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Abstract

The CCAAT/enhancer binding proteins (C/EBPs) are transcription factors involved in hematopoietic cell development and
induction of several inflammatory mediators. C/EBPe is expressed only in myeloid cells including monocytes/macrophages.
Atherosclerosis is an inflammatory disorder of the vascular wall and circulating immune cells such as monocytes/
macrophages. Mice deficient in the low density lipoprotein (LDL) receptor (Ldlr2/2) fed on a high cholesterol diet (HCD)
show elevated blood cholesterol levels and are widely used as models to study human atherosclerosis. In this study, we
generated Ldlr and Cebpe double-knockout (llee) mice and compared their atherogenic phenotypes to Ldlr single deficient
(llEE) mice after HCD. Macrophages from llee mice have reduced lipid uptake by foam cells and impaired phagokinetic
motility in vitro compared to macrophages from llEE mice. Also, compared to llEE mice, llee mice have alterations of lipid
metabolism, and reduced atheroma and obesity, particularly the males. Peritoneal macrophages of llee male mice have
reduced mRNA expression of FABP4, a fatty acid binding protein implicated in atherosclerosis. Overall, our study suggests
that the myeloid specific factor C/EBPe is involved in systemic lipid metabolism and that silencing of C/EBPe could decrease
the development of atherosclerosis.
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Introduction

The CCAAT/enhancer-binding protein-e (C/EBPe) is a

member of the basic-leucine zipper transcription factor family

[1,2]. This family of proteins has a highly homologous C-terminal

dimerization domain and a basic DNA-binding domain, but

differs in the N-terminal transactivation region. The six members

of the family (C/EBPa, b, c, d, e, f) are implicated in the control

of cellular proliferation, differentiation, and function of various

mammalian cell types including adipocytes, hepatocytes, and

myeloid cells [3,4]. C/EBPe is expressed only in monocytes/

macrophages, granulocytes, T-lymphoid lineage and related cell

lines in humans and mice [1,5,6]. In previous studies by our group,

macrophages from C/EBPe deficient mice showed a reduced

phagocytic ability and less lipid accumulation than control mice

[5,7]. Moreover, our prior microarray analysis of cells from

thioglycollate-induced peritoneal neutrophils and macrophages

revealed that 231 genes were identified as differentially regulated

including those associated with immune/inflammatory function

(25%, 59/231) and lipid metabolism (4%, 10/231) [7].

Atherosclerosis is a chronic inflammatory disorder of the

vascular wall. The pathogenesis involves an imbalanced lipid

metabolism, as well as lipid accumulation in the vessels and

recruitment of circulating immune cells such as monocytes/

macrophages, lymphocytes and platelets to the lesions [8,9].

Infiltration of monocytes/macrophages and subsequent transfor-

mation into macrophage-derived lipid loaded foam cells are

important features of atherosclerosis [10,11].

Low density lipoprotein receptor deficient (Ldlr2/2) mice

demonstrate elevated total plasma cholesterol levels following a

high cholesterol diet (HCD), and they have been analyzed as an

experimental model of the human disease, familial hypercholes-

terolemia [12]. Ldlr2/2 mice on HCD develop extensive

atherosclerosis in the aorta by accumulating cholesterol-laden

macrophages in a pattern comparable to lesions formed in

humans.
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In view of C/EBPe activities in inflammation and metabolism,

we studied its role in atherosclerosis by examining the effect of

silencing C/EBPe on a genetic background known for suscepti-

bility to atherosclerosis, Ldlr2/2 mice. We created and studied

Cebpe and Ldlr double-knockout (dKO) mice. Our results suggest

that Cebpe deficiency suppresses the atherogenic effect of Ldlr

deficiency.

Materials and Methods

Ethics statement
All animal experimental procedures were conducted in strict

compliance with the policies on animal welfare of the National

Institute of Health. The protocol was approved by the Animal

Care and Use Committee at Cedars-Sinai Medical Center

Institution (protocol number 2292) and all efforts were made to

minimize animal suffering.

Animals and diets
Mice were fed a standard chow diet unless otherwise indicated.

