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ABSTRACT OF THE DISSERTATION

Utilizing Multi-modal Bio-sensing Toward Affective Computing in Real-world Scenarios

by

Siddharth Siddharth

Doctor of Philosophy in Electrical Engineering
(Intelligent Systems, Robotics, and Control)

University of California San Diego, 2020

Professor Mohan M. Trivedi, Chair
Professor Tzyy-Ping Jung, Co-Chair

Recognition and continuous monitoring of human emotions is a key problem that is spread

across multiple research disciplines like electrical engineering, computer science, neuroscience,

and cognitive science. Instead of the widely used method of approaching this problem from

the perspective of computer vision i.e. by tracking user’s facial expressions, we employ a

multi-modal approach. This approach utilizes various bio-sensing modalities in addition to

computer vision for assessing and classifying human affects. In the process, we address various

limitations—hardware and software—of such bio-sensing modalities. We evaluate the developed
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framework on real-world applications ranging from watching emotional multimedia content

(such as videos) to driving an automobile. Our holistic framework contributes toward (1) the

development of a novel multi-modal bio-sensing headset that is capable of recording, monitoring,

and tracking various bio-signals in real-time, (2) the development of algorithms that utilize signal

processing as well as deep learning tools for various bio-sensor and vision-based modalities

for emotion recognition, (3) the utilization of such algorithms in a wide range of applications

namely emotion classification, studying emotion elicitation, and monitoring driver’s awareness,

and (4) the performance comparison of various sensor modalities for the above applications

when they are used individually or in fusion with each other. Although the above multi-modal

sensor platform has been evaluated in this thesis dissertation on affective computing applications

only, it is generalizable. Thus, this platform can work for various applications in the field of

human-computer interaction that require the use of bio-sensing modalities.
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Chapter 1

Outline and Contributions

This doctoral dissertation’s overarching aim is the development of multi-modal bio-

sensing hardware systems and algorithmic platform for emotion recognition. This is especially

geared toward two real-world applications: watching affective multimedia videos and driving

an automobile. Chapter 2 presents the introduction to this doctoral dissertation. It also details

the organization of the dissertation. Chapter 3 details the development and evaluation of a multi-

modal bio-sensing headset capable of detecting, tracking, and recording various bio-markers

and physiological states. It also presents the evaluation of each modality as well as that of using

multiple modalities simultaneously while being engaged in two real-world gaming tasks. Chapter

4 utilizes multiple sensor modalities to study the elicitation of human emotions by assessing

the impacts of affective multimedia contents on users’ electroencephalogram (EEG) and facial

expressions. Subsequently, Chapters 5 and 6 present applications of the tools from the above

chapters in emotion recognition and driver awareness contexts. Specifically, Chapter 5 utilizes

sensors developed in Chapter 3 for the development of various software algorithms capable of

performing emotion classification. These algorithms are evaluated on four publicly available

emotion datasets in which participants watched various emotional videos. Chapter 6 utilizes

the hardware and software frameworks designed in the previous chapters toward applications
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in driver awareness monitoring. It details the classification of a driver’s mental states based on

his/her attentiveness and responses to hazardous on-road situations. Finally, Chapter 7 concludes

this dissertation by commenting on the importance of the research findings from Chapters 3-6.

With the ultimate goal of developing a multi-modal bio-sensing headset capable of

monitoring and tracking human emotions in real-time continuously throughout the day, we

present the following contributions:

• We present the development of a novel multi-modal bio-sensing headset that is capable

of recording, monitoring, and tracking various bio-signals in real-time. This headset can

synchronize such signals in real-time and can be used for various real-world applications.

• We develop algorithms that utilize signal processing as well as deep learning tools to

integrate various bio-sensor and vision-based modalities for emotion recognition. These

algorithms are developed in a robust, scalable, and modular manner, and thus can be used

either individually or together.

• We utilize the above algorithms in a wide range of applications namely emotion classifi-

cation, studying emotion elicitation, and monitoring driver’s awareness. To perform the

studies, we also collect novel multi-modal datasets.

• We analyze and compare the performance of various sensor modalities for the above

applications when they are used individually or in fusion with each other. This analysis

aimed at understanding which sensor modalities or their combinations could prove to be

most useful in such applications.

• We introduce a hardware and software platform capable of studying human affective states

through multiple sensor modalities capable of being fabricated into a compact and wearable

form factor. Subsequently, this research is a step toward the development of smart devices

capable of continuously monitoring the user’s emotional and physiological health.
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Chapter 2

Introduction

Imagine that you have just returned home from a long and exhausting day at work. You are

feeling tired and low in spirit. However, you are wearing a smart band in your wrist, a “Fitbit for

detecting emotions” if you will, which sends a signal to your home theater music system to play

your favorite song. Your spirits are enlivened, you feel much better, and you start relaxing to the

tune of the musical notes. This doctoral thesis is a step in the design, fabrication, and evaluation

of the development of such a smart and compact device capable of detecting, classifying, and

monitoring human emotions.

Probably as long as humans have been self-aware, they have wondered about the origin,

essence, and utility of emotions. Though the word emotion was only coined (adapted from the

French word émouvoir meaning to “stir up”) in the early 1800s, philosophers across the world

have discussed the concept for millennia. In the West, through Plato’s writings, Socrates comes

out as a cognitivist who believed that feelings like fear or dread are constituted by cognitive

states [1]. Western philosophers, in general, held the view about making the distinction between

cognition and emotion i.e. the destructive role that emotions can play in decision-making. On the

other hand, in the East, there is a more subtle perception of emotions. While Hinduism refers

to bhāva (feeling) as illusory and transitory, Buddhism propagates universal compassion and
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empathy hand-in-hand with a feeling of abnegation since emotions prevent liberation [2].

How emotions are generated has long been the cause of discussion between philosophers,

cognitive scientists, neuroscientists, psychologists, psychiatrists, and social scientists. Tens of

hundreds of studies have been performed by researchers to study the onset of emotions. These

studies are now characterized under the banner of Affective Computing. Affective computing

has emerged as an interdisciplinary field spanning computer science, psychology, and cognitive

science to study and develop systems that can detect, emulate, simulate, process, and interpret

emotions [3].

For centuries, two methods have been predominantly utilized to assess somebody’s

emotional health. The first method has been to ask for feedback from the person directly or

indirectly through a questionnaire. The second method has been to observe their bodily cues such

as facial expressions and posture. While the first method is highly subjective and is prone to error

because of the person’s mood, the second method is indirect since it only monitors the products of

the cognitive processes generating human emotions and is prone to deliberate misrepresentation.

Physiological cues such as a change in heart-beats and sweating that are the immediate and

involuntary processes accompanying human emotions have been difficult to measure throughout

human history. Fortunately, in recent years, for the first time in history, with the development of

bio-sensors capable of monitoring, recording, and tracking a person’s physiology in real-time and

in a real-world manner, it has become possible to detect and classify human emotions directly

from the bodily signals tied with the cognitive processes generating human emotions.
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Figure 2.1: Various bio-sensing and physiological cues used for emotion recognition

“Follow your heart and not your mind,” has been a much-quoted sentiment from centuries.

Research in this field in recent times has pointed out that there may be scientific truth in the above

adage. Neurocardiology has fast emerged as a new research avenue studying the role of the heart

in emotion generation and perception [4]. Focusing on brain imaging and facial expressions to

study emotions is still the dominant trend in affective computing. These modalities also have

many limitations such as electroencephalogram (EEG) brain imaging technique being highly

prone to noise due to any kind of motion. Utilizing facial expressions for emotion classification

has its own limitations. For example, a computer vision-based modality for this application

requires good illumination conditions, constant tracking of the human face i.e. camera positioning

in front of the face, and raises privacy concerns for others in the vicinity who may be inadvertently

being recorded by the camera. One way to address all of these concerns is to utilize bio-sensing

modalities continuously strapped on the user’s body. Many such real-world bio-sensors have

been developed in recent times. Such sensors used to monitor the user’s pupillometry, heart rate,
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temperature, skin conductivity, etc., have created an incentive to explore these physiological cues

for emotion classification. Fig. 2.1 shows various such bio-sensing and physiological cues used

for emotion recognition.

This incentive of utilizing multiple bio-sensing modalities has led to the collection of

several multi-modal datasets for emotion classification, including DEAP [5], AMIGOS [6],

MAHNOB-HCI [7], and DREAMER [8]. These datasets have been collected when users were

watching multimedia content like movies and song clips while strapped with multiple sensor

modalities including electroencephalogram (EEG), color camera, depth camera, galvanic skin

response (GSR), electrocardiogram (ECG), photoplethysmogram (PPG), and eye-gaze. In addition

to the datasets collected in a multimedia content setting to classify human emotions, the use of

multiple sensor modalities has also made its way in the development of safe automobiles focused

on assessing driver’s awareness [9].

Most previous research studies have not adopted a multi-modal approach to affective

computing and if they have, then the bio-sensing modalities used have not been wearable and

capable of working in real-world settings. For example, the studies [10, 11, 12, 13, 14] utilizes

only EEG in the context of driver awareness analysis and emotion classification while watching

videos. On the other hand, studies like [7, 8, 6, 15, 16] do apply multiple bio-sensing and computer

vision modalities for these applications but the sensors used in those datasets are incapable of

data collection when the user is mobile. These sensor modalities do not come in a compact and

integrated form factor but instead have to individually be placed on the user. It is because of such

limitations that we developed a novel multi-modal bio-sensing headset with an integrated and

compact form factor. We also utilized multiple bio-sensing modalities for various applications as

detailed below.

A skeptic might ask what is the need for designing an automated system capable of

recognizing human emotions? There are many applications of emotion recognition systems

that are already being used worldwide. These can be broadly classified into three categories.
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The first of these concerns health-related applications. These may constitute utilizing emotion

recognition to detect how a patient is responding to various mental tasks or recovering from a

traumatic accident. Such systems like facial expression monitoring ones can be used to track the

patient’s recovery over a period of time. Second, software usability testing and content rating. A

huge market has come up in recent years in the advertising industry to assess products such as

advertisements, video games, etc. based on tracking test users’ physiology and facial expressions

(bio-markers of human emotions) to gauge their feedback. This feedback can then be used to

refine the product or make decisions about its rollback, etc. Third, such emotion recognition

systems can be used to monitor and track students’ responses to various types of learning content.

By monitoring students’ physiology in real-time and associating it with the learning contents, it

may be possible to refine the latter based on automated feedback from the former. This application

is in the early stages of research and may revolutionize how we learn and receive education in

schools [17].

Ironically, the simple question, “What emotion are you experiencing at this moment?”

is the greatest obstacle in the field of affective computing. This is because it is very hard to

categorize emotions neatly in a disjoint manner.

Figure 2.2: (A) Plutchik’s Wheel of Emotions Model and (B) Russell’s Circumplex Model
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There are more than ten emotion classification models. While some classify emotions

dimensionally, others do it discretely and they often do not agree with each other [18]. Figure

2.2 shows two of the most widely used emotion classification models. The Plutchik’s Wheel

of Emotions Model shown in Figure 2.2(A) suggests eight primary bipolar emotions whose

interaction with each other generate other secondary emotions. This is akin to the RGB color

model in computer vision. On the other hand, Russell’s Circumplex Model shown in Figure

2.2(B) approaches emotion classification through affective states like valence and arousal and

do not as such define any primary or secondary emotions. These states loosely define the mood

and strength of a particular emotion. Utilizing valence and arousal it may be possible to map

various emotions as shown in the figure. With so much discrepancy between various emotion

classification models, it is imperative to monitor user’s physiology to gauge their feelings rather

than blindly asking them to rate their emotions on such complex measurement scales. It is to

address this need to utilizing multiple bio-sensing modalities for emotion classification that this

work fits itself. This work encompasses the designing of novel multi-modal bio-sensing systems,

algorithms for classifying emotions, and studying the relationship between various physiological

cues reflecting human emotions.

Any such multi-modal bio-sensing system for affective computing application must be

capable of achieving five objectives:

• Being able to detect, classify, and monitor emotional and mental states.

• Infer emotional state using a minimal number of and the most comfortable sensors.

• Able to infer the context (such as what the user is doing) in real-time to make use of the

processed data to perform an activity.

• Make recommendations, show/hide information, or take action based on the information

from above (such as triggering music, modifying the environment in a game, etc.).
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• Execute all the above in real-world settings throughout the day.

To encompass all five objectives into one doctoral thesis would have been impracticable.

Thus, this doctoral dissertation focuses on the first three objectives in two real-world settings:

watching affective multimedia content and driving a vehicle. These two real-world tasks are

ubiquitous across all regions of the world. Detecting and classifying the emotions that are evoked

while watching a video on YouTube or assessing a driver’s state of awareness when s/he is behind

the steering wheel are the primary focal points of this doctoral dissertation. The rest of this

doctoral dissertation is organized in the following way:

Chapter 3 describes the state-of-art bio-sensing systems and their limitations. It then

details the design, fabrication, and evaluation of a multi-modal bio-sensing system developed by

us. This multi-modal bio-sensing headset is capable of monitoring, recording, and tracking a

person’s physiology in real-time and in a real-world manner. The comparison of the signal from

each developed sensor is carried out with commercially available sensors. The last part of the

chapter presents the evaluation of the headset through the examples of two real-world games.

Chapter 4 utilizes bio-sensing modalities such as those developed in Chapter 3 to under-

stand the correlation between affective multimedia content and the user’s brain state (monitored

by electroencephalogram) and facial expressions. This chapter studies which regions of the brain

and what kind of facial expressions are most affected by and are correlated to different types of

emotional stimuli. Thus, this chapter takes forward our understanding of the elicitation of human

emotions.

Chapter 5 takes the research forward from Chapter 4 to address the requirement of the

multi-modal emotion classification algorithms in the real-world application of watching affective

multimedia content. The chapter details the design of algorithms utilizing signal processing and

deep learning techniques for various bio-sensing and camera-based modalities. These algorithms

are then evaluated using four publicly available multi-modal affective datasets. The results of this

study are shown to outperform the previously reported ones for these four datasets.
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Chapter 6 utilizes the tools developed above in the context of a real-world driving scenario.

The chapter details the collection of a multi-modal bio-sensing dataset as well as a vision dataset

while the automobile was being driven in autonomous mode. The study expands on driver

awareness based on how attentive the driver is in a particular setting and his/her reaction to

various hazardous events that might occur during the drive. This application correlates with the

study of human affects such mental states like awareness and attention are closely associated with

a person’s emotions.

Chapter 7 summarizes the main contributions of this dissertation and discusses some

future research avenues.
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Chapter 3

Fabrication and Evaluation of a

Real-world Multi-modal Bio-sensing

Headset

This chapter describes the development and integration of various components of a novel

multi-modal bio-sensing system. This system is capable of collecting, synchronizing, recording,

and transmitting data from multiple bio-sensors: photoplethysmogram (PPG), electroencephalo-

gram (EEG), eye-gaze headset, body motion capture, galvanic skin response (GSR), etc., while

also providing task modulation features including visual-stimulus tagging. The developed sensors

are evaluated by comparing their measurements to those obtained by standard research-grade

bio-sensors. The earlobe-based photoplethysmogram (PPG) module with motion-noise canceling

is evaluated against electrocardiogram (ECG) during the heart-beat calculation. The steady-

state visually evoked potentials (SSVEP) measured by the novel shielded dry EEG sensors are

compared against the potentials obtained by commercially available dry EEG sensors. The

effect of head movements on the accuracy and precision of the wearable eye-gaze system is also

investigated. Furthermore, two practical tasks are carried out to demonstrate the applications of
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using multiple sensor modalities for exploring previously unanswerable questions in bio-sensing.

Specifically, bio-sensing is utilized to assess which strategy works best for playing “Where is

Waldo?” visual-search game by studying the changes in EEG corresponding to true vs. false

target fixations. Similarly, the performance of bio-sensing modalities is compared to classify

loss/draw/win states in a “Rock-Paper-Scissors” game. The applications of the sensors developed

in this chapter concerning affective computing will be discussed in the succeeding chapters.

3.1 Introduction and Related Research

In recent years, there have been many advances in the field of wearable bio-sensing. This

trend has led to the development of multiple wearable bio-sensors capable of measuring galvanic

skin response (GSR), photoplethysmogram (PPG), etc. integrated into portable form-factors

such as smartwatches. The use of bio-signals for various applications such as robotics [19, 20],

mental health [21], affective computing [22], human-computer interaction [23, 24] etc. has been

expanding throughout the past decade. At the same time, the concept of using more than one

bio-sensing modality has also gained popularity. This is primarily driven by the assumption that

the limitations of a bio-sensor can be compensated by using another for specific applications. For

example, since EEG provides good temporal resolution but poor spatial resolution it might be

possible to use other modalities such as PPG and GSR to augment the performance in an emotion

classification task rather than using EEG alone [5, 25].

Unfortunately, the integration of the above-mentioned bio-sensing modalities is usually

overlooked for more naturalistic research studies due to cost, bulk, and technical difficulty [26].

A typical strategy used to measure multiple bio-signals in the real-world is to buy various sensors

and then extract data from each of them separately. This setup, however, leads to unwieldy

subject preparation and increased post-processing synchronization effort, both of which add

sources of noise and inconvenience. Specifically, no integrated headset has been proposed to
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measure multiple bio-signals simultaneously in a synchronized manner. Without the possibility

of simultaneous recordings from multiple modalities, it is difficult, if not impossible, to explore

questions corresponding to changes in physiology while performing actions in the real world.

The problem of not being able to collect data in real-world environments is compounded

by the lack of techniques to automatically recognize and tag real-life events or stimuli. The

standard process employed for stimulus tagging requires an individual (experimenter) to manually

tag the various stimuli from frame to frame in a video stream. This process is cumbersome, time-

consuming, and laborious. Furthermore, the stimulus onset is not measured with fine-resolution

or is ill-defined in such setups [27, 28]. A solution is to track eye-gaze to infer the stimulus onsets.

This allows pinpointing of the visual region but still requires stimulus tagging.

Additionally, there is a design element associated with the bio-sensors, which needs

to be optimized for compactness and cost for any multi-modal bio-sensing system. Any such

device has to be capable of synchronizing multiple data streams and should be packaged in a

compact form factor for easy use. For example, the use of wet electrodes for measuring EEG or

electrocardiogram (ECG), which may require placing sensors over the chest, is undesirable for

real-world setups. This research proposes a novel multi-modal bio-sensing system to address the

above limitations.

3.1.1 Contributions

The main contributions of this work are as follows:

• This work presents the design of a novel research-grade bio-sensors capable of measuring

physiological measurements in real-world environments with automatic visual tagging and

integrating the sensors in the form of a compact wearable headset.

• This work also presents the evaluation of the developed sensors on two “real-world”

experiment setups through the use of gaming towards utilizing multiple sensor modalities.
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• This work shows conclusively that previously unexplored physiological questions can be

addressed using multiple sensor modalities.

The above contributions were made by designing and evaluating a novel earlobe-based,

high-resolution PPG sensor capable of measuring heart rate and heart-rate variability as well

as providing raw PPG data from the earlobe. Using adaptive noise cancellation and intentional

placement at the earlobe to minimize sensor movement, the PPG sensor is capable of minimizing

motion noise. Novel dry EEG sensors capable of actively filtering the EEG signals by shielding

themselves from ambient electrostatic noise were also designed and evaluated. These EEG

sensors are used with a high-sampling and ultra-low-noise analog to digital converter (ADC)

module. Subsequently, a dual-camera-based eyeglass capable of measuring eye-gaze (overlaid on

the subject’s field of view), pupillometry, fixations, and saccades was fabricated and evaluated.

Data acquisition and synchronization from all these sensors are done using an embedded system.

These data streams can then be saved on the device or wirelessly transmitted in real-time for

visualization and analysis. The framework is designed to automatically tag visual stimuli in

real-world scenarios with the user’s eye-gaze over the various bio-sensing modalities. Finally, the

framework is scalable such that it can be expanded to support other bio-sensing modalities from

the market.

3.1.2 Related Research Studies

Table 3.1 compares this system with many existing state-of-the-art bio-sensing systems.

Clearly, in all categories, this system is more comprehensive and flexible than all the existing

bio-sensing systems. The lack of cost comparison in the Table is because many of the systems

including this one have not been commercialized into products. Hence, it is not a fair comparison

to evaluate the retail prices of select systems with the fabrication costs of others.

In real-world applications, PPG has been substituted for ECG due to the ease it offers

in measuring heart rate. It does not require using wet electrodes over the chest and can easily
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Table 3.1: Comparison of Multi-modal Bio-sensing Systems

Features This System iMotions
[26]

Microsoft
[29]

Biovotion
[30]

Teaergo [31] OpenBCI
[32]

Imperial Col-
lege [33]

Sensing
Modalities

EEG,
PPG, Eye-
Tracking,
Pupillometry

EEG,
ECG, GSR,
EMG, Eye-
Tracking

PPG, GSR,
Skin Temper-
ature

PPG, GSR,
Skin Temper-
ature

EEG, EMG,
GSR, Eye-
Gaze,
Motion
Tracking

EEG, EMG,
ECG

EEG, ECG

Fully in-
tegrated,
self-contained
module∗

Yes No, multiple
modules

Yes Yes No, multiple
modules

Yes No, multiple
modules

Wireless
Synchronization†

Yes Yes No No Yes No No

Automatic
Visual Stimuli
Tagging

Yes No No No No No No

Noise cancel-
ing measures

Yes (ANC,
Shielding)

No No No No No No

Research
grade‡

Yes Yes No No Yes Yes Yes

Performance
Evaluation
while in
motion

Yes No Yes Yes Yes No No

∗Containing data acquisition, noise filtering, digitizing, transmission circuitry and battery.
†Capable of synchronizing with any external sensor too while transmitting wirelessly.
‡Capable of acquiring data with high bit resolution and high sampling rate.

be integrated onto watches or armbands [34]. But, it has its own limitations. First, most of the

available PPG sensors do not have a sampling rate high enough and fine ADC resolution to

measure heart-rate variability (HRV) in addition to heart rate (HR). HRV has been shown to be a

good measure of emotional valence and physiological activity. Secondly, PPG sensors over the

arm or wrist tend to be noisy because of the constant movements of the limbs while performing

real-world tasks. On the other hand, PPG systems designed for the earlobe also suffer from noise

due to walking or other head/neck movements [34]. In the rare case when noise filtering is used in
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PPG, the hardware design is bulky due to the large size of the circuit board used in the setup [35].

