOs are often prone to complex tangling,

which complicates manipulation. Additionally, the complicated structures made by DLOs

usually have unique topology-induced mechanical properties (Audoly et al., 2007; Jawed

130

et al., 2015a; Patil et al., 2020; Johanns et al., 2021; Sano et al., 2022) and are, therefore,

used to tie knots for sailing, fishing, climbing, and various other engineering applications.

Given all the aforementioned, a robust, efficient, and accurate perception algorithm for

DLOs is crucial to both deformable material manipulation and soft robotics.

In this chapter, we present an algorithm for robust, accurate, and fast instance seg-

mentation of DLOs, named mBEST (Minimal Bending Energy Skeleton pixel Traversals).

Without any prior knowledge regarding the geometries, colors, and total number of DLOs,

mBEST takes a raw RGB image as input and outputs a series of ordered pixels defining

the centerline of each individual DLO in the image, thus allowing for the configurations of

different DLOs to be easily incorporated into motion planning and manipulation schemes.

To achieve instance segmentation of DLOs in images, we implement the following

sequence of processing steps: Like previous work (Caporali et al., 2022a), we first perform

semantic segmentation to produce a binary mask of the DLOs against the background

using either simple color filtering methods or a Deep Convolutional Neural Network

(DCNN). After a binary mask is obtained, we apply a thinning algorithm to the mask

to produce a single-pixel-wide skeleton representation of the DLOs, which preserves the

connectivity and centerlines of the binary mask. Thus, key points such as ends and

intersections are easily detected. After a series of refinement steps to ensure topological

correctness, the skeleton is then traversed, one end at a time, in a manner that minimizes

the cumulative bending energy of the DLOs, until another end is encountered. Each

traversal yields a single DLO’s centerline pixel coordinates, which optionally can then

be used to produce segmentation masks. Figure 8.1 overviews the mBEST processing

pipeline.

Overall, our main contributions in this chapter are that we

1. develop a robust pipeline for obtaining ordered centerline coordinates and segmen-

tation masks of DLOs from semantic binary masks;

2. demonstrate that the relatively simple and physically meaningful optimization

objective of minimizing cumulative bending energy outperforms several state of the

131

(a) Original Image (b) Binary Mask (c) Skeleton Pixels &
Keypoint Detection

(d) Skeleton Refinement: Split Ends

(e) Skeleton Refinement: Intersections (f) Path Generation

Figure 8.1: Overview of the mBEST processing pipeline. An input image (a) is converted
to a binary mask (b) using a segmentation method. The binary mask is then converted
to a skeleton pixel representation (c), where the connectivity and centerlines of the DLOs
are preserved as a single-pixel wide structure and keypoints, such as intersections and
ends, are detected. This is followed by a series of refinement steps to maintain the
topological correctness of the skeleton: split ends (d) are pruned and pixels representing
a single topological intersection (e) are clustered, matched, and replaced with a more
intuitive intersection. Finally, the DLOs are delineated (f) by traversing skeleton pixels
and choosing minimal cumulative bending energy paths.

132

art (SOTA) algorithms;

3. showcase the effectiveness of our topology-correcting skeleton refinement steps by

outperforming the SOTA algorithms with a hybrid mBEST formulation that uses

the intersection handling scheme of SOTA algorithms;

4. achieve faster, real-time performance compared to the SOTA algorithms.

Moreover, we have released all our source code, datasets (with ground truth), and a

supplementary video.∗

8.2 Methodology

The mBEST algorithm consists of the following steps:

1. DLO Segmentation

2. Skeletonization

3. Keypoint Detection

4. Split End Pruning

5. Intersection Clustering, Matching, and Replacement

6. Minimal Bending Energy Path Generation

7. Crossing Order Determination

The following sections describe each step in detail.

8.2.1 DLO Segmentation

The first step in detecting the DLOs is to obtain a binary mask Mdlo of the image that

distinguishes all DLO-related pixels from the background. The initial image segmentation

method is not a key contribution of mBEST. Rather, it is a modular component of our

pipeline, allowing for different methods to be plugged in depending on the use case. As

stated previously, we employ two semantic segmentation methods: a DCNN segmentation

model and color filtering. In particular, we use FASTDLO ’s pretrained DCNN model

∗ See https://github.com/StructuresComp/mBEST.

133

https://github.com/StructuresComp/mBEST

(Caporali et al., 2022a) in our experiments.

8.2.2 Skeletonization

As shown in Figures 8.1b–8.1c, the next step of our algorithm is to convert Mdlo to a

skeleton mask Msk, which is useful as both the connectivity and general topology of the

DLOs are maintained. Furthermore, as segments are only 1 pixel wide, traversals along

segments are not susceptible to path ambiguity. To achieve skeletonization, we use an

efficient thinning algorithm designed specifically for 2D images, and refer the reader to

Zhang and Suen (1984) for the details.

8.2.3 Keypoint Detection

After obtaining the skeleton pixel representation, we can then detect two types of key

points: ends and intersections. Locating ends is crucial since they serve as the start

and finish points for skeleton pixel traversals. Locating intersections is crucial as they

represent the only points at which a pixel traversal will have multiple possible routes.

Therefore, care must be taken in choosing the correct path when passing through an

intersection.

To detect ends and intersections, a skeleton pixel classification kernel,

K =


1 1 1

1 10 1

1 1 1

 ,

is convolved with the skeleton mask; i.e., Msk ⊛K. We then identify all end pixels E as

those with a value of 11 (1 neighbor) and all intersection pixels I as those with a value

greater than 12 (3 or more neighbors).

After obtaining both E and I, additional work must be done to obtain the correct

representative sets. For example, end pixels that are unindicative of a topological end

may be produced from a noisy binary mask. These “split ends” will then falsely produce

134

(a) Split End at DLO End

(b) Split End along DLO Segment

Figure 8.2: Examples of split ends that may occur during the skeletonization process.
Row (a) shows split ends that may occur at an actual topological end, while Row (b)
shows a split end along a segment produced by a jagged mask. For both examples, the
first column shows the binary mask; the second shows the split end after skeletonization,
and the third shows the topologically correct structure after pruning.

intersection pixels themselves, as shown in Figure 8.2. Additionally, a single topological

intersection will result in either two Y-shaped divides or a single X-shaped divide, as

shown in Figure 8.4. Such pixels must be clustered accordingly, with a single point of

intersection determined. In the case of a skeleton possessing two Y-shaped divides in the

context of a single intersection, the intersection must also be replaced with an X-shaped

divide that more accurately represents the centerlines of the DLOs.

8.2.4 Split End Pruning

When the boundary of the binary mask Mdlo is jagged, the skeleton mask Msk may

contain several types of split ends, as shown in Figure 8.2. Such split ends must be

identified and pruned as they do not accurately represent the topology of the DLO(s) and

135

will result in incorrect start points as well as cause path ambiguity during pixel traversals.

Note that the length of a split end can be at most the radius of the DLO from which

it is sprouting. Therefore, the length of all split ends should be within a threshold δ

much less than the length of the DLO. As such, for every end in E, we traverse along its

segment until one of the following three conditions occurs before traversing δ pixels:

1. an intersection is encountered,

2. an end is encountered,

3. or neither was encountered.

For Conditions 1 and 2, we remove the segment that was just traversed from Msk as

well as the corresponding end from E. For Condition 1, we must also remove from I all

intersection pixels that were produced from the pruned split end. For any endpoint that

satisfies Condition 3, we do nothing.

To encompass all possible split ends, we can set δ to be the diameter of the widest DLO

in the image. Radii of the DLOs can be obtained by computing an L2 distance transform

on Mdlo, which results in a matrix D containing for each pixel location the closest

Euclidean distance to a 0-value pixel. With this, we can then simply set δ = 2max(D).

As the distance matrix D tells us the radii information for all centerline points, we can

reuse it to generate segmentation masks once each DLO’s path is ascertained (Caporali

et al., 2022a).

8.2.5 Intersection Clustering, Matching, and Replacement

As mentioned in Section 8.2.3, a single topological intersection can result in either a

2Y or X-shaped branching (Figure 8.3). Furthermore, each of these branches may have

several intersection pixels; i.e., pixels with 3 or more neighbors. Our goal then is to group

each pixel in I to a single branch and then group each branch to its true topological

intersection. With all the intersection pixels properly grouped, we then define a single

intersection pixel that represents the true center of a crossing, for all crossings.

First, to cluster all adjacent intersection pixels, we use Density-Based Spatial Clustering

136

(a) 2Y Crossing

(b) X Crossing

Figure 8.3: Skeleton pixel intersection examples showcasing the two possible scenarios
of (a) 2Y branching and (b) X branching. The first column is the original image; the
second column is the zoomed binary mask; and the third column is the skeleton pixel
representation with intersection pixels highlighted in blue.

of Applications with Noise (DBSCAN) (Ester et al., 1996), an algorithm that clusters

data points within a distance threshold of each other. In our case, the Euclidean pixel

distance and is simply set to 2. Once all adjacent pixels in I are clustered, each cluster is

averaged to create a new I.

The next step is to group all branches in I by their respective topological intersection.

To do so, we first classify all branches in I as either Y or X-branches. Intersections that

are X-branches are already topologically correct so they are left unmodified in I. The

remaining Y-branches are removed from I, after which we obtain a list of all possible

Y-branch pair combinations and sort them by their pair distance. The closest branch

pairs are then iteratively popped from the list and matched so long as neither branch has

already been matched. A new intersection pixel is then computed from the average of the

matched branch locations and then added back to I.

Using the new intersection pixel location, all matched Y-branches can then be replaced

137

1st: Clustering
2nd: Matching

(a) Intersection Grouping

new
intersection

new
segments

new ends

(b) Intersection Replacement

a b

c
d

i

(a,b), (c,d)
(a,c), (b,d)
(a,d), (b,c)

(c) Optimal Path Generation

Figure 8.4: Intersection handling for the 2Y crossing shown in Figure 8.3a. As 2Y-shaped
crossings are topologically incorrect, we correct them by replacing the intersection pixels
(a) in two stages: the first involves clustering adjacent pixels and the second involves pair
matching nearby clusters. Using the centroid location of the matched clusters, we then
replace the intersection (b) by creating new ends and having new segments sprout and
connect to the centroid. Finally, (c) the new generated ends and segments are used to
discover the combination of paths that minimizes the cumulative bending energy of the
DLO.

with an X-shaped branch, as shown in Figure 8.4b. Note that there may be cases where

an intersection is topologically a Y-branch (i.e., an end perfectly overlaps with a segment)

and thus has no corresponding match. To account for these cases, we stop matching

Y-branches once the pair distance exceeds a limit ϵ = 10max(D) or if every Y-branch

has already been matched. Any remaining non-matched Y-branches are added back to I.

As shown in Figure 8.4b, we record new “ends” for all topologically correct intersections.

This is done so that we know that an intersection is imminent during a pixel traversal

and, hence, take the correct precomputed path, as discussed next.

8.2.6 Minimal Bending Energy Path Generation

For rods that have nonuniform curvatures, the bending energy must be computed in a

discretized fashion. Recall from (3.5), that if we discretize a rod into N nodes and N − 1

138

edges, then the total bending energy (in 2D) is

Eb =
1

2
EI

N−2∑
k=1

(κk − κ̄k)
2 1

Vk

,

where EI is the bending stiffness, κk and κ̄k are the deformed and undeformed discrete

dimensionless curvatures, respectively, at node k ∈ [1, N−2], and Vk is the Voronoi length.

For our DLOs, we assume that the undeformed curvature is a straight configuration

(κ̄ = 0). Then, minimizing the bending energy of an elastic rod amounts to minimizing

the discrete curvatures.

The norm of the discrete dimensionless curvature for a node k is easily computed

using the unit tangent vectors of the adjacent edges from (3.3):

∥κk∥ =
∥∥∥∥ 2tk−1 × tk

1 + tk−1 · tk

∥∥∥∥ , (8.1)

where tk−1 and tk are the unit tangent vectors of edges k − 1 and k, respectively.

Note that the only time we must choose between multiple paths is at an intersection,

whereas traversals through segments are unambiguous. Using the new ends shown in

Figure 8.4b, we can compute the combination of paths that minimizes the cumulative

bending energy of the DLOs by simply computing the pairs of segments that minimize

cumulative norm curvature. In other words, if an intersection at i has four end points

a,b, c, and d, then we must find the pairs of end points (p1
1,p

2
1) and (p1

2,p
2
2) that

minimizes ∥κ1∥+ ∥κ2∥, where

κ1 =
2t11 × t21
1 + t11 · t21

, κ2 =
2t12 × t22
1 + t12 · t22

,

t11 =
i− p1

1

∥i− p1
1∥
, t21 =

p2
1 − i

∥p2
1 − i∥

,

t12 =
i− p1

2

∥i− p1
2∥
, t22 =

p2
2 − i

∥p2
2 − i∥

.

(8.2)

Figure 8.4c shows an example of this optimization, where out of the 3 possible

combinations of paths the one that minimizes total curvature is selected. With the

139

Algorithm 9: mBEST Pipeline Pseudocode

Input: Mdlo

Output: P
1 Func mBEST(Mdlo):
2 P← []
3 Msk ← Skeletonize(Mdlo)
4 D← DistTransform(Mdlo)
5 δ, ϵ← ComputeParams(D)
6 E, I← DetectKeyPoints(Msk ⊛K)
7 E, I← PruneSplitEnds(E, I,Msk, δ)
8 I← ReplaceIntersections(I, ϵ)
9 Pinter ← GenIntersectionPaths(I,Msk)

10 while E is not empty do
11 x← E.pop()
12 while True do
13 τ ← traverse along Msk from x until reaching an end e
14 if e ∈ Pinter then
15 τ ← τ +Pi

inter

16 x← last pixel of Pi
inter

17 end
18 else
19 E.remove(e)
20 break

21 end

22 end
23 P.append(τ)

24 end
25 return P

paths through intersections properly precomputed, the skeleton pixel traversals to obtain

each DLO’s centerline can now take place. Alg. 9 shows the pseudocode of the mBEST

pipeline.

8.2.7 Crossing Order Determination

The final step of the pipeline involves ascertaining which DLO is resting on top at

intersections. To solve this problem, we use a modified version of FASTDLO ’s (Caporali

et al., 2022a) solution. To compute crossing order at intersections, we use the precomputed

optimal paths shown in Figure 8.4c. Crossing order is then determined by computing

140

the sum of the standard deviations of the RGB channels of the pixels along each path.

Finally, the path that contains the lower sum is assumed to be the one on top. Although

this solution from FASTDLO works fairly well, we discovered that failures can occur due

to glare along the centerline, which may even cause failures for intersections with two

completely different colored DLOs. To eliminate the influence of glare, we compute the

standard deviations of the intersection path pixels not on the original input image but on

its blurred version.