C57BL/6J wild-type (WT) and Ldlr2/2 (llEE) mice were

purchased from The Jackson Laboratory (Bar Harbor, ME).

Cebpe2/2 (LLee)/129/SvEv mice were generously provided by Drs

K. G. Xanthopoulos and Julie Lekstrom Himes. LLee mice on

129/SvEv strain were back-crossed to WT C57BL/6J mice for at

least 10 generations before being crossed with ldlr2/2 mice to

generate Ldlr2/2/Cebpe2/2 (llee) mice. The llee dKO mice were

established in our laboratory by crossing the llEE mice with LLee/

C57BL/6J mice for at least 5 generations. At 5 weeks of age, llEE

or llee mice were fed a high-fat/high-cholesterol diet (HCD)

(88137, 4.5 kcal/g, Harlan Teklad, USA) containing 21.2% fat

[w/w] and 0.15% cholesterol [w/w]) for 12 to 16 weeks, as

indicated in the Figure Legends. HCD intake in male mice was

measured by weighing of both the given and remaining food

amount two times a week while the mice were 8 to 13 weeks old

when their body weights change between the groups.

Lipid uptake assay of foam cells
Peritoneal macrophages were isolated from the peritoneal cavity

of male and female llEE and llee mice after the instillation of HBSS

buffer (Cellgro; Manassas, VA). Cells were plated on cover slips

(Fisher Scientific, Pittsburgh, PA) previously coated with gelatin

(0.1%; Sigma, St. Louis, MO) in a 24-well plate. Oxidized LDL

(ox-LDL; 25 mg/ml, Biomedical Technologies; Cambridge, MA)

was added; after 16 hours, the cells were fixed with 2%

formaldehyde, and Oil red O staining was performed. Quantifi-

cation of foam cells with lipid was calculated by counting the Oil

red O-positive cells compared to the total number of macrophages

and expressed as the percentage of foam cells as compared to total

macrophages [13].

Phagokinetic cell motility assay
Bone marrow derived macrophages from male and female llEE

and llee mice were plated on coverslips coated with gold

monolayers [14]. After 18 h, cells were fixed with 5% formalde-

hyde, and the area of the particle-free phagokinetic track

measured as an indication of their movement [14] using Image-

Pro Plus software (Media Cybernetics, Silver Spring, MD).

Quantitative real-time PCR (qRT-PCR)
mRNAs were purified from peritoneal macrophages of male

mice by RNeasy kit (QIAGEN) and RT-PCR was performed

using ThermoScript RT-PCR Systems (Invitrogen; Carlsbad, CA)

according to the manufacturer’s protocol. qRT-PCR (iCycler, Bio-

Rad; Hercules, CA) was performed using SYBR Green. b-actin

was employed as an internal control to determine the relative

expression. The delta threshold cycle value (DCt) was calculated

from the given Ct value by the formula DCt = (Ct sample - Ct

control). The fold change was calculated as 22DCt. The primers

are listed in Table S1.

Atheromatous lesions and immunohistochemistry
The aortas were dissected, and the adherent (adventitial) fat was

gently removed. Whole aortas were opened longitudinally from

the aortic arch to the iliac bifurcation, mounted en face, and stained

for neutral triglycerides and lipids with Oil red O. Hearts were

embedded in OCT compounds (Tissue-Tek; Sakura, Torrance,

CA), and serial 10 mm–thick cryosections from the aortic sinus

were collected and mounted on poly-d-lysine–coated plates. The

cross-sections were stained with Oil red O and hematoxylin.

Image analysis was performed by a trained observer blinded to the

genotype of the mice. Lesion areas were quantified with Image-

Pro Plus software as previously described [15]. The cryosections of

the aortic sinus were immunohistochemically stained for macro-

phages (rat anti-mouse CD68; Vector Labs, Burlingame, CA,

USA), then slides were treated as previously described by [16]

using a biotinylated anti-rat IgG secondary antibody and Avidin/

Biotinylated Enzyme Complexes (ABC Elite; Vector Labs) and

visualized using VECTOR Red (P-nitrophenyl phosphate; VEC-

TOR Red substrate kit; Vector Labs). Negative controls were

prepared by omission of the primary antibody.