EEG sensors come in dry or wet-electrode based configurations. The wet electrodes either

require the application of gel or saline water during the experiment and hence are not ideal outside

laboratory environments [36]. The dry electrodes usually do not have a long service life since

they are generally made of Ag/AgCl or gold (Au) coating over metal, plastic, or polymer, which

tend to wear off [37, 38]. Furthermore, coating Ag/AgCl is a costly electrochemical process.

Eye-gaze tracking systems tend to be bulky and may even require the subject to place

his/her face on a chin rest [39, 40]. Even when they are compact, these systems are not mobile

and the subject has to be constantly in its field of view [41]. These limitations restrict their use

outside well-controlled laboratories, where illumination varies and the subject is mobile at all

times. Furthermore, all such systems only measure eye-gaze as being pointed over a display

monitor and not in the real world. They are unable to overlay the gaze over the subject’s view if

the display screen is not in his/her field of view. The solution is to use head-mounted eye-gaze

systems but they tend to use a laptop instead of a small embedded system for processing and

viewing the camera streams [42]. Thus, the laptop has to be carried in a bag, restricting the

subject’s freedom of movement.

To tag the stimuli with various bio-sensing modalities, the norm has been to use a

key/button press, fix the onset and order of stimuli on a display, or time it with a particular

event, etc. [27, 28] But, in real-world scenarios, such methods either cannot be used due to the

mobile nature of the setup or induce a sense of uncertainty which has to be removed by manual

tagging. Such manual tagging is laborious and time-consuming. The only viable solution is to tag

stimuli automatically after recognizing them in the subject’s field of view. However, it lacks the

knowledge of whether the subject was actually focusing on the stimuli or rather was looking at

some other areas in his/her field of view.

The existing multi-modal experimental setups are tethered, are not compact, and tend to

just attach various sensors on the subject, which are then connected to one or more data acquisition
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systems [22, 26]. This further reduces the mobility for experiments outside laboratories. The use

of an independent clock for each of the different modality complicates the issue of synchronizing

the various modalities. For real-time display, transmitting data streams from these sensors over

Wi-Fi or Bluetooth may introduce varying latency. Thus, the only solution is to design a closely

packed hardware system [43], which synchronizes the various data streams while acquiring

them in a wired manner and using only one clock (that of the embedded system itself). The

synchronized streams can then be either recorded or sent to a display screen which does not

affect either the compact nature of hardware or synchronization in software framework. The next

sections present the various sensors and methods developed in this study to address the above

limitations.

3.2 System Overview

This section details the development of each of the sensor modules incorporated in the

developed system with its features and the embedded system used for their integration.

3.2.1 Earlobe-based PPG Sensor

The developed earlobe-based PPG sensor module is very compact (1.6 x 1.6 x 0.6 cm)

and sandwiched to the earlobe using two small neodymium magnets. The PPG sensor module

(Fig. 3.1) houses an Infrared (IR) emitter-detector (Vishay TCRT 1000) for measuring PPG, a

3-axis accelerometer (Analog Devices ADXL 335), a high-precision (16-bit) and a high sampling

rate (100 Hz.) ADC (Texas Instruments ADS 1115), and a third-order analog high-gain band-pass

filter (BPF, cutoff 0.8 - 4 Hz using three Microchip MCP6001 op-amps).

This PPG signal is then amplified using the high-gain band-pass filter and a relevant

frequency band is extracted. The filtered PPG data along with the accelerometer’s data are

digitized using the ADC before transmission. Thus, the PPG module is capable of filtering the
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Figure 3.1: The miniaturized PPG sensor with a scale reference. (A) 3-axis accelerometer, (B)
100 Hz 16-bit ADC, (C) IR emitter and receiver, and (D) a third-order filter bank.

signal on-board (despite being so minuscule in size) and converting the signal to a digital format

for the calculation of heart rate and heart-rate variability. The on-board accelerometer serves two

purposes. First, it can be used to measure and monitor head movements because the sensor is fixed

on the earlobe with reference to the position of the subject’s face. Secondly, the accelerometer

provides a measure of noise due to motion and removes it from the PPG signal using an adaptive

noise-cancellation (ANC) filter. The filter [44] can be implemented inside the embedded system

(Section 3.2.5) in real-time. The filter works by constructing a model of noise due to motion (such

as while walking) from the reading of the accelerometer and reconstructing the noise-removed

PPG signal.

3.2.2 EEG Sensors and Data Acquisition

The novel dry EEG sensors (Fig. 3.2) developed in this research can be easily adjusted

under the hairs to measure EEG signals from the scalp. These EEG sensors consist of a highly

conductive element made from silver (Ag) epoxy (electrical resistivity 0.007 Ω·cm). This silver-

epoxy-based conductive element provides the sensor a long life since the silver does not wear off

as fast as it does on EEG sensors coated with Ag/AgCl. The sensor also has an on-board OpAmp

(Texas Instruments TLV 2211) in a voltage-follower configuration to shield the EEG signal from
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noise by increasing the signal-to-noise ratio (SNR) of the EEG signal. Furthermore, the sensor is

enclosed in a Faraday cage made of conductive copper foil tape. This shielding is used to remove

external noise from the environment before the signal is digitized. For subjects with dense hair, a

drop of saline water can be added to increase the conductance between the sensing element and

the subject’s scalp.

Figure 3.2: The EEG sensor with a scale reference. (A) Silver (Ag) based conductive element,
(B) 3D printed case housing a conductive element for shielding, and (C) The amplifier circuitry.

For converting the analog noise-removed EEG signal to a digital format, an assembly for

fine resolution (24-bit), high-sampling rate (up to 16k samples/second), ultra-low input referred

noise (1 µV) ADC (Texas Instruments ADS 1299) was designed. This assembly employs a

low-pass filter before the signal goes into the ADC, whose parameters such as sampling rate, bias

calculation, internal source current amplitude for impedance measurement, etc. can be controlled

by the software [45, 46]. The assembly can support up to eight EEG channels (Fig. 3.5F) whereas

the design of the board is such that multiple boards can be stacked to accommodate more EEG

channels. Two such boards were used in the headset to support 16 EEG channels (Fp1, Fp2, F7,

F3, Fz, F4, F8, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2 according to the International 10-20

EEG placement). Continuous impedance monitoring is made for each electrode in real-time to

assess the quality of the EEG signal and electrode placement. Furthermore, using Independent

Component Analysis (ICA) [47, 48], various independent components of the signal can be
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separated to identify noise due to blink, eye movement, EMG, etc.

3.2.3 Eye-Gaze and Pupillometry sensors

Two miniature cameras (Fig. 3.6) are used to assess the subject’s eye-gaze location and

pupillometry parameters such as the diameter of the pupil, fixations, saccades, etc. The eye

camera consists of two infrared (IR) LED’s (970nm wavelength), which are used to illuminate the

region around the eye. Because the LEDs are IR-based, the eye camera can detect the pupil under

a wide variety of illumination conditions. PupilLabs’ pupil-detection algorithm and eye-gaze

calibration software have been modified to detect the pupil and calibrate the subject’s gaze [42].

A display screen (i.e. laptop) is needed only for the initial eye-gaze calibration step, which is done

using a manual selection of natural features in the field of view. The gaze is then superimposed

on the subject’s view from the world camera. Both cameras stream at 30 frames-per-second (fps)

while the resolution can be adjusted as per the need of study.

3.2.4 Stimulus Tagging

You Only Look Once (YOLO) deep learning algorithm was used to automatically tag

various stimuli in the feed from the world camera in real-time [49]. The algorithm can be

trained for custom object classes using large image databases with multiple classes depending

on experimental needs (for example 80 object categories in COCO dataset with 300K images).

Whenever the subject’s gaze falls inside the bounding box of one of the object classes (stimuli),

the bio-sensing modalities are automatically tagged. Therefore, instead of manually tagging the

stimuli during the experiment, the software automatically tags the salient information. Thus, for

example, if the subject is looking at a person’s face, his/her EEG can be time-synchronized to the

gaze and analyzed to detect the level of arousal (Fig. 3.3). Due to the significant computational

requirements of using YOLO, the stimulus tagging is done on a laptop (rather than the embedded
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system) in real-time or processed post-hoc. OpenPose [50] is used to automatically tag the human

pose by detecting the positions of the body joints. Lab Streaming Layer (LSL) [51] library is used

to synchronize the data streams from the camera on the embedded system and stimulus tagging

on the laptop.

Figure 3.3: Visualization of the software. (A) Eye-gaze overlaid on world view, (B) Detected
pupil in IR eye camera image, (C) Object detection network, (D) PPG and accelerometer signals
with noise canceling and heart-rate computation, (E) Human pose detection network, and (F)
EEG signals and power spectral density of three EEG bands.

3.2.5 Embedded System Framework

Each of the above modalities is wired to a custom development board (Fig. 3.5), which

uses an embedded system containing the Broadcom BCM2837 processor. The board has the
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Figure 3.4: Overview of the integrated system architecture.

capability to attach a world camera, eye camera, PPG module, and EEG module. Additionally,

the board houses a headphone jack which can be used for playing audio recordings during

experiments. The clock on the embedded system is common for all modalities helping to ensure

data synchronization from independent streams using LSL. This library allows for the spawning

of a global clock which takes into account the relative difference between local clocks on the

embedded system and laptop for synchronizing various data streams from the two devices in

real-time. The video streams were compressed using MJPEG compression while transmitting

them wirelessly. Fig. 3.4 shows the block diagram of the complete working architecture of the

system, sensor components, data processing, and transmission by Wi-Fi (using Realtek RTL

8723BS module). The system is powered using a small Li-Ion battery (Panasonic NCR18650B

3400mAh), which lasts for approximately three hours when all sensor modalities are enabled.

However, the system can also be powered by any compact 5V-output mobile power bank for more

than eight hours of continuous use.
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Figure 3.5: Embedded System (A) Power circuitry, (B) World camera connector, (C) PPG
connector, (D) Audio jack connector, (E) Eye camera connector, (F) EEG sensors connector and
ADC module, (G) Wi-Fi module, and (H) Microprocessor module

3.3 Evaluation of Individual Sensor Modalities

To evaluate the efficacy of the integrated headset (Fig. 3.6), the evaluation of the individual

components on multiple subjects was carried out. Two experiment scenarios were designed to

this end using commonly played games: “Where is Waldo?” and “Rock-Paper-Scissors” during

which multi-modal data was collected using this system. The results for the fusion of information

from individual modalities are provided below with new insights into human physiology. The

human trial portion of this study was reviewed and approved by an Institutional Review Board

(IRB) of the University of California San Diego, and all subjects provided informed consent.
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Multiple benchmarks were used to evaluate each of the sensors developed in this study.

The apparatus designed for evaluating these sensors also include various types of head and body

movements to assess the effect of the above-mentioned noise-canceling techniques.

3.3.1 Earlobe PPG Evaluation

The earlobe PPG module was evaluated during rest and active conditions. In particular,

the feature of interest, heart rate, was measured while subjects were sitting and walking in

place. The PPG sensor was placed on the earlobe as in Fig. 3.6 and measured the changes in

blood volume at the sampling rate of 100 Hz. Simultaneously, the baseline was collected using

an EEG/ECG acquisition system sampled at 1 KHz from the Institute of Neural Engineering,

Tsinghua University, China. Three electrodes were placed on the subjects’ chest over the heart,

and on either side of the ribs.

Figure 3.6: Integrated Headset (A) World camera, (B) EEG Sensors, (C) Battery, (D) EEG Ref-
erence Electrode, (E) Eye Camera, (F) Earlobe PPG Sensor, (G) Headphone/speaker connector,
and (H) Embedded System (The subject gave consent to use his face for publication)

24



Six subjects participated in eight different trials: four sitting and four walking, during

which their ECG and PPG data were simultaneously measured. In each trial, two minutes of data

were collected. For the walking condition, subjects were instructed to walk-in-place at a regular

rate and ANC was performed to remove motion noise. A peak detection algorithm was used to

find the heart beats in both signals for counting the heart rate.

Fig. 3.7 shows the working of the 10th order ANC filter utilized on a 10-second interval

of PPG data while walking. The original PPG data (in blue) in Fig. 3.7A is clipped at the top

because a third order high-gain band-pass filter was used thus amplifying the signal and making

it easier to distinguish the peaks in PPG. Fig. 3.7A shows that the number of peaks in the original

waveform is computed to be 20, which is incorrect as the waveform is distorted. Measurement of

the noise from vertical acceleration (Fig. 3.7B) was used for the ANC filter. Noise-removed PPG

waveform with the use of the ANC filter is shown in Fig. 3.7A and as expected the erroneous

peaks are eliminated, giving the total number of peaks as 17.

Figure 3.7: Comparison of the 10-second waveforms from the earlobe PPG sensor before
and after ANC during walking. (A) PPG without and after noise-cancellation (B) Vertical
acceleration used as the noise measure.
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Bland-Altman analysis [52] was then performed which is a general and effective statistical

method for assessing the agreement between two clinical measurements to compare the heart rate

obtained by the developed PPG module to the true heart rate computed using the high-resolution

ECG signal. Fifteen-second trials were used to calculate the HR using the peak-detection

algorithm. Fig. 3.8A shows the result of the Bland-Altman analysis while the subjects were

sitting. As the figure shows most of the trials are between the Mean ± 1.96SD agreement

threshold for both, with and without using ANC. Further, using ANC decreases the agreement

threshold, making the two signals adhere to more conformity. Similar results were observed for

the trials when subjects were walking (Fig. 3.8B) and again using ANC makes the HR measures

from the two signals more agreeable. Furthermore, for both cases, the trials from the two signals

were almost always in agreement, indicating that the earlobe PPG module is capable of measuring

heart rate with high accuracy.

3.3.2 Eye Gaze Evaluation

The performance of the paired eye-pupil monitoring and world-view cameras in measuring

eye gaze were evaluated using a structured visual task to measure precision and accuracy during

use. The gaze accuracy and precision were measured for subjects following calibration (an ideal

setting) and after head movements (a real-world use). In this task, the subjects were asked to

calibrate their eye gaze using nine targets which appeared on a screen 2.5 feet away from them

(such that >90% of the camera’s field of view was composed of the task-screen). For six subjects,

a series of 20 unique targets randomly distributed on the screen were used to account for the

majority of their field of view. Thus, this composed the accuracy and precision measurements

just after calibration. The subjects were then asked to move their head naturally for 30 seconds

without removing the headset. This action was designed to simulate the active head-movement

scenarios when wearing the headset because usually the gaze performance is not reported after

the subject has moved from his/her position. Similar to the above task, the subjects were asked
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Figure 3.8: PPG vs. ECG Bland-Altman Evaluation (Blue- Before ANC, Red- After using
ANC) (A) While sitting and (B) While walking. Heart-rate computed by ANC filtered PPG
conforms more closely to the true heart-rate.

to again gaze at 20 different points appearing on the screen to assess the gaze performance after

head movements. The above process was repeated three times for each subject. Importantly, no

chin rest was used during or after calibration so that gaze performance is measured with natural

head and body movements.

The accuracy is measured as the average angular offset - distance in degrees of the visual

angle - between fixation locations and the corresponding fixation targets. Fig. 3.9A shows the

gaze accuracy obtained before and after head movements. The mean gaze accuracy over all the

trials was found to be 1.21 degrees without and 1.63 degrees after head movements. The decrease

in gaze accuracy after head movements is expected because the headset’s position is displaced

albeit by a small value. For all the subjects, the mean gaze accuracy was mostly less than 2
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Figure 3.9: (A) Gaze accuracy (average angular offset between fixation locations and corre-
sponding targets) evaluation and (B) Gaze precision (root-mean-square of the angular distance
between successive samples during fixation) evaluation. For both metrics, this system performs
as well or better than such existing ones.

degrees and the mean performance drifts only 0.42 degree, which is significantly less than 1-2

degree drift in commercially available eye-gaze systems [39].

The precision is measured as the root-mean-square of the angular distance between

successive samples during a fixation. Fig. 3.9B shows the results of the angular precision for all

the subjects. The mean angular precision was found to be 0.16 and 0.14 before and after head

movements respectively. As is clear from the figure, the degree of visual angle is almost always

within the range of ±0.15. Furthermore, the precision has a mean shift post head movement of

only 0.2, indicating a minimal angular distance shift comparable to existing systems.
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3.3.3 EEG Sensors Evaluation

For the evaluation of EEG sensors, two-fold was performed. First, the developed EEG

sensors were compared with the state-of-the-art dry EEG sensors by Cognionics [38] to evaluate

the signal correlation achieved using the two types of sensors. This also proves to be a test of

whether the developed EEG sensors are actually acquiring EEG as opposed to just electromagnetic

noise, and if they are able to shield themselves from ambient noise in the environment. Second,

the developed sensors were evaluated on a steady-state visually evoked potentials (SSVEP) BCI

task to evaluate their performance in measuring various frequencies during standard use.

Figure 3.10: (A) A comparison of 4-second EEG signals acquired by the proposed and Cognion-
ics dry EEG sensors and (B) Correlation score between the EEG recorded from the two sensors.
Recordings from both the sensors show very high correlation.

For the SSVEP testing, five of the developed EEG sensors were placed at T5, O1, Oz, O2,

and T6 sites according to the standard EEG 10-20 system. The location over and near the occipital

lobe was chosen to evaluate the performance of the developed EEG sensors because the SSVEPs

in response to repetitive visual stimuli of different frequencies are strongest over the occipital lobe.
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Ten subjects participated in this experiment constituting three trials of ten random numbers each

to be typed using an SSVEP-based keypad on a mobile tablet (Samsung Galaxy S2) with an EEG

sampling rate of 500Hz. The frequencies of the 12 stimuli on the keypad (BCI speller) varied

between 9-11.75 Hz with increments of 0.25Hz. This fine resolution in increment was chosen

to assess the capability of sensors in distinguishing between minutely varying frequencies. The

stimulus presentation time was 4 seconds with an interval of 1 second of a blank screen between

two consecutive stimuli. Only the middle 2 seconds of data was used from each trial for SSVEP

analysis. To compare the signal quality obtained from the two types of sensors, Cognionics sleep

headband was used to acquire EEG from one Cognionics sensor at the temporal lobe and one of

the developed sensors next to it. The location was chosen so that hairs on the scalp are present

around the sensors.

Fig. 3.10A plots 4-second of EEG data acquired by the two sensors where a high

correlation between the two signals is evident and almost always they follow a pattern. Fig.

3.10B plots the correlation of a subset of 12 of the total trials. The correlations between the EEG

signals acquired by the two different sensors were very high (the mean correlation reached 0.901),

indicating that the dry EEG sensor developed in this study is capable of measuring EEG signals

from the hair-covered scalp areas.

As mentioned above, each subject needed to ‘type’ ten digits in each of the three trials.

The SSVEP classification performance (Fig. 3.11) was computed using the filter-bank correlation

analysis [53, 54]. This method does not require any training and is capable of working in real-time.

As mentioned above, only the middle two seconds of EEG data was used during the 4-second

stimulus presentation for evaluation. For almost all the subjects, the performance of SSVEP

accuracy was very good (∼80% accuracy). There were some expected variations because it

is well known that the signal-to-noise ratio of SSVEPs varies among individuals. The mean

performance across all the subjects was 74.23%.
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Figure 3.11: SSVEP accuracy plot for 0.25Hz increments in stimulus frequencies. Even for
small increments of 0.25 Hz, high SSVEP accuracy across subjects was observed.

3.4 Multi-modal evaluation in “real-world” scenarios

Two experiments were designed in which ten subjects participated to play two games.

For the “Where is Waldo?” game, the 30th anniversary book of the series was used which

contains thirteen different scenes (trials) in which the target (“Waldo”) has to be searched for.

This experiment scenario was chosen because it allows for analyzing gaze-related fixations and

patterns. While searching for the target, many non-targets are present and hence target vs. non-

target event-related potential (ERP) can also be assessed. The book was placed at a distance

of about 20 inches from the subjects who were seated and equipped with the sensor modalities

mentioned above. The subjects were asked to search for the target without any time constraints.

The researcher pressed a button before each trial and asked the subjects to start searching for the

target. The subject conveyed that s/he has found the target verbally by saying “Found”. Between

each trial, the researcher flipped the page of the book to the next scene.

In the “Rock-Paper-Scissors” game, the researcher was seated in front of the subject (see

Fig. 3.3A). A sound beep every 17 seconds signaled the start of a trial. For each subject, the game

was played for 50 trials. The first two seconds after the sound beep were used to play the game

whereas the next fifteen seconds the subject was asked to rest. The subject was instructed to only
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play the game from his/her wrist and not twist the whole arm to avoid any headset movement.