8.3 Experimental Results

8.3.1 Datasets

We used two different datasets to evaluate the effectiveness of mBEST. The first consists

of relatively simple configurations of DLOs against complex backgrounds, whereas the

second consists of complex configurations (i.e., highly varying curvatures and numerous

self-loops) of DLOs against a simple black background. We focused mostly on images

with a simple black background since the initial binary mask segmentation is not a key

aspect of our algorithm; however, mBEST also works well for complex backgrounds, as

shown in Figures 8.5 and 8.6.

The complex background dataset was provided by Caporali et al. (2023a), and com-

prises a total of 132 images of size 640× 360. It is split into tiers C1, C2, and C3, each

containing 44 images, where the tier numbers reflect the increasing complexity of the

background. Given the complexity of the background, DCNN segmentation was used to

obtain the initial binary mask. We removed two images each from C2 and C3 as they

included intersections involving > 2 DLOs, scenarios which are currently outside the

scope of mBEST.

The simple background dataset consists of a total of 300 images of size 896× 672 and

is split into tiers S1, S2, and S3, each containing 100 images, where the tier numbers

reflect the number of DLOs in the image, resulting in both an increase in complexity and

141

Figure 8.5: Sample segmentations for images in datasets C1 and C2. Each column shows
segmentation results for a different image with the top row indicating the dataset to which
the image belongs. Rows 2–5 show Ariadne+, FASTDLO, RT-DLO, and mBEST results,
respectively. The bottom row shows the ground truth. Note the failure to properly handle
intersections for all baseline algorithms, especially when strands are nearly parallel.

computational demand as the numbers increase. Given the high contrast background,

color filtering sufficed to obtain the initial binary mask.

142

Figure 8.6: Sample segmentations for images in datasets C2 and C3. Each column shows
segmentation results for a different image with the top row indicating the dataset to which
the image belongs. Rows 2–5 show Ariadne+, FASTDLO, RT-DLO, and mBEST results,
respectively. The bottom row shows the ground truth. Note the failure to properly handle
intersections for all baseline algorithms, especially when strands are nearly parallel. In
fact, RT-DLO can be seen to produce an unintuitive output for the last example where
certain wires are labeled multiple times.

143

Figure 8.7: Sample segmentations for images in datasets S1, S2, and S3. Each column
shows segmentation results for a different image with the top row indicating the dataset
to which the image belongs. Rows 2–5 show results for Ariadne+, FASTDLO, RT-DLO,
and mBEST, respectively. The bottom row shows the ground truth. Several cases of
incorrect intersection handling can be observed for all the baseline algorithms, whereas
mBEST robustly handles intersections using its simple bending energy optimization.

144

8.3.2 Baselines and Parameters

We tested mBEST against three state-of-the-art baselines: Ariadne+ (Caporali et al.,

2022b), FASTDLO (Caporali et al., 2022a), and RT-DLO (Caporali et al., 2023a). In

terms of hyperparameters, the number of superpixels for Ariadne+ was set to 75 for

complex background images and to 200 for simple background images. Both these values

were chosen as optimal after performing a parameter sweep on each dataset. For RT-DLO,

the K-nearest neighbors matching parameter was set to 8, the edge similarity threshold

was set to 0.1, and the vertex sampling ratio was set to 0.15. These hyperparameters

were provided by default and shown to have good performance in Caporali et al. (2023a).

For all experiments involving use of the DCNN model, a pixel segmentation threshold of

77 (0–255) was used. Furthermore, although Ariadne+ has its own neural network for

the initial segmentation of the DLOs, we replaced it with FASTDLO ’s DCNN model for

consistency and better performance.

Additionally, we demonstrated the effectiveness of mBEST ’s skeleton refinement steps

by conducting experiments on an aggregated dataset consisting of S1, S2, and S3 with

a hybrid formulation that uses FASTDLO ’s intersection handling neural network in

mBEST ’s framework.

All experiments were run on a workstation with an Intel i9-9900KF CPU and an

NVIDIA RTX 2080 Ti GPU.

8.3.3 Results and Analysis

We report two key metrics. First, we look at segmentation accuracy using the popular

DICE metric. We also report the average run times for each algorithm in frames per

second (FPS). Tables 8.1 and 8.2 report both metrics for all our experiments, respectively.

For the complex background datasets, we see that mBEST outperforms all baseline

algorithms in terms of mean DICE score. In particular, we see that the baseline algorithms

often struggle to handle intersections that are nearly parallel, as shown in Figures 8.5

and 8.6.

145

Table 8.1: mBEST vs. SOTA DICE results.

Dataset
DICE [%]

Ariadne+ FASTDLO RT-DLO mBEST

C1 88.30± 0.102 89.82± 0.091 90.31± 0.085 91.08± 0.083

C2 91.03± 0.044 91.45± 0.039 91.10± 0.058 92.17± 0.050

C3 86.13± 0.123 86.55± 0.110 87.27± 0.128 89.69± 0.089

S1 97.24± 0.065 87.91± 0.062 96.72± 0.014 98.21± 0.006

S2 96.81± 0.074 88.92± 0.061 94.91± 0.019 97.10± 0.010

S3 96.28± 0.067 90.24± 0.042 94.12± 0.043 96.98± 0.009

Table 8.2: mBEST vs. SOTA runtime results.

Dataset
Runtime [FPS]

Ariadne+ FASTDLO RT-DLO mBEST

C1 2.69 20.81 30.58 31.86

C2 2.63 20.90 32.50 32.03

C3 2.72 20.51 32.44 32.17

S1 0.92 21.88 39.60 52.79

S2 0.78 17.34 25.73 41.04

S3 0.73 15.33 22.06 37.11

With regard to runtime, mBEST is roughly on par with RT-DLO and is a clear

improvement over Ariadne+ (≈ 11×) and FASTDLO (≈ 1.5×). Note three important

caveats for these results: 1) the initial DCNN segmentation comprises a large portion of

the computation time; 2) the images are relatively small and the number N of DLOs is

random, giving little insight as to how the algorithms scale with N , and 3) RT-DLO ’s

ability to keep up with mBEST in speed is solely due its low vertex sampling rate (0.15).

We observe that increasing the sampling rate increases the compute time significantly

given the computational expense of graph construction.

To address the above concerns, consider the results for the simple background datasets.

As these datasets do not require the use of a DCNN and are labeled by the number of

DLOs they contain, we can accurately determine how each algorithm scales and performs

with respect to N . As reported Table 8.2, mBEST offers clear speed improvements

146

Table 8.3: Skeleton refinement analysis on datasets S1+S2+S3.

Algorithm DICE [%] Runtime [FPS]

FASTDLO 89.02± 0.056 16.13

HYmBEST 97.39± 0.013 29.94

mBEST 97.43± 0.010 42.86

over the Ariadne+ (≈ 54×), FASTDLO (≈ 2.4×), and RT-DLO (≈ 1.5×) baselines.

Additionally, we see that mBEST scales better with respect to N compared to RT-DLO

despite the latter’s sparse sampling rate, with mBEST experiencing runtime decreases

of about 22.3% and 9.6% when moving up each tier compared to RT-DLO ’s 35% and

14.3%. Though a low sampling rate works well for the relatively straight configurations of

DLOs in C1, C2, and C3, we notice that performance degrades significantly once a coarse

sampling rate is unable to capture the highly variable curvatures of complex assemblies of

rods (i.e., those in S1, S2, and S3). Examples of this can be observed in our supplementary

video.∗

In addition to the significant improvement in runtime, mBEST also outperforms

all the baseline algorithms in terms of mean DICE score as well. Several examples of

intersection failures experienced by the baseline algorithms are shown in Figure 8.7. Such

failures typically occur in extreme cases (i.e., either nearly-parallel or extremely curved

self-loops). Interestingly, Ariadne+’s mean DICE score is very close to mBEST ’s, but

had up to 10× the standard deviation, meaning that Ariadne+ suffered a higher number

of outright failures. In fact, mBEST has a lower standard deviation compared to all the

baseline algorithms across all the datasets with the exception of C2, indicating a higher

level of consistency for a wide range of data.

Finally, we analyze the effectiveness of our skeleton refinement steps by formulating

a hybrid algorithm, HYmBEST, which uses FASTDLO ’s intersection handling neural

network (IHNN) plugged into mBEST ’s framework. As reported in Table 8.3, HYmBEST

achieves a mean DICE score almost identical to mBEST, with both significantly out-

∗See https://github.com/StructuresComp/mBEST.

147

https://github.com/StructuresComp/mBEST

performing FASTDLO. This is noteworthy as it shows that FASTDLO ’s IHNN works

reasonably well, but that the improperly handled skeleton structure yields poor results,

thus highlighting the importance of the topology-correcting refinement steps. Note also

that although FASTDLO ’s IHNN can perform well in a hybrid formulation, mBEST ’s

remarkably cheap bending energy formulation still results in an ≈ 43% runtime improve-

ment.

8.4 Conclusion

In this chapter, we have introduced mBEST, an end-to-end pipeline for the segmentation

of deformable linear objects (DLOs) in images that improves upon the state of the art

both in terms of accuracy and computational speed. Through a variety of experiments,

we have shown that mBEST can robustly handle complex scenes with highly tangled

DLOs by generating paths on topologically correct skeletons that minimize the cumulative

bending energy of the scene.

In future work, we will explore solutions that take into consideration occlusions,

multiple DLOs at an intersection, poor quality binary masks, and dense knots; i.e., strands

touching in parallel. We note that though we do not cover it in this manuscript, the bending

energy formulation of mBEST can easily be expanded to deal with multiple DLOs at an

intersection by simply accounting for additional path combinations. Furthermore, methods

like RT-DLO (Caporali et al., 2023a) already take into consideration the possibility of poor

binary masks and may be better suited for such situations. Finally, another promising

research direction is 3D detection of DLOs, thus enabling robots to go beyond simple planar

manipulation. Solutions for this may involve using mBEST to generate segmentations

from multiple viewing angles for the purposes of 3D reconstruction.

148

CHAPTER 9

Sim2Real Neural Controllers for DLO Deployment

Note: This work on DLO deployment is very similar to the work of Chapter 7 in that we

use scaling analysis with Buckingham π theorem to produce a generalizable formulation.

The key difference in this chapter is that rather than a sim2real model (which is then

indirectly used to compute optimal trajectories), we learn a sim2real optimal control

policy directly.

9.1 Introduction

Prior works on manipulating DLOs can be divided into two categories. The first involves

robots attempting to manipulate DLOs to satisfy some high-level conditions without

controlling the exact shapes of DLOs. This includes knot tangling/untangling (Wakamatsu

et al., 2006; Saha and Isto, 2007), obstacle avoidance (McConachie et al., 2020; Mitrano

et al., 2021), following guidance and insertion (She et al., 2021; Zhu et al., 2019), etc.

The second category involves robots attempting to precisely control the exact shape of

the DLOs. For this task, a key challenge is formulating a mapping between the robot’s

motions and the shape of the manipulated DLO (Nair et al., 2017; Takizawa et al., 2015;

Lv et al., 2022).

In this chapter, we look into how to design a manipulation scheme for controlling the

shape of elastic rods through deployment, which involves manipulating one end of DLO in

a way that gradually lays the DLO on a substrate in a desired pattern with superhuman

accuracy, sufficient efficiency, and strong robustness. The full end-to-end pipeline of our

physics-based deployment scheme is shown in Figure 9.1. In addition to achieving precise

149

Figure 9.1: A full end-to-end pipeline for deploying a DLO with a sim2real physics-based
deployment scheme. The pipeline begins by discretizing the DLO pattern, which can
be obtained through user input via an analytical expression or a hand-drawn pattern
scanned by a perception system (Choi et al., 2023b). A neural controller trained entirely
from simulation then generates an optimal manipulation path for deploying the pattern,
taking into account the shape of the pattern as well as the geometrical and material
properties of the DLO. Finally, the deployment result is evaluated using an Intel RealSense
camera positioned to provide a top-down view of the pattern to assess the accuracy of
the deployment.

shape control, we show our control method can be used to solve high-level tasks such as

reproducing human writing with a deployed DLO, cable placement, and knot tying.

Deploying DLOs is instrumental in the practical world, e.g., drawing or writing on

cakes with icing (Sun et al., 2015), deploying marine cables (Whitcomb, 2000), depositing

carbon nanotubes (Geblinger et al., 2008), and melting electrospinning for advanced

manufacturing (Teo and Ramakrishna, 2006). Therefore, a concrete and applicable

deployment scheme is a perfect solution to the shape control problem of DLOs.

Now a natural question arises: how to deploy a DLO along a prescribed pattern

accurately on a substrate? Intuitively, we can assume that during the deployment process,

the manipulated end qM is directly above the contact point qC and that the gripper’s

decreasing distance along the negative z-axis is equal to the added deployed length on

the substrate. However, this deployment strategy does not take into consideration the

nonlinear geometric deformations of the manipulated DLO and therefore, results in a

poor quality deployment as illustrated by later experimental results. A schematic of

150

the intuitive deployment method inspired by Takizawa et al. (2015) can be observed in

Figure 9.2(a).

In this chapter, we propose a framework that combines physically accurate simulation,

scaling analysis, and machine learning to generate an optimized control scheme capable

of deploying solid rod-like structures, which we refer to as DLOs, along any feasible

pattern. Our control scheme does not currently incorporate energy dissipation from

manipulations with DLOs such as viscous threads, as our physical-based simulation is

based on the rod model. However, the controlling scheme can be adapted by adjusting

the physical-based simulation in our combined framework to include these factors. We

validate the scheme with various DLOs (e.g., elastic rods, rope, and cable) in robotic

experiments. The usage of physically accurate numerical simulations not only allows

us to incorporate physics into our manipulation scheme but also results in full sim2real

realization. Scaling analysis allows us to formulate the problem with generality using

non-dimensional parameters, resulting in a control scheme robust against the material

properties of the manipulated rods. Finally, machine learning allows us to train a neural

network to model the controlling rules of deployment in a data-driven fashion. The high

inference speed of our neural controller makes real-time operation feasible.

Our main contributions in this chapter are as follows:

1. we formulate a solution to the DLO shape control problem through deployment with

a physically robust scheme that leverages scaling analysis, resulting in generality

against material, geometric, and environmental factors (friction);

2. we train a neural network (NN) with non-dimensional simulation data to serve as a

fast and accurate neural controller for optimal manipulations of deployment tasks.

The trained mechanics-based NN solver has remarkable efficiency and sufficient

accuracy when compared to a numerical solver; and

3. we demonstrate full sim2real realization through an extensive robotic case study

demonstrating our control method’s success for various practical deployment patterns

with various DLOs on different substrates. In addition, we showcase the utility of

our control scheme for complex high-level applications such as mimicking human

151

Figure 9.2: (a) Schematic of the intuitive control method from Takizawa et al. (2015).
A DLO is being deployed along a circular pattern shown in dashed green. During the
deployment process, the manipulated position qM deploys along the tangent of the pattern
x in a downward 45-degree angle with respect to the y-axis. The x-z-plane is shown in
opaque gray. In addition, a comparison of experimental results between the (b) intuitive
control method, (c) our designed optimal control method, (d) and simulation results using
the optimal control method for the patterns of straight line, circle, and sine curve are
shown. Note the effects of forgoing the influence of nonlinear geometric deformations in
the intuitive deployment scheme’s failure to follow simple patterns.

handwriting, managing cables, and tying different knots.