Lipid profiles
Blood was obtained at weeks 5 (initiation of HCD), 17 (week 12

of HCD) and 21 (week 16 of HCD) by retro-orbital puncture after

a 16 hrs fast. Total cholesterol, high density lipoprotein and

triglyceride in the plasma were measured as described [17].

Statistical analysis
When only two groups were analyzed, statistical significance

was determined using an unpaired Student’s t-test. Two-way

ANOVA was used to compare the effects of HCD on two

genotypes (WT and dKO) and genders. Asterisks shown in figures

indicate significant differences of experimental groups in compar-

ison with the corresponding control condition (* p,0.05, **

p,0.01, *** p,0.001).

Results

C/EBPe deficiency shows reduced formation of foam cells
and impaired motility in vitro

To study a potential functional role of C/EBPe in atherogenesis,

we mated Cebpe2/2 (LLee) mice with Ldlr2/2 mice (llEE), the latter

mice represent a well-studied murine atherosclerotic model.

Accumulation of cholesterol and cholesteryl ester in macrophages

and subsequent foam cell formation is a critical early event in

atherogenesis. We first tested whether deletion of C/EBPe affects

foam cell formation in vitro. Peritoneal-derived macrophages were

isolated from either Ldlr2/2 (llEE) or Ldlr2/2/Cebpe2/2 (llee) mice

and cultured with ox-LDL. Examination of macrophages from llee

mice showed fewer foam cells than macrophages from llEE mice

(p,0.01, Figure 1A). Requirement of macrophages for the

formation of atherosclerotic plaques is a key feature of athero-

sclerosis. To test the effect of C/EBPe deficiency on macrophages

motility, we performed a phagokinetic cell motility assay. Bone

marrow derived macrophages from llee mice displayed decreased

random phagokinetic motility on gold monolayers compared with

macrophages from llEE mice (p,0.01, Figure 1B). These results

C/EBPe and Atherosclerosis
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show that C/EBPe is associated with increased macrophage foam

cell formation and reduced motility in vitro.

Characterization of Ldlr2/2/C/EBPe2/2 (llee) mice fed a
high cholesterol diet (HCD)

Next, we characterized the dKO llee mice under HCD.

Compared with the llEE male mice, mean body weight of the

llee male mice at the end of HCD treatment was 25% less

(P,0.0001, Figure 2Aa). llEE and llee female mice did not differ

in their body weight (Figure 2Ab). During the HCD treatment,

llEE and llee male mice consumed similar amount of HCD

(Figure 2B); and survival rates and overall well-being were not

different between the two genotypes (data not shown). The mice

who were fed a regular diet showed similar body weight between

the two genotypes for both the males and females (Figure 2A,

dashed line). The mechanism underlying the differences in body

weight between the male genotypes on HCD remains unclear at

this point.

Reduced atheroma in male llee mice fed a HCD
To investigate the potential role of C/EBPe in atherosclerosis in

vivo, both llEE and llee mice (male, n = 10; female, n = 10 in each

Figure 1. Lipid uptake of foam cells, and motility of bone marrow-derived macrophages. A, Lipid uptake of foam cells from peritoneal
macrophages of either ldlr2/2 (llEE) or ldlr2/2/C/EBPe2/2 (llee) mice. (a) Representative foam cells in the presence of ox-LDL (25 mg/ml, 16 hrs) (640
magnification) are shown. (b) Quantification of A(a) in llEE (Black, n = 5) and llee mice (Gray, n = 7). Foam cells are expressed as a percentage of
positive Oil red O cells compared with total macrophages. B, Phagokinetic cell motility assay using bone marrow-derived macrophages from either
llEE or llee mice (610 magnification). (a) Representative formation of particle-free phagokinetic track on the gold monolayers. (b) Quantification of
B(a) in llEE (Black, n = 3) and llee mice (Gray, n = 4). Particle-free motility tracks are measured as an indication of their phagokinetic movement. Data
represent mean 6 SD. ** P,0.01.
doi:10.1371/journal.pone.0085341.g001