During the game-play, motivational phrases such as “Come on! You can still win.”, “Watch out! I

will now make a comeback”, etc. were utilized to ensure continual subject motivation. After each

trial, the researcher marked the outcome (win/loss/draw) for the subject by pressing a button. The

choice of this game was made to analyze the changes in human physiology, particularly EEG and

cardiac signals during the perception of winning/losing a game. These changes might be closer to

positive/negative valence in emotional states but much more reliable since winning/losing are

independent of one’s likes and dislikes that influences his/her emotions.

3.4.1 Gaze-fixation pattern vs. time taken in finding the target

Different subjects used different strategies while searching for the target and hence the aim

was to study that which strategy works best for this type of gaming paradigm by investigating the

subjects’ eye-gaze fixations across the trials. The average time taken by the subjects is plotted (in

ascending order) to find the target across the thirteen trials for the first visual-search experiment

in Fig. 3.12A. Clearly, three distinct groups of subject strategies were observed and have been

marked by different colors based on the average time taken by them. These groups were formed

statistically taking 33rd and 66th percentile of the data as boundaries. Such a wide distribution is

understandable since subjects use different strategies to find the visual target. Some subjects start

looking for the target in small portions of the whole page while moving slowly towards previously

unexplored parts whereas others tend to randomly scan the available page with longer distances

between successive fixations.

To exclude the data associated with eye blinks (i.e. eye closures) a confidence threshold

of 70% was imposed in the pupil detection algorithm. Subsequently, Euclidean distance of 25

pixels was used as the maximum inter-sample distance and 500 milliseconds as the minimum

fixation duration to find all the fixations associated with the trials for all the subjects. The median

(more robust than mean since a single large distance between successive fixations would skew
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Figure 3.12: (A) Average time taken by subjects across trials, (B) Median distance between
fixations for the three subject groups, and (C) Example of 30-seconds of gaze fixation data from
one subject in each group (Red, blue and yellow colors each represent 10-seconds of successive
gaze data while target is marked with a box in the background). Subjects who traverse the page
in small steps (as can be seen from the gaze fixation locations) are able to find the target faster.

the mean) distance between successive fixations for the three groups of subjects was computed

and plotted in Fig. 3.12B. The median distance between successive fixations tends to increase in

the same manner for the three groups as the average time taken by them increases. Fig. 3.12C

shows an example of 30-seconds of gaze data of one subject each from the three groups. As is

clear from these figures, the subjects in Group 1 tend to search for the target in small sections of

the page whereas the subjects in Group 3 search for the target randomly across the whole page.
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Because subjects in Group 1 were able to find the target in the least time (on average), for “Where

is Waldo?” game the best-observed strategy was to focus on small portions of the page rather than

searching for the target randomly across the whole page. It would have been impossible to gauge

this insight without the use of an eye-gaze tracker in which the subjects’ gaze can be overlaid

on the image from the world camera in addition to detecting the pupil’s location with another

camera.

Figure 3.13: FRP plot of two EEG channel locations (A) Fz and (B) Oz. Target-fixated gaze
FRP has much clear response than false-fixated gaze FRP.

3.4.2 Fixation-related Potentials (FRP) Analysis

EEG corresponding to fixations to the targets and non-targets while searching for the

target in the “Where is Waldo?” game should represent distinct FRPs associated with the change

in physiology. To discover this relationship, for each trial, the EEG data was band-pass filtered

within the trial between 1-30 Hz. The mean of 200ms of data was taken before each fixation as

the baseline and subtract it from one-second of post-fixation EEG data to remove the variations in

amplitude. The FRP was calculated by averaging the data across the trials and subjects for all
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fixations greater than or equal to one second. Fig. 3.13 plots the averaged FRPs for Fz and Oz

EEG channels. The FRPs show distinct variations after the onset of the fixations at zero seconds;

the characteristic large peak at 200ms i.e. VPP and the trough between 200 and 400ms i.e. N2

are consistent with the earlier findings that VPP and N2 components are associated with the face

stimuli [55, 56].

Furthermore, a large P3 response almost at the rightmost part of the plot is associated

with decision making and is clearly much larger for the target than the non-targets [57]. This is

understandable because while searching for the target’s face, there are many non-targets with a

similar face and clothing as the true target. When the subject first fixated on the true target, it

takes time for him/her to assure it is indeed the true target. The slightly smeared nature of the P3

response is likely due to the fact that the latency of the P3 can vary across trials and individuals

and the FPRs are time-locked to the onset of fixation, which is dependent on at what instant the

fixation is detected by the algorithm since the pupil is continuously in motion. These results show

that combining eye-gaze and EEG provides insight into the search patterns and their effects on

the EEG in a visual-search task. Another significant aspect of this apparatus was to use the book

in a naturalistic setup, which allows unconstrained head/body movements rather than asking the

subjects to search the face in front of a computer screen with their head positioned on a chin-rest.

3.4.3 Variation across HRV during win/loss

HRV can be a reliable indicator of human emotions and mental states [25] and the aim of

this study was to assess the variation across the subjects for the trials they won versus the ones

they lost in the “Rock-Paper-Scissors” game. HRV was computed using the pNN50 algorithm

[58] from 15-seconds of data for each trial. Fig. 3.14 shows the variation in HRV for all the

subjects arranged by the number of trials won by them in ascending order. Based on the final

score where Loss/Draw/Win corresponded to −1/0/1 points, subjects 4 and 5 lost the game,

subject 8 tied the game and the remaining subjects won the game from the researcher. Fig. 3.14
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Figure 3.14: Mean HRV variation across subjects arranged in ascending order of number of
trials won.

shows that for all the subjects except one (subject 2) there is an unmistakable difference between

the values of averaged HRV for winning and for losing the trials, indicating that cardiac measures

such as HRV can be helpful in distinguishing between physiological states corresponding to win

vs. loss situations. Additionally, it was observed that different subjects respond differently to

win/loss. For example, subjects 1, 5, and 10 show an increase in averaged HRV for the trials

they won whereas others show a decrease in HRV. This might mean that different subjects react

differently to the situation when they are winning or losing the game i.e. some might be enjoying

the experience of the game whereas others might be under stress to come up with techniques to

win the game.

3.4.4 Using machine learning to predict the results of the gaming

The aims of this evaluation are twofold. First, it was to study how well the bio-sensing

modalities can predict i.e. classify the result of a game trial utilizing changes in physiology for a

new subject, and what are their limitations in temporal frequency domain i.e. for how long the

36



Table 3.2: Modality Performance for Multi-modal Classification

Subject ID 1 2 3 4 5 6 7 8 9 10 Mean Max Std.
Classification Performance (Loss/Draw/Win) Chance Accuracy: 33%

EEG (1-sec) 56 56 52 54 62 56 54 46 52 50 53.80 62 4.26
PPG (15-sec) 58 58 60 46 46 48 54 58 56 52 53.60 60 5.32
EEG + PPG
(15-sec)

54 54 52 52 56 54 56 52 54 54 53.80 56 1.48

Classification Performance (Loss/Win) Chance Accuracy: 50%
EEG (1-sec) 87.88 80.65 86.84 70.97 63.33 81.82 72.73 70.00 68.97 72.41 75.56 87.88 8.21
PPG (15-sec) 87.88 87.10 86.84 70.97 70.00 81.82 75.76 86.67 75.86 72.41 79.53 87.88 7.30
EEG + PPG
(15-sec)

84.85 87.10 81.58 80.65 70.00 81.82 72.73 73.33 68.97 68.97 77.00 87.10 6.92

Leave one subject out validation was performed. All values denote percentage accuracy.

data from a modality is required. Second, there was a desire to document the potential benefits of

combining features from different modalities in terms of accuracy and consistency. Thus, EEG

and PPG were used to predict the outcome of a trial through these bio-sensing modalities. From

the 500 total trials (50 each for 10 subjects), there were 137/183/180 trials for loss/draw/win

respectively. The result of each trial was divided into two- (win/loss) and three (win/draw/loss)

classes. Conditional entropy features [59] were calculated between each possible pairs of eight

EEG electrodes. Hence, 28 EEG features were computed which were reduced to 20 components

using Principal Component Analysis [60]. These features have been shown to work well for

emotional valence and arousal classification [25]. Various time-durations were tried for the EEG

data and it was found that 1-second of EEG data post-trial gave the best performance results. For

PPG, in addition to the HRV features described above, six statistical features were computed[61].

The resultant seven features computed from 15 seconds of the PPG data were used for training the

classifier. Leave-one-subject-out validation i.e. training data from 9 subjects and testing it for the

remaining subject was then performed. Hence, since there are 50 game trials for each subject, 450

samples were used for training and 50 samples were used for testing. Extreme learning machines

(ELM) with a single hidden layer were used for training the classification model [62].

Table 3.2 shows the results for 2-class and 3-class classification performance for each

subject and both the sensor modalities. For all cases and subjects, it was observed that the
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classification performance i.e. mean accuracy is well above the chance accuracy level. The

maximum accuracy goes up to 62% for three classes (loss/draw/win) and 87.88% for two classes

(loss/win). Interestingly, PPG works as well as EEG for three classes and even better than EEG for

two-class classification despite being only a single-channel signal with fewer features. However,

PPG changes were slow (here 15 seconds of data being used) and thus do not provide as good

temporal resolution as EEG. Hence, if the trials would have been spaced closer in time (say only

5 seconds apart), it would not have been possible to classify the trial result using PPG because of

the inability to compute HRV and other cardiac features in such a short time window. Whereas,

EEG can perform well on a shorter timescale but needs more channels. When both modalities

were used (by taking 15-seconds of EEG data), it was found that the performance is not that

much affected but the standard deviation significantly decreases. This means that using multiple

modalities can help in producing consistent results across subjects because the fusion of features

is able to compensate for the limitations of a single modality. Hence, using multiple modalities is

good in both ways i.e. it gives the advantage to choose the modality as per the temporal resolution

requirement or multiple modalities can be used together for more consistent performance across

subjects.

3.5 Chapter Concluding Remarks

Bio-sensing technology is advancing rapidly both as a clinical research tool and appli-

cations in real-world settings. The existing bio-sensing systems are numerous and capable of

measuring various physiological metrics in well-controlled laboratories. But, they are not practical

for routine use by users in unconstrained real-world environments. Repeatedly, it has been shown

that using multiple bio-sensing modalities improves the performance and robustness of decoding

brain states and responses to cognitively meaningful real-life events. Hence, a research-grade

wearable multi-modal bio-sensing system such as that developed in this research would allow
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researchers to study a wide range of previously unexplored research problems in real-world

settings similar to the two gaming paradigms presented in this research work. Finally, this work

presented a novel use of multiple bio-sensing modalities on “real-world” data while exploring

previously unanswered questions in this area.

In the next chapter, multi-modal bio-sensors such as those designed in this chapter will be

utilized to study the relationship between EEG, facial expressions, and affective multimedia con-

tent being consumed by a user. The chapter discusses the relationship between the physiological

information provided by such biosensors and the audio-visual stimulus. Thus, the next part of

the thesis moves on to study various physiological and stimuli-based emotional cues and is more

closely connected with studying the initiation of human emotions.

This chapter is in part a reprint of material that has been accepted for publication in the

journal IEEE Transactions on Biomedical Engineering (2018), by Siddharth Siddharth, Aashish

N. Patel, Tzyy-Ping Jung, and Terrence J. Sejnowski. The dissertation author was the primary

author of this paper.
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Chapter 4

Assessing the Impact of Multimedia

Content on the EEG and Facial

Expressions

Having discussed the development of a multi-modal bio-sensing system, this chapter

studies the impact of affective multimedia content on two of the most commonly-used modalities

for emotion recognition, namely, EEG and Facial Expressions. This chapter presents insights

from the correlation of affective features between three modalities namely, affective multimedia

content, EEG, and facial expressions. Interestingly, low-level Audio-visual features such as

contrast and homogeneity of the video and tone of the audio in the movie clips are most correlated

with changes in facial expressions and EEG. The regions associated with the human face and the

brain (in addition to the EEG frequency bands) that are most representative of affective responses

respectively are also detected. Finally, the correlation between different layers of convolutional

neural networks with EEG and Face images as input provides insights into human affection.

Together, the findings of assist in (1) designing more effective multimedia contents to engage

or influence the viewers, (2) understanding the brain/body bio-markers of affection, and (3)
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developing newer brain-computer interfaces as well as facial-expression-based algorithms to read

emotional responses of the viewers.

4.1 Introduction

The design of multimedia content such as movies is driven by the director’s assessment

of the situation aimed at evoking a particular emotion. For example, action sequences evoking

surprise tend to have frequent cuts between the scenes to keep the audience engaged while horror

movies evoking fear are usually shot in dimly lighted surroundings to associate the circumstances

with negativity. Such cues implicitly affect the audience’s response to the content.

Overwhelmingly, past research aimed at emotion detection/classification has utilized

electroencephalogram (EEG) and/or facial expressions [5, 6, 63]. In other cases, when such

Audio-visual affective cues from the director’s perspective are used in addition to the audi-

ence’s facial expressions and/or EEG, the goal has been to boost the accuracy of emotion

detection/classification framework [64]. Indeed, as a recent detailed survey about recognizing

emotions using EEG demonstrates [65], even after the introduction of multi-modal affective

datasets [5, 6, 7], the research has not translated from an emotion detection/classification prob-

lem to assess the correlation between the Audio-visual cues from the multimedia content and

audience’s associated response through changes in the EEG.

When it comes to understanding emotion elicitation and not just detection/classification,

there are two parallel trends. First, past research has aimed at designing the optimal feature

extraction techniques for mapping the audience’s emotions to either audience’s physiology or to

facial expressions. For example, it has been shown that emotion elicitation can be assessed using

frontal EEG asymmetry [66]. For facial expressions, there is a vast literature in assessing emotions

using the facial action coding system (FACS)[67, 68] that weights the changes in different parts

of the face. FACS is based on detecting the changes in facial action units (AUs) such as opening
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lips, widening eyes, raising eyebrows, etc., associating a score with each AU, and predicting the

emotion using the sum of such scores by comparing to a predefined dictionary of possible scores.

Such methods do not in any way account for the stimulus that the user is watching, this study goes

a step further to associate AUs and other such features with the emotion-invoking Audio-visual

cues present in the stimulus.

Second, researchers have studied emotion elicitation using films by recording and assess-

ing the subjective feedback provided by the audience [69, 70]. However, the audience reports

evoked emotions as per their perception of the multimedia stimulus. Their physiological record-

ings are not used to evaluate their responses. It is between these two trends that this research fits

itself.

4.1.1 Contributions

• The Audio-visual cues that evoke the emotions in the audience are assessed and corre-

lated with the audience’s physiology. This is done by extracting feature cues from the

multimedia content such as shot duration, visual excitement, color energy, audio tone, etc.

that are known to evoke an emotional response in the audience. Canonical correlation

analysis (CCA) [71] is then used between such cues and features from the audience’s

(neuro)physiology. In this way, a novel model is generated to represent the features of both

worlds in a single domain.

• Subsequently, the analysis is performed on the model to provide insights into the regions

from the face and brain (i.e. the audience’s physiology) that are most correlated with

emotions. The analysis is also performed to detect what type of Audio-visual cues are most

effective in evoking changes in human physiology.

• Finally, this study correlates the components of the joint model generated from the audi-

ence’s physiology and Audio-visual cues with the audience’s recorded emotional response.

42



The insights obtained from this study will help in designing more affective multimedia

contents to engage or influence the viewers, understanding the brain/body bio-markers of affection,

and developing newer brain-computer interfaces as well as facial expression-based emotion

classification algorithms to read emotional responses of the viewers.

4.2 Methods

This section details the dataset and the analytical tools used in the study.

4.2.1 Dataset

The publicly-available MAHNOB-HCI Dataset [7] was used for this study. The dataset

contains multi-modal data i.e. frontal video, EEG, electrocardiogram (ECG). galvanic skin

response (GSR), etc. from 27 users watching 20 short movie clips. These movie clips vary

between 35 and 117 seconds in duration. Each clip is reported by the subject on a scale of integers

from 1 to 9 to denote their arousal and valence according to the emotion circumplex model [72].

Additionally, the users also tag their felt emotion into one of the twelve categories such as anger,

disgust, fear, joy, anxiety, etc. The clips have been chosen to evoke a certain emotional response

in the audience. For example, clips from the Mr. Bean character and funny cat videos have been

used to evoke amusement, clips from horror movies such as Hannibal and Silent Hill have been

used to evoke disgust/fear response associated with horror, and clips from weather news coverage

have been used to evoke a neural response in the audience.

The choice of this dataset was made because the dataset captures frontal videos at a high

resolution of 780× 580 pixels and EEG with a high-density headset (32 channels) at a high

sampling rate (256 Hz). Furthermore, the dataset also provides the 20 movie clips that were

used as stimuli for evoking the emotional responses in the audience. Since the dataset contains

only about 540 trials, each fifteen-second section was windowed of the data and advanced it by
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one second. In this way, the dataset is augmented to get more than 34,000 trials for each data

modality.

The sections below detail the cues that were extracted from each movie clip (stimulus)

for the analysis with the audience’s response. Eleven cues were extracted from the video and

nineteen from the audio.

4.2.2 Audio Multimedia cues

Nineteen audio cues were extracted from each multimedia clip. Almost every such

multimedia clip has background music playing with selected musical instruments to associate

the scene with a particular emotional context. The presence of the human voice in the clip also

provides another cue that some high-level information is being conveyed by communicating

through the voice.

Figure 4.1: (A) 15-seconds examples (showing one frame for every 1.5 seconds) of three
multimedia clips: Mr. Bean (above), Hannibal Movie (center), and Weather News (below) and
(B) Six of the thirty Audio-visual cues are plotted to show the variation of features across the
three clips.
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MFCC Features: Acoustic characteristics in music are associated with the expression

of emotions [73]. To assess spectro-temporal characteristics that represent the quality of sound

making a particular type of music different from another, thirteen Mel-frequency cepstral co-

efficients (MFCC) were extracted as features. These features characterize the spectral shape

of the sound and have been used in previous studies too for analysis with emotions [64]. To

obtain these features, this study utilized the publicly available music information retrieval toolbox,

MIRToolbox [74].

Loudness and Loudness Range: Loudness depends on the physical intensity of sound as

well as the frequency and duration. Loudness, in general, is associated with emotional arousal as

well as the perception of loudness itself can be influenced by the emotion [75]. Thus, the average

loudness was computed for each audio clip as well as the loudness range (LU units).

Voice Probability: The presence of human speech in a clip is a high-level feature depicting

that some information is being conveyed through communication in addition to the background

sound. Thus, the probability of having human speech in each audio clip was calculated using a

commonly-used statistical model.[76].

Pitch Features: To extract features related to the fundamental frequency of sound, pitch-

based features were extracted. Pitch can model the harmonic as well as the melodic aspect of the

music and is thus a good low-level feature. It has also been shown that the systematic changes in

pitch level can affect the experience of pleasantness and arousal [77]. Thus, three features were

extracted based on the pitch: keyclarity, mode, and harmonic flux [74].

4.2.3 Visual Multimedia cues

Eleven cues were extracted based on the video from each multimedia stimulus. These

features capture low-level information such as texture and color as well as high-level information

such as shot duration and visual excitement. These visual cues are generally used while producing

movies and have been shown to capture affective information [78].
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Visual Excitement: The amount of motion in a video plays a significant role in the human

perception of the cinematic experience and affective response, particularly the amount of arousal

[79]. Thus, visual excitement was calculated based on the average number of pixels that change

between successive frames according to human perception [78].

Shot Duration Features: As mentioned before, the duration of the shot, also known as

the pace of the movie, changes as per the type of content. Rapid changes in shots from multiple

camera angles induce a degree of excitement far more effectively than a long duration shot [80].

Thus, the number of shots and average shot duration for each video clip were calculated using the

open-source PySceneDetect tool [81].

Lighting Key Features: In the cinematographic perspective, lighting is an extremely

powerful tool since it can be used to affect the audience’s emotions by manipulating the mood

of a scene. Dim lighting is generally used to convey negative themes in the content whereas

an abundance of illumination generates joy and warm atmosphere around the scene [82]. The

RGB color space frames were first converted to LUV color space for separating the illuminance

information of each frame. Subsequently, the lighting key features were computed for each frame

to measure the median general level of light and the proportion of shadow area in the clip [83].

Color Energy: Psychological studies on color have demonstrated a high correlation

between valence and arousal with brightness and saturation of the colors respectively [84]. Color

energy based on the brightness, saturation, and area occupied by the colors in a frame was

calculated. This measure is defined as the product of the raw energy and color contrast [78, 82].

Texture-based Features: Visual detail has been shown to affect the audience’s emotional

distance to a scene such as by varying the camera distance of the shot [85]. Each video frame

was transformed to generate the grey level co-occurrence matrix (GLCM) which models the

distribution of co-occurring pixel values. This matrix can map the variations in texture such as

gray-level contrast across the frame [86]. Four features on this GLCM matrix were then calculated

and averaged across all the frames in a clip. These features were, namely, contrast, correlation,

46



energy, and homogeneity. These features map local variations in GLCM, the joint probability

of occurrence of the pixel pairs, the sum of squared elements of the GLCM, and closeness of

elements distribution from the diagonal of the GLCM respectively. Finally, texture-based features

were calculated based on the saturation of colors by calculating the proportion of pixels whose

saturation in the normalized HSV color space exceeds 0.2 as the threshold.

Fig. 4.1 shows an example of calculating these Audio-visual cues through three 15s

multimedia clips from the dataset. As one would expect, the voice probability is highest for

Weather News clip but it has been filmed in only one shot whereas the lighting key is least (dim

lighting) and saturation is the highest for the Hannibal movie clip i.e. horror scene.