Moreover, we have released our source code and supplementary videos.∗

9.2 Generalized Solution and Scaling Analysis

When manipulating DLOs, we should consider their geometrically nonlinear deformations.

Moving forward, x̂, ŷ, and ẑ refer to the unit directors of the coordinate system defined

by the connective node qC as shown in Figure 9.3. When a DLO is being deployed along a

prescribed pattern on a rigid substrate, it can be divided into two parts: a deployed part

on the substrate and a suspended part that does not contact the substrate (Figure 9.3).

Here, we presume the pattern on the substrate is fixed since the DLO should ideally be

deployed along the prescribed pattern. Therefore, the unknown deformations only exist

∗See https://github.com/StructuresComp/rod-deployment.

152

https://github.com/StructuresComp/rod-deployment

Figure 9.3: Schematic of deploying a DLO along a prescribed pattern.

in the suspended part. Moving forward, all simulations of the DLO will be performed

using DER (Chapter 3).

9.2.1 Solving the Suspended Part

To capture the deformations of the suspended part, we introduce some quantities to assist

our analysis. First, we define q(s) to describe the position of the manipulated DLO’s

centerline, where s is the arc length along the DLO’s centerline. Then, a material frame

m(s) = [m1,m2, t] ∈ SO(3) is attached along the DLO to capture the DLO’s rotation,

where t = dq
ds

is the tangent of the DLO. With the help of q(s) and m(s), we can fully

describe the deformed configuration of the suspended part.

To solve the configuration of the suspended part, we can treat the suspended part as

an independent DLO starting from the connective node qC to the manipulated node qM .

153

Here, qC = q(0) is the connective node connecting the deployed part and the suspended

part. Given the continuity of the manipulated DLO, the curvature vector κ at qC can be

obtained from the prescribed pattern, where the magnitude of κ is denoted as κ. The

manipulated end grasped by the robot is then qM = q(ls), where ls is the total curve

length of the suspended part. Deployment of the pattern is then carried out purely by

controlling qM . Since (3.9) implies that the DLO’s configuration q(s) and m(s) can

be solved when boundary conditions are determined, we can write down the governing

equations for the suspended part as

R(q) = 0,

s.t. q(ls) = qM , R = m(ls)m(0)T ,

q(0) = qC ,
dq(0)

ds
= t(0),

dt(0)

ds
= κŷ,

(9.1)

where R is the DER equations of motion (3.9), and qM is the position and R is the

orientation of the manipulated end with respect to the connective node qC . Note that

the position of the connective node qC , tangent t(0), and curvature vector κŷ can be

determined from the deployed pattern, where ŷ is the unit vector illustrated in Figure 9.3.

By solving (9.1), we can obtain the configuration of the suspended part for any predefined

pattern and manipulated end pose.

9.2.2 Influence of Force and Friction

Once the deformed configuration is known, we can now calculate the forces applied

on the suspended part, which is key to hyper-accurate control of the DLO. We denote

the external forces Fext = Fxx̂+ Fyŷ + Fzẑ and twisting moment M(0) applied on the

suspended part from the connective node qC . Here, the moment M is a function of arc

length s; for example, M(s) is the twisting moment applied on the manipulated end. The

quantities Fext and M(0) are relevant with the friction coefficient µ between the substrate

and the rod, and µ is an unknown and uncontrollable environment factor. In addition,

the quantities Fext and M(0) also influence the tangent t(0) at the connective node qC

154

because of Newton’s third law. Therefore, we must minimize quantities Fext and M(0) to

achieve an optimal controlling rule.

Despite the optimal controlling rule minimizing the influence of friction, it is still

worth clarifying the significance of friction within this context. Though we make the

strong assumption that the deployed pattern remains fixed during deployment, this is

only upheld if the following relation is satisfied for the deployed segment:

kbκ
′′ ≤ µsρAg, (9.2)

where kb is the bending stiffness of the rod, κ′′ is the second derivative of κ with respect

to the arc length s (κ′′ = d2κ
ds2

), µs is the static friction coefficient, ρ is the volumetric

density of the rod, A is the cross-sectional area, and g is the gravitational acceleration.

Here, (9.2) is derived by analyzing an arbitrary finite element of the deployed pattern

with a clamped-end Euler-Bernoulli beam model. Clearly, friction plays a crucial role in

the deployment process.

As a result, our designed optimal deployment strategy maintains a reliance on adequate

friction for effective execution while the scheme mitigates external tangential forces apart

from the essential friction on the substrate. Consequently, the scheme necessitates only a

modest static friction coefficient between the substrate and the manipulated DLO.

9.2.3 Computing Optimal Grasp

In addition to the minimization of the external forces Fext and twisting moment M(0)

applied on the suspended part, we set up a rule for the manipulated end: the robot

end-effector should induce minimal deformations on the manipulated node qM so that

the curvature (bending deformations) at the manipulated end should be 0. This results

155

in the following optimization problem to compute the optimal grasp:

(q∗
M ,R∗) = argmin

(
∥Fext∥2 +

(
∥M(0)∥

h

)2
)

s.t.
dq(0)

ds
= t(0),

dt(0)

ds
= κŷ,

d2q(ls)

ds2
= 0, R(q) = 0.

(9.3)

By solving (9.3), optimal grasp (q∗
M and R∗) can be obtained. Physical analysis tells

us that a direct mapping relationship exists between the contributing factors and the

optimal grasp. Recall from (3.2), (3.5), and (3.7), that stretching stiffness ks ≡ EA,

bending stiffness kb ≡ EI, twisting stiffness kt ≡ GJ , density ρ, and rod radius h are the

primary material and geometric properties of a rod. By adding in additional geometric

properties such as suspended length ls and curvature κ, the mapping relationship

(q∗
M ,R∗) = f(ls, κ, ks, kb, kt, h, ρ) (9.4)

can be constructed where f(·) is a highly nonlinear (and unknown) function that describes

the controlling rule.

Note however the high input dimensionality of (9.4). In other words, to accurately

learn the mapping f(·), we would have to exhaustively perform large parameter sweeps for

various ranges of material and geometric parameters within simulations. This process of

collecting data quickly gets out of hand due to the curse of dimensionality. To circumvent

this, we can perform scaling analysis to obtain an equivalent reduced-order mapping.

9.2.4 Nondimensionalization via Buckingham π Theorem

Like in Section 7.4.2, we use Buckingham π theorem to reduce the dimensions of the map-

ping f(·). Using the theorem, we obtain the following reduced-order non-dimensionalized

156

mapping F(·) from the original function f :

(q̄∗
M ,R∗) = F(l̄s, κ̄, k̄s),

Lgb =

(
kb

2πh2ρg

)1/3

,

k̄s =
ksL

2
gb

kb
,

q̄∗
M =

q∗
M − qC

Lgb

,

l̄s =
ls
Lgb

,

κ̄ = κLgb.

(9.5)

Hereafter, all quantities with (̄) indicate normalized quantities. In (9.5), all quantities

are unitless so that the mapping relationship F(·) maps from the unitless groups encapsu-

lated the geometric and material properties to the unitless optimal robotic grasp. The

benefit of doing such is that we reduce the dimensions of the mapping function F(·) in

(9.4) and eliminate the dependence of F(·) on the units. Note that in (9.5), we omit the

twisting stiffness kt as we found that twisting energies are minimal compared to bending

and stretching. In the following section, we will show how to establish the nonlinear

mapping function in (9.5).

9.3 Deep Learning and Optimization

In this section, we further analyze the optimization of the system to obtain the nonlinear

mapping function in (9.5). Given the high nonlinearity of the system, we first solve (9.5)

with a numeric optimization solver in a data-driven way. While doing so, we analyze the

elastic instability of the system to choose the optimal robotic grasp for the deployment

task. Afterward, we reconstruct (9.5) using a neural network to take advantage of its

high inference speed. This neural controller is then used by our robotic system as the

controlling law to complete various deployment tasks in Section 9.5.

157

9.3.1 Deployment in 2D Workspace

9.3.1.1 Elastic Instability in Straight Line Deployment

We first take a look at an intriguing physical phenomenon: elastic instability. Elastic

instability occurs when changes in the boundary conditions cause a deformed structure to

become unstable. When observed visually, a small geometric perturbation of the system

will lead to a substantial change in configuration (Timoshenko and Gere, 2009). An

example of this can be observed when a robot employs the intuitive control method to

deploy a DLO along a straight line as the rod unexpectedly adopts a curved shape on the

substrate. This observation defies our intuition as the intuitive method only manipulates

the DLO in the 2D plane (x-z plane) as illustrated in Figure 9.2(a). Consequently,

the suspended part should ideally experience only 2D deformations within that plane,

thereby avoiding significant deformations along the y-axis. On the contrary, this observed

phenomenon results from the unaccounted elastic instability of the manipulated DLO.

Given this, it is crucial to take elastic instability into consideration when designing

an optimal deployment scheme so that the robot’s grasp and possible jittering of the

manipulator does not introduce large undesired deformations of the DLO. To achieve

this, we thoroughly analyze all potential robot grasps for manipulating a DLO in the x-z

plane to achieve a straight-line deployment. Our objective is to identify an optimal grasp

that satisfies (9.3) while effectively preventing the manipulated DLO from buckling due

to elastic instability.

9.3.1.2 Discovering the Potential Grasp Region

Given the suspended part’s geometric properties and boundary conditions, we can write

down the constraints C which should be satisfied:

q̄(s̄) · ẑ ≥ 0 ∀ s̄ ∈ [0, l̄s],

F̄ext · ẑ ≥ 0.
(9.6)

158

Figure 9.4: Schematic of a DLO manipulated in a 2D workspace (a) and its corresponding
available region denoted byM (b). Visualization of a specific case with l̄s = 17.68. The
force distribution is shown in (c), and (d) displays the maximum geometric deformation
of the suspended part under a disturbance of ∆ȳ = 0.12 along the y-axis.

These constraints enforce that (i) the suspended part should be above the substrate and

(ii) external contact responses along the z-axis should always be larger than or equal to 0.

By solving (9.1) with constraints C, we obtain all potential robot grasps of the

manipulated end, forming a closed manifoldM for a fixed normalized suspended length

l̄s. The boundary condition at the connective node q̄C is defined as t(0) = (1, 0, 0)

and κ̄ = 0. Each point in the manifoldM corresponds to a position q̄M and rotation

R of the manipulated end. Given that the deformed configuration is located within

the 2D x-z plane, we can use a 2 × 1 vector q̄M = (x̄Top, z̄Top) to express the position

159

of q̄M and a scalar value α to denote the rotation information. For example, tangent

t(l̄s) = (cos(α), sin(α)) is shown in Figure 9.4(a). Since the manifoldM is a closed set,

we only need to obtain the boundary of the manifold ∂M.

To discover the boundary ∂M, we explore along a ray r from the connective node

q̄C to the manipulated node q̄M . The robot grasp along the ray can be divided into

three regions as shown in Figure 9.4(b). When the robot grasp exists in regions I and

III, constraints C are not satisfied. In region I, the external force F̄z = Fzh
2/kb is smaller

than 0, violating the constraints as stretching occurs, and in region III, the manipulated

end is too low, leading to contact between the suspended part and the substrate. Thus,

region II, existing between regions I and III, represents the manifoldM area that satisfies

the constraints C. To obtain the boundary ∂M of region II, a bisection method is used

(further details in Tong et al. (2023c)).

A specific case for l̄s = 17.68 is visualized in Figure 9.4(c). Since deformations only

occur in the x-z plane, the twisting moment M̄(0) = M(0)h/kb applied on the connective

node q̄C is always 0. To achieve the optimal pose of the manipulated end for l̄s = 17.68,

we need to find the poses inM that minimizes ∥F̄ext∥. Two local minima are found in

the case shown in Figure 9.4(c), corresponding to two solutions of (9.3). As stated before,

we must select the local minima corresponding to the stable deformed suspended part.

9.3.1.3 Checking Elastic Instability via Perturbations

To test the elastic stability of these local minima, we apply a disturbance ∆ȳ = y/Lgb

along the y-axis while the manipulated end q̄M is at each local minimum. Figure 9.5

illustrates the changes in F̄y = Fyh
2/kb and the configurations resulting from these

perturbations for each local optimum.

For local minimum 2, we can see a sudden snapping process, where an immediate

change can be observed, while the disturbance on local minimum 1 results in a continuous

and steady change. Therefore, we can conclude that the optimum for deploying the DLO

is at a local minimum 1 since this minimum corresponds to a configuration with more

160

Figure 9.5: Change of the magnitude of normalized force F̄y when adding a perturbation
along the y-axis at local minimum 1 (a1) and local minimum 2 (a2), and change of the
configurations of the rod when adding the perturbations at local minimum 1 (b1) and
local minimum 2 (b2) for l̄s = 17.68.

gentle bending deformations of the suspended part.

Here, we also illustrate that the neighboring region around the elastic instability points

has a higher tendency for significant deformations when the jittering of the manipulator

occurs. In simulation, we introduce a small disturbance of ∆ȳ = 0.12 along the y-axis

for all potential robot grasps on the manifoldM. Figure 9.4(d) illustrates the maximum

161

displacement of the suspended part along the y-axis ∆qmax
y = max0≤s≤ls(q(s) · ŷ) caused

by this small disturbance. It is evident from the results that the neighboring region

around local minimum 2 exhibits a higher tendency for significant deformations along the

y-axis. Consequently, robot grasps within this region are more likely to induce instability

in the manipulated DLO.

We can now output the optimal deployment rule for a straight line using the method

introduced in this section. In the next section, we focus on optimal 3D manipulation, i.e.,

deploying patterns with nonzero curvature. The following section discusses how to use a

first-order optimization algorithm to solve (9.3) for deploying any arbitrary prescribed

pattern, where the optima for straight-line deployment is used as seeds when searching

for the optima of more complex patterns.