C/EBPe and Atherosclerosis
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group) were fed a HCD for 12 weeks and atheroma-related

phenotypes were studied. Samples were stained for lipid deposition

with Oil red O. En face analysis of the aortas showed that male llee

mice had 43% and 67% reduction in the lipid-laden lesion area of

the aortic arch and abdominal aorta, respectively, compared with

male llEE mice (Figure 2C). Reduction in the lipid-laden lesion

area was also noted in female llee mice compared with female llEE

mice (29% and 51% reduction in the lipid-laden lesion area of the

aortic arch and abdominal aorta, respectively), although it was less

prominent than in the male llee mice. After 16-weeks of a HCD

(late stage of atherosclerosis), fewer atheromatous lesions were still

observed in the aorta arch of male llee mice, but not in the females,

whereas no significant differences were found in atheromatous

lesions in the abdominal aorta (Panel A in Figure S1).

Quantification of the area of aortic sinus plaques revealed a

41% decrease in their size in the llee male mice compared with

llEE male mice (p,0.01, Figure 2D). No significant difference

was noted between females of the different genotypes. To explore

further the characteristics of atherosclerosis in llee mice, we

quantified the macrophage infiltration by CD68 staining of the

aortic sinus plaques (p,0.05, Figure 2E). Macrophage infiltration

in llee mice was reduced by 47% compared with levels in the llEE

male mice, but not in the females. Although no differences were

noted in plaque areas of aortic sinus in male llee mice (Panel B in
Figure S1), macrophage infiltration was less in male llee mice fed

a HCD for 16-weeks (p,0.05, Panel C in Figure S1).These

Figure 2. Characterization of body weight and atheroma development. A, Overall average body weights, during either a high cholesterol
diet (HCD) or regular diet are shown using approximated curves in male (M, [a]) and female (F, [b]) mice. Mice were weighed twice per week. Each
HCD group had more than 10 mice and regular diet group had more than 4 mice. Black line, Ldlr2/2 (llEE); red line, Ldlr2/2/Cebpe2/2 (llee) mice; solid
line, HCD fed mice; dashed line, regular diet fed mice; BW, body weight; g, gram. B, Average amount of food intake (grams per day per mouse) in
male llEE and llee mice on a HCD. C, C/EBPe deficiency reduces the extent of aortic atherosclerosis. Aortas of both male and female mice of either
Ldlr2/2 (llEE) or Ldlr2/2/Cebpe2/2 (llee) genotype were fed a HCD for 12 weeks. (a) Aortas were stained for lipid deposition with Oil red O.
Representative aortas from the groups are shown. Quantification of plaque areas in the aortas of either arch (b) or abdominal (c) lesion in either llEE
or llee mice stained for lipid deposition with Oil red O. The area of the plaque lesions were quantified with Image-Pro Plus software. Means and SD of
plaque areas are shown. D, Lipid content in aortic sinus plaques is reduced in llee male mice. (a) Representative Oil red O staining of aortic sinus from
llEE and llee mice. (b) Quantitative analysis of (Da) lipid content in the aortic sinus. E, Macrophage infiltration in aortic sinus plaques is reduced in llee
male mice. (a) Representative CD68 staining of aortic sinus from llEE and llee mice. (b) Quantitative analysis of (Ea) CD68 positive lesion in aortic sinus.
Means and SD of plaque areas are shown. M, male; F, female. Data represent mean 6 SD. * P,0.05, ** P,0.01, *** P,0.0001.
doi:10.1371/journal.pone.0085341.g002
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findings suggest that C/EBPe plays an important role in

development of atheromatous plaques, particularly in the early

stages of plaque development.

Effect of C/EBPe deficiency on blood counts and plasma
lipid profile

The major effect of C/EBPe is on normal development of

granulocytes and macrophages; this prompted us to compare the

blood counts of llEE and llee mice at the beginning of the study, as

well as at week 12 of a HCD (Table 1). In general, blood counts

were not statistically different except after 12-weeks HCD,

eosinophil counts were higher in llee compared with llEE male

mice (p,0.05) and monocyte counts were lower in llee compared

with llEE female mice (p,0.01). These changes did not contribute

to our understudying of the atherosclerotic changes.