Figure 4.2: (A) EEG channel locations on the scalp used to compute local EEG-PSD Features,
(B) An example of EEG-PSD heat maps calculated at three frequencies, and (C) Conditional En-
tropy pairs across the brain shown from the 2-D top-view of the scalp with the EEG Conditional
Entropy feature matrix.

4.2.4 EEG Cues

The EEG data was first cleaned of various types of noise/artifacts such as due to eye blinks,

muscle movements, electromagnetic disturbances, etc. using the Artifact Subspace Reconstruction

(ASR) pipeline [87]. After cleaning the data, two distinct types of EEG features were extracted.

The first kind of EEG features was the traditionally used power spectrum density (PSD) for

each of the 32 EEG channels. The power spectrum density for three EEG frequency bands

namely, theta (4-7 Hz), alpha (7-13 Hz), and beta (13-30 Hz) was then computed. These three

EEG frequency bands were chosen because they account for most information towards human
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cognition [88] and thus have been most commonly used in affective research [65]. Other EEG

bands such as the high-frequency gamma band (above 30 Hz range) were not used since the

present literature does not support its association with human consciousness (highly associated

with affective states) [89]. For each 15s clip, the EEG-PSD features were averaged across the

whole clip. As a result, 96 EEG-PSD features were obtained for each multimedia clip.

The above EEG-PSD features are topographically localized and hence do not account for

the variations in EEG across the human brain. Emotion elicitation is a complex process in which

more than a single brain region may be involved. Previous research [90, 63] has shown that using

features that capture changes in EEG across different brain regions can boost the performance

for emotion classification. Thus, for each pair of EEG channels (32 EEG channels forming 496

such pairs), conditional entropy features [59, 90] were computed. These features were calculated

based on the mutual information content between each sensor pair i.e. how much information is

contained in one EEG channel given the information from another EEG channel. In this way, 496

features were extracted for each 15-second multimedia clip to represent changes across different

regions of the brain.

Fig. 4.2 shows the 32 EEG channel locations that were used to calculate the localized

EEG-PSD features. The 3-D head model was generated using the open-source headModel

toolbox [91]. The figure also shows examples of PSD heat-map at three example frequencies, and

the 496 channel pairs used to calculate conditional entropy and the conditional entropy matrix

so calculated. To reduce redundancy, only the lower half of the matrix values i.e. one-way

conditional entropy were used.

4.2.5 Facial Expressions Cues

For each face video clip, the user’s face was first detected and extracted the face region

from each camera frame using Haar-like features by utilizing the Viola-Jones object detector [92].

While running the face detection algorithm, the ends of the image were excluded and a threshold
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was placed of minimum face size to be 50×50 pixels to remove false positives. State-of-the-art

automated Chehra algorithm [93] was then used to extract the face region to obtain 49 facial

landmarks. These facial landmarks are located at the most expressive regions on the human face.

Figure 4.3: Illustrating the working of the developed algorithm through (A) a sample image
frame, (B) extracted face region and locating facial landmarks, and (C) 30 distance/area features
computed based on the facial landmarks. To account for different face sizes and distance
from the camera, all features were re-scaled based on face width (W) and face height (H). A
sample image was used to generate this figure in order to respect the privacy of the users who
participated in the study.

These 49 facial landmarks were used to calculate 30 features based on the distance and

area calculated using these landmarks such as the vertical distance of the eye-opening, the distance

between the eyebrow to the lips, horizontal and vertical distances between the ends of the lips,

the area of the mouth and nose, etc. Fig. 4.3 shows these facial landmarks and features. Most

of these features are the same which are used in the calculation of facial action units (AUs) [68]

and thus have been used for emotion recognition through facial expressions. Some other features

were selected by hand. Because the shape of the face varies across human beings and the area

taken by the facial region in an image varies with distance from the camera, all such features

were normalized based on the width and height of the detected face. Since each multimedia clip

contains many frames, wavelet decomposition across all face images [94] was first used to fuse all

such face images to one face representation. It is on this image which contains the “representative”

facial expression across the multimedia clip that the above features were computed.
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4.3 Results

4.3.1 Relationship between Audio-visual Cues and EEG Cues

Canonical correlation analysis (CCA)[71] is a method for exploring the relationship

between two multivariate sets of vectors. This method can be used to compute which variables

and their combinations in a set are most correlated with those in another set. Since all the feature

cues are correlated with human emotions, it helps in perceiving which of those cues contribute

the most towards emotion elicitation and classification. CCA was then first used to find the

relationship between changes in the EEG cues (theta, alpha, and beta EEG band power-spectrum

density and conditional entropy across brain regions) and over 34,000 instances of features

from the Audio-visual cues representing human emotion. These EEG and Audio-visual cues are

detailed in the Methods section below and they capture the low- and high-level information from

the multimedia content. Specifically, low-level cues are those which are not directly perceived

consciously by humans such as the texture of video content and pitch of the sound while high-

level cues are the ones which are associated with human cognitive capabilities such as speech

recognition and how visually exciting a scene is based on the temporal speed of the content. The

method was applied to the data from each subject separately and the aim was to find the leading

Audio-visual cues that modulate the EEG spectra. This would help in pinpointing the kinds of

stimulus that strongly affects human emotions.

Fig. 4.4 shows the corresponding EEG coefficients for each of the three frequency bands

for the first three most correlated Audio-visual cues. It is notable that among the 30 Audio-visual

cues, the three most correlated cues are low-level ones i.e. based on video texture and audio pitch

rather than high-level ones such as the number of shots and voice probability. These texture- and

pitch-based features usually model the background imagery and sound in multimedia contents.

The corresponding brain regions connected by 10 most correlated conditional entropy cues are

also shown. It is notable that the most active areas in the brain are present across the C3, Cz, and
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Figure 4.4: The three leading Audio-visual Cues, Texture-based Homogeneity, Texture-based
Contrast, and Pitch-based Harmonic Flux, associated EEG spectral changes in the theta, alpha,
and beta bands, and top 10 Conditional Entropy EEG channel pairs.

C4 electrodes i.e. in the central section of the 2D brain representation. Finally, looking at the

values on the three color-bars, it is observed that beta-band was affected by the Audio-visual cues

much higher than the theta and alpha bands. The p-values calculated by the paired-sample t-test

for Texture (Homogeneity) for theta-alpha, alpha-beta, and theta-beta pairs at the Cz electrode

(located at the center of the 2D brain image) were 0.16, 0.002, and 0.005 respectively, for Texture

(Contrast) were 0.178, 0.00008, and 0.0001 respectively, and for Pitch (Harmonic Flux) were 0.16,

0.00015, and 0.00018 respectively. These statistical tests showed the significance of beta power

being statistically different from theta and alpha ones whereas Fig. 4.4 shows the beta power

to be significantly larger than the theta and alpha power. The results suggest that the beta-band

power in EEG recordings might be used for distinguishing affective states to a significantly more

extent than the theta and alpha EEG band power.
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Figure 4.5: The same three Audio-visual Cues as with the EEG (Texture-based Homogeneity,
Texture-based Contrast, and Pitch-based Harmonic Flux) were found to be most correlated with
Facial Expressions. The above five best associated Facial Expressions Cues are plotted and
weights of their associated CCA coefficients are denoted.

4.3.2 Relationship between Audio-visual Cues and Facial Expression Cues

Similar to the EEG cues above, CCA was performed between Audio-visual cues and

Facial Expression Cues. By this process, the aim was to find which cues from each of these

modalities are most correlated with each other. Similar to the EEG, it was found that among

the 30 Audio-visual Cues, texture-based and pitch-based low-level cues affect facial expressions

most. Fig. 4.5 shows the five most correlated Facial Expression cues corresponding to each of the

leading Audio-visual Cues. In all three cases, the nasal region is the most representative part of the

human face. This is because either the area of the nose or the height of the nose which modulates

in a 2D camera image as per vertical bending of the human face contributes significantly more

than other facial regions. After the nasal region, lips and eye-opening contribute most towards the

Audio-visual Cues.

4.3.3 Relationship between EEG Cues and Facial Expressions Cues

Having found the correlation between the multimedia contents that the users are watching

and their physiological responses, this study sought to find the relationship between their physi-
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Figure 4.6: (A) (Top) Five most contributing Facial Expressions Cues (note that the width of
nose alone contributes towards half of the total) and (Bottom) Five most contributing EEG Cues
(note that all contributions are by EEG Beta-band Power only) and (B) (Top) Correlation score
between each CCA pair (EEG-AV denotes the correlation between EEG projected from the joint
EEG-AV space and Valence/Arousal (Left y-axis) or Emotion (Right y-axis)) and (Bottom) the
cue with the largest correlation score for each bar graph. d(a,b) denotes the Euclidean distance
function.

ological response (EEG) and behavior (Facial Expressions). To this end, CCA was applied to

the EEG Cues and Facial Expression Cues. Fig. 4.6(A) shows the results of this analysis. As a

compilation of the above two results, it was again observed that the nasal region contributes most

towards the Facial Expression Cues, followed by eye height and lip width and height. Similarly,

all five most contributing EEG Cues are from the Beta-band EEG power in the left central areas.

This is also consistent with previous results which have shown that this brain region represents

human valence and arousal very well. [63].
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4.3.4 Correlation between the Audio-visual, EEG, and Facial Expressions

Cues with subjective responses

As discussed in the Methods section, for each multimedia clip, the subject reported his/her

valence (between 1 to 9), arousal (between 1 to 9), and emotional tag (one of twelve emotions).

After calculating the CCA projection between each pair of the three kinds of feature cues (Audio-

visual, EEG, and Facial Expressions), the joint CCA space was projected back to the feature cues.

For Arousal/Valence, the Pearson correlation was then calculated between the CCA projections

and behavior data (user-reported labels) while for Emotions, a linear regression model[95] was

fitted between CCA projections and behavior data (user-reported labels). This is done differently

for these three affective measures since Valence/Arousal are distributed on a scale of 1 to 9

denoting their intensity whereas Emotions were tagged by the users directly to be one of the many

categories. Hence, a linear regression model was fitted on users’ reported emotions and plot the

highest absolute value of the coefficient estimate. In this way, for Valence/Arousal/Emotion, it

was able to plot how closely did the CCA components method developed in this study correlated

with users’ behavior data.

Fig. 4.6(B) shows that the projections along with the top CCA components between

Facial Expression Cues with Audio-visual (AV) Cues providing the highest correlation with the

behavior data (two rightmost sets of bars). Below that plot, the figure shows which cue in each of

the three modalities provides the highest correlation with the user-reported affective measures.

Each set of bars such as Face-AV and AV-Face denote the projection of either Facial Expressions

Cues and Audio-visual Cues from the joint Face-AV Cues space that was used to calculate the

correlation with behavior data. For each such correlation, the figure also lists that which of the

cues from that modality provided the highest correlation.

Thus, it was observed that EEG beta-band power near the centro-parietal region (e.g. C4,

Cp1, etc.) has the highest correlation with behavior data (bars labeled as a, b, and c), while
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MFCC feature 13 i.e. the last audio MFCC coefficient provides the highest correlation among

the Audio-visual Cues with emotional responses (the bar labeled as d). This MFCC coefficient

is related to very fine pitch and tone information since it is the highest coefficient among those

generally used in speech processing research. Finally, among the Facial Expression Cues, the

height of the right eye i.e. the vertical distance of the eye-opening (bars labeled as k-o) has the

highest correlation with user-reported affective measures in most cases. Hence, this part of the

analysis bridges the gap between the cues from the three modalities that were analyzed and users’

self-reported affective measures (behavior data).

Figure 4.7: (A) A sample feature representation of different layers’ activations in the VGG-16
network for nine example EEG and Face data inputs and (B) A similarity Matrix shows the
correlation at each layer between EEG and Face representations in the VGG-16 network.
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4.3.5 Correlation between EEG and Facial Expressions through Deep Learn-

ing Network Cues

All the Cues that were analyzed above were extracted by the methods reported in previous

academic research or were designed by hand. But, with the advent of deep learning research

in previous years, it is now possible to let the convolution networks decide which feature cues

to extract and use for a particular application. To this end, a recently developed technique was

utilized to convert time-domain EEG data into image-based representation[63]. Utilizing this

method, a single (RGB) color image representative of EEG power in all three frequency bands

(theta, alpha, and beta) was generated for each of the 15s multimedia clips. Similarly, an image

fusion[94] method was used to represent the face region in successive frames with a single frame.

While deep learning research on computer vision data has a wide breadth of research, the

knowledge from two very recent publications detailing the use of deep learning for EEG [11, 96]

was utilized to train a VGG-16 [97] network-architecture-based model. This network consists of

16 weight layers with millions of parameters and has been shown to work very well for various

image classification problems. This analysis randomly used 90% of the total trials for training the

network and remaining for testing the activations. Similarly, another VGG-16 model was trained

on face images from the affective dataset. The goal behind training these networks was to extract

features varying from low to high level that is not possible for humans to visualize and design.

Fig. 4.7(A) shows nine sample inputs to the network and the activations of five successive

convolution layers. It can be surmised from the figure that as the number of layers increases,

the activations’ representation inside the network becomes more low-level i.e. higher resolution.

Thus, going through all layers of the network, it is possible to capture the full variation in such

feature representation. For each such layer for all input images, a representation similarity matrix

(Fig. 4.7(B)) was generated between EEG and Face images similar to what is done for Magnetic

Resonance Imaging (MRI) data[98]. The figure shows the correlation between 15 of the 16 layers’
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activations of the VGG-16 matrix (since the last layer corresponds to classification and hence was

discarded). The highest correlation in the similarity matrix is located in the middle layers, which

means that those layers (conv4 and conv5) represent the activations that are highly correlated

in the EEG- and face-representation learned by the deep learning network. It is also notable

that because Conv4 and Conv5 layers are just before the fully connected ones, they contain the

most discriminative features as one progresses from Conv1 to fc2 layers. This would mean that

such low-level discriminative features could be more useful when utilized for affective analysis

just like this study found that low-level Audio-visual features were more discriminative than

high-level ones in influencing users’ EEG and facial expressions.

4.4 Chapter Concluding Remarks

Past research in affective computing has mostly focused on emotion classification using

various Audio-visual or bio-sensing modalities[5, 6]. A severe limitation of such research has

been its inability to boost classification accuracy to human-like levels. Another limitation of

previous research has been its inability to demonstrate which cues related to Facial Expressions

or EEG are most correlated with human emotions. This is because FACS-based facial action

units [68] are hand-coded cues that were chosen since they represent specific muscle movements

or set of muscle movements and are by definition mapped to particular emotions. Similarly,

the most commonly used EEG power spectrum features have been used blindly for emotion

classification without any insight into which brain regions or frequency bands actually contain

the most affective content. It was to address these limitations that this study sought to understand

the relationships between multimedia content itself with users’ physiological responses (facial

expressions/EEG) to such content.

By the means of Canonical Correlation Analysis (CCA)[71], these three modalities were

analyzed after extracting cues representative of affective information from each of them. It was
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found that for both EEG and facial expressions, the Audio-visual cues that are most correlated

with them are those that represent low-level features found in the image background/background

music such as texture and pitch. This is a useful insight into the design of such content to

intentionally customize the content’s image background and background music for invoking

particular affective responses.

The other side of the coin from the above analysis is that most of the spectral features from

the EEG are concentrated at/around the Cz electrode position (center of the 2D brain image) and

are present in the beta frequency band. This is an insight that can help design the next generation

of wearable EEG headsets for affective applications since focusing on these brain regions and

frequency band can provide most of the affective information and thus sensors covering the whole

brain may not be needed. Similarly, for facial expressions, it was found that the nasal region

followed by eye-height i.e. how much the user opens his/her eyes, and lips are most representative

of changes in affective multimedia contents. Hence, new features can be designed and added to

the FACS method to utilize more information from these three facial regions only (for example,

the nasal area and nose height representing vertical head tilt in a 2D image are not currently used

as facial AUs). This might point to the fact that the changes in features across different analyses

(e.g. nasal region vs right eye height as the most correlated features) take place because different

kinds of affective contents may induce different affective states in human physiology. Thus, it

is not possible for a single brain region or facial region to be universally representative of every

affective state of the subject[99].

When the relationship between facial expressions and EEG was quantified, it was again

found that the nasal region followed by eye-height and lips are most representative of changes

in facial expressions while the beta-band power distributed at/near the central region is most

representative of changes in the EEG while the participants watch the multimedia contents.

Similarly, previous research has shown that beta-band activity reflects emotional and cognitive

processes very well[100]. In fact, the top five features in facial expressions and EEG alone
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constitute more than 90% and 70% weightage respectively compared to all possible 30 facial

expression cues and 96 EEG cues. It suggests that utilizing only these five cues from both

modalities can provide much of the affective information. Finally, the high EEG-activity at/near

the center of the brain was also consistent with previous work that showed these brain regions are

also most representative of changes in human valence and arousal[63].

When the joint CCA space of these modalities was projected back to reconstruct the cues

from each modality and was correlated with users’ subjective valence/arousal/emotion ratings,

it was found the highest correlation (with values above 0.5 even when valence/arousal ratings

have a high resolution since they are divided on 9/9 point scale respectively) for Audio-visual

cues followed by that for facial expressions cues. In a way, this is intuitive since the Audio-

visual cues extracted from the multimedia content itself should contain most of the affective

information. Subsequently, this also demonstrated that the extracted Audio-visual cues do

represent the affective information as perceived by the users. Facial expressions cues are second-

most correlated whereas EEG cues are least correlated with users’ responses. This is probably due

to the fact that image data does not have as much noise/artifacts as are present in EEG data. It was

again found that low-level Audio-visual cues contribute the most towards high correlations with

users’ subjective ratings. This shows that in such a multimedia stimuli context, human emotions

are affected much more by “background” cues in this context such as pitch and texture of the

scene rather than “foreground” human speech and how fast the video content changes from frame

to frame.

Deep learning networks utilize many convolution layers to extract features that can be

characterized by an increasing level of complexity. Such a deep convolution network[97] was

used to extract features of various complexity from EEG and face data. A similarity matrix was

then generated to represent the correlations between each pair of convolution layers between the

modalities. It was found that the highest correlation was present at the fourth and fifth convolution

layers. This points out that the information from raw EEG and face data has to be first sufficiently
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processed to generated these “optimal” low-level features since they are most representative

of joint changes in the two modalities while watching affective multimedia contents. These

results are presented as a starting point to take this research further into actually interpreting such

low-level features extracted by the convolution network and then use them for emotion elicitation

and classification problems.

To conclude, the findings of this study provide various insights into the affective cues of

these three modalities, both for designing affective multimedia content as well as for designing

the next generation of EEG- and vision-based emotion classification systems. Through the above-

mentioned analysis, this study shows that low-level Audio-visual cues are most representative of

human emotions, even when they may be subconsciously influencing human emotions.

The next chapter shows the applications of insights from this chapter toward emotion

recognition when users are watching emotional multimedia content. In that chapter, various signal

processing and deep learning-based algorithms are designed for different bio-sensors that were

evaluated in this chapter. These algorithms are designed for applications in affective computing,

specifically for the classification of human emotions while participants are engaged in a task with

an audio-visual stimulus. Thus, from developing hardware multi-modal bio-sensing systems and

studying the elicitation of emotions, we now move toward the applications of such hardware and

software frameworks.

This chapter is in part a reprint of material that has been accepted for publication in the

journal Nature Scientific Reports (2019), by Siddharth Siddharth, Tzyy-Ping Jung, and Terrence

J. Sejnowski. The dissertation author was the primary author of this paper.
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Chapter 5

Utilizing Deep Learning on Multi-modal

Bio-sensing for Emotion Classification

Having detailed the relationship between EEG, facial expressions, and affective mul-

timedia content in the domain of emotion elicitation in the previous chapter, this chapter

presents the development of novel algorithms to various bio-sensing and video data of four

publicly available multi-modal emotion datasets for emotion classification. For each dataset,

the emotion-classification performance obtained by each modality is first evaluated. Subse-

quently, the performance obtained by fusing the features from these modalities is evaluated. It

is then shown that these algorithms outperform the results reported by other studies for emo-

tion/valence/arousal/liking classification on DEAP and MAHNOB-HCI datasets and set up

benchmarks for the newer AMIGOS and DREAMER datasets. This work also evaluates the

performance of the developed algorithms by combining the datasets and by using transfer learning

to show that the proposed method overcomes the inconsistencies between the datasets. Hence, a

thorough analysis of multi-modal affective data from more than 120 subjects and 2,800 trials has

been undertaken. Finally, utilizing a convolution-deconvolution network, a new technique towards

identifying salient brain regions corresponding to various affective states has been proposed.
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5.1 Introduction and Related Research

In recent years, there has been growing interest towards approaching research in affective

computing from a bio-sensing perspective. To be sure, it is not just in affective computing that

research in bio-sensing has been gaining popularity. Other avenues of research such as health

[21, 101], virtual reality [102], robotics [23, 103], content rating [104], etc. have also exploited

bio-sensing as a research tool. Bio-sensing systems specifically those which are used to measure

electrocardiogram (ECG), electroencephalogram (EEG), galvanic skin response (GSR), etc. have

been around for decades. But, because of their bulkiness and complexity, they were restricted to

controlled laboratory environments and hospitals. The current interest in utilizing bio-sensing

systems for various applications has been motivated or driven by the development of wearable

bio-sensing systems that make data collection faster and easier [36, 35, 105]. The advances in

hardware have led to the further development of multi-modal bio-sensing systems i.e. those

capable of monitoring and recording multiple bio-signals simultaneously [30, 26, 43, 90].