9.3.2 Deployment in 3D Workspace

As mentioned in Section 9.2.4, the mapping relationship F(·) in (9.5) must be constructed

to achieve optimal deployment in the 3D workspace. For the connective node of any

prescribed pattern, since the deformations of the pattern are only in the x-y plane, we

can ensure that the twisting moment M(0) can always be 0. Therefore, the optimal pose

of the manipulated end can be obtained by minimizing ∥F̄ext∥ by solving

∇q̄M
∥F̄ext∥ = ∂F̄ext

∂q̄M

F̄ext = 0. (9.7)

As the deploying rod is a continuous system, F̄ext must change when qM changes. Therefore,

we can convert (9.7) to be a root finding problem

F̄ext = 0. (9.8)

As discussed before, solving the configurations of the deploying DLO is a boundary

value problem. Since the pattern’s shape determines the boundary conditions on the

connective end, the external forces F̄ext are influenced solely by the manipulated end pose

162

Algorithm 10: Gradient Descent for Optimal Grasp

Input: l̄s, κ̄ŷ, k̄s, ν
Output: q̄∗

M

1 Func OptimalGrasp(l̄s, κ̄, k̄s):
2 k ← 0
3 δ ← a small value as tolerance

4 q̄
(k)
M ← initialize a random pose of end-effector

5 R(·)← initialize the rod solver with l̄s, κ̄, k̄s
6 do

7 F̄ext ← R(q̄(k)
M)

8 Jext ← (9.9)
9 ∆q̄← (Jext)−1F̄ext

10 α← LineSearch(q̄
(k)
M ,∆q, ∥F̄ext∥,R)

11 q̄
(k+1)
M ← q̄

(k)
M − α∆q̄

12 k ← k + 1

13 while ∥F̄ext∥ ≥ δ

14 q̄∗
M ← q̄

(k)
M

15 return q̄∗
M

qM , with a unique corresponding R for describing the rotation of the manipulated end.

Given the high nonlinearity of the DLO, it is nontrivial to solve the root-finding

problem in (9.8) analytically. Therefore, we employ a finite difference approach to

calculate the numerical Jacobian of Fext. We perturb the manipulated end along x, y,

and z-axes with a small distance ϵ and use the finite difference to compute the numerical

Jacobian

Jext =
1

ϵ


F̄ext(q̄M + ϵx̂)− F̄ext(q̄M),

F̄ext(q̄M + ϵŷ)− F̄ext(q̄M),

F̄ext(q̄M + ϵẑ)− F̄ext(q̄M)


T

, (9.9)

where T is the transpose operator and ϵx̂, ϵŷ, and ϵẑ are small perturbations along x, y,

and z-axes, respectively; i.e., ϵx̂ = [ϵ, 0, 0]T . Here, Jext is a 3× 3 matrix and can be used

to calculate the Newton search step so that (9.8) can be solved with a gradient descent

method. Further details of this solving process are stated in Alg. 10. Additionally, we

also implement a simple line search algorithm to help determine the appropriate step size

for the Newton search step ∆q̄ as shown in Alg. 11.

163

Algorithm 11: Line Search Algorithm

Input: q̄M ,∆q, f0,R
Output: α

1 Func LineSearch(q̄M ,∆q, f0,R, α0 = 1,m = 0.5):
2 α← α0

3 k ← 0
4 success ← False
5 do

6 q̄
(k)
M ← q̄M − α∆q

7 F̄ext ← R(q̄(k)
M)

8 f (k) ← ∥F̄ext∥
9 if f (k) ≥ f0 then

10 α← mα
11 k ← k + 1

12 else
13 success ← True
14 end

15 while not success
16 return α

Both position q̄M and rotation e of the manipulated end are represented as 3×1 vectors:

q̄M = (x̄Top, ȳTop, z̄Top) and e = (ex, ey, ez). The rotation vector e can be translated to a

rotation matrix through an axis-angle representation (ê, ∥e∥), where ∥e∥ is the rotation

angle along the rotation axis ê = e/∥e∥. For an input tuple (l̄s, κ̄, k̄s), we can now solve for

the optimal pose of the manipulated end (q∗
M , e∗). Visualizations of the discretely solved

optimal poses obtained from simulation are shown as red hollow circles in Figure 9.6.

We now know how to obtain the optimal manipulation pose given the input (l̄s, κ̄, k̄s)

with simulations. A numeric solver based on simulations for generating the optimal

trajectory for various prescribed patterns is released.∗ However, solving for the optimal

poses with the numeric solver makes real-time manipulation infeasible as trajectory

generation can take several hours. Instead, the following section introduces using a neural

network to learn the optimal controlling rule for fast real-time inference.

∗See https://github.com/StructuresComp/rod-deployment.

164

https://github.com/StructuresComp/rod-deployment

9.3.3 Training the Neural Controller

Rather than obtaining the optimal grasp through the numerical solver detailed in the

previous section, we train a neural network to learn an analytical approximation of

F(·) similar to the approach in Choi et al. (2023c). We use a simple fully-connected

feed-forward nonlinear regression network consisting of 4 hidden layers, each with 392

nodes, as the network architecture. Aside from the output, each layer is followed by a

rectified linear unit (ReLU) activation.

We frame the neural controller to have an input i ∈ R3 and an output o ∈ R6,

where the input consists of the three non-dimensional values l̄s, κ̄, and k̄s and the output

consists of two concatenated 3× 1 vectors: the optimal position q̄∗
M and rotation e∗ of the

manipulated end. Using our simulation framework, we construct a dataset D consisting

of 6358 training samples.

When training the neural controller, we first preprocess all inputs i through the

standardization

i′ =
i− īD
σD

,

where īD and σD are the mean and standard deviation of the input portion of the dataset

D. Afterward, we use an initial 80-20 train-val split on the dataset D with a batch size

of 128. We use mean absolute error (MAE) as our loss and use a training strategy that

alternates between stochastic gradient descent (SGD) and Adam whenever training stalls.

In addition, the batch size is gradually increased up to a max size of 2048, and the entire

dataset is used to train the controller once MAE reaches < 0.003. With this scheme, we

achieve a final MAE of < 0.0015. The neural network’s approximation of F(·) can be

seen visualized in Figure 9.6.

165

Figure 9.6: Visualization of the influence from curvature κ̄ and suspended length l̄s on the
(a1-a3) manipulated end position and (b1-b3) manipulated end orientation for fixed values
of k̄s = 2087; visualization of the influence from stretching stiffness k̄s and curvature κ̄ on
the (c1-c3) manipulated end position and (d1-d3) manipulated end orientation with fixed
values of l̄s = 13.68.

166

Figure 9.7: Handwritten letters and the corresponding extracted discretized patterns
using mBEST (Choi et al., 2023b).

9.4 Robotic System

For our experiments, we used two Rethink Robotics’ Sawyer manipulators, as shown in

Figure 9.8. One arm is attached with a gripper for manipulating the rod while the other

is outfitted with an Intel RealSense D435 camera. Furthermore, a workstation with an

AMD Ryzen 7 3700X CPU and an NVIDIA RTX 2070 SUPER GPU was used for all

experiments.

9.4.1 Perception System

To obtain the Cartesian centerline coordinates of the deployed DLO, we use the DLO

perception algorithm mBEST (Choi et al., 2023b) from Chapter 8. In addition to detecting

DLOs, mBEST is also used for general pattern extraction. One case of extracting

discretized patterns from a handwritten pattern is shown in Figure 9.7. RGB images of

the deployed DLO are obtained through an Intel RealSense D435 camera, as shown in

Figure 9.8.

9.4.2 Motion Planning with the Neural Controller

In Figure 9.1, we showcase the full end-to-end pipeline of our proposed deployment scheme.

Here, we give a full description of how to integrate the trained neural controller into a

167

Figure 9.8: Experimental apparatus: Two robot manipulators, one for manipulation of the
deploying rod (1) and the other for holding the camera for perception (2). A gripper (3)
is used for grabbing the manipulated end of the rod. A camera (4) is used for extracting
patterns from the drawn patterns and evaluating the deployment results.

robot motion planner.

The first step of the deployment process is to specify the desired pattern. This pattern

can be defined by either an analytical function or detected as a drawn curve (Figure 9.1).

Note that the pattern P(s) is treated as a function of the curve length s. Based on the

configuration of the pattern, we can compute the required inputs for the neural controller

when the connective node qC achieves each point in the pattern P(s). The details of

generating an optimal trajectory based on the pattern P(s) and the properties of the

manipulated rod are given in Alg. 12.

In Alg. 12, κ and T are all functions of the arc length s of the pattern, where T is the

tangent along the pattern. With Alg. 12, we obtain the optimal grasp trajectory τ and

then use OMPL (Sucan et al., 2012) to generate a valid motion planning sequence on a

real robot system.

One highlight of our overall robotic system is its real-time capability. The real-time

168

Algorithm 12: Optimal Deployment Trajectory

Input: P, L, Lgb, k̄s
Note that material parameters Lgb, k̄s must be measured in advance (Figure 9.9
and (9.10)).
Output: τ

1 Func OPT(L,P, Lgb, k̄s):
2 S, κ,T← ProcessPattern (P)
3 ∆s← step size of deployment
4 τ ← initialize an empty list
5 ẑ← director along vertical direction
6 s← 0
7 while s ≤ S do
8 qC ← P(s)
9 x̂← T(s)

10 κ̄← κ(s)Lgb

11 l̄s ← (L− s)/Lgb

12 (q̄∗
M , e∗)← F(l̄s, κ̄, k̄s)

13 R← AxangtoRot (ê∗, ∥e∗∥)
14 Rt ← (x̂, ẑ× x̂, ẑ)
15 q∗

M ← qC +Rtq̄
∗
MLgb

16 R∗ ← RtR
17 Append (q∗

M ,R∗) to τ
18 s← s+∆s

19 end
20 return τ

efficiency of the perception algorithm has been validated by Choi et al. (2023b) while the

average end-to-end time to generate a full optimal deployment motion plan is less than

1 second. Therefore, our approach is also efficient enough for sensorimotor closed-loop

control. However, as offline control has achieved excellent deployment accuracy in our

experiments, online control is not carried out in this work.

9.5 Experiments and Analysis

9.5.1 Measurement of Material Parameters

To carry out deployment with our proposed scheme, we must validate its efficacy with

comprehensive experiments. In this chapter, we deploy various DLOs on different sub-

169

Figure 9.9: (a) Deformed configurations of a DLO under gravity in 2D plane; (b)
Relationship between the height of the loop hf and the gravito-bending length Lgb.

strates for multiple tasks so that we can look into the robustness of the proposed scheme

against the material difference and friction.

First, we need to find the geometric and material properties of the manipulated DLO.

The geometry of the manipulated rod, e.g., total length L and rod radius h, is trivial to

measure. Measuring the material properties of the DLO is less clear. Overall, we need to

develop a way to find the following material properties: gravito-bending length Lgb and

normalized stretching stiffness k̄s.

Here, we presume the material is linearly elastic and incompressible. The incompress-

ible material means the volume of the rod will not change when deformations happen.

Therefore, Poisson’s ratio is set as ν = 0.5. In addition, bending stiffness is kb =
Eπh4

4

where E is Young’s modulus, and the expression for gravito-bending length Lgb and

170

Table 9.1: Material and geometric properties of the DLOs used in the experiments. The
amount of friction for different substrates is also shown.

DLO
Material & Geometric Parameters

Material Lgb [cm] h [mm] L [m] ν µfabric µsteel µfoam

#1 Pink VPS 1.8 1.6 0.875 0.5 Low Medium High

#2 Green VPS 3.2 1.6 0.885 0.5 Low Medium High

#3 Rope 3.4 2.0 0.89 0.5 Medium Low High

#4 Pink VPS 2.86 3.2 0.84 0.5 Low Medium High

#5 Cable 8.01 1.8 0.87 0.5 Medium Low High

normalized stretching stiffness k̄s is

Lgb =

(
Eh2

8ρg

)1/3

,

k̄s =
ksL

2
gb

kb
=

4L2
gb

h2
.

(9.10)

When observing (9.10), we find that the only parameter we must obtain is Lgb. It

is still unclear how to compute this as Lgb is relevant to Young’s Modulus E and the

density ρ of the rod, which is usually hard to measure. Here, we propose a simple method

that is able to measure Lgb by observing the geometry of the rod. When we form a loop

in a rod naturally using gravity in a 2D plane, we can observe the geometry of the rod

becomes what is shown in Figure 9.9(a). Indeed, the height hf of the loop has a linear

relationship with Lgb. Therefore, we can obtain Lgb for different rods by simply measuring

hf . According to prior work (Pan et al., 2020) and our validation shown in Figure 9.9(b),

hf = 0.9066Lgb.

9.5.2 Experiment Setup

9.5.2.1 Materials

We conducted experiments involving five distinct types of DLOs. Among these, three are

silicone-based rubber fabricated by vinyl polysiloxane (VPS); the fourth is a commercially

171

available rope; and the fifth is a stiff USB cable. Note that we also validate the robustness

of the deployment scheme against different substrates. The friction between the DLOs and

substrates is also qualitatively measured. Comprehensive details regarding the parameters

for each of these DLOs can be found in Table 9.1.

9.5.2.2 Experiment Tasks

We implement our proposed deployment scheme across four distinct tasks. First, we

deploy a rod along some canonical cases obtainable through analytical expressions such

as a line, circle, and sine curve. The rod is deployed using the robotic arm with the

gripper. Once the deployment is finished, the other arm with the camera moves to scan

the deployment result.

The second task involves deploying patterns drawn on paper. Users draw patterns,

subsequently scanned by the camera to obtain ordered discretized pattern coordinates.

The robot then manipulates the rod to replicate the drawn pattern. This chapter showcases

deployment results for the letters “U”, “C”, “L”, and “A” with the precise shapes detailed

in Figure 9.10(a). The third task is geared towards validating the deployment scheme’s

application in cable placement, a vital aspect of cable management. The scheme’s efficacy

is demonstrated by placing cables along constrained paths with the help of pre-installed

fixtures on the substrate. Lastly, the deployment scheme’s application for tying knots is

verified. Both robotic arms are equipped with grippers for this task.

For the first two tasks, patterns are evaluated using both intuitive and optimal control

methods. Additionally, three different rods (DLOs #1, #2, and #3) are deployed on

substrates of various materials (fabric, steel, foam) to assess the method’s robustness

against material disparities and friction. In the third task, DLO #5 (USB cable) is

employed for cable placement using both algorithms. Finally, DLOs #2 and #4 are used

to tie distinct knots for the fourth task. Each experimental case is subjected to ten trials

for each control method, culminating in a total of 1340 experimental trials.

172

Figure 9.10: Experiment results of deployment along various patterns. (a) All used
prescribed patterns are discretized and plotted. Deployment results for (b) DLO #1 (pink
VPS), (c) DLO #2 (green VPS), and (3) DLO #3 (rope) are shown for each prescribed
pattern. Results for the intuitive control method and optimal control method are shown
for each rod.

9.5.3 Metrics

We now formulate the metrics used to evaluate the performance of the deployment scheme.

When deploying a pattern P, we need to assess the accuracy of the deployment result.

We first discretize the pattern P into N points and denote the i-th point of the prescribed

pattern as Pi. The actual deployment pattern obtained from perception is denoted as

Pexp. With this discretization scheme, we compute the average error emean and standard

173

Figure 9.11: Experiment results of deployment with DLO #2 (green VPS) along various
patterns on different substrates.

deviation σ as

emean =
1

N

N∑
i=1

∥Pi
exp −Pi∥,

σ =

√∑N
i=1(∥Pi

exp −Pi∥ − emean)

N
,

(9.11)

for both the intuitive and optimal control results.