Because of the stress of HCD we examined the blood lipids

(Figure 3). Total serum cholesterol increased less in both male

and female llee mice as compared with llEE mice after 12-weeks

HCD (p,0.05) (Figure 3A). After 16-weeks of HCD, total

cholesterol levels in male llEE mice were 1.7-fold higher than in

male llee mice (p,0.001). Levels of high density lipoprotein (HDL)

were similar in males of both genotypes; although the levels were

slightly less in llee compared to llEE female mice at weeks 12 and

16 of HCD (Figure 3B). At 16-weeks of a HCD, triglycerides

levels in llEE male mice were higher than in llee male mice

although the difference was not statistically significant

(Figure 3C). These observations suggest that C/EBPe alters lipid

metabolism in mice fed a HCD.

Reduced FABP4 mRNA in peritoneal macrophages
isolated from male llee mice

Next, we measured expression levels of lipid-related genes in the

peritoneal macrophages from llEE and llee male mice after a HCD.

Fatty acid binding protein 4 (FABP4, also known as aP2) is a

member of an intracellular protein family that binds to fatty acids

and regulates lipid metabolism. FABP4 is detected in adipocytes

and macrophages [18]. FABP4 mRNA levels were decreased in the

peritoneal macrophages freshly isolated from male llee mice

(Figure 4). In contrast, the mRNA levels of an ox-LDL scavenger

receptor CD36 and ApoE were similar in llEE and llee mice. The

levels of mRNAs encoding peroxisome proliferator-activated

receptor gamma (PPARc) and a pro-inflamatory cytokine IL-1b
were also similar in llEE and llee mice. These data suggest that the

effect of C/EBPe on the atherosclerotic phenotype may be

mediated, at least in part, through its regulation of FABP4.

Discussion

Overall, our data show that the atherosclerotic phenotype of

Ldlr knockout mice is ameliorated by silencing C/EBPe. We

hypothesized that this might be due to a deficiency in macrophage

function, resulting in reduction of their accumulation at the site of

atherosclerotic lesions. Consistent with this hypothesis, we found

impaired lipid accumulation and motility of both male and female

llee murine macrophages in vitro (Figure 1). Furthermore, llee mice

had less atheromatous lesions, as well as fewer macrophages

infiltrating into the atheromas compared to the plaques of the llEE

mice, and these phenotypes were more prominent in males

Table 1. White blood cell counts at initiation of HCD and after 12 weeks of HCD.

White blood cell counts initiation of HCD

Mice gender Male Female

Mice genotype IIEE llee IIEE llee

AVE±SD AVE±SD p-value AVE±SD AVE±SD p-value

WBC(61000/ml) 8.561.8 10.463.5 ns 8.163.1 10.263.1 ns

NE(61000/ml) 1.060.6 1.460.9 ns 0.960.9 0.960.5 ns

LY(61000/ml) 7.061.4 8.463.5 ns 6.662.1 8.863.3 ns

MO(61000/ml) 0.560.1 0.560.2 ns 0.660.3 0.560.1 ns

EO(61000/ml) 0.0360.02 0.0260.01 ns 0.0360.03 0.0360.03 ns

BA(61000/ml) 0.0160.01 0.00360.05 ns 0.0160.01 0.0160.01 ns

White blood cell counts after 12 weeks HCD

Mice gender Male Female

Mice genotype IIEE llee IIEE llee

AVE±SD AVE±SD p-value AVE±SD AVE±SD p-value

WBC(61000/ml) 11.561.8 16.762.5 ns 10.160.8 10.564.1 ns

NE(61000/ml) 3.360.2 5.261.8 ns 2.860.4 2.960.9 ns

LY(61000/ml) 7.661.3 10.665.1 ns 6.360.8 7.163.2 ns

MO(61000/ml) 0.660.3 0.860.6 ns 0.960.1 0.360.1 **

EO(61000/ml) 0.0560.00 0.1160.02 * 0.0560.02 0.0660.03 ns

BA(61000/ml) 0.0360.01 0.0460.02 ns 0.0460.01 0.0360.01 ns

Blood was taken before HCD (5 weeks old, initiation of HCD) and after 12-weeks HCD (17 weeks old). P-value was calculated between llEE and llee mice.
*; P,0.05,
**; P,0.01.
AVE; average, SD; standard deviation, WBC; white blood cells, NE; neutrophils, LY; lymphocytes, MO; monocytes, EO; eosinophils, BA; basophils, ns; not significant.
doi:10.1371/journal.pone.0085341.t001
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(Figure 2). In addition, llee mice on HCD had alterations of lipid