Many research studies have shown that it is possible to recognize human emotions by the

use of facial expressions from images and videos [68, 106, 107, 108]. Advances in deep learning

have also made it possible to train large neural networks on big datasets for research in affective

computing [109, 110, 111] apart from other problems such as object detection and classification

[49, 112, 113]. Compared to the amount of deep learning research that has translated towards

solving problems involving images/videos, the deep learning research conducted on bio-sensing

data has been sparse. A recent survey on using EEG for affective computing [65] suggests that in

almost all cases the feature extraction and classification steps do not utilize deep neural networks.

There are chiefly three reasons limiting the use of deep learning to bio-sensing modalities.

First, it is easier to create an image/video database by collecting a huge amount of image/video

data with any decent camera (even that of a smartphone) whereas the data collection of bio-signals

is often costly, time-consuming, and laborious. Second, the image/video datasets generated using
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different cameras are usually consistent or can easily be made so by changing the frame resolution

or modifying the number of frames being captured per second without losing critical information

in the process. On the other hand, commercially available bio-sensing devices vary widely in

terms of sampling rate, analog to digital resolution, numbers of channels, and sensor positioning

[105, 65]. Furthermore, there are differences in the signal profiles between different types of

bio-sensing signals such as EEG vs ECG. Third, visualizing image data for object detection or

assessing emotions by looking at faces/body postures in the images is much easier (such as for

manual tagging) and intuitive. But, extracting meaningful knowledge about various features from

bio-sensing signals requires pre-processing. Unlike image data, additional steps are required in

bio-sensing data to first filter the data of any noise such as due to motion artifacts or unwanted

muscle activity.

Using multiple bio-sensing modalities can be advantageous over using a singular one

because the salient information in the respective modalities may be independent of and comple-

mentary to each other to some extent. Thus, together they may enhance the performance for

a given classification task [114]. In most cases, the emotion-classification problem has been

approached by measuring the arousal and valence as given by the emotion circumplex model [72].

It is evident from various studies [65, 14, 115] that a single modality may perform differently for

arousal and valence classification. So, in theory, two modalities that show good performance in-

dependently for valence and arousal respectively may perform even better jointly for the emotion

classification problem.

5.1.1 Contributions

• This study focuses on multi-modal data from both bio-sensing and vision-based perspectives.

The features with deep learning-based methods and traditional algorithms are fused for all

modalities on four different datasets.
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• This study shows that using multi-modality is advantageous over singular modalities in

various cases. It also shows that deep learning methods perform well even when the size of

the dataset is small.

• For each of the four datasets, this study shows that the developed methods outperform

previously reported results.

• The results of this study also demonstrate the applicability of deep learning-based methods

to overcome the discrepancies between different modalities and even effectively fuse the

information from them, as shown by results from combining the datasets and transfer

learning.

5.1.2 Related Research Studies

The developed framework was designed and evaluated on four publicly available multi-

modal bio-sensing and vision-based datasets namely DEAP [5], AMIGOS [6], MAHNOB-HCI

[7], and DREAMER [8]. Table 5.1 briefly describes the four datasets, with a focus on the

modalities that were used in this study. For DEAP and AMIGOS datasets, the preprocessed bio-

sensing data that has been suitably re-sampled and filtered was used whereas for MAHNOB-HCI

and DREAMER datasets, filtering and artifact removal were performed before extracting features.

The trials in the DEAP and AMIGOS datasets have been tagged by subjects for valence, arousal,

liking, and dominance on a continuous scale of 1 to 9. For MAHNOB-HCI and DREAMER

datasets, the valence and arousal have been tagged on a discrete scale using integers from 1 to 9

and 1 to 5, respectively. This study used the emotion circumplex model [72] to divide the emotions

into four categories namely, High-Valence High-Arousal (HVHA), Low-Valence High-Arousal

(LVHA), Low-Valence Low-Arousal (LVLA), and High-Valence Low-Arousal (HVLA). These

categories loosely map to happy/excited, annoying/angry, sad/bored, and calm/peaceful emotions,
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Table 5.1: Table Highlighting the Inconsistencies Among the Datasets and Sensing Modalities

DEAP Dataset [5] AMIGOS Dataset [6] MAHNOB-HCI Dataset
[7]

DREAMER Dataset [8]

32 subjects 40 subjects 27 subjects 23 subjects

40 trials using music
videos (trial length fixed at
60 seconds)

16 trials using movie clips
(trial length varying be-
tween 51 and 150 seconds)

20 trials using movie clips
(trial length varying be-
tween 34.9 and 117 sec-
onds)

18 trials using movie clips
(trial length varying be-
tween 67 and 394 seconds)

Raw and pre-processed
data available

Raw and pre-processed
data available

Only raw data available Only raw data available

32-channel EEG system
(Two different EEG sys-
tems used. Channel loca-
tions: Fp1, AF3, F7, F3,
FC1, FC5, T7, C3, CP1,
CP5, P7, P3, Pz, PO3, O1,
Oz, O2, PO4, P4, P8, CP6,
CP2, C4, T8, FC6, FC2,
F4, F8, AF4, Fp2, Fz, Cz)

14-channel EEG system
(A single EEG system used
for all subjects. Channel
locations: AF3, F7, F3,
FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4)

32-channel EEG system
(A single EEG system used
for all subjects. Channel
locations: Fp1, AF3, F7,
F3, FC1, FC5, T7, C3,
CP1, CP5, P7, P3, Pz, PO3,
O1, Oz, O2, PO4, P4, P8,
CP6, CP2, C4, T8, FC6,
FC2, F4, F8, AF4, Fp2, Fz,
Cz)

14-channel EEG system
(A single EEG system used
for all subjects. Channel
locations: AF3, F7, F3,
FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4)

— 2-channel ECG system 3-channel ECG system 2-channel ECG system

1-channel PPG system — — —

1-channel GSR system 1-channel GSR system 1-channel GSR system —

Sampling rate 128 Hz Sampling rate 128 Hz Sampling rate 256 Hz Sampling rate EEG/ECG:
128/256 Hz

Face video recorded for
22 of 32 subjects (EEG
cap and EOG electrodes
occludes parts of the fore-
head and cheeks)

Face video recorded for all
subjects (Only a small por-
tion of the forehead is oc-
cluded by the EEG system)

Face video recorded for all
subjects (Only a small por-
tion of the forehead is oc-
cluded by the EEG system)

—

3-seconds of pre-trial base-
line data available.

No baseline data available. 30 seconds of pre-trial
and post-trial baseline data
available.

61 seconds of pre-trial
baseline data available

Valence/Arousal/Liking
rated using a continuous
scale between 1 to 9

Valence/Arousal/Liking
rated using a continuous
scale between 1 to 9

Valence/Arousal rated us-
ing a discrete scale of inte-
gers from 1 to 9

Valence/Arousal rated us-
ing a discrete scale of inte-
gers from 1 to 5

respectively. For each dataset, the labels were self-reported by the subjects after the presentation

of the video stimuli.

As shown in Table 5.1, the datasets differ in many aspects. Hence, many traditional
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algorithms cannot be generalized across datasets because of differences in the number and nature

of extracted features. Apart from the types of the audio-visual stimulus (music videos vs. movie

clips), the datasets vary in the trial duration and baseline data availability. The DEAP dataset has

trial length fixed at 60 seconds whereas for the AMIGOS dataset, the trial length varies between

51 to 150 seconds. This varying trial length is significant since the longest video is about thrice

the length of the shortest one. Hence, if a particular emotion of the subject is invoked for 25

seconds during a trial, it will appear in half of the trial in the shortest video but only in one-sixth

of the trial in the longest one. Furthermore, the trial length variation of the DREAMER dataset

is even greater than that in the AMIGOS dataset. There is also no baseline data present in the

AMIGOS dataset to compensate for the subject’s initial emotional power (defined as the distance

from the origin in the emotion circumplex model). Different kinds of systems have been used

to collect the EEG data in these datasets. 32-channel EEG in the DEAP and MAHNOB-HCI

datasets may contain much more emotion-relevant information than the 14-channel EEG in the

AMIGOS and DREAMER datasets.

Only the DEAP dataset uses photoplethysmogram (PPG) to measure heart rate instead of

ECG. The use of PPG generally loses the information that is present in the ECG waveform such

as QRS complex, PR, and ST segment lengths, etc.

The EEG electrodes introduce varying degrees of occlusion while capturing frontal videos

of the subjects. This effect was found to be more problematic in the DEAP dataset because of

the placements of the EOG electrodes on subjects’ faces. Furthermore, some data are missing

in some modalities in a subset of the trials of these datasets. Such entries were ignored in the

evaluation pipeline.
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Table 5.2: Classification Performance and Evaluation Performed by Various Reported Studies
on Four Multi-modal Datasets

Study Used Modalities Extracted
Features

Classifier Evaluation

DEAP Dataset

Liu et al. [14] EEG Fractal di-
mension (FD)
based

SVM Only 22 of the 32 subjects used.
50.8% Valence (4-classes) and 76.51%
Arousal/Dominance.

Yin et al. [16] EEG, ECG, EOG, GSR, EMG,
Skin temperature, Blood vol-
ume, Respiration

Various MESAE 77.19% Arousal and 76.17% Valence (2-
classes) using fusion of all modalities.

Patras et al.
[5]

EEG PSD Bayesian Clas-
sifier

62% Valence and 57.6% Arousal (2-classes)

Chung et al.
[12]

EEG Various Bayesian
weighted-log-
posterior

70.9% Valence and 70.1% Arousal (2-classes)

Shang et al.
[116]

EEG, EOG, EMG Raw data Deep Belief
Network,
Bayesian
Classifier

51.2% Valence, 60.9% Arousal, and 68.4%
Liking (2-classes)

Campos et al.
[13]

EEG Various Genetic al-
gorithms,
SVM

73.14% Valence and 73.06% Arousal (2-
classes)

AMIGOS Dataset

Miranda et al.
[6]

EEG, ECG, GSR Various SVM ∗57.6/53.1/53.5/57 Valence and
59.2/54.8/55/58.5 Arousal (2-classes)
using EEG/GSR/ECG alone/EEG, GSR, and
ECG fusion.

MAHNOB-HCI Dataset

Soleymani et
al. [7]

EEG, ECG, GSR, Respiration,
Skin Temperature

Various SVM 57/45.5/68.8/76.1% Valence and
52.4/46.2/63.5/67.7% Arousal (2-classes)
using EEG/Peripheral/Eye gaze/Fusion of
EEG and gaze.

Koelstra et al.
[15]

EEG, Faces Various Decision classi-
fiers fusion

73% Valence and 68.5% Arousal (2-classes)
using EEG and Faces fusion.

Alasaarela et
al. [117]

ECG Various KNN 59.2% Valence and 58.7% Arousal (2-classes)

Zhu et al.
[118]

EEG and Video stimulus Various SVM 55.72/58.16% Valence and 60.23/61.35%
Arousal (2-classes) for EEG alone/Video stim-
ulus as privileged information with EEG.

DREAMER Dataset

Stamos et al.
[8]

EEG, ECG PSD, HRV SVM 62.49/61.84% Valence and 62.17/62.32%
Arousal (2-classes) using EEG alone/EEG and
ECG fusion.

∗Denotes mean F1-score. Accuracy value not available.
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Table 5.2 shows that in almost all the cases EEG has been the preferred bio-sensing

modality while vision modality i.e. the use of the frontal videos to analyze facial expressions has

not been commonly used on these datasets. The classification accuracy for all emotion classes as

per the circumplex model rather than only for arousal/valence is rarely reported. In other cases

such as [115, 119], where the analysis of emotions is reported, the goal seems to be clustering the

complete dataset into four classes rather than having a distinct training and testing partition for

evaluation.

In terms of accuracy, it can be observed from Table 5.2 that using multiple sensor

modalities, the best performance on the DEAP dataset is by [16] when utilizing data from

multiple modalities. For the MAHNOB-HCI dataset, the best accuracy for valence and arousal is

73% and 68.5% respectively [15], which is again using multiple sensor modalities. The AMIGOS

and DREAMER datasets were released recently and hence only baseline evaluation on these have

been reported in Table 5.2.

This study will utilize complete datasets and not a subset of them, as in some previous

studies. The developed methods were evaluated with disjoint partitions between training, val-

idation, and test subsets of the complete datasets. This chapter reports the evaluation for all

modalities separately (including using frontal videos that were ignored by other studies) and then

combining them together.

5.2 Research Methods

This section details the various types of methods that were employed to extract features

from each bio-sensing modality and frontal videos.
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5.2.1 EEG feature extraction

For the DEAP and AMIGOS datasets, preprocessed EEG data are available, bandpass-

filtered between 4-45 Hz, and corrected for eye-blink artifacts. For the MAHNOB-HCI and

DREAMER datasets, bandpass filtering and artifact removal were performed using the Artifact

Subspace Reconstruction (ASR) toolbox [87] in EEGLAB [120]. The processed EEG data were

then converted into the frequency domain to extract both traditional and deep learning-based

features (see below).

EEG-PSD features

For each EEG channel, the traditional power spectral density (PSD) in three EEG bands

namely, theta (4-7 Hz), alpha (7-13 Hz), and beta (13-30 Hz) were extracted. These EEG bands

were chosen since they account most towards human cognition. Half second overlapping windows

were chosen for this procedure. The PSD was then averaged over the total trial length. Hence,

because of the differences in the number of EEG channels, 96 features were obtained for trials in

the DEAP and MAHNOB-HCI datasets and 42 features for trials in the AMIGOS and DREAMER

datasets.

Conditional entropy features

To get information regarding the interplay between different brain regions, conditional

entropy-based features were extracted. The conditional entropy between two random variables

carries information about the uncertainty in one variable given the other. Hence, it acts as a

measure of the amount of mutual information between the two random variables. The mutual

information I(X ;Y ) of discrete random variables X and Y is defined as

I(X ;Y ) = ∑
x∈X

∑
y∈Y

p(x,y)log
( p(x,y)

p(x)p(y)

)
(5.1)
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The conditional entropy will be zero if the signal Y is completely determined by signal X.

To calculate the conditional entropy, the mutual information I(X ;Y ) between the two signals was

first calculated, which requires the calculation of the approximate density function p̂(x) of the

following form

p̂(x) =
1
N

N

∑
i=1

δ(x− x(i),h) (5.2)

where δ(.) is the Parzen window, h is the window width, N is the samples of variable x

and x(i) is the ith sample. This approximate density function is calculated as an intermediary step

to the calculation of true density p(x), since when N goes to infinity it can converge to the true

density if δ(.) and h are properly chosen [59]. δ(.) was chosen to be the Gaussian window.

δ(z,h) = exp
(
− zT Σ−1z

2h2

)/{
(2π)d/2hd|Σ|1/2

}
(5.3)

where z = x− x(i), Σ is the covariance of z, and d is the dimension of x. By plugging the

value of d = 1,2 the marginal density p(x) and the density of the bivariate variable (x,y), p(x,y)

[59] were obtained. In this manner the mutual information I(X ;Y ) was calculated which is related

to conditional entropy H(Y |X) by

I(X ;Y ) = H(Y )−H(Y |X) (5.4)

The conditional entropy between all possible pairs of EEG channels was calculated over

the complete trial length [25]. Hence, due to the differences in the number of EEG channels, 496

conditional entropy features were calculated for the DEAP and MAHNOB-HCI datasets and 91

features for the AMIGOS and DREAMER datasets.
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EEG-PSD images-based Deep Learning features

This section proposes a novel method for feature extraction from the EEG data, which

is based on deep convolution networks without requiring a large amount of training data. The

method can also work in a similar manner for different types of EEG datasets i.e. datasets with

different numbers and placements of electrodes, sampling rates, etc. The computed EEG-PSD

features from the first method mentioned above were initially used to plot power spectrum heat

maps for the three EEG bands using bicubic interpolation to calculate the values in the 2-D plane.

These images now contain the topographical information for the three frequency bands according

to the standard EEG 10-20 system (Fig. 5.1). It is worth noting that the commonly used EEG-PSD

features in themselves do not take into account the EEG-topography i.e. the locations of EEG

electrodes for a particular EEG band. Hence, this method tries to exploit EEG-topography to

extract information regarding the interplay between different brain regions. It is for exploiting this

information that EEG data was converted to an image-based representation and utilize pre-trained

deep learning networks to extract such a relationship between various brain regions.

Figure 5.1: PSD heat-maps of theta (red), alpha (green), and beta (blue) EEG bands being
added according to respective color-bar range to get combined RGB heat-map (Image border,
nose, ears, and color-bars have been added for visualization only.)

As shown in Fig. 5.1, ‘Red’ color-map was used for the theta band, ‘Green’ color-map

for the alpha band, and ‘Blue’ color-map for the beta band. The three colored images were then

combined into an RGB colored image [121]. Based on the ranges and maximum values in the

data for the three EEG bands, the ratio of alpha blending was used [122] to give weights to the

three individual bands’ images before adding them together. This color image carries information
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about how the power in the three bands interacts with each other across the different brain regions.

For example, a yellow-colored region has a higher amount of power in the theta (red) and alpha

(blue) bands, whereas a pink-colored region has high power in the theta (red) and beta (blue)

bands. In this manner, a single brain heat-map image can be used to represent spatial and spectral

information in the three EEG bands. That is, one image was obtained representing the topographic

PSD information for every trial. Because the images in the four datasets can be formed in a

similar manner irrespective of the different numbers of EEG channels and positions, this method

can be used across the four datasets easily.

A pre-trained VGG-16 network [97] was subsequently used to extract features from

the combined RGB heat-map image. This network consists has been trained with more than a

million images for 1,000 object categories using the Imagenet Database [123]. It has been shown

that a pre-trained VGG-16 network can be utilized for feature extraction and classification for

applications different than it was trained for [124, 125]. The RGB image is resized to 224×224×3

size before submitting to the network. The last but one layer of this VGG network consists of 4,096

most significant features, which were extracted for emotion classification. Principal component

analysis (PCA) was then applied to this feature space to reduce its dimension to 30 for each trial

[60]. The features from this method and from the conditional entropy mentioned above were then

combined for evaluation.

The resultant EEG-PSD images from the above method can be used to denote how the

EEG spectral activity is distributed across various brain regions across time for a particular kind

of stimulus. This can be done by sending such successive images (varying across time) to a

reverse deep learning network and detect the most salient features i.e. activated regions of the

brain across time for a particular stimulus. In the evaluation section below, these brain images

were utilized to denote the brain regions that are most activated for different affective responses.
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5.2.2 ECG/PPG-based feature extraction

Both ECG and PPG signals can be used to measure heart rate (HR) and heart-rate

variability (HRV), though ECG can provide more useful information due to its greater ability to

capture ECG t-wave etc. For consistency between the two types of signal measurements i.e. PPG

and ECG, two methods were employed in the same manner on data from both of these modalities

in the four datasets.

HRV features

HRV has shown to be a good metric for classifying emotional valence and arousal [126].

For every trial (whether PPG in the DEAP dataset or ECG in the AMIGOS, MAHNOB-HCI,

and DREAMER datasets), a moving-average filter was first used with a window length of 0.25

seconds to filter out the noise in the data. Then, a peak-detection algorithm [127] was used after

scaling the data between 0 and 1. The minimum distance between successive peaks as being at

least 0.5 seconds apart was taken as the threshold to remove false positives as in Fig. 5.2.

Figure 5.2: For a trial from DEAP dataset, PPG signal with peaks (in red) being detected for
the calculation of RRs and HRV (above), and PPG spectrogram (below).
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Figure 5.3: Network Architecture for EEG-PSD Trend-based Deep Learning Method.

The total number of peaks per minute represents the subject’s heart rate. To calculate the

HRV, the time differences between successive peaks were calculated to get inter-beat intervals

(RRs). These RRs were then used to compute HRV using the pNN50 method [58]. This method

of HRV calculation measures the percentage of successive RR intervals that differ by more than

50ms. This method has been shown to be correlated with the activity of the parasympathetic

nervous system (PNS) [128]. For the datasets containing multiple ECG channels, the same

procedure was performed for all the channels.

Extracting deep learning-based spectrogram features of ECG/PPG

Previous studies have reported that frequency-domain features in the ECG work well

for tasks such as ECG beat discrimination [129]. To exploit time-frequency information from

ECG/PPG, deep learning-based features were extracted on ECG/PPG by converting the time-

series data to a frequency domain-based image representation. The frequency range of ECG/PPG

signals is low and hence only 0-5 Hz range was taken into consideration. A spectrogram [130]

was generated over the complete trial in this frequency range as in Fig. 5.2. To get a good

amount of variations, the Parula color map was chosen for the spectrogram image. The frequency

bins with various colors at different frequencies represent the signal across the trial length. The

same procedure was employed to get the spectrogram images of ECG/PPG signals from the four

datasets. The spectrogram images were resized to feed them into the VGG-16 network, and after
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which the resultant 4,096 extracted features were reduced to 30 features using PCA. The features

from this method were concatenated with the HRV features from above for evaluation.

5.2.3 GSR-based feature extraction

Similar to ECG/PPG, two methods were employed to extract features from the GSR data,

one in the time-domain and the other in the frequency domain.

Statistical features

A moving average filter was first used with a window length of 0.25 seconds to remove

noise from the GSR signal. For each trial, eight statistical features were calculated from the

time-domain GSR data. Two features are the number of peaks and the mean of absolute heights

of the peaks in the signal. Six more statistical features based on nth order moments of the

GSR time-series data were calculated as shown in [131]. These features measure the trend i.e.

variations in the GSR data in actual, and successive first and second differences of the signal.