The accuracy evaluation is not applicable for the two application tasks: cable placement

and knot tying as they are high-level tasks. Therefore, we simply use the success rate

of those application tasks to evaluate the performance of the deployment scheme. In

addition to accuracy, we also report a detailed comparison of runtimes and errors between

the numerical and NN-based solvers. Details of the relevant results and analysis are

discussed in the next section.

174

Table 9.2: Evaluation of deployment accuracy for canonical patterns using various DLOs
and substrates.

DLO SUB
Control
Scheme

Pattern Type and Accuracy emean ± σ [cm] (9.11)

Line Circle Sine curve

#1

Fabric
INT 0.40± 0.22 0.61± 0.36 1.66± 0.74

OPT 0.14± 0.09 0.15± 0.07 0.27± 0.10

Steel
INT 1.42± 0.66 2.34± 1.24 2.69± 1.69

OPT 0.22± 0.12 0.22± 0.08 0.27± 0.10

Foam
INT 1.03± 0.21 1.23± 0.45 2.84± 1.52

OPT 0.25± 0.15 0.18± 0.06 0.29± 0.16

#2

Fabric
INT 0.52± 0.13 1.64± 0.95 1.60± 0.83

OPT 0.13± 0.07 0.16± 0.07 0.20± 0.09

Steel
INT 1.72± 0.63 2.52± 1.02 3.30± 2.08

OPT 0.17± 0.08 0.22± 0.09 0.54± 0.20

Foam
INT 1.38± 0.60 2.24± 0.97 4.17± 2.57

OPT 0.27± 0.13 0.20± 0.09 0.37± 0.14

#3

Fabric
INT 1.56± 0.81 1.13± 0.53 5.09± 1.35

OPT 0.49± 0.28 0.29± 0.15 0.47± 0.23

Steel
INT 4.53± 2.80 1.85± 0.45 4.43± 2.82

OPT 0.47± 0.20 0.29± 0.13 0.46± 0.20

Foam
INT 2.00± 0.88 1.94± 0.84 3.80± 1.96

OPT 0.78± 0.34 0.27± 0.15 0.46± 0.20

9.5.4 Results and Analysis

9.5.4.1 Accuracy

All experimental results for canonical and handwritten patterns can be seen in Tables 9.2

and 9.3, respectively. To compute the error metrics in (9.11), we used a discretization of

N = 50. From all results, we can observe a noticeable improvement in our optimal control

method over the intuitive method for various geometrical, material, and environmental

parameters.

To better visualize our method’s generality, we visually depict deployment outcomes

across different DLOs on the fabric surface in Figure 9.10. In addition, a comparative

175

Table 9.3: Evaluation of deployment accuracy for handwritten patterns using various
DLOs and substrates.

DLO SUB
Control
Scheme

Pattern Type and Accuracy emean ± σ [cm] (9.11)

Letter “U” Letter “C” Letter “L” Letter “A”

#1

Fabric
INT 1.39± 0.63 2.21± 0.92 1.00± 0.59 4.81± 2.27

OPT 0.22± 0.07 0.22± 0.10 0.35± 0.18 0.47± 0.23

Steel
INT 3.59± 2.39 3.67± 1.93 0.87± 0.55 3.64± 2.09

OPT 0.24± 0.13 0.27± 0.09 0.42± 0.16 0.58± 0.37

Foam
INT 3.33± 1.93 3.89± 1.29 1.13± 0.74 4.09± 2.19

OPT 0.24± 0.15 0.41± 0.20 0.35± 0.12 0.54± 0.24

#2

Fabric
INT 3.74± 2.89 4.58± 1.15 1.74± 1.11 4.95± 2.63

OPT 0.17± 0.11 0.19± 0.22 0.29± 0.11 0.32± 0.18

Steel
INT 4.78± 4.15 6.66± 2.53 2.14± 1.26 5.23± 3.38

OPT 0.21± 0.09 0.74± 0.31 0.66± 0.24 0.36± 0.17

Foam
INT 5.42± 4.47 6.14± 3.08 1.70± 1.32 5.09± 3.39

OPT 0.17± 0.08 0.39± 0.18 0.37± 0.15 0.43± 0.19

#3

Fabric
INT 4.22± 3.10 3.36± 1.58 2.37± 1.56 4.59± 2.54

OPT 0.36± 0.18 0.35± 0.19 0.50± 0.24 0.56± 0.29

Steel
INT 4.53± 2.80 3.35± 1.55 2.57± 1.62 4.30± 1.73

OPT 0.47± 0.20 0.56± 0.20 0.51± 0.24 0.81± 0.30

Foam
INT 3.67± 2.46 6.03± 3.11 3.32± 1.80 4.47± 2.50

OPT 0.32± 0.16 0.56± 0.26 0.33± 0.14 0.52± 0.20

visual representation of deployment results for a single DLO (#2) on varying substrates is

shown in Figure 9.11. Readers seeking comprehensive visual comparisons of all deployment

outcomes can refer to the supplementary video for detailed insights.∗

Among the seven deployed patterns, the first three (straight line, circle, and sine

curve) are canonical cases; i.e., their shapes have explicit analytical expressions. Note

that when deploying the circle and sine curve patterns, a small “remainder” section is first

deployed. This is necessary as the circle and sine curve patterns have a non-zero curvature

at the start of their pattern. We compensate for this by deploying a remainder part

whose curvature gradually evolves from a straight line with 0 curvature to the prescribed

∗See https://github.com/StructuresComp/rod-deployment.

176

https://github.com/StructuresComp/rod-deployment

curvature of the pattern’s first point. The remainder can improve the deployment task’s

accuracy as the deployed pattern will require slight friction based on (9.2).

We have omitted the designed remainder for the four remaining patterns denoted

by the letters “U”, “C”, “L”, and “A” for better visualization. Among these, patterns

“U”, “L”, and “A” exhibit a relatively low κ′′ value during the beginning stage of the

deployment, resulting in the deployment accuracy being minimally affected by surface

friction.

Conversely, the “C” pattern demonstrates a comparatively higher κ′′ value initially,

leading to a possible noticeable mismatch between the deployed DLO and the intended

pattern in the beginning. The impact of friction becomes more pronounced during the

rope deployment corresponding to DLO #3 since the rope has higher bending stiffness

kb and experiences lower friction with the substrate. Fixing the free end is essential to

precisely replicate the “C” pattern with the rope as shown in Figure 9.10(d). Despite

this limitation, our optimized deployment strategy consistently outperforms the intuitive

approach.

9.5.4.2 Computational Efficiency

Next, we also evaluated the computational efficiency of our neural controller. Tables 9.4

and 9.5 compare time costs between the neural network solver (NN-solver) and the numeric

solver for canonical and handwritten patterns, respectively. When calculating a single

optimal robot grasp for a given parameter tuple (l̄s, κ̄, k̄s), the numeric solver takes

approximately 10 to 20 seconds, while our NN-solver takes roughly 0.4 seconds.

The difference of time costs becomes more significant when generating a series of

optimal robot grasps for a discretized pattern. Note that a discretized pattern typically

consists of 100 to 200 nodes and that the numeric solver needs to compute the robot

trajectory in sequence as the optimal grasp for the previous step is needed as the seed for

computing the next optimal grasp. Therefore, the time costs quickly accumulate for the

numeric solver, which substantially elongates the overall computation time. In contrast,

177

Table 9.4: Evaluation of computation times for canonical patterns for the numerical and
NN-solvers. Error metrics for position and orientation between the neural controller and
numeric solvers are also given.

DLO
Solver Times [s]

& MAEs

Patterns with Number of Nodes

Line Circle Sine curve

101 nodes 156 nodes 138 nodes

#1

Numeric-Solver 1572.68 2036.11 2897.17

NN-Solver 0.402 0.393 0.395

Position Error [m] 0.0008 0.0007 0.0009

Orientation Error 0.0012 0.0010 0.0032

#2

Numeric-Solver 776.56 1213.14 1769.66

NN-Solver 0.397 0.391 0.396

Position Error [m] 0.0016 0.0016 0.0019

Orientation Error 0.0012 0.0078 0.0050

#3

Numeric-Solver 666.01 1041.71 1561.12

NN-Solver 0.400 0.407 0.395

Position Error [m] 0.0016 0.0017 0.0020

Orientation Error 0.0010 0.0087 0.0052

the NN-solver leverages vectorization to solve multiple robot grasps simultaneously,

resulting in a speed advantage of several orders of magnitude compared to the numeric

solver when generating optimal deployment trajectories.

9.5.4.3 Precision of the Neural Controller

Finally, Tables 9.4 and 9.5 also presents the precision of the NN-solver. The solutions

from the numeric solver serve as the ground truth. Mean Absolute Error (MAE) is

employed to evaluate the optimal trajectories the NN-solver generates against the ground

truth. Remarkably, the MAE consistently remains below 0.003m for position error and

0.009 for differences in rotation quaternions. Importantly, it’s noteworthy that none

of the solved trajectories in this analysis were part of the training dataset. Thus, we

can confidently assert that our NN-solver exhibits robustness, efficiency, and accuracy,

rendering it well-suited for real-time control applications.

178

Table 9.5: Evaluation of computation times for handwritten patterns for the numerical
and NN-solvers. Error metrics for position and orientation between the neural controller
and numeric solvers are also given.

DLO
Solver Times [s]

& MAEs

Patterns with Number of Nodes

Letter “U” Letter “C” Letter “L” Letter “A”

190 nodes 190 nodes 190 nodes 194 nodes

#1

Numeric-Solver 3954.12 4015.24 4777.30 4666.55

NN-Solver 0.431 0.431 0.400 0.417

Position Error [m] 0.0008 0.0007 0.0008 0.0008

Orientation Error 0.0025 0.0020 0.0020 0.0021

#2

Numeric-Solver 2286.66 2226.73 2720.08 2933.90

NN-Solver 0.419 0.408 0.404 0.406

Position Error [m] 0.0018 0.0016 0.0020 0.0017

Orientation Error 0.0042 0.0020 0.0058 0.0030

#3

Numeric-Solver 1984.63 1972.39 2405.71 2639.44

NN-Solver 0.407 0.420 0.405 0.411

Position Error [m] 0.0020 0.0016 0.0021 0.0018

Orientation Error 0.0055 0.0023 0.0054 0.0032

9.6 Use Cases

9.6.1 Cable Placement

In this section, we showcase the application of the deployment scheme for cable placement.

The importance of cable management has surged, particularly in engineering contexts

involving tasks like wire harnessing, infrastructure development, and office organization

(Sanchez et al., 2018; Lattanzi and Miller, 2017). Given cables’ inherent high bending

stiffness, shaping them to specific forms can be challenging, often necessitating external

fixtures to maintain the desired configuration. When humans perform cable management

manually, meticulous placement along the designated pattern is essential, coupled with the

use of fixtures to secure the cable in place. However, a robotic system can autonomously

execute cable placement with our designed optimal deployment strategy.

In our experimental setup, we preinstalled external fixtures into the stainless steel

179

Figure 9.12: A demonstration of cable placement along different prescribed patterns with
both intuitive and optimal control schemes.

breadboard to delineate the intended patterns. These fixtures also counteract the cable’s

rigid nature, preventing it from reverting to its original shape. The deployment results

can be visualized in Figure 9.12. Compared to the failure placement results with the

intuitive scheme, our optimal deployment scheme can place the cable along the prescribed

pattern “U” and “S” on the substrate. We conducted 10 experimental trials for each

deployment task illustrated in Figure 9.12. Notably, the optimal deployment approach

achieved an impressive 90% (9/10) success rate for both patterns, whereas the intuitive

method failed in all trials (0/10), as shown in Table 9.6.

9.6.2 Knot Tying

Since our optimal deployment scheme can control the shape of various DLOs with excellent

accuracy, we can use this scheme to tie knots. First, the manipulated rod is deployed

along a predesigned pattern on the substrate. Users can draw the predesigned pattern so

that only a few extra manipulations are required. Then, the camera will scan the drawn

pattern and send it as input to our designed scheme. The deployed pattern is designed

in a way that only a few simple pick-and-place operations on certain knot segments is

180

Figure 9.13: A demonstration of two knot-tying cases using the DLO deployment scheme.
(a0) and (b0) are designed patterns for the trefoil knot and the reef knot, respectively.
Time marches for trefoil knot from (a1) to (a6) and reef knot from (b1) to (b6).

required to complete the tying sequence. Since the prescribed pattern’s shape is known in

advance, we can let the robot execute the pick-and-place procedure without perception

feedback. So long as the initial deployment is accurate and repeatable, the subsequent

pick-and-place procedure should succeed most of the time.

We showcase two knot-tying sequences in Figure 9.13. The top row showcases a trefoil

knot, one of the most fundamental knots in engineering (Crowell and Fox, 2012). For this

knot, we used DLO #4. Another case is a reef knot, a prevalent knot widely used in for

various applications including shoelaces, packaging, sewing, etc. When tying the reef knot,

we used DLOs #2 and #4. Although these two DLOs have totally different material

properties, our generalizable neural controller allows two robots to deploy both DLOs

accurately along the designed patterns. With the help of the deployed patterns, reef

knots can be tied with simple pick-and-place procedures. Such knot-tying cases strongly

support the potential of our deployment scheme in various engineering applications.

We show the results of the knot-tying tasks in Table 9.6. The successful rate of

knot-tying is remarkable. We achieve a success rate of 90 % (9 successful trials out of 10)

for tying a trefoil knot and a success rate of 70 % (7 successful trials out of 10) with the

optimal control method. Based on our observations, all the failure cases were caused by

the rod slipping out of the gripper. In contrast, the intuitive control method achieves a

success rate of 0% for both cases as the initially deployed pattern does not match the

181

Table 9.6: Real-world application experiment results. Success rates for the various cable
placement and knot tying tasks are shown.

Experiment Type Scheme Success Rate

“S” Cable Placement
INT 0/10

OPT 9/10

“U” Cable Placement
INT 0/10

OPT 9/10

Trefoil Knot
INT 0/10

OPT 9/10

Reef Knot
INT 0/10

OPT 7/10

intended pattern.

Therefore, the intuitive control method would require some visual feedback to choose

the pick-and-place motion adaptively for the trefoil knot case. As for the reef knot case,

due to the deployment results are totally wrong, even though the visual feedback is

applied, it is still hard to achieve a complete reef knot with intuitive method.

Therein, we can see the potential of the deployment scheme in high-level robotic tasks

like knot tying. In future work, the optimal deployment scheme will be incorporated with

the perception system to automatically tie any prescribed knots with the robotics system.

9.7 Conclusion

In this chapter, we have introduced a novel deployment scheme that allows for robust

and accurate control of the shape of DLOs using a single manipulator. Our framework

integrates techniques from various disciplines, including physical simulation, machine

learning, and scaling analysis, and has been demonstrated to be highly effective in real

robotic experiments. Our results highlight the advantages of incorporating physics into

robotic manipulation schemes and showcase impressive performance on complex tasks

such as writing letters with elastic rods, cable placement, and tying knots.