metabolism; and again, this was particularly obvious in males

(Figure 3). Together these results suggest that functional changes

in llee macrophages may affect atherosclerosis.

Interestingly, the effects of C/EBPe deletion on the formation of

atherosclerotic lesions were more prominent at 12 weeks of HCD

compared with 16 weeks. The reason for this finding is currently

unclear; however a number of reports demonstrated that different

molecular mechanisms are at play at different stages of athero-

sclerosis development. For example, gene expression analysis

studies showed differential gene regulation during early vs. late

stages of atherosclerosis [19,20]. One possibility is, therefore, that

C/EBPe targets genes acting early in atherosclerotic lesion

formation rather than at latter stages.

Several types of immune cells such as macrophages and

lymphocytes have well-established roles in atherosclerosis [12].

However, recent studies revealed that neutrophils also contribute

to formation of atherosclerotic lesion [21]. Notably, C/EBPe is a

key regulator of secondary granule proteins which are crucial for

neutrophil maturation [22]. Although not dealt with in our current

study, lack of C/EBPe in neutrophils may also contribute to

reduced atheroma in the llee mice. A recent study using ApoE2/2

mice demonstrated that the secondary granule protein CAMP, a

known C/EBPe target gene, directly promotes atherosclerosis by

enhancing recruitment of inflammatory monocytes [23] Another

study using the ApoE2/2 murine model reported that neutropenic

mice had reduced plaque sizes at early but not late stages of

atherosclerotic lesion formation, suggesting an important role of

neutrophils in the initiation of atherosclerosis [24].

In a previous study, we performed microarray analysis of

Cebpe2/2 vs. wild type myeloid cells, and found that a large

number of genes involved in immune/inflammatory functions

(25%, 59/231) and lipid metabolism (4%, 10/231) are differen-

tially expressed [7]. The immune/inflammatory category included

numerous genes encoding for cytokines/chemokines and their

receptors (e.g. CSF1, CXCL2, IL6, CSF3R and TNFR1). Differen-

tially expressed lipid metabolic genes included down-regulation of

genes involved in lipoprotein uptake (macrophage scavenger

Figure 3. Lipid profile in murine plasma. Total cholesterol (A), high density lipoprotein (HDL) (B), and triglyceride (C) were measured as follows:
Aa and Ba initiation of HCD (5 week old mice), N = 10 in each group; Ab, Bb and Ca week 12 of HCD, N = 6 in each group; Ac, Bc and Cb week 16 of
HCD, n = 6 in each group. M, male; F, female. Means and SD are shown (mg/dl). * P,0.05, *** P,0.01.
doi:10.1371/journal.pone.0085341.g003
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receptor 1 [MSR1]) and accumulation of cholesterol esters (FABP4)

as well as concomitant up-regulation of genes involved in cellular

cholesterol efflux (such as SCARB1, SORL1 and APOC2). Thus, C/

EBPe likely affects the atherosclerotic phenotype by altering the

expression of specific immune/inflammatory and lipid-related

genes in macrophages.

FABPs are cytoplasmic proteins which deliver fatty acids to

various intracellular compartments for storage as triglyceride

droplets [25,19]. In an Apoe2/2 mouse model, macrophage

deficiency of FABP4 leads to a strong protection against

development of atherosclerosis [18]. In this model, FABP4

deficient macrophages show alterations in inflammatory cytokine

production and a reduced ability to accumulate cholesterol esters

when exposed to modified lipoproteins. Furthermore, genetic or

chemical inhibition of FABP4 in murine models prevents

atherosclerosis by reducing the endoplasmic reticulum (ER) stress

response in macrophages [26]. In addition, studies in humans

showed that FABP4 levels are high in unstable atherosclerotic

lesion of patients with carotid atherosclerosis [27,28]. Importantly,

RT-PCR and immunohistochemical analyses showed that FABP4

specifically localized to the macrophage population within the

plaques.