Extracting deep learning-based spectrogram features of GSR

GSR signals change very slowly and hence this study focused only on the 0-2 Hz frequency

range. Similar to ECG, the spectrogram image of GSR was generated for each trial in the above

frequency range. VGG-16 network-based features were then extracted to characterize the most

meaningful interactions between various edges in the spectrogram. These features were reduced

to 30 using PCA and then concatenated with the time-domain GSR features from above.

5.2.4 Frontal video-based feature extraction

Unlike other studies in Table 5.2, this study also utilized the frontal videos of the subjects

for emotion/valence/arousal/liking classification. Facial expressions can be very reliable indicators
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of one’s emotions based on his/her personality i.e. willingness to show emotions by various facial

expressions. For each frontal video trial, first, a single frame was extracted for every second in

the trial by extracting the first frame for every second of the video. For this step, the extreme

ends of the image were excluded and a threshold was placed on the minimum face size to be

50×50 pixels. This was done to reduce computational complexity and increase the face detector’s

accuracy. Face detection was performed using Haar-like features based on Viola-Jones object

detector [92]. A small portion of images had a majority of the face occluded due to the subject

putting his/her hand over their face. The face detector failed in these instances and hence these

were discarded.

Figure 5.4: Detected face (marked in red) and face localized points (marked in green) in DEAP
Dataset (left), AMIGOS Dataset (center), and subset of features (marked in yellow) computed
using face localized points (right). The features are normalized using height (H) and width (W)
of the detected face. These subjects’ consent to use their face is marked in respective datasets.

Facial points localization based features

The state-of-the-art Chehra algorithm [93] was applied to the extracted facial regions to

obtain 49 localized points on the face representing the significant parts as shown in Fig. 5.4.

This algorithm does not need any human input or a dataset-specific training model for predicting

the localized face points, making the process fully automated. Previous research studies have

reported promising results using the face action units (AUs) based on such facial landmarks [68].

These 49 localized points were then used to calculate 30 features based on distances such as that
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between the center of the eyebrow to the center of the eye, between the nose and the middle part

of the upper lip, between upper and lower lips, etc. Many of the 30 features are described in

[68] while others by designed by hand. All such features were normalized based on the height

and width of the detected face to remove variations due to the distance from the camera. The

mean, 95th percentile (more robust than maximum), and standard deviation of these 30 features

across the frames in a single trial were then calculated. These 90 parameters were then used for

evaluation.

Deep Learning-based features

The use of deep learning has transformed computer vision in multiple ways. This is

because such deep networks are capable of extracting feature representations from images that

capture both uniform (contrast etc.) and complex (small changes in texture etc.) types of features.

Hence, these networks were utilized on face-images using a deep network pre-trained on VGG-

faces dataset [132]. The extracted face region was resized to 224×224×3 for each selected frame

in the trial. Similar to the CNN-based deep learning method used above for the bio-sensing

modalities, 4,096 most meaningful features were extracted on these resized images. But, unlike

the bio-sensing method, a different VGG network that has been specifically trained on more

than 2.6 million face images from more than 2,600 people [132] was employed. This was done

to extract features that are more relevant to the face-dependent feature space. The mean, 95th

percentile, and standard deviation of the features across the images in every trial were computed

and the subsequent features space was reduced to 30 using PCA.

5.2.5 Dynamics of the EEG/Face features using deep learning

The above-mentioned methods for extracting deep learning features from EEG/face-videos

are special cases in which a single trial is represented by a single image (EEG-PSD image/Single

feature space for face images in a video). But, these methods do not fully take into account the
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temporal dynamics of the features over time within the trial. Hence, this study proposes a new

method in which such images (EEG-PSD or face region) are utilized for every second within a

trial. Fig. 5.3 shows the network architecture for this method for the EEG-PSD images. Multiple

EEG-PSD images were formed for each trial by generating one image for each second, all of

which went through the pre-trained VGG network. The 4,096 features from the off-the-shelf

deep learning network were then obtained for each image. In addition, the conditional entropy

features for every second were also calculated. PCA was then used to reduce the dimensionality

of the feature space comprising features from EEG and face-videos. The resultant feature space

has 60 most representative features. These 60×N (N = trial length in seconds) features are

then sent to a Long-Short Term Memory (LSTM) network [133]. However, this method could

only be employed on the DEAP dataset since the AMIGOS and MAHNOB-HCI datasets have

varying trial lengths and the DREAMER dataset does not contain any video data. The huge

variations in the trial length in the AMIGOS and MAHNOB-HCI datasets meant that during the

data preparation phase of LSTM, a large amount of padding was needed. This may be possible in

data from physical sensors (like temperature, luminous, pressure, etc.) where interpolation is easy

to perform. But, for bio-signals, this is not desirable because affective labels were not reported by

the subject during the course of each video trial i.e. there are no labels to suggest which parts

of the video contributed most towards the affective response. Hence, LSTM networks were not

deployed on such datasets.

5.3 Evaluation

This section presents the evaluation of the various feature-extraction methods described

above. First, the performance of the classification of affective states using the deep learning

features from the pre-trained convolution network was compared with that using traditional EEG

features. The evaluation also reports the classification performance when features from these

78



modalities are fused together. Thereafter, the classification performance was evaluated using each

modality individually on the four datasets, on combining the datasets together, and for transfer

learning. Finally, results are presented for a novel deep learning-based technique to identify the

most important brain regions associated with emotional responses.

Figure 5.5: Distribution of emotion classes in the four datasets.

Fig. 5.5 shows the distribution of self-reported valence and arousal for the four datasets.

It is evident that the DEAP dataset has a higher concentration of trials closer to neutral emotion

i.e. near the center of the graph. For each individual dataset separately, leave-one-subject-out

evaluation was performed and results for single modality classification are shown in Table 5.3 and

for multi-modality classification in Table 5.4. Then, an evaluation was performed by combining

datasets together and associated results are shown in Table 5.5. Finally, transfer learning was

employed among the datasets i.e. training on one dataset and testing on another (Table 5.6). For

these two latter evaluations of combining the datasets and using transfer learning, the datasets

were randomly divided into two parts with an 80/20 ratio while 10-fold cross-validation was
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also performed. The classification was done using extreme learning machines (ELM) [62]

with variable numbers of neurons, which has been shown to perform better than support vector

machines (SVM) for various cases [134]. All the features were re-scaled between -1 and 1 before

training the ELM. A single-layer ELM was used with a sigmoid activation function. For the

trend-based deep learning method, two hidden layers in the LSTM were used with the number of

neurons being 200 and 100, respectively. Stochastic gradient descent with a momentum (SGDM)

optimizer was used to train the LSTM network.

5.3.1 Visualizing class-separability using the traditional vs. deep learning

features

One of the hypotheses of this study is that the traditional methods for analyzing EEG

can be improved by using deep learning-based features obtained from pre-trained convolution

networks. This is important because training convolution networks requires huge datasets, which

are usually unavailable in the bio-sensing domain. Hence, the Deep Learning method described

in Section 5.2.1 should be able to extract more meaningful features from EEG-PSD features.

t-SNE [135] was used to visualize the dimensionally reduced space using traditional EEG-PSD

features for 2-class valence and 4-class emotions on the DEAP dataset with fixed trial length.

Kullback-Leibler (KL) divergence was used for measuring similarity and Euclidean distance was

used as the distance measure for the t-SNE implementation. The same approach was then applied

to the features obtained by the VGG network, which were computed after using the EEG-PSD

features to create a combined RGB image in Fig. 5.1.

Fig. 5.6 shows that trials in both 2-valence and 4-emotion classes can be separated to a

better degree (although not optimal) when using the VGG features from the EEG-PSD combined

image than directly using the EEG-PSD features. The EEG-PSD features only form distinct

clusters for each subject and are unable to separate the valence/emotion classes whereas the VGG

features allow for better separation.
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(a) t-SNE on two valence classes (low-valence in blue and high-valence in red)

(b) t-SNE on four emotion classes (HVHA in blue, LVHA in red, LVLA in magenta, and HVLA in green)

Figure 5.6: Visualization of feature spaces using t-SNE [135] in trials from the DEAP dataset
on the EEG-PSD features and the VGG features derived from the combined RGB image. The
VGG features allow for better separation.

5.3.2 Evaluating individual modality performance

This section presents the classification results obtained by using individual modalities on

the four datasets. Table 5.3 shows accuracy and mean F1-score results for individual modalities.

It is clear from Table 5.3 that the results in multiple categories for all the four datasets

are better than those reported previously, as shown in Table 5.2. The CNN based features that

were extracted for all modalities contribute most towards this classification improvement for

all the modalities. Furthermore, for all four datasets and for all modalities, the performance

is substantially greater than the chance accuracy. EEG proves to be the best performing bio-
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Table 5.3: Individual Modality Performance Evaluation

Response EEG Cardiac GSR Face-1 Face-2
DEAP Dataset

Valence 71.09/0.68 70.86/0.69 70.70/0.68 71.08/0.68 72.28/0.70
Arousal 72.58/0.65 71.09/0.63 71.64/0.65 72.21/0.65 74.47/0.68
Liking 74.77/0.65 74.77/0.64 75.23/0.64 75.60/0.62 76.69/0.62
Emotion 48.83/0.26 45.55/0.31 45.94/0.25 43.52/0.28 46.27/0.27

AMIGOS Dataset
Valence 83.02/0.80 81.89/0.80 80.63/0.79 80.58/0.77 77.28/0.74
Arousal 79.13/0.74 82.74/0.76 80.94/0.74 83.10/0.76 77.28/0.72
Liking 85.27/0.81 82.53/0.77 80.47/0.72 80.27/0.72 79.81/0.72
Emotion 55.71/0.30 58.08/0.36 56.41/0.34 57.74/0.28 56.79/0.27

MAHNOB-HCI Dataset
Valence 80.77/0.76 78.76/0.73 78.98/0.73 83.04/0.79 85.13/0.82
Arousal 80.42/0.72 78.76/0.74 81.84/0.75 82.15/0.77 81.57/0.76
Emotion 57.86/0.33 57.23/0.35 57.84/0.32 60.41/0.35 63.42/0.35

DREAMER Dataset
Valence 78.99/0.75 80.43/0.78 — — —
Arousal 79.23/0.77 80.68/0.77 — — —
Emotion 54.83/0.33 57.73/0.36 — — —

Cardiac features refer to features extracted using PPG in the DEAP dataset and using ECG in the
AMIGOS, MAHNOB-HCI, and DREAMER datasets. Face-1 and Face-2 refer to the methods
in Sections 5.2.4 and 5.2.5 respectively. Valence, Arousal, and Liking have been classified into
two classes (50% chance accuracy) whereas Emotion has been classified into four classes (25%
chance accuracy). All values denote the mean percentage accuracy followed by the mean F1-score
(separated by “/”) whereas missing values represent missing modality data.

sensing modality whereas Cardiac and GSR features also perform very well despite containing

fewer channels. Furthermore, the frontal-video-based showed high accuracy in the affective

classification for the three datasets and surpassed the accuracy obtained by the bio-sensing

modalities in many cases.

The classification performance using various modalities even for varying trial length is

consistently better than that reported in previous studies (Table 5.2). The results of this study

surpass the previous best results obtained by using only individual modalities for the DEAP and

MAHNOB-HCI datasets and the baseline accuracies for the AMIGOS and DREAMER datasets.

Furthermore, higher accuracy was observed for Liking classification than for Valence/Arousal for
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DEAP and AMIGOS datasets, suggesting that it might be easier for subjects to rate their likeness

for the video contents than rating valence and arousal. This is understandable since the latter

terms are difficult to comprehend than Liking and depend highly on the physiological baseline of

the subject at any particular time.

5.3.3 Evaluating multi-modality performance

This section presents the results of combining different modalities for affective state

classification. Specifically, as shown in Table 5.4, the three bio-sensing modalities (only two

for the DREAMER since it does not contain GSR data) are first combined to evaluate their joint

performance and then the EEG and Face-video modalities through the CNN-VGG-extracted

features. Finally, for the DEAP dataset, the results are presented of training an LSTM network

with the time-varying features from the EEG and Face-video modalities (see Section 5.2.5).

In almost all cases, it was found that combining features from multiple modalities increases

classification accuracy. The fusion of features from bio-sensing modalities increases the accuracy

in many cases for all the four datasets. It is also notable that by training the LSTM network with

the features from EEG and Face-video modalities not only increases the accuracy as compared to

the individual modalities (from Table 5.3) but also outperform the best accuracy on the DEAP

dataset reported in Table 5.2. For AMIGOS, MAHNOB-HCI, and DREAMER datasets, it was

observed that using multiple modalities outperform single-modality accuracy in many cases and

sets up new benchmarks by beating previous best results. Two-sample t-Test was also performed

between Bio-Sensing and EEG plus Face multi-modal combinations for the datasets. The p-

values of the t-Test analysis for the valence, arousal, liking, and emotion classification for the

DEAP dataset were 0.676, 0.543, 0.939, and 0.347 respectively. The p-values for the valence,

arousal, liking, and emotion classification for the AMIGOS dataset were 0.003, 0.266, 0.134,

and 0.026 respectively. The p-values for the valence, arousal, and emotion classification for the

MAHNOB-HCI Dataset were 0.0134, 0.293, and 0.149. Similar t-Test could not be performed on
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Table 5.4: Multi-modality Performance Evaluation

Response Bio-
sensing

EEG and
Face

EEG
and Face
(LSTM)

Previous
Best Accu-
racy

DEAP Dataset
Valence 71.87/0.68 73.94/0.69 79.52/0.70 77.19
Arousal 73.05/0.68 74.13/0.66 78.34/0.69 76.17
Liking 75.86/0.69 76.74/0.63 80.95/0.70 68.40
Emotion 49.53/0.27 48.11/0.28 54.22/0.31 50.80

AMIGOS Dataset
Valence 83.94/0.82 78.23/0.74 — —
Arousal 82.76/0.76 81.47/0.72 — —
Liking 83.53/0.77 81.49/0.75 — —
Emotion 58.56/0.40 58.02/0.29 — —

MAHNOB-HCI Dataset
Valence 80.36/0.75 85.49/0.82 — 73.00
Arousal 80.61/0.71 82.93/0.77 — 68.50
Emotion 58.07/0.30 62.07/0.35 — —

DREAMER Dataset
Valence 79.95/0.77 — — 62.49
Arousal 79.95/0.77 — — 62.32
Emotion 55.56/0.33 — — —

Bio-sensing refers to combining features from EEG, ECG/PPG, and GSR signals.
EEG + Face refers to combining features from EEG- and video-based modalities.
EEG + Face (LSTM) refers to combining features from EEG- and video-based modalities for
every second in the trial to train an LSTM model. Due to the trial length varying widely in the
AMIGOS and MAHNOB-HCI datasets, the LSTM-based method could not be applied to them.
The DREAMER dataset does not have video data.

the DREAMER dataset since it does not contain Video (Face) modality data.

5.3.4 Evaluating the classification performance using combining datasets

and transfer learning

To show that the proposed deep learning-based features are independent of the number

of EEG channels, trial length, the image resolution of the video, ECG/PPG cardiac modality,

etc., an ELM classifier was trained with data from more than one datasets. A transfer-learning
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Table 5.5: Combined Dataset Performance Evaluation

Response EEG Cardiac GSR Face-1 Face-2
DEAP + AMIGOS Combined Dataset

Valence 62.80/0.58 59.69/0.59 59.64/0.58 63.04/0.62 62.38/0.62
Arousal 62.27/0.61 63.61/0.61 61.98/0.62 67.66/0.65 68.65/0.66
Liking 69.13/0.59 69.27/0.61 69.27/0.55 67.99/0.64 68.65/0.64
Emotion 37.47/0.27 37.50/0.22 37.24/0.31 40.92/0.36 42.24/0.36

DEAP + AMIGOS + MAHNOB-HCI Combined Dataset
Valence 61.24/0.60 58.57/0.59 58.98/0.57 61.59/0.61 62.56/0.63
Arousal 65.15/0.63 61.84/0.61 61.02/0.59 65.94/0.65 67.15/0.66
Emotion 40.21/0.35 36.33/0.31 35.71/0.28 42.51/0.33 43.00/0.32

The DEAP + AMIGOS combined dataset consists of the data from 72 subjects and more than
1,900 trials. The DEAP + AMIGOS + MAHNOB-HCI combined dataset consists of the data
from 99 subjects and more than 2,400 trials. Only the deep learning-based methods are used for
extracting features for evaluation from various modalities because these can be extracted from all
datasets in the same manner.

Table 5.6: Transfer Learning Performance Evaluation

Response EEG Cardiac GSR Face-1 Face-2
DEAP + AMIGOS (Train Dataset), MAHNOB-HCI (Test Dataset)

Valence 63.55/0.60 64.77/0.54 64.96/0.55 55.02/0.52 62.01/0.62
Arousal 58.37/0.55 62.50/0.52 62.50/0.52 59.32/0.54 58.60/0.58
Emotion 36.65/0.32 39.58/0.28 38.64/0.28 36.38/0.39 34.05/0.37

DEAP (Train Dataset), MAHNOB-HCI (Test Dataset)
Valence 62.70/0.54 63.59/0.46 65.19/0.47 56.48/0.49 59.86/0.59
Arousal 61.99/0.55 61.46/0.48 63.23/0.52 59.33/0.56 61.99/0.60
Emotion 35.88/0.23 38.01/0.24 39.08/0.24 33.57/0.33 32.50/0.22

Only the deep learning-based methods are used for extracting features for evaluation from various
modalities because these can be extracted from all datasets in the same manner.

approach was also employed to train the ELM classifier with data from some of the four datasets

and then test it against the remaining dataset. The combined datasets were randomly divided

into an 80:20 ratio for training and testing. This allowed the verification of how scalable are the

proposed feature extraction methods across datasets having discrepancies in recording devices

(e.g. ECG vs PPG) and parameters (e.g. channel numbers). Table 5.5 shows that despite all

these discrepancies across the datasets, the proposed framework works well and always performs
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considerably better than the chance accuracy and the baseline accuracies for individual datasets

[5, 6, 7] reported in Table 5.2. Table 5.6 shows the results of training with two datasets and testing

on the third. The above combinations of datasets were chosen because all the sensor modalities

were used in the datasets and the DEAP dataset contains more trials (1,280 trials) than the other

two datasets combined together (AMIGOS and MAHNOB-HCI containing 640 and 540 trials

respectively). Even when ELM was tested on a dataset, the trials from which were not used for

training, the results were consistently better (more so for ECG/PPG and GSR modalities) than

many previous studies and far above the chance accuracy. The slight decrease in performance for

some modalities compared to those trained with the data from the same dataset might be due to

two factors, namely, the varying trial length between the datasets and only using the VGG-based

features common to the datasets (for consistency among the datasets) as opposed to combining

features from other methods like conditional entropy, HRV, face-localization, etc.

Figure 5.7: Salient brain regions corresponding to low/high valence/arousal in DEAP dataset.
The frontal lobe has high activation.
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5.3.5 Identifying the salient brain regions that contribute towards process-

ing various emotions

As is clear from the performance evaluation sections above, the deep learning-based

methods are able to extract more meaningful features and perform better than traditional features.

This section aims to explore what insights the proposed deep learning-based method can provide

on the brain regions contributing to emotional responses. To this end, a reverse VGG network

(before the final max pooling step) was added to the pre-trained VGG network that extracted the

informative features used above. That is, a deconvolving network was added to the convolving

network. As shown in [136], the convolution-deconvolution network can be used to identify the

most salient areas in the images in both static and dynamic manner. This network (Fig. 5.7)

was utilized to detect those regions in the EEG-PSD brain images that contribute most towards

processing various emotions. The pairs of EEG-PSD images for consecutive seconds for a trial

It , It+1 were sent to the dynamic convolution-deconvolution network along with the output of the

static saliency for the image at It . The static saliency network identified the most salient areas

whereas the dynamic saliency network was able to learn the variations between these image areas

for every consecutive second. This procedure was done for every second for all the trials. The

results are reported only from the DEAP dataset for this method because of its fixed trial length.

The RGB combined images (Figure 5.1) were used for every second for every trial of

the low/high valence/arousal instances from the DEAP dataset by first convolving and then

deconvolving them in the network described above. Hence, theoretically, the areas with most

salient variations across the trials would represent the brain regions that are most receptive to the

particular affective state. Fig. 5.8 shows the brain activity for these affective states after averaging

the output of the network across all the trials for the affective state (valence/arousal). Most of

the activity is over the frontal and central lobes around the FC3, FCz, FC4, and Cz locations

according to the EEG 10-20 system. This is consistent with the textbook evidence regarding
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Figure 5.8: Convolution-Deconvolution network on EEG-PSD images to identify salient brain
regions corresponding to affective states. Pixels in individual images were scaled from 0 to 1.

the processing of human emotions [137, 138]. More interestingly, it was observed from the

difference image between high and low arousal that the processing of arousal affective state is

much more widely distributed across the brain than valence. Hence, this method allowed for the

usage of a single image to represent such areas across the brain, and across all subjects and trials,

that are most activated for a particular affective measure rather than using multiple such EEG

images. These results are presented as a starting point to take this work towards using the EEG

for investigating the generation and processing of emotions inside the brain.

5.4 Chapter Concluding Remarks

Advances in deep learning have not translated into bio-sensing and multi-modal affective

computing research domains mostly due to the absence of very-large-scale datasets. Such datasets

are available for vision/audio modalities due to the ease of data collection. Hence, for the time

being, it seems that the only viable solution is to use “off-the-shelf” pre-trained deep learning

networks to extract features from bio-sensing modalities. The proposed methods present the

advantages of being scalable and able to extract features from different datasets. Such “off-the-
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shelf” features prove to work better than the traditionally used features of various bio-sensing

modalities.