182

Looking to the future, we plan to leverage the precision and efficiency of our deployment

scheme to tackle some high-level robotic tasks systematically, for example, robotic knot

tying. While exact shape control is not strictly required during such manipulations, our

deployment scheme offers sufficient accuracy and efficiency to design the configurations of

the middle states of a manipulated DLO, which is essential for robots to successfully tie

complex knots. We also aim to explore the use of generalized problem formulations and

data-driven control schemes, such as reinforcement learning, to develop more flexible and

adaptive solutions to the challenges of robotic manipulation. By continuing to push the

boundaries of robotic manipulation, we hope to advance the state of the art in this field

and enable new and exciting applications of robotic technology.

183

CHAPTER 10

Conclusions

10.1 Summary

In this thesis, we have presented robust, physically insightful solutions in the key areas of

simulation, perception, and robotic manipulation, all with an emphasis on deformable

structures.

In the first half of the thesis, we focused on creating physically realistic and efficient

simulation frameworks for slender deformable structures. Using discrete differential

geometry-based frameworks to simulate elasticity, we focused on formulating accurate

elastic contact and friction (IMC). Afterwards, we ambitiously developed the first general

purpose DDG-based simulation framework for the robotics community (DisMech) capable

of hyperaccurate real2sim modelling of soft robots. For all our simulation-based work, we

provided rigorous validation in terms of physical accuracy as well as extensive analysis on

runtime improvements over the state of the art.

In the second half of the thesis, we directed our focus on difficult problems in robotic

deformable object manipulation and perception. We used a combination of several

disciplines spanning physical simulation, scaling analysis, optimization, and machine

learning in order to come up with full sim2real solutions for robotic paper sheet folding

and DLO deployment. For the DLO deployment, we also introduced a novel DLO

detection algorithm that outperformed the state of the art using a physically intuitive

bending energy optimization scheme. Overall, superhuman performance was achieved for

all deformable object manipulation tasks.

184

10.2 Future Work

The work presented in this thesis opens up many exciting avenues. For elastic contact

and friction, promising avenues include developing solutions for faster, more reliant

convergence. More reliant convergence is especially important for hard impact (i.e., high

velocity) and high friction settings, scenarios notoriously known for being difficult to

simulate accurately. For DisMech, the aim to incorporate shell structures into DisMech is

very promising as well as its expansion for developing soft robot control algorithms. As

time progresses, DisMech’s growth via the open-source community will also be something

we strive to nurture.

With regard to our work in physically insightful robotic deformable object manipulation,

a shift from highly specific solutions to more general AI strategies will be immensely

important. Though we developed robust general solutions with respect to object material

and geometry, our solutions were strictly formulated for the tasks of paper sheet folding

and DLO deployment. Therefore, switching to more general task-agnostic solutions will

be crucial to developing intelligent AI capable of scaling to wider problem domains. Such

solutions will most likely involve incorporating reinforcement learning and foundation

models, both areas that we plan to pursue.

185

REFERENCES

Alart, P. and Curnier, A. (1991). A mixed formulation for frictional contact problems
prone to newton like solution methods. Computer methods in applied mechanics and
engineering, 92(3):353–375. 7

Alora, J. I., Cenedese, M., Schmerling, E., Haller, G., and Pavone, M. (2023).
Data-Driven Spectral Submanifold Reduction for Nonlinear Optimal Control of High-
Dimensional Robots. In 2023 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2627–2633. 9

Audoly, B., Clauvelin, N., Brun, P.-T., Bergou, M., Grinspun, E., and Wardetzky, M.
(2013). A discrete geometric approach for simulating the dynamics of thin viscous
threads. Journal of Computational Physics, 253:18–49. 21

Audoly, B., Clauvelin, N., and Neukirch, S. (2007). Elastic knots. Physical Review
Letters, 99(16):164301. 45, 47, 74, 75, 130

Audoly, B. and Pomeau, Y. (2010). Elasticity and geometry: from hair curls to the
non-linear response of shells. Oxford University Press. 21

Baek, C. and Reis, P. M. (2019). Rigidity of hemispherical elastic gridshells under point
load indentation. Journal of the Mechanics and Physics of Solids, 124:411–426. 21

Baek, C., Sageman-Furnas, A. O., Jawed, M. K., and Reis, P. M. (2018). Form finding
in elastic gridshells. Proceedings of the National Academy of Sciences, 115(1):75–80. 21

Balkcom, D. J. and Mason, M. T. (2008). Robotic origami folding. The International
Journal of Robotics Research, 27(5):613–627. 10

Baraff, D. and Witkin, A. (1998). Large steps in cloth simulation. In Proceedings of the
25th annual conference on Computer graphics and interactive techniques, pages 43–54.
ACM. 21

Batty, C., Uribe, A., Audoly, B., and Grinspun, E. (2012). Discrete viscous sheets.
ACM Transactions on Graphics (TOG), 31(4):113. 21

Becker, K., Teeple, C., Charles, N., Jung, Y., Baum, D., Weaver, J. C., Mahadevan, L.,
and Wood, R. (2022). Active entanglement enables stochastic, topological grasping.
Proc Natl Acad Sci U S A, 119(42):e2209819119. 86, 93

Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. (2010). Discrete
viscous threads. ACM Trans. Graph., 29(4). 9, 18, 21, 22, 85

Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. (2008). Discrete
elastic rods. In ACM SIGGRAPH ’08 Conference, pages 63:1–12. 9, 10, 18, 21, 85

Bertrand, F., Leclaire, L.-A., and Levecque, G. (2005). Dem-based models for the
mixing of granular materials. Chemical Engineering Science, 60(8-9):2517–2531. 6

186

Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. (2019). Yolact: Real-time instance
segmentation. In IEEE/CVF International Conference on Computer Vision, pages
9157–9166. 14

Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. (2020). Yolact++: Better real-time in-
stance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(2):1108–1121. 14

Borri-Brunetto, M., Chiaia, B., and Ciavarella, M. (2001). Incipient sliding of rough
surfaces in contact: a multiscale numerical analysis. Computer methods in applied
mechanics and engineering, 190(46-47):6053–6073. 6

Buckham, B., Driscoll, F. R., and Nahon, M. (2004). Development of a finite element
cable model for use in low-tension dynamics simulation. J. Appl. Mech., 71(4):476–485.
18

Caporali, A., Galassi, K., Zanella, R., and Palli, G. (2022a). FASTDLO: Fast deformable
linear objects instance segmentation. IEEE Robotics and Automation Letters, 7(4):9075–
9082. 15, 16, 131, 134, 136, 140, 145

Caporali, A., Galassi, K., Žagar, B. L., Zanella, R., Palli, G., and Knoll, A. C. (2023a).
Rt-dlo: Real-time deformable linear objects instance segmentation. IEEE Transactions
on Industrial Informatics, pages 1–10. 15, 16, 141, 145, 148

Caporali, A., Pantano, M., Janisch, L., Regulin, D., Palli, G., and Lee, D. (2023b).
A weakly supervised semi-automatic image labeling approach for deformable linear
objects. IEEE Robotics and Automation Letters, 8(2):1013–1020. 15

Caporali, A., Zanella, R., Greogrio, D. D., and Palli, G. (2022b). Ariadne+: Deep
learning–based augmented framework for the instance segmentation of wires. IEEE
Transactions on Industrial Informatics, 18(12):8607–8617. 15, 16, 145

Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., and Yan, Y. (2020). Blendmask:
Top-down meets bottom-up for instance segmentation. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8573–8581. 14

Choe, B., Choi, M. G., and Ko, H.-S. (2005). Simulating complex hair with robust col-
lision handling. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 153–160. 30

Choi, A., Jawed, M. K., and Joo, J. (2022). Preemptive motion planning for human-to-
robot indirect placement handovers. In 2022 International Conference on Robotics and
Automation (ICRA), pages 4743–4749. xx

Choi, A., Jing, R., Sabelhaus, A., and Jawed, M. K. (2023a). Dismech: A discrete
differential geometry-based physical simulator for soft robots and structures. xx, 3, 22

Choi, A., Tong, D., Jawed, M. K., and Joo, J. (2021). Implicit Contact Model for
Discrete Elastic Rods in Knot Tying. Journal of Applied Mechanics, 88(5):051010. xix,
2, 7, 8, 9, 22, 53, 56, 58, 130

187

Choi, A., Tong, D., Park, B., Terzopoulos, D., Joo, J., and Jawed, M. K. (2023b).
mbest: Realtime deformable linear object detection through minimal bending energy
skeleton pixel traversals. IEEE Robotics and Automation Letters, 8(8):4863–4870. xx,
4, 150, 167, 169

Choi, A., Tong, D., Terzopoulos, D., Joo, J., and Jawed, M. K. (2023c). Deep learning
of force manifolds from the simulated physics of robotic paper folding. xx, 3, 18, 84,
94, 165

Coevoet, E., Morales-Bieze, T., Largilliere, F., Zhang, Z., Thieffry, M., Sanz-Lopez,
M., Carrez, B., Marchal, D., Goury, O., Dequidt, J., and Duriez, C. (2017). Software
toolkit for modeling, simulation, and control of soft robots. Advanced Robotics, 31:1–17.
9, 85

Cortez, R. (2018). Regularized stokeslet segments. Journal of Computational Physics,
375:783–796. 65

Coumans, E. and Bai, Y. (2016–2021). Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org. 8

Crowell, R. H. and Fox, R. H. (2012). Introduction to knot theory, volume 57. Springer
Science & Business Media. 181

Daviet, G. (2020). Simple and scalable frictional contacts for thin nodal objects. ACM
Transactions on Graphics (TOG), 39(4):61–1. 7

Daviet, G., Bertails-Descoubes, F., and Boissieux, L. (2011). A hybrid iterative solver
for robustly capturing coulomb friction in hair dynamics. In Proceedings of the 2011
SIGGRAPH Asia Conference, pages 1–12. 7

De Gregorio, D., Palli, G., and Di Stefano, L. (2018). Let’s take a walk on superpixels
graphs: Deformable linear objects segmentation and model estimation. arXiv preprint
arXiv:1810.04461. 14, 16

Denninger, M., Sundermeyer, M., Winkelbauer, D., Zidan, Y., Olefir, D., Elbadrawy,
M., Lodhi, A., and Katam, H. (2019). BlenderProc. arXiv preprint arXiv:1911.01911.
15

Doumanoglou, A., Kargakos, A., Kim, T.-K., and Malassiotis, S. (2014). Autonomous
active recognition and unfolding of clothes using random decision forests and proba-
bilistic planning. In 2014 IEEE international conference on robotics and automation,
pages 987–993. IEEE. 11

Doumanoglou, A., Stria, J., Peleka, G., Mariolis, I., Petrik, V., Kargakos, A., Wagner,
L., Hlaváč, V., Kim, T.-K., and Malassiotis, S. (2016). Folding clothes autonomously:
A complete pipeline. IEEE Transactions on Robotics, 32(6):1461–1478. 11

Durville, D. (2012). Contact-friction modeling within elastic beam assemblies: an
application to knot tightening. Computational Mechanics, 49(6):687–707. 52

188

http://pybullet.org

Elbrechter, C., Haschke, R., and Ritter, H. (2012). Folding paper with anthropomorphic
robot hands using real-time physics-based modeling. In 2012 12th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids 2012), pages 210–215. IEEE.
13

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In International Conference
on Knowledge Discovery and Data Mining, pages 226–231. 137

Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot,
H., Courtecuisse, H., Bousquet, G., Peterlik, I., and Cotin, S. (2012). SOFA: A Multi-
Model Framework for Interactive Physical Simulation, pages 283–321. Springer Berlin
Heidelberg, Berlin, Heidelberg. 8, 9

Gao, Y., Lucas, B. N., Hay, J. C., Oliver, W. C., and Pharr, G. M. (2006). Nanoscale
incipient asperity sliding and interface micro-slip assessed by the measurement of
tangential contact stiffness. Scripta materialia, 55(7):653–656. 6

Gazzola, M., Dudte, L., McCormick, A., and Mahadevan, L. (2018). Forward and inverse
problems in the mechanics of soft filaments. Royal Society open science, 5(6):171628.
8, 9, 10, 85, 86, 87, 97

Geblinger, N., Ismach, A., and Joselevich, E. (2008). Self-organized nanotube serpen-
tines. Nature nanotechnology, 3(4):195–200. 150

Graule, M. A., McCarthy, T. P., Teeple, C. B., Werfel, J., and Wood, R. J. (2022).
Somogym: A toolkit for developing and evaluating controllers and reinforcement learning
algorithms for soft robots. IEEE Robotics and Automation Letters, 7(2):4071–4078. 9,
85

Graule, M. A., Teeple, C. B., McCarthy, T. P., St. Louis, R. C., Kim, G. R., and
Wood, R. J. (2021). Somo: Fast and accurate simulations of continuum robots in
complex environments. In 2021 IEEE International Conference on Intelligent Robots
and Systems (IROS), page In Review. IEEE. 8, 9

Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. (2003). Discrete shells.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA ’03, page 62–67, Goslar, DEU. Eurographics Association. 21, 86, 97

Guler, P., Pauwels, K., Pieropan, A., Kjellström, H., and Kragic, D. (2015). Estimating
the deformability of elastic materials using optical flow and position-based dynamics.
In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids),
pages 965–971. IEEE. 18

Han, S. M., Benaroya, H., and Wei, T. (1999). Dynamics of transversely vibrating
beams using four engineering theories. Journal of Sound and Vibration, 225(5):935–988.
88

189

Haouchine, N., Kuang, W., Cotin, S., and Yip, M. (2018). Vision-based force feedback
estimation for robot-assisted surgery using instrument-constrained biomechanical three-
dimensional maps. IEEE Robotics and Automation Letters, 3(3):2160–2165. 18

Hilbert, D. and Cohn-Vossen, S. (2021). Geometry and the Imagination, volume 87.
American Mathematical Soc. 102

Huang, W., Huang, X., Majidi, C., and Jawed, K. (2020). Dynamic simulation of
articulated soft robots. Nature Communications, 11. 9, 84, 85

Huang, W. and Jawed, M. K. (2019). Newmark-Beta Method in Discrete Elastic Rods
Algorithm to Avoid Energy Dissipation. Journal of Applied Mechanics, 86(8):084501.
87, 89

Huang, W. and Jawed, M. K. (2021). Numerical simulation of bundling of helical
elastic rods in a viscous fluid. Computers & Fluids, 228:105038. 66

Iqbal, J., Khan, Z. H., and Khalid, A. (2017). Prospects of robotics in food industry.
Food Science and Technology, 37:159–165. 130

Jawed, M., Dieleman, P., Audoly, B., and Reis, P. M. (2015a). Untangling the mechanics
and topology in the frictional response of long overhand elastic knots. Physical review
letters, 115(11):118302. 28, 74, 75, 76, 130

Jawed, M. and Reis, P. M. (2017). Dynamics of a flexible helical filament rotating in a
viscous fluid near a rigid boundary. Physical Review Fluids, 2(3):034101. 21, 66

Jawed, M. K., Brun, P.-T., and Reis, P. M. (2015b). A geometric model for the coiling
of an elastic rod deployed onto a moving substrate. Journal of Applied Mechanics,
82(12):121007. 21

Jawed, M. K., Da, F., Joo, J., Grinspun, E., and Reis, P. M. (2014). Coiling of
elastic rods on rigid substrates. Proceedings of the National Academy of Sciences,
111(41):14663–14668. 9, 21

Jawed, M. K., Hadjiconstantinou, N., Parks, D., and Reis, P. (2018a). Patterns
of carbon nanotubes by flow-directed deposition on substrates with architectured
topographies. Nano Lett. 22

Jawed, M. K., Khouri, N. K., Da, F., Grinspun, E., and Reis, P. M. (2015c). Propulsion
and instability of a flexible helical rod rotating in a viscous fluid. Physical review letters,
115(16):168101. 21, 22, 66

Jawed, M. K., Novelia, A., and O’Reilly, O. M. (2018b). A Primer on the Kinematics
of Discrete Elastic Rods. Springer. 21

Jawed, M. K. and Reis, P. M. (2014). Pattern morphology in the elastic sewing machine.
Extreme Mechanics Letters, 1:76–82. 21

190

Jawed, M. K. and Reis, P. M. (2016). Deformation of a soft helical filament in an axial
flow at low reynolds number. Soft Matter, 12(6):1898–1905. 21

Jean, M. and Moreau, J. J. (1987). Dynamics in the presence of unilateral contacts and
dry friction: a numerical approach. In Unilateral Problems in Structural Analysis—2,
pages 151–196. Springer. 7

Jean, M. and Moreau, J. J. (1992). Unilaterality and dry friction in the dynamics
of rigid body collections. In 1st Contact Mechanics International Symposium, pages
31–48. 7

Jia, Y.-B., Guo, F., and Lin, H. (2014). Grasping deformable planar objects: Squeeze,
stick/slip analysis, and energy-based optimalities. The International Journal of Robotics
Research, 33(6):866–897. 12

Johanns, P., Grandgeorge, P., Baek, C., Sano, T. G., Maddocks, J. H., and Reis, P. M.
(2021). The shapes of physical trefoil knots. Extreme Mechanics Letters, 43:101172.
131

Johnson, K. and Greenwood, J. (1997). An adhesion map for the contact of elastic
spheres. Journal of colloid and interface science, 192(2):326–333. 6

Johnson, K. L., Kendall, K., and Roberts, a. (1971). Surface energy and the contact of
elastic solids. Proceedings of the royal society of London. A. mathematical and physical
sciences, 324(1558):301–313. 6

Kaufman, D. M., Tamstorf, R., Smith, B., Aubry, J.-M., and Grinspun, E. (2014).
Adaptive nonlinearity for collisions in complex rod assemblies. ACM Transactions on
Graphics (TOG), 33(4):1–12. 7

Kaufmann, P., Martin, S., Botsch, M., and Gross, M. (2009). Flexible simulation of
deformable models using discontinuous galerkin fem. Graphical Models, 71(4):153–167.
18

Keipour, A., Bandari, M., and Schaal, S. (2022). Deformable one-dimensional object
detection for routing and manipulation. IEEE Robotics and Automation Letters,
7(2):4329–4336. 14

Kim, H. K. H., Bourne, D., Gupta, S., and Krishnan, S. S. (1998). Automated process
planning for robotic sheet metal bending operations. Journal of Manufacturing Systems,
17(5):338 – 360. 10

Kim, M., Bird, J. C., Van Parys, A. J., Breuer, K. S., and Powers, T. R. (2003). A
macroscopic scale model of bacterial flagellar bundling. Proceedings of the National
Academy of Sciences, 100(26):15481–15485. 71, 73

Kirchhoff, G. (1859). Uber das gleichgewicht und die bewegung eines unendlich dunnen
elastischen stabes. J. Reine Angew. Math., 56:285–313. 9, 23

191

Kita, Y., Kanehiro, F., Ueshiba, T., and Kita, N. (2011). Clothes handling based on
recognition by strategic observation. In 2011 11th IEEE-RAS International Conference
on Humanoid Robots, pages 53–58. IEEE. 11, 18

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154
vol.3. 8

Lam, S. K., Pitrou, A., and Seibert, S. (2015). Numba: A llvm-based python jit
compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, LLVM ’15, New York, NY, USA. Association for Computing Machinery. 50

Largilliere, F., Verona, V., Coevoet, E., Sanz-Lopez, M., Dequidt, J., and Duriez, C.
(2015). Real-time control of soft-robots using asynchronous finite element modeling.
In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages
2550–2555. 9

Lattanzi, D. and Miller, G. (2017). Review of robotic infrastructure inspection systems.
Journal of Infrastructure Systems, 23(3):04017004. 179

Lee, A. X., Gupta, A., Lu, H., Levine, S., and Abbeel, P. (2015a). Learning from
multiple demonstrations using trajectory-aware non-rigid registration with applications
to deformable object manipulation. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5265–5272. 11

Lee, A. X., Huang, S. H., Hadfield-Menell, D., Tzeng, E., and Abbeel, P. (2014). Unify-
ing scene registration and trajectory optimization for learning from demonstrations with
application to manipulation of deformable objects. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4402–4407. IEEE. 17

Lee, A. X., Lu, H., Gupta, A., Levine, S., and Abbeel, P. (2015b). Learning force-based
manipulation of deformable objects from multiple demonstrations. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 177–184. IEEE.
11

Lee, R., Hamaya, M., Murooka, T., Ijiri, Y., and Corke, P. (2021). Sample-efficient
learning of deformable linear object manipulation in the real world through self-
supervision. IEEE Robotics and Automation Letters, 7(1):573–580. 19

Li, J., Daviet, G., Narain, R., Bertails-Descoubes, F., Overby, M., Brown, G. E., and
Boissieux, L. (2018). An implicit frictional contact solver for adaptive cloth simulation.
ACM Transactions on Graphics (TOG), 37(4):1–15. 27, 33, 55

Li, M., Ferguson, Z., Schneider, T., Langlois, T., Zorin, D., Panozzo, D., Jiang, C., and
Kaufman, D. M. (2020a). Incremental potential contact: Intersection-and inversion-free,
large-deformation dynamics. ACM Transactions on Graphics (TOG), 39(4). 8, 57, 58,
64, 65, 68

192

Li, X., Huang, W., and Jawed, M. K. (2020b). A discrete differential geometry-based
approach to numerical simulation of timoshenko beam. Extreme Mechanics Letters,
35:100622. 97

Li, Y., Yue, Y., Xu, D., Grinspun, E., and Allen, P. K. (2015). Folding deformable
objects using predictive simulation and trajectory optimization. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 6000–6006.
12

Lin, X., Wang, Y., Olkin, J., and Held, D. (2021). Softgym: Benchmarking deep
reinforcement learning for deformable object manipulation. arXiv. 11, 84

Lumelsky, V. J. (1985). On fast computation of distance between line segments. Inf.
Process. Lett., 21:55–61. 27, 30, 31, 34, 58

Lv, N., Liu, J., and Jia, Y. (2022). Dynamic modeling and control of deformable
linear objects for single-arm and dual-arm robot manipulations. IEEE Transactions on
Robotics. 18, 19, 149

Macklin, M., Müller, M., and Chentanez, N. (2016). Xpbd: position-based simulation
of compliant constrained dynamics. In Proceedings of the 9th International Conference
on Motion in Games, pages 49–54. 18

Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. (2014). Unified particle
physics for real-time applications. ACM Transactions on Graphics (TOG), 33(4):1–12.
18

Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., and Abbeel, P. (2010). Cloth grasp
point detection based on multiple-view geometric cues with application to robotic towel
folding. In 2010 IEEE International Conference on Robotics and Automation, pages
2308–2315. IEEE. 11, 17

Majidi, C. (2014). Soft robotics: A perspective—current trends and prospects for the
future. Soft Robotics, 1(1):5–11. 8

Mandal, S., Nicolas, M., and Pouliquen, O. (2020). Insights into the rheology of cohesive
granular media. Proceedings of the National Academy of Sciences, 117(15):8366–8373.
6

Matas, J., James, S., and Davison, A. J. (2018). Sim-to-real reinforcement learning
for deformable object manipulation. In Conference on Robot Learning, pages 734–743.
PMLR. 11, 19

Mathew, A. T., Hmida, I. M. B., Armanini, C., Boyer, F., and Renda, F. (2022).
Sorosim: A matlab toolbox for hybrid rigid-soft robots based on the geometric variable-
strain approach. IEEE Robotics & Automation Magazine, pages 2–18. 8, 9, 85, 86,
97

193

Maugis, D. (1992). Adhesion of spheres: the jkr-dmt transition using a dugdale model.
Journal of colloid and interface science, 150(1):243–269. 6

Mayer, H., Gomez, F., Wierstra, D., Nagy, I., Knoll, A., and Schmidhuber, J. (2008). A
system for robotic heart surgery that learns to tie knots using recurrent neural networks.
Advanced Robotics, 22(13-14):1521–1537. 130

McConachie, D., Dobson, A., Ruan, M., and Berenson, D. (2020). Manipulating
deformable objects by interleaving prediction, planning, and control. The International
Journal of Robotics Research, 39(8):957–982. 149

Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O., Kirpichev, S. B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E.,
Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry,
M. J., Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and
Scopatz, A. (2017). Sympy: symbolic computing in python. PeerJ Computer Science,
3:e103. 35

Miller, S., van den Berg, J., Fritz, M., Darrell, T., Goldberg, K., and Abbeel, P. (2012).
A geometric approach to robotic laundry folding. The International Journal of Robotics
Research, 31(2):249–267. 11

Mitrano, P., McConachie, D., and Berenson, D. (2021). Learning where to trust
unreliable models in an unstructured world for deformable object manipulation. Science
Robotics, 6(54):eabd8170. 149

Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. (2007). Position based
dynamics. Journal of Visual Communication and Image Representation, 18(2):109–118.
18

Nair, A., Chen, D., Agrawal, P., Isola, P., Abbeel, P., Malik, J., and Levine, S. (2017).
Combining self-supervised learning and imitation for vision-based rope manipulation.
In 2017 IEEE international conference on robotics and automation (ICRA), pages
2146–2153. IEEE. 19, 149

Namiki, A. and Yokosawa, S. (2015). Robotic origami folding with dynamic motion
primitives. In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5623–5628. IEEE. 13

Naughton, N., Sun, J., Tekinalp, A., Parthasarathy, T., Chowdhary, G., and Gazzola,
M. (2021). Elastica: A compliant mechanics environment for soft robotic control. IEEE
Robotics and Automation Letters, 6(2):3389–3396. 10

Pacheco Garcia, J. C., Jing, R., Anderson, M. L., Ianus-Valdivia, M., and Sabelhaus,
A. P. (2023). A comparison of mechanics simplifications in pose estimation for thermally-
actuated soft robot limbs. In Smart Materials, Adaptive Structures and Intelligent
Systems. American Society of Mechanical Engineers. 86, 93, 94

194

Pan, K., Phani, A. S., and Green, S. (2020). Periodic folding of a falling viscoelastic
sheet. Physical Review E, 101(1):013002. 171

Panetta, J., Konaković-Luković, M., Isvoranu, F., Bouleau, E., and Pauly, M. (2019).
X-shells: A new class of deployable beam structures. ACM Transactions on Graphics
(TOG), 38(4):83. 21

Patil, V. P., Sandt, J. D., Kolle, M., and Dunkel, J. (2020). Topological mechanics of
knots and tangles. Science, 367(6473):71–75. 8, 131

Petŕık, V. and Kyrki, V. (2019). Feedback-based fabric strip folding. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 773–778.
11, 13, 98

Petŕık, V., Smutný, V., Krsek, P., and Hlaváč, V. (2016). Physics-based model of a
rectangular garment for robotic folding. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 951–956. 12, 13, 98, 99, 113, 119, 120,
123

Petŕık, V., Smutný, V., and Kyrki, V. (2020). Static stability of robotic fabric strip
folding. IEEE/ASME Transactions on Mechatronics, 25(5):2493–2500. 12, 13, 98, 99,
113, 120

Qiu, W. and Yuille, A. (2016). UnrealCV: Connecting computer vision to unreal engine.
In European Conference on Computer Vision, pages 909–916. Springer. 15

Rambow, M., Schauß, T., Buss, M., and Hirche, S. (2012). Autonomous manipulation
of deformable objects based on teleoperated demonstrations. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2809–2814. IEEE.
11

Riley, E. E., Das, D., and Lauga, E. (2018). Swimming of peritrichous bacteria is
enabled by an elastohydrodynamic instability. Scientific reports, 8(1):1–7. 73

Rodenborn, B., Chen, C.-H., Swinney, H. L., Liu, B., and Zhang, H. (2013). Propulsion
of microorganisms by a helical flagellum. Proceedings of the National Academy of
Sciences, 110(5):E338–E347. 66

Saha, M. and Isto, P. (2007). Manipulation planning for deformable linear objects.
IEEE Transactions on Robotics, 23(6):1141–1150. 149

Sanchez, J., Corrales, J.-A., Bouzgarrou, B.-C., and Mezouar, Y. (2018). Robotic
manipulation and sensing of deformable objects in domestic and industrial applications:
A survey. The International Journal of Robotics Research, 37(7):688–716. 12, 18, 98,
179

Sano, T. G., Johanns, P., Grandgeorge, P., Baek, C., and Reis, P. M. (2022). Exploring
the inner workings of the clove hitch knot. Extreme Mechanics Letters, page 101788.
131

195

Schegg, P., Ménager, E., Khairallah, E., Marchal, D., Dequidt, J., Preux, P., and
Duriez, C. (2022). SofaGym: An open platform for reinforcement learning based on
soft robot simulations. Soft Robot, 10(2):410–430. 9

Schulman, J., Gupta, A., Venkatesan, S., Tayson-Frederick, M., and Abbeel, P. (2013).
A case study of trajectory transfer through non-rigid registration for a simplified
suturing scenario. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4111–4117. IEEE. 18, 130

Servin, M. and Lacoursiere, C. (2008). Rigid body cable for virtual environments.
IEEE Transactions on Visualization and Computer Graphics, 14(4):783–796. 18

She, Y., Wang, S., Dong, S., Sunil, N., Rodriguez, A., and Adelson, E. (2021). Cable
manipulation with a tactile-reactive gripper. The International Journal of Robotics
Research, 40(12-14):1385–1401. 17, 149

Shen, Z., Huang, J., Chen, W., and Bao, H. (2015). Geometrically exact simulation of
inextensible ribbon. In Computer Graphics Forum, volume 34, pages 145–154. Wiley
Online Library. 21

Shi, J. and Tomasi (1994). Good features to track. In 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 593–600. 115

Spillmann, J. and Teschner, M. (2008). An adaptive contact model for the robust
simulation of knots. In Computer Graphics Forum, volume 27, pages 497–506. Wiley
Online Library. 7, 27, 30, 45, 49, 50, 51