This study proposed novel methods to affective computing research by employing deep

learning features across various modalities. It showed that these methods perform better than

previously reported results on four different datasets containing various recording discrepancies.

The methods were also evaluated on the combined datasets. Furthermore, the various modalities

were fused to augment the performance of our models. The LSTM was used to learn the temporal

dynamics of the features during stimulus presentation and increase the classification accuracy,

compared to averaging the features across that trial. This study also showed that features extracted

from bio-sensing modalities such as EEG can be combined with those from the video-based

modality to increase the accuracy further.

Since affective computing encompasses the study of human affects, awareness, and

attention is broadly a component of the same area of research. The next chapter discusses

how such multi-modal bio-sensing tools may actually be used to save precious human lives by

continuously monitoring driver’s awareness and identifying his/her physiological response to

hazardous on-road situations.

This chapter is in part a reprint of material that has been accepted for publication in the

journal IEEE Transactions on Affective Computing (2019), by Siddharth Siddharth, Tzyy-Ping

Jung, and Terrence J. Sejnowski. The dissertation author was the primary author of this paper.

89



Chapter 6

Utilizing Multi-modal Bio-sensing Tools

Toward Driver Awareness Analysis

Affective Computing being the study of human affects, one of the key themes in the

real-world is to study human awareness utilizing bio-sensors. This chapter presents the tools

developed in the previous chapters for driver awareness analysis in situations approximating real-

world driving scenarios. This study focuses on the specific problem of inferring driver awareness

in the context of attention analysis and hazardous incident activity. Even after the development

of wearable and compact multi-modal bio-sensing systems in recent years, their application in

driver awareness context has been scarcely explored. The capability of simultaneously recording

different kinds of bio-sensing data in addition to traditionally employed computer vision systems

provides exciting opportunities to explore the limitations of these sensor modalities. This study

explores the applications of three different bio-sensing modalities namely electroencephalogram

(EEG), photoplethysmogram (PPG), and galvanic skin response (GSR) along with a camera-based

vision system in driver awareness context. This study further assesses the information from these

sensors independently and together using both signal processing- and deep learning-based tools.

This chapter shows that the developed methods outperform previously reported studies to classify
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driver attention and detecting hazardous/non-hazardous situations for short time scales of two

seconds. This study utilizes EEG and vision data for high-resolution temporal classification (two

seconds) while additionally also employ PPG and GSR over longer time periods. The methods

are evaluated by collecting user data on twelve subjects for two real-world driving datasets among

which one is publicly available (KITTI dataset) while the other was collected by the authors (LISA

dataset) with the vehicle being driven in an autonomous mode. This work presents an exhaustive

evaluation of multiple sensor modalities on two different datasets for attention monitoring and

hazardous events classification.

6.1 Introduction and Related Research

With the development of increasingly intelligent vehicles, it has now become possible

to assess the criticality of a situation much before the event actually happens. This makes it

imperative to understand the criticality of a situation from the driver’s perspective. For example,

one important area where driver’s attention monitoring is most crucial is predicting takeover

readiness of the automobile [139]. While computer vision continues to be the preferred sensing

modality for achieving the goal of assessing driver awareness, the use of bio-sensing systems in

this context has received wide attention in recent times [140, 141, 142]. Most of these studies

have used electroencephalogram (EEG) as the preferred bio-sensing modality.

The emergence of wearable multi-modal bio-sensing systems [90, 30] has opened a new

possibility to overcome the limitations of individual sensing modalities through the fusion of

features from multiple modalities. For example, the information related to driver’s drowsiness

extracted from EEG (which suffers from low spatial resolution especially when not using a very

large number of sensors) may be augmented by the use of galvanic skin response (GSR) which

does not suffer from electromagnetic noise (but has a low temporal resolution).

Driver awareness depends highly on the driver’s physiology since different people react
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differently to fatigue and to their surroundings. This means that one-fit-for-all type of approach

using computer vision based on eye blinks/closure etc. might not scale very well across drivers. It

is here that the use of bio-sensing modalities (EEG, GSR, etc.) may play a useful role in assessing

driver awareness by continuously monitoring the human physiology. The fusion of data from

vision-based systems and bio-sensors might be able to generate more robust models for the same.

Furthermore, EEG with its higher temporal resolution than other common bio-sensors may prove

to be very useful for detecting hazardous vs. non-hazardous situations on short time scales (such

as 1-2 seconds) if such situations do not register in the driver’s facial expressions. Additionally,

the driver’s physiology may provide insights into how they react to various situations during the

drive which may have a correlation with the driver’s safety. For example, heart-rate variability,

which has been shown to model human stress [143] may be used as an indicator of when it is

unsafe for a person to drive a vehicle.

Deep Learning has many applications in computer vision-based driver-monitoring systems

[144, 145]. But, these advances have not translated towards the data from bio-sensing modalities.

This is primarily due to the difficulty in collecting very large scale bio-sensing data which is a

prerequisite for training deep neural networks. Collecting bio-sensing data on a large scale is

costly, laborious, and time-consuming. It requires sensor preparation and instrumentation on

the subject before the data collection can be started whereas for collecting images/videos even a

smartphone’s camera may suffice without the need to undergo any sensor preparation in most

cases.

6.1.1 Contributions

• This study focuses on driver awareness and his/her perception of hazardous/non-hazardous

situations from bio-sensing as well as vision-based perspectives. The features are individu-

ally used from three bio-sensing modalities namely EEG, PPG, and GSR, and vision data

to compare the performance of these modalities. The fusion of features is also used to
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understand if and in what circumstances can it be advantageous.

• To this end, a novel feature extraction and classification pipeline is presented that has the

ability to work with real-time capability. The pipeline utilizes pre-trained deep neural

networks even in the absence of very large scale bio-sensing data.

• The developed framework is completely scalable for signal acquisition, feature extraction,

and classification that has been designed with the intent to work in real-world driving

scenarios. The framework is modular since information is extracted separately from each

sensor modality.

• Finally, two hypotheses are tested in this paper. First, it is evaluated if the modalities with

low-temporal resolution (but easily wearable) namely PPG and GSR can work as well

as EEG and vision modality for assessing driver’s attention. Second, the study tests if

(and when) the fusion of features from different sensor modalities boost the classification

performance over using each modality independently for attention and hazardous/non-

hazardous event classification.

6.1.2 Related Studies

Driver monitoring for assessing attention, awareness, behavior prediction, etc. has usually

been done using vision as the preferred modality [146, 147, 148]. This is carried out by monitoring

the subject’s facial expressions and eye-gaze [149] which are used to train machine learning

models. But, almost all such studies utilizing “real-world” driving scenarios have been conducted

during daylight when ample ambient light is present. Even if infra-red cameras are used to

conduct such experiments at night, vision modality suffers from occlusion and widely varying

changes in illumination [146], both of which are not uncommon in such scenarios. Furthermore, it

has been shown that EEG can classify hazardous vs. non-hazardous situations over short periods

which is not possible with images/videos [10].
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On the other hand, those driving studies focusing on bio-sensing modalities suffered

from impracticality in the “real-world” situations. This is because the bio-sensors were usually

bulky, required wet electrodes, and were very prone to noise in the environment. Hence, the

studies carried out with such sensors required wet electrode application and monitors in front of

participants with minimal motion [150, 151]. In the early years of this decade, such bio-sensing

systems gave way to more compact ones capable of transmitting data wirelessly while being

more resistant to the noise by better EM (electro-magnetic) shielding and advances in mechanical

design. Finally, recent advances have led to the development of multi-modal bio-sensing systems

and the ability to design algorithms utilizing the fusion of features from various modalities.

This has been utilized for various applications such as in affective computing and virtual reality

[63, 152].

The use of deep learning for various applications relating to driver safety and autonomous

driving systems has skyrocketed in the past few years. These studies have ranged from under-

standing driving behavior [153] to autonomous driving systems on highways [154] to detecting

obstacles for cars [155] among other applications. All such studies only used vision modality

since as pointed out before due to the prevalence of large-scale image datasets. However, the

use of “pre-trained” neural networks for various applications [124, 125] may provide a new

opportunity. Hence, if bio-sensing data can be represented in the form of an image, it should be

possible to use such networks to extract deep-learning-based optimal feature representation of the

image (henceforth called most significant features) even in the absence of large-scale bio-sensing

datasets.

The developed software pipeline uses multiple bio-sensing modalities in addition to the

vision, which was not the case with previous state-of-the-art evaluations done on the KITTI

dataset [156]. The authors’ previous work on EEG and visual modality data with the KITTI

dataset [157] showed the utility of using these two modalities for driver attention monitoring

but did not present a holistic view of multiple bio-sensing modalities with short-time-interval
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analysis on other datasets. The use of another dataset collected by the authors while driving a car

in autonomous mode with the driver strapped with bio-sensing modalities and holistic comparison

of multiple sensing modalities is a chief feature of this research study. Also, the previous research

studies generally [10, 158] used a single modality and traditional features (i.e. not based on

deep neural networks) for classification. Through the presented evaluation, it is shown that the

developed software pipeline easily outperforms previous best results with higher-order features.

6.2 Research Methods

This section discusses the various research methods that were employed to pre-process

the data and extract features from each of the sensor modalities used in this study. It also shows

the visualization of sensor data for each sensor modality. This is done by showing the sensor data

in the time and/or frequency domains as no threshold exists that can distinguish between different

mental or psychological states directly for each sensing modality even for a single subject.

6.2.1 EEG-based Feature Extraction

The cognitive processes pertaining to attention and mental load such as while driving are

not associated with only one part of the brain. Hence, the goal was to map the interaction between

various regions of the brain to extract relevant features related to attention. The EEG was initially

recorded from a 14-channel Emotiv EEG headset at 128 Hz sampling rate [36]. The EEG channel

locations as per the International 10-20 system were AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8,

P7, P8, O1, and O2. Artifact subspace reconstruction (ASR) pipeline was used in the EEGLAB

[120] toolbox to remove artifacts related to eye blinks, muscle movements, line noise, etc. [87]

This pipeline is capable of working in real-time and unlike Independent Component Analysis

(ICA) [48] has the added advantage of being able to remove noise without much loss of EEG data

when a very large number of EEG sensors are not present. Then, the EEG data was band-pass

95



filtered between 4-45 Hz. The band-pass filter was designed to capture the theta, alpha, beta, and

low-gamma EEG bands i.e. frequency information between 4-45 Hz. On this processed EEG

data, two distinct and novel methods were employed to extract EEG features that capture the

interplay between various brain regions to map human cognition.

Mutual Information-based features

Similar to the method presented above in Chapter 5, the conditional entropy using mutual

information between all possible pairs of EEG electrodes for a given trial were calculated. Hence,

for 14 EEG electrodes, 91 EEG features were calculated based on this measure.

Deep Learning-based features

The most commonly used EEG features are the calculation of power-spectrum density

(PSD) of different EEG bands. But, these features in themselves do not take into account the

EEG-topography i.e. the location of EEG electrodes for a particular EEG band. Hence, similar to

the method in Chapter 5, EEG-topography was exploited for extracting information regarding the

interplay between different brain regions.

Since the 2D spectrum image of the brain PSD has the information about amplitude

distribution of each frequency band across the brain, the PSD of three EEG bands namely theta

(4-7 Hz), alpha (7-13 Hz) and Beta (13-30 Hz) for all the EEG channels were calculated. The

choice of these three specific EEG bands was made since they are the most commonly used bands

and are thought to carry a lot of information about human cognition. The PSD for each band thus

calculated were averaged over the complete trial. These features from different EEG channels

were then used to construct a two-dimensional EEG-PSD heatmap for each of the three EEG

bands using bicubic interpolation. These heat-maps now contained the information related to

EEG topography in addition to spectrum density at each of these locations.

Fig. 6.1 shows these 2-D heatmaps for each of the three EEG bands. As can be seen from
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Figure 6.1: PSD heat-maps of the three EEG bands i.e. theta (red), alpha (green), and beta
(blue) EEG bands are added according to respective color-bar range to get combined RGB
heat-map image.(Circular outline, nose, ears, and color-bars have been added for visualization
only. All units are in Watt per Hz.)

the figure, each of the three EEG bands was plotted using a single color channel i.e. red, green,

and blue. These three color band images were then added to get a color RGB image containing

information from the three EEG bands. The three color band images were added in proportion to

the amount of EEG power in the three bands using alpha blending [122] by giving weights to the

three individual bands’ images by normalizing them using the highest value in the image. Hence,

this procedure was able to represent the information in the three EEG bands along with their

topography using a single color image. The interaction through the mixture of these three colors

(thus forming new colors by adding these primary colors) in various quantities was contained the

information regarding the distribution of power spectrum density across the various brain regions.

Notably, the PSD in three EEG power bands (theta, alpha, and beta) were computed

separately because these three EEG power bands contribute the most towards human cognition.

Subsequently, the power in these EEG bands were averaged separately for each band and not

together. This process was done so that the RGB colored image with three EEG bands could

be constructed utilizing the averaged power of theta, alpha, and beta band separately. It was

to execute this complete procedure of generating the RGB colored image with each color band

representing the averaged PSD of a particular EEG band that it was not possible to directly

average the PSD values between 4-30 Hz.

Since it is not possible to train a deep neural network from scratch without thousands of

trials from the EEG data (and no such dataset currently exists in a driving scenario), the combined
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colored image representing EEG-PSD with topography information was then fed to a pre-trained

deep learning-based VGG-16 convolution neural network [97] to extract features from this image.

This network has been trained with more than a million images for 1,000 object categories using

the Imagenet Database [123]. Specifically, the VGG-16 deep learning network used has 16 total

layers (as shown in Fig. 4), the input to the network being 224×224×3 sized colored image

and Rectified Linear Unit (ReLU) optimizer as the activation function for all hidden layers. The

convolution layers are 3×3 kernel size while the max-pooling layers are 2×2 kernel size and

finally, there are three layers of the VGG-16 network which are fully connected ones.

Previous research studies [124, 125] have shown that the features from such an “off-the-

shelf” neural network can be used for various classification problems with good accuracy. Even

for the research problems where the neural networks were trained on a different vision-based

problem and applied to a totally different application they still worked very well [125, 159, 160].

This is mostly because the low-level features such as texture, contrast, etc. reflected in the initial

layers of the Convolution Neural Network (CNN) are ubiquitous in any type of image. The

EEG-PSD colored image was resized to 224×224×3 for input to the network. The last layer of

the network classifies the image into one of the 1000 classes but since the interest was only in

“off-the-shelf” features, 4,096 features were extracted from the last but one layer of the network.

The EEG features from this method were then combined with those from the previous one for

further analysis.

6.2.2 PPG-based Feature Extraction

PPG measures the changes in blood volume in the microvascular tissue bed. This is done

to assess the blood flow as being modulated by the heart beat. Using a simple peak detection

algorithm on the PPG signal, it is possible to calculate the peaks of the blood flow and measure

the subject’s heart rate in a much more wearable manner than a traditional electrocardiogram

(ECG) system. The PPG signal was recorded using an armband (Biovotion) that measures PPG at
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a sampling rate of 51.2 Hz.

HRV and Statistical Time-domain features

Heart-rate variability (HRV) has shown to be a good measure for classifying cognitive

states such as emotional valence and stress [126]. HRV is much more robust than heart rate (HR)

which changes slowly and generally only correspond to physical exertion. A moving-average

filter with a window length of 0.25 seconds for filtering the noise in the PPG data was first used for

each trial. The filtered PPG data so obtained was then scaled between 0 and 1 and subsequently a

peak-detection algorithm [127] was applied to find the inter-beat intervals (RR) for the calculation

of HRV. The minimum distance between successive peaks was taken to be 0.5 seconds to remove

any false positives as in Fig. 6.2.

HR is defined as the total number of peaks per minute in the PPG. pNN50 algorithm [58]

was then used to calculate HRV from RR intervals. To explore the statistics related to the PPG

wave itself in time-domain, six statistical features were calculated on the PPG wave as defined in

[131]. These features mapped various trends in the signal by the calculation of mean, standard

deviation, etc. at first and subsequent difference signals formed using the original signal.

Spectrogram Deep Learning-based features

Recent research studies have shown promising results in analyzing PPG in the frequency

domain for applications such as blood pressure estimation and gender identification [161, 162].

The frequency range of PPG signals is low and hence the focus was only on 0-5 Hz range.

Fig. 5.2 shows the generated frequency spectrogram [130] for this frequency range for the PPG

signal in a trial. The different color values generated using the “Parula” color-map shows the

intensity of the spectrogram at a specific frequency bin. Then, the spectrogram images were

resized to feed them to the VGG-16 network, and after which the 4,096 extracted features were

extracted from the VGG-CNN network. Time-domain statistical and HRV features from the
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Figure 6.2: For a trial, PPG signal with peaks (in red) being detected for the calculation of RRs
and HRV (above), and PPG spectrogram (below).

method above were concatenated with these features for further analysis.

6.2.3 GSR-based Feature Extraction

The feature extraction pipeline on the GSR signal was similar to that on the PPG. The

same two methods that were applied to the PPG were used for GSR too. Same as PPG, the signals

are sampled at 51.2 Hz by the device.

Statistical Features

The GSR data were first low-pass filtered with a moving average window of 0.25 seconds

to remove any bursts in the data. Eight features based on the profile of the signal were then
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calculated. The first two of these features were the number of peaks and the mean of absolute

heights of the peaks in the signal. Such peaks and their time differences may prove to be a good

measure of arousal. The remaining six features were calculated as in [131] like the PPG signal

above. For this time-series analysis of GSR signal, the features computed based on the peaks of

GSR takes into account the Skin Conductance Response (SCR) i.e. the “peaks” of the activity

while other features based on the GSR signal profile (by calculating mean and standard deviation

of successive differences of the signal) accounts for the Skin Conductance Level (SCL).

Deep Learning-based features of GSR Spectrogram

Since GSR signals change very slowly the focus was only on the 0-2 Hz frequency range.

A spectrogram image was generated for GSR in the above frequency range for each trial. This

choice of utilizing low-frequency features was done because similar to PPG, GSR signals change

very slowly. The spectrogram image was then sent to the VGG-16 deep neural network and

extract the most significant 4,096 features from the same. These features were then concatenated

with the features from the time-domain analysis.

6.2.4 Facial Expression-based Feature Extraction

As discussed above, the analysis of facial expressions has been the preferred modality

for driver attention analysis. Hence, the goal was to use this method to compare it against the

bio-sensing modalities. Furthermore, most of the research work in this area has been done by

tracking fixed localized points on the face based on face action units (AUs).

First, the face region was extracted from the frontal body image of the person captured by

the camera for each frame. This was done by fixing a threshold on the image size to reduce its

extreme ends and placing a threshold of minimum face size to be 50×50 pixels. This resizing

was done to remove any false positives and decrease the computational space for face detection.

The Viola-Jones object detector was then used with Haar-like features [92] to detect the most
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likely face candidate.

Figure 6.3: Detected face (marked in red) and face localized points (marked in green) for two
participants (left and center) in the study, and some of the features (marked in yellow) computed
using the coordinates of the face localized points. These features were then normalized using
the size of the face in the camera i.e. number of pixels in height (H) and width (W)

Figure 6.4: Network architecture for EEG-PSD trend-based Deep Learning method.

Facial-points Localization-based features

Face action units have been used for a variety of applications ranging from affective

computing to face recognition [68]. Facial Action Coding System (FACS) is the most commonly

used method to code facial expressions and map them to different emotional states [67]. The

goal was to use face localized points similar to the ones used in FACS without identifying facial

expressions such as anger, happiness, etc. since they are not highly relevant in the driving domain

and short time intervals. The use of FACS initially involves the identification of multiple facial

landmarks that are then tracked to map the changes in facial expressions. The state-of-the-art

102



Chehra algorithm [93] was applied to the extracted face candidate region from above. This

algorithm outputs the coordinates of 49 localized points (landmarks) representing various features

of the face as in Fig. 6.3. The choice of this algorithm was done because of its ability to detect

these landmarks through its pre-trained models and hence not needing training for any new set

of images. These face localized points were then used to calculate 30 different features based

on the distances such as between the center of the eyebrow to the midpoint of the eye, between

the midpoint of nose and corners of the lower lip, between the midpoints of two eyebrows, etc.

and the angles between such line segments. To remove variations by factors such as distance

from the camera and face tilt, these features were normalized using the dimensions of the face

region. All these features were calculated for individual frames, many of which make a trial.

Hence, to map the variation in these features across a trial (which may directly correspond to

driver’s attention and driving condition) mean, 95th percentile (more robust than maximum), and

the standard deviation of these 30 features were calculated across the frames in the trial. In this

manner, 90 features were computed based on face-localized points from a particular trial.

Deep Learning-based features

For the extraction of deep learning-based features from face images, the VGG-Faces

network was used instead of VGG-16. This was done to extract features more relevant to faces

since the VGG-Faces network has been trained on more than 2.6 million face images from more

than 2,600 people rather than on various object categories in the VGG-16 network. Each face

region part was sent to the network and extracted the most significant 4,096 features. To represent

the changes in these features across the trial i.e. across the frames, mean, 95th percentile, and

standard deviation of the features across the frames in a trial were computed.
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6.2.5 Assessing Trends of EEG/Face Features using Deep Learning

The EEG features discussed in section 6.2.1 above were computed over the whole trial

such as by generating a single EEG-PSD image for a particular trial. This is a special case when

the data from the whole trial is being averaged. Here, a novel method is proposed to compute the

trend of EEG features i.e. their variation in a trial based on deep learning. To compute features

with more resolution, multiple EEG-PSD images were generated for successive time durations

in a trial. One image per second of the data was generated for driver attention analysis and 30

images were used for every second for a 2-second incident classification analysis as detailed

below in the Quantitative Analysis section. Fig. 6.4 shows the network architecture for this

method. The EEG-PSD images were generated for multiple successive time durations in a trial,

each of which was then sent to the VGG-16 network to obtain 4,096 most significant features.