Sucan, I. A., Moll, M., and Kavraki, L. E. (2012). The open motion planning library.
IEEE Robotics & Automation Magazine, 19(4):72–82. 168

Sun, J., Peng, Z., Zhou, W., Fuh, J. Y., Hong, G. S., and Chiu, A. (2015). A review on
3d printing for customized food fabrication. Procedia Manufacturing, 1:308–319. 150

Sundaresan, P., Grannen, J., Thananjeyan, B., Balakrishna, A., Laskey, M., Stone, K.,
Gonzalez, J. E., and Goldberg, K. (2020). Learning rope manipulation policies using
dense object descriptors trained on synthetic depth data. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 9411–9418. IEEE. 19

Takizawa, M., Kudoh, S., and Suehiro, T. (2015). Method for placing a rope in a target
shape and its application to a clove hitch. In 2015 24th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), pages 646–651. IEEE.
19, 149, 151, 152

Tang, T., Wang, C., and Tomizuka, M. (2018). A framework for manipulating de-
formable linear objects by coherent point drift. IEEE Robotics and Automation Letters,
3(4):3426–3433. 17

Teo, W. E. and Ramakrishna, S. (2006). A review on electrospinning design and
nanofibre assemblies. Nanotechnology, 17(14):R89. 150

196

Terzopoulos, D. and Fleischer, K. (1988a). Deformable models. The Visual Computer,
4(6):306–331. 21

Terzopoulos, D. and Fleischer, K. (1988b). Modeling inelastic deformation: Viscolelas-
ticity, plasticity, fracture. In Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques (ACM SIGGRAPH 88), pages 269–278. 21

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastically deformable
models. In Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques (ACM SIGGRAPH 87), pages 205–214. 21

Terzopoulos, D. and Qin, H. (1994). Dynamic nurbs with geometric constraints for
interactive sculpting. ACM Transactions on Graphics (TOG), 13(2):103–136. 18

Thakur, S. C., Morrissey, J. P., Sun, J., Chen, J., and Ooi, J. Y. (2014). Micromechanical
analysis of cohesive granular materials using the discrete element method with an
adhesive elasto-plastic contact model. Granular Matter, 16(3):383–400. 6

Thieffry, M., Kruszewski, A., Duriez, C., and Guerra, T.-M. (2019). Control Design for
Soft Robots Based on Reduced-Order Model. IEEE Robotics and Automation Letters,
4(1):25–32. 9

Tian, Z., Shen, C., and Chen, H. (2020). Conditional convolutions for instance
segmentation. In European Conference on Computer Vision, pages 282–298. Springer.
14

Timoshenko, S. P. and Gere, J. M. (2009). Theory of elastic stability. Courier
Corporation. 158

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033. 8

Tong, D., Borum, A., and Jawed, M. K. (2021). Automated stability testing of elastic
rods with helical centerlines using a robotic system. IEEE Robotics and Automation
Letters, 7(2):1126–1133. 9, 14, 22, 130

Tong, D., Choi, A., Joo, J., Borum, A., and Khalid Jawed, M. (2023a). Snap Buckling
in Overhand Knots. Journal of Applied Mechanics, 90(4):041008. xx, 9, 22

Tong, D., Choi, A., Joo, J., and Jawed, M. K. (2023b). A fully implicit method for
robust frictional contact handling in elastic rods. Extreme Mechanics Letters, 58:101924.
xx, 2, 8, 9, 22, 25, 87

Tong, D., Choi, A., Qin, L., Huang, W., Joo, J., and Jawed, M. K. (2023c). Sim2real
neural controllers for physics-based robotic deployment of deformable linear objects.
The International Journal of Robotics Research, 0(0):02783649231214553. xx, 4, 21, 84,
160

197

Twardon, L. and Ritter, H. (2015). Interaction skills for a coat-check robot: Identifying
and handling the boundary components of clothes. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 3682–3688. IEEE. 11

Vepa, A., Choi, A., Nakhaei, N., Lee, W., Stier, N., Vu, A., Jenkins, G., Yang, X.,
Shergill, M., Desphy, M., Delao, K., Levy, M., Garduno, C., Nelson, L., Liu, W.,
Hung, F., and Scalzo, F. (2022). Weakly-supervised convolutional neural networks for
vessel segmentation in cerebral angiography. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pages 585–594. xx

Wakamatsu, H., Arai, E., and Hirai, S. (2006). Knotting/unknotting manipulation of
deformable linear objects. The International Journal of Robotics Research, 25(4):371–
395. 149

Wakamatsu, H. and Hirai, S. (2004). Static modeling of linear object deformation based
on differential geometry. The International Journal of Robotics Research, 23(3):293–311.
12

Wang, A., Kurutach, T., Liu, K., Abbeel, P., and Tamar, A. (2019). Learning robotic
manipulation through visual planning and acting. arXiv preprint arXiv:1905.04411. 19

Whitcomb, L. L. (2000). Underwater robotics: Out of the research laboratory and
into the field. In Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),
volume 1, pages 709–716. IEEE. 150

Yan, M., Zhu, Y., Jin, N., and Bohg, J. (2020a). Self-supervised learning of state
estimation for manipulating deformable linear objects. IEEE Robotics and Automation
Letters, 5(2):2372–2379. 14, 17

Yan, W., Vangipuram, A., Abbeel, P., and Pinto, L. (2020b). Learning predictive
representations for deformable objects using contrastive estimation. arXiv preprint
arXiv:2003.05436. 12

Yang, P.-C., Sasaki, K., Suzuki, K., Kase, K., Sugano, S., and Ogata, T. (2017).
Repeatable folding task by humanoid robot worker using deep learning. IEEE Robotics
and Automation Letters, 2(2):397–403. 11

Yin, H., Varava, A., and Kragic, D. (2021). Modeling, learning, perception, and control
methods for deformable object manipulation. Science Robotics, 6(54):eabd8803. 12, 18,
98

Yu, M., Lv, K., Zhong, H., Song, S., and Li, X. (2022a). Global model learning for
large deformation control of elastic deformable linear objects: An efficient and adaptive
approach. IEEE Transactions on Robotics. 19

Yu, M., Zhong, H., and Li, X. (2022b). Shape control of deformable linear objects with
offline and online learning of local linear deformation models. In 2022 International
Conference on Robotics and Automation (ICRA), pages 1337–1343. IEEE. 130

198

Zanella, R., Caporali, A., Tadaka, K., De Gregorio, D., and Palli, G. (2021). Auto-
generated wires dataset for semantic segmentation with domain-independence. In
International Conference on Computer, Control and Robotics (ICCCR), pages 292–298.
IEEE. 15

Zhang, T. Y. and Suen, C. Y. (1984). A fast parallel algorithm for thinning digital
patterns. Communications of the ACM, 27(3):236–239. 134

Zhang, X., Chan, F., Parthasarathy, T., and Gazzola, M. (2019). Modeling and
simulation of complex dynamic musculoskeletal architectures. Nature Communications,
10(1):1–12. 10

Zheng, Y., Veiga, F. F., Peters, J., and Santos, V. J. (2022). Autonomous learning of
page flipping movements via tactile feedback. IEEE Transactions on Robotics. 11

Zhu, J., Cherubini, A., Dune, C., Navarro-Alarcon, D., Alambeigi, F., Berenson, D.,
Ficuciello, F., Harada, K., Kober, J., Li, X., et al. (2022). Challenges and outlook in
robotic manipulation of deformable objects. IEEE Robotics & Automation Magazine,
29(3):67–77. 12

Zhu, J., Navarro, B., Fraisse, P., Crosnier, A., and Cherubini, A. (2018). Dual-arm
robotic manipulation of flexible cables. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 479–484. IEEE. 14, 130

Zhu, J., Navarro, B., Passama, R., Fraisse, P., Crosnier, A., and Cherubini, A. (2019).
Robotic manipulation planning for shaping deformable linear objects withenvironmental
contacts. IEEE Robotics and Automation Letters, 5(1):16–23. 149

Čert́ık, O. (2019). Symengine. https://github.com/symengine/symengine.git. 35

199

https://github.com/symengine/symengine.git

	1 Introduction
	1.1 Contributions
	1.2 Overview

	2 Related Work
	2.1 Elastic Contact and Friction
	2.1.1 Impulse Methods
	2.1.2 Constraint-Based Methods
	2.1.3 Penalty Energy Methods

	2.2 Simulation of Deformable Objects for Robotics
	2.3 Robotic Folding of Sheets
	2.3.1 Mechanical Design-Based Approaches
	2.3.2 Vision-Based Approaches
	2.3.3 Learning-Based Approaches
	2.3.4 Model-Based Approaches
	2.3.5 Limitations of Prior Work for Paper Folding

	2.4 DLO Perception
	2.4.1 Multi-DLO Instance Segmentation
	2.4.2 Deep Learning Models for DLO Segmentation
	2.4.3 Achieving Realtime Performance
	2.4.4 Limitations of Prior Work for DLO Detection

	2.5 Robotic Deployment of DLOs
	2.5.1 Vision-Based Approaches
	2.5.2 Model-Based Approaches
	2.5.3 Learning-Based Approaches
	2.5.4 Limitations of Prior Work for DLO Deployment

	3 Discrete Elastic Rods (DER)
	3.1 Introduction
	3.2 Reduced-Order Model and Degrees of Freedom
	3.3 Elastic Energies
	3.3.1 Stretching Energy
	3.3.2 Bending Energy
	3.3.3 Twisting Energy
	3.3.4 Elastic Forces

	3.4 Equations of Motion
	3.5 Time Stepping Scheme

	4 IMCv1: A Semi-Implicit Formulation for Contact and Friction
	4.1 Introduction
	4.2 Contact Energy
	4.3 Analytical Distance via Lumelsky's Algorithm
	4.4 Smoothing Lumelsky's Algorithm
	4.5 Semi-Explicit Friction
	4.6 Algorithmic Components
	4.6.1 Scaling
	4.6.2 Collision Limit
	4.6.3 Adaptive Contact Stiffness
	4.6.4 Hybrid Formulation
	4.6.5 Newton Damper
	4.6.6 Viscous Damping

	4.7 Overhand Knot Tying Validation
	4.7.1 Theoretical Validation
	4.7.2 Pull Force Accuracy
	4.7.3 Runtime

	4.8 Conclusion

	5 IMCv2: A Fully Implicit Formulation for Contact and Friction
	5.1 Introduction
	5.2 Improved Contact Energy
	5.3 Piecewise Continuous Distance
	5.4 Fully Implicit Friction
	5.5 Algorithmic Components
	5.5.1 Collision Detection
	5.5.2 Adaptive Contact Stiffness
	5.5.3 Line Search

	5.6 Flagella Bundling Simulation Results
	5.6.1 Parameters and Setup
	5.6.2 Comparison between IMCv2 and IPC
	5.6.3 Friction Example
	5.6.4 Full Parametric Study

	5.7 Overhand Knot Tying Validation
	5.7.1 Tightening a Trefoil Knot
	5.7.2 Tightening Knots of Various Unknotting Numbers

	5.8 Granny vs. Reef Knot Validation
	5.8.1 Boundary Conditions and Setup
	5.8.2 Knot Strength Evaluation
	5.8.3 Parametric Study for Friction Coefficient
	5.8.4 Parametric Study for Young's Modulus

	5.9 Conclusion

	6 DisMech: A Discrete Differential Geometry-Based Simulator for Soft Robots and Structures
	6.1 Introduction
	6.2 Methodology
	6.2.1 Elasticity, Contact, and Friction
	6.2.2 Elastic Joints
	6.2.3 Actuation via Natural Curvatures
	6.2.4 Numerical Integration Scheme

	6.3 Theoretical Validation
	6.3.1 Dynamic Cantilever Beam
	6.3.2 Oscillating Helix under Gravity
	6.3.3 Friction Validation

	6.4 Practical Demonstrations for Flexible Robots
	6.4.1 Arbitrary Robot Prototyping
	6.4.2 Real2Sim Open-Loop Control

	6.5 Conclusion

	7 Learning Neural Force Manifolds for Sim2Real Robotic Paper Folding
	7.1 Introduction
	7.2 Problem Statement
	7.3 Reduced-Order Model Representation
	7.3.1 Simple 2D DER Formulation

	7.4 Generalized Solution and Scaling Analysis
	7.4.1 Computing the Optimal Force
	7.4.2 Nondimensionalization via Buckingham Pi Theorem

	7.5 Deep Learning and Optimization
	7.5.1 Data Generation
	7.5.2 Learning Force and Optimal Grasp Orientation
	7.5.3 Constructing the Neural Force Manifold
	7.5.4 Path Planning over the Neural Force Manifold

	7.6 Robotic System
	7.6.1 Dual Manipulator Setup
	7.6.2 Perception System

	7.7 Model-Predictive Control via Visual Feedback
	7.8 Experiments and Analysis
	7.8.1 Measurement of Material Properties
	7.8.2 Baseline Algorithms
	7.8.3 Experimental Setup
	7.8.4 Metrics
	7.8.5 Parameters
	7.8.6 Results and Analysis
	7.8.7 Effects of Paper Width on Folding Performance

	7.9 Additional Discussion
	7.9.1 Performing Multiple Folds on the Same Paper
	7.9.2 Importance of Single Manipulator Folding

	7.10 Conclusion

	8 mBEST: Physics-Inspired Realtime Perception for DLOs
	8.1 Introduction
	8.2 Methodology
	8.2.1 DLO Segmentation
	8.2.2 Skeletonization
	8.2.3 Keypoint Detection
	8.2.4 Split End Pruning
	8.2.5 Intersection Clustering, Matching, and Replacement
	8.2.6 Minimal Bending Energy Path Generation
	8.2.7 Crossing Order Determination

	8.3 Experimental Results
	8.3.1 Datasets
	8.3.2 Baselines and Parameters
	8.3.3 Results and Analysis

	8.4 Conclusion

	9 Sim2Real Neural Controllers for DLO Deployment
	9.1 Introduction
	9.2 Generalized Solution and Scaling Analysis
	9.2.1 Solving the Suspended Part
	9.2.2 Influence of Force and Friction
	9.2.3 Computing Optimal Grasp
	9.2.4 Nondimensionalization via Buckingham Pi Theorem

	9.3 Deep Learning and Optimization
	9.3.1 Deployment in 2D Workspace
	9.3.2 Deployment in 3D Workspace
	9.3.3 Training the Neural Controller

	9.4 Robotic System
	9.4.1 Perception System
	9.4.2 Motion Planning with the Neural Controller

	9.5 Experiments and Analysis
	9.5.1 Measurement of Material Parameters
	9.5.2 Experiment Setup
	9.5.3 Metrics
	9.5.4 Results and Analysis

	9.6 Use Cases
	9.6.1 Cable Placement
	9.6.2 Knot Tying

	9.7 Conclusion

	10 Conclusions
	10.1 Summary
	10.2 Future Work

	References