Similarly, this process was done for conditional entropy features by calculating this over multiple

periods in a trial rather than once on the whole trial. Principal component analysis (PCA) [60]

was then used to reduce the feature size to 60 to save computational time in the next step. These

60×N (N = number of successive time intervals) features were then sent as input to a Long Short

Term Memory (LSTM) network [133].

In particular, the use of LSTM was motivated by extracting information from sensor

modalities with higher temporal resolution. Example: For the EEG and modality, the extraction

of deep learning features without LSTM was being done by representing the whole trial with a

single 2D EEG image. This was a sort of average power-spectrum density image for the whole

trial and thus had a bad temporal resolution. Instead, one such power-spectrum density image was

calculated for every second to observe for the 2D image patterns change from second to second.

This high temporal resolution was modeled using LSTM which further increases the accuracy by

utilizing these shifting patterns.

The LSTM treats each of these features as a time-series and was trained to capture the

trend in each of them for further analysis. This method could only be applied when the time
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duration of the trials is fixed since the length of each time series should be the same. Hence, this

method was applied only in the trials used for detecting hazardous/non-hazardous situations and

on EEG and face i.e. vision sensor modalities.

Figure 6.5: The experiment setup for multi-modal data collection. (A) EEG Headset, (B) PPG
and GSR armband, (C) External camera, and (D) Driving videos displayed on the screen. The
subject sits with her/his arms and feet on a driving simulator with which s/he interacts while
watching the driving videos.

6.3 Dataset Description

Fig. 6.5 shows the experimental setup for data collection with driving videos used as the

stimulus in the experiment. Twelve participants (most of them in their 20s with two older than 30

years) based in San Diego participated in the study. The participants were comfortably seated

and equipped with EEG headset (Emotiv EPOC) containing 14 EEG channels (sampling rate of

128 Hz.) and an armband (Biovotion) for collecting PPG and GSR (sampling rate of 51.2 Hz.).

This EEG headset was chosen since it is easily wearable and does not require the application of

electrode gel. This made the headset conform more closely to real-world applications such as

in the driving context. However, these advantages came at the cost of two limitations, namely,

lower sampling rate and fewer EEG channels as compared to bulky EEG headsets used in the
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Figure 6.6: Various image instances with varying illumination conditions and types of roads
(street, single-lane, highway, etc.) from (A) LISA Dataset and (B) KITTI Dataset.

laboratory. The positioning of the GSR sensor was however sub-optimal since it was not placed

at the palm or the feet. This choice was driven by the practicality of data collection in the driving

scenario since users interact with multiple vehicle modules from their palms and feet during

driving. The facial expressions of the subject were recorded using a camera in front of him/her.

The participants were asked to use a driving simulator that they were instructed to control as per

the situation in the driving stimulus. For example, if there was a “red light” or “stop sign” at any

point in a driving stimulus video, the participants should press and hold the brake.

For consistency between this and previous studies [10, 158], 15 video sequences from

the KITTI dataset [156] were used. These previous research studies have used the same dataset

but without detailing the exact image sequences used to generate the video sequences. Thus,
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the video sequences in this study chosen based on external annotation by two subjects to judge

them based on potential hazardous events in them. These video sequences ranged from 14 to 105

seconds. These video sequences were recorded at 1242×375 resolution at 10 frames-per-second

(fps). The videos were resized to 1920×580 to fit the display screen in a more naturalistic manner.

But, video sequences from the KITTI dataset suffer from three limitations namely low resolution,

low fps, and few sequences of driving on highways. Additionally, since the images in the KITTI

dataset were captured at 10 fps it may elicit steady-state visual-evoked potential (SSVEP) in

EEG [163]. This is undesirable because the focus should be exclusively on driver attention and

hazardous/non-hazardous events analysis whereas SSVEP might act as a noise in the process.

Table 6.1: Table showing the various parameters pertaining to datasets and features used in
evaluation.

Dataset KITTI LISA
Number of video sequences 15 20
Time Duration per video (s) 14-105 30-50

Frames per second 10 30
Video resolution 1920×580 1920×1200
Sensor Modality Traditional Features Deep Learning Features

EEG 96 (Conditional Entropy) 4096 (EEG-PSD 2-D spectrum image)
PPG 7 (HRV and Statistical) 4096 (PPG spectrogram image)
GSR 8 (Statistical) 4096 (GSR spectrogram image)

Face video 30 (Face AUs-based) 4096 (Face image-based)

Hence, the authors also collected a dataset of 20 video sequences containing real-world

driving data on freeways and downtown San Diego, California. This dataset was collected using

a LISA-T vehicle testbed in which a Tesla Model 3 is equipped with 6 external facing GoPro

cameras. It is also to be noted that while recording these videos the vehicle was in the autonomous

driving mode making LISA dataset the first of its kind. The cameras were operating at 122

degrees field-of-view which is very representative of the human vision. Furthermore, these video

sequences were presented on a large screen (45.9 inches diagonally) at a distance of a meter from

the participants to model a real-world driving scenario. These video sequences ranged from 30 to

50 seconds in length and were shown to the participants with 1920×1200 resolution at 30 fps.
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External annotation was done to classify parts of the video sequences from both datasets into

hazardous/non-hazardous events. For example, an event where a pedestrian suddenly appears

to cross the road illegally was termed hazardous whereas an event where a stop sign can be

seen from a distance and the vehicle’s speed is decreasing was termed non-hazardous. External

annotation was performed to classify every video sequence into how attentive the driver ought

to be in that particular sequence. Table 6.1 catalogs the different datasets and features that were

used in the evaluation of the proposed pipeline.

6.4 Quantitative analysis of multi-modal bio-sensing and vi-

sion sensor modalities

This section presents the evaluation results using various singular and multiple modalities

for driver attention analysis and hazardous/non-hazardous instances classification. First, the

videos in both datasets were externally annotated by two annotators for low/high driver attention

required. For example, the video instances where the car is not moving at all were characterized

as low attention instances whereas driving through narrow streets with pedestrians on the road

were labeled as instances with high driver attention required. Hence, among the 35 videos (15

from KITTI dataset and 20 from LISA dataset), 20 were characterized as requiring low-attention

and 15 as high-attention ones.

Second, 70 instances, each two-second long video clips were found in the videos and

were characterized as hazardous/non-hazardous. Fig. 6.7 presents some examples of instances

from both categories. As an example, a pedestrian suddenly crossing the road “unlawfully” or a

vehicle overtaking suddenly represents hazardous events whereas “red” traffic sign at a distance

and a pedestrian at a crossing with ego vehicle not in motion are examples of non-hazardous

events. Among the 70 instances, 30 instances were labeled as hazardous whereas rest were

labeled as non-hazardous. Hence, the goal was to classify such instances in a short period of
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two seconds using the above modalities. Since PPG and GSR have low temporal resolution and

do not reflect changes in such short time intervals, only facial features and EEG were used for

hazardous/non-hazardous event classification.

For each modality, PCA [60] was first used to reduce the number of features from the above

algorithms to 30. Extreme learning machines (ELM) [62] were then employed for classification.

The choice of using ELM over other feature classification methods was driven by previous studies

that have shown how ELM performs better for features derived from bio-signals [134, 164].

These features were normalized between -1 and 1 across the subjects before training. A single

hidden layer ELM was used with a triangular basis function for activation. For the method with

trend-based temporal EEG and face feature data, two-layer LSTM was used with 200 and 100

neurons in respective layers instead of ELM for classification. The LSTM network’s training

was done using stochastic gradient descent with a momentum (SGDM) optimizer. Leave-one-

subject-out cross-validation was used for each case. This meant that the data from 11 subjects

(385 trials) were used for training at a time and the classification was done on the 35 trials from

the remaining 12th subject. This choice of cross-validation was driven by two factors. First,

this method of cross-validation is much more robust and less prone to bias than models such as

leave-one-sample-out cross-validation that constitutes training data from all the subjects at any

given time. Second, since the data contained 420 trials only as opposed to thousands of trials for

any decent image-based deep learning dataset, it does not make sense to randomly divide such a

small number of trials to training, validation and test sets since it might introduce bias by uneven

division across trials from individual subjects.

Both of the feature classification methods i.e. LSTM-based and ELM-based were used

independently for feature classification with labels. When a higher temporal resolution was taken

into consideration i.e. trends in a series of EEG-PSD images, then the LSTM-based method was

used for feature classification. This is because now the features vary as a time series for each trial

and ELM cannot be used for such a time-series based classification. The ELM-based method was
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performed for the other case i.e. the case when high temporal resolution data (multiple data point

features for each trial) were not present. The data from the complete trial was represented by a

single (non-varying in time) value for each feature.

Figure 6.7: (A) Examples of 2-second incidents classified as hazardous. Examples include
pedestrians crossing the street without a crosswalk while the ego vehicle is being driven and
another vehicle overtaking suddenly. (B) Examples of 2-seconds incidents classified as non-
hazardous. Examples include stop signs and railway crossing signs. For each category, the top
images are from KITTI dataset whereas the bottom images are from LISA dataset.
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6.4.1 Evaluating Attention Analysis Performance

This section evaluates the performance of assessing the driver’s attention using single and

multiple modalities across the video trials. For all the four modalities, the features as defined

above were calculated for data from each video trial. The ELM-based classifier was then trained

based on each video trial divided into one of the two classes representing low-attention and

high-attention required by the driver.

Figure 6.8: Single modality classification performance for driver attention analysis.

Single Modality Analysis

To compare the performance among the different modalities, the number of neurons

in the hidden layer was set to 170 for each of the modality. Fig. 6.8 shows these results.

Clearly, EEG performs the best among the four modalities for driver attention classification. The

average classification accuracy for EEG, PPG, GSR, and face-videos was 95.71±3.95%,81.54±

6.67%,56.02±3.04%, and 80.11±3.39% respectively. The AUC (area under the curve) for the

above four cases were 0.84±0.01,0.83±0.02,0.71±0.19, and 0.79±0.18 respectively. The

statistical t-test was also performed on the above observations. The p-values for the above four

classification cases were 10−5, 10−6, 10−3, and 10−6 respectively. Hence, GSR performs only at

about chance level whereas on average PPG and face videos perform equally well. Thus, it was
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observed that the sensor modalities with good temporal resolution i.e. EEG and vision perform

better or at least as good as the ones with low temporal resolution (PPG and GSR) thus evaluating

this study’s first hypotheses. Pairwise t-test were performed for all six pair combinations of the

above four signal modalities and the p-values were less than 0.05 for all cases. The statistical

tests showed the results to be statistically significant. It was also observed that for all the subjects

except one, EEG’s classification accuracy is above 90% while for three modalities (EEG, GSR,

and vision) the standard deviation in performance across the subjects is not too high.

Figure 6.9: Multi-modality classification performance for driver attention analysis.

Multi-modality Analysis

Fig. 6.9 shows that on combining EEG with PPG and GSR there is no increase in the

performance across the subjects (it might be that for a few subjects this is not the case). When the

features from the low-performing (and poor temporal resolution) modalities i.e. PPG and GSR

are combined with EEG, the performance is not as good as EEG alone for most of them. The

mean accuracy across all the subjects was 92.58± 3.96%,80.11± 3.39%, and 80.01± 6.78%

for the three cases respectively, all of which were significantly above the chance accuracy. The

AUC for the above three cases were 0.85±0.01,0.80±0.03, and 0.80±0.01 respectively. The
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p-values for the above four classification cases were 10−6, 10−6, and 10−3 respectively. To

compare the different signal combinations, pairwise t-test was performed for the above cases.

The p-values of pairwise t-test for multi-modal attention classification were 10−6 between (EEG

+ PPG + GSR) and (GSR +Face) cases and 0.9 between (GSR + Face) and (PPG + Face). Finally,

pairwise t-test analysis was also performed between multi-modality and single-modality cases

and found that the p-values between all four singular modalities (EEG, PPG, GSR, and Face)

and the three multi-modality cases mentioned above were less than 0.05. These p-values thus

denote that not all signal combinations between multi-modality cases are statistically significant

in a pairwise manner while those between singular and multi-modality cases were statistically

significant. Hence, it was observed it is not always beneficial to use features from multiple sensor

modalities. For most of the subjects and modalities, the fusion of features does not perform better

at all and hence may not be advantageous in this case. This might be due to the vast difference in

the performance of each modality when used independently, based on the subject’s physiology.

This leads to an increase in performance for some of the subjects but not for all. But, for all

combinations of sensor modalities, it was observed that the accuracy values were as good or

better than using individual sensor modalities. This proves this study’s first hypotheses about the

performance improvement that could be gained by the use of multiple sensor modalities.

6.4.2 Evaluating Hazardous/Non-hazardous Incidents Classification

This section presents the results of the evaluation of the modalities over very short time

intervals (2 seconds) pertaining to hazardous/non-hazardous driving incidents as shown in Fig.

6.7. Since GSR and PPG do not provide such a fine temporal resolution, these modalities were

not used for this evaluation. This is because GSR changes very slowly i.e. take more than a few

seconds to vary and PPG for a very short period such as 2 seconds would mean only 2-4 heartbeats

which are not enough for computing heart-rate or heart-rate variability. Previous studies to assess

human emotions using GSR and PPG on the order of multiple seconds (significantly greater than
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two seconds hazardous incident evaluation for driving context) [165]. Also, the subjects cannot

tag the incidents while they are participating in the driving simulator experiment and hence these

incidents were marked by the external annotators.

Figure 6.10: Single modality classification performance for driver attention during
hazardous/non-hazardous incidents.

Single-modality Analysis

Fig. 6.10 shows the results for classifying hazardous/non-hazardous incidents using

EEG and face-expression features. As the figure shows, the accuracy for both modalities for

all the subjects is well above chance level (50%). The inter-subject variability for different

sensor modalities can also be visualized from the above figure. For example, EEG outperforms

face-based features for half of the participants but not for the other half. This variation in results

is natural since some people tend to be more expressive with their facial expressions while

on the other hand, the “perceived hazardousness” of a situation varies across subjects. The

mean accuracy among subjects were 91.43±5.17% and 88.10±3.82% for EEG- and face-based

features respectively. The AUC for these two cases were 0.85±0.02 and 0.84±0.02 respectively.

The p-values for the above two classification cases were 10−5 and 10−5 respectively. Finally, a

statistical pairwise t-test was also performed on the above two sensor modalities and the p-value
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was found to be 0.06. Thus, statistical significance was found within EEG and Face sensor

modalitiy pair. Since the evaluation was done on 2-second time intervals i.e. without a lot of

data it is notable that such a high mean accuracy for both modalities was only possible due to

using deep learning-based features in addition to the traditional features for both modalities. This

is further substantiated by the fact that an EEG system was used with a much lesser number

of channels than such previous studies using EEG [10]. This study also shows that using such

deep learning features the developed method outperforms the previous results for EEG on the

KITTI dataset [10, 158] in a similar experimental setup with hazardous/non-hazardous event

classification. Specifically, the single-modality approach for both EEG (AUC 0.85) and Face-

videos (AUC 0.84) outperform on both datasets the previous best result (AUC 0.79) shown only

on the KITTI dataset using EEG alone in [10].

Figure 6.11: Multi-modality classification performance for driver attention during
hazardous/non-hazardous incidents.

Multi-modality Analysis

This section presents the results for classifying hazardous/non-hazardous incidents using

features from both EEG and face modalities. This was done in two ways. First, directly combining

the features from single modality analysis by concatenating them. Second, by using an LSTM
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classifier over the features from both modalities calculated for every frame in the 2-second long

sequence. The trend of these features is then fed to LSTM for training. Fig. 6.11 shows the

results of the two approaches. As is clear from the figure, combining the features from the two

modalities may or may not improve the performance, compared to using individual modalities

shown earlier in Fig. 6.10. But, it is to be noted that on taking the trend of features i.e. increased

temporal resolution into account, the performance of combining the modalities increases for

most of the subjects. This can be seen from Fig. 6.10 where using the LSTM-based method, the

accuracy increases across the subjects. The average accuracy across subjects being 92.38±4.10%

and 94.76±3.41% respectively are also more than for singular modality analysis. The AUC for

these two cases were 0.84±0.01 and 0.88±0.01 respectively. The p-values for the above two

classification cases were 10−6 and 10−7 respectively. The pairwise t-test was also performed for

the above multi-modal cases. The pairwise p-value was 0.10 for driving hazardous/non-hazardous

incident classification between (EEG + Face) and (EEG + Face (LSTM)) cases and thus show

that unlike individual modality cases, the pairwise statistical analysis was not significant for the

above pair of signal modality combinations. Finally, a statistical pairwise t-test evaluation was

performed between singular sensor modalities from Fig. 6.10 and multiple modalities from Fig.

6.11. The p-values between the two singular sensor modality cases (EEG and Face) and two

multi-modality cases were less than 0.05. Thus, statistical significance was observed between

singular and multi-modality sensor combinations as well. In conclusion, using multiple modalities

with high temporal resolution (EEG and vision) may prove to be best when computing features

over a short time duration with their trend (though it will involve more computational power).

Since EEG and Face modalities can be used in short-time intervals, Table 6.2 shows the

mean accuracy across subjects for using EEG and faces separately and combining them for the two

types of analysis done above. It is observable that the performance of EEG combined with faces

can be better than when either modality is used independently for hazardous incident analysis

when using features from the LSTM i.e. trend over the changes in features. However, adding
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Table 6.2: The table shows the average classification accuracy across subjects using EEG
and face-based features for driver attention analysis over the whole video and 2-second
hazardous/non-hazardous incident classification. EEG features generally outperform Face
features for both cases. Using LSTM i.e. better temporal resolution also increases the accuracy.
LSTM could not be used in attention analysis since the duration of the videos varies widely
among the datasets.

Modality Attention Analysis Incident Analysis
EEG 95.71±3.95% 91.43±5.17%
Faces 80.11±3.39% 88.10±3.82%
EEG + Faces 95.10±3.62% 92.38±4.10%
EEG + Faces (LSTM) — 94.76±3.41%

multiple modalities together without using trend-based LSTM analysis may not prove much

beneficial. This answers the study’s second hypotheses by showing that it is beneficial to use a

fusion of the modalities if both modalities have a good temporal resolution to extract short-duration

features over them to map the trend. Thus, connecting dots with the single-modality analysis,

it can be surmised that multi-modality boosts performance over using individual modalities for

hazardous/non-hazardous incident classification (like it did for driver attention analysis) while

further improvement in performance is observed by utilizing higher temporal resolution using

LSTMs.

6.5 Chapter Concluding Remarks

The use of multiple bio-sensing modalities combined with audio-visual ones is rapidly

expanding. With the advent of compact bio-sensing systems capable of collecting data during

real-world tasks such as driving, it is natural that this research area will gather more interest in

the coming years. This work evaluated multiple bio-sensing modalities with the vision modality

for driver attention and hazardous event analysis. A pipeline was also presented to process data

from individual modalities by being able to use pre-trained convolution neural networks to extract

deep learning-based features from these modalities in addition to traditionally used ones. In this
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process, this study was able to compare the performance of the modalities against each other

while also combining them.

This chapter is in part a reprint of material that has been accepted for publication in

the journal MDPI Brain Sciences (2020), by Siddharth Siddharth and Mohan M. Trivedi. The

dissertation author was the primary author of this paper.
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Chapter 7

Conclusion

Affective computing has predominantly focused on computer vision, which suffers from

limitations such as dependence on illumination and privacy-related issues. On the other hand,

bio-sensing modalities such as EEG suffer from low spatial resolution and motion artifacts. Thus,

there is a need to implement a multi-modal sensory approach to study human affects.

In this dissertation, we presented a multi-modal approach to study human affects. The

chapters of this dissertation were arranged in a systemic manner with each building on the content

from the previous one. In the process, we presented a compact headset able to record multi-modal

bio-sensing data in real-time and a real-world manner. Subsequently, such multi-modal sensor

modalities were used with tools from signal processing and deep learning for designing emotion

classification algorithms. These tools were developed in a scalable and robust manner. Such

tools were utilized in applications ranging from assessing emotion states induced by emotional

multimedia content to driver awareness.

As discussed in Chapter 2, there are five objectives that any multi-modal bio-sensing

system for affective computing should achieve. Among those five, this dissertation focused on

detecting and classifying emotional states, inferring emotional state from a minimal number of

sensor modalities, and inferring the context in real-time to process the data. To take this research

119



forward by utilizing such processed data for executing different tasks by the system and being

able to achieve the above in real-world settings throughout the day are future research avenues.

An insight from this dissertation is that since one of the main limitations of affective computing

research being subjective feedback by users, it may be wise to rely rather on games (as we did in

Chapter 3) to assess emotional states. Another insight from this research (as shown in Chapter 5

and 6) is that facial expressions and EEG that has high temporal resolution perform better for

human affect recognition than those with low temporal resolution such as PPG and GSR.

The modular nature of the platform makes it apt for being used in other applications

too such as studying cognitive attention and mental health. Specifically, the hardware platform

developed in Chapter 3 can be used for collecting bio-sensing data for any application while the

algorithms developed in Chapter 5 can be tuned for applications in medical diagnosis. Chapter 6

showed how such algorithms developed for classifying emotions worked well for studying driver

awareness as well.
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