FABP4 regulatory region is well characterized and has been

shown to contain C/EBP binding sites [29,30]. A population study

showed that individuals having a polymorphism (T-87C) of the

FABP4 promoter at a C/EBP binding site have a lower expression

level of FABP4, a lower plasma triglyceride level and reduced risk

for both coronary heart disease and type 2 diabetes compared with

individuals who were homozygous for the WT allele [31].

Congruently, we found reduced levels of total cholesterol and

triglyceride in llee male mice (Figure 3) suggesting that C/EBPe,
which is expressed only in myeloid cells, may be able to regulate

systemic lipid metabolism. Also, the macrophages from the llee

mice on a HCD had reduced expression of FABP4 compared to

macrophages of llEE mice (Figure 4). This suggests that loss of C/

EBPe decreased atheromic lesion development, at least in part, by

a down-regulating FABP4.

One area of interest which is unexplained is the gender

difference in atherosclerosis and obesity in the dKO mice. The

prevention of both atherosclerosis and obesity by C/EBPe
deficiency occurred only in male mice. Gender differences are

evident in the development of atherosclerosis in humans [32]. In

addition, a number of studies using murine models reported strain

and gender differences in the kinetics and pathophysiology of

lesion development in animal models [33–36]. The differences are

attributed to various factors, including differences in the cardio-

vascular and metabolic effects of sex hormones, in the response to

therapy and in gene expression (especially genes located on the X

chromosome).

In conclusion, our data suggest that C/EBPe expressing

myeloid cells are involved in systemic lipid metabolism. Further-

more, our findings suggest that silencing C/EBPe in macrophages

may have the capacity to decrease the development of athero-

sclerosis and change lipid metabolism. However, selective inhibi-

tion of C/EBPe in macrophages may not be achievable in vivo

and a broad inhibition of C/EBPe in other cell types, particularly

neutrophils is problematic. Clearly, further studies are required to

determine the clinical significance of these findings.

Supporting Information

Figure S1 C/EBPe deficiency reduces the extent of
aortic atheroma in male. A, Aortas of male or female of

either Ldlr2/2 (llEE) or Ldlr2/2/C/EBPe2/2 (llee) mice fed with a

HCD for 16 weeks. (a) The aortas were stained for lipid deposition

with Oil red O. Representative specimens from the groups are

shown. Quantification of plaque areas in the aortas of either the

arch (b) or the abdominal (c) region in llEE or llee mice stained for

lipid deposition with Oil red O. Means and SD of plaque areas are

shown. B, Lipid content in aortic sinus plaques in either llEE or llee

mice at 16 weeks HCD. (a) Representative Oil red O staining of

aortic sinus from either llEE or llee mice. (b) Quantitative analysis

of lipid content. Means and SD of plaque areas are shown. C,
Macrophage infiltration in aortic sinus plaques is reduced in llee

male mice at 16 weeks HCD. (a) Representative CD68 staining of

aortic sinus from either llEE or llee mice. (b) Quantitative analysis

of CD68 positive region in aortic sinus. Each HCD group had

more than 10 mice and regular diet groups had more than 4 mice.

M, male; F, female. Data represent mean 6 SD. * P,0.05.

(TIFF)

Table S1 Quantitative real-time PCR primer sequenc-
es. The primer sequences of ApoE, CD36 and IL-1b were from

Zhang et al [37].

(DOCX)
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Figure 4. Altered gene expression in the peritoneal macro-
phages from male Ldlr2/2/Cebpe2/2 (llee) mice on a HCD.
Peritoneal macrophages were isolated from male mice fed with HCD
for 12 weeks. Gene expression levels of C/EBPe, APOE, CD36, FABP4,
PPARc, and IL-1b were determined by qRT-PCR (n = 4). Means and SD
are shown. ** P,0.01.
doi:10.1371/journal.pone.0085341.g004
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23. Döring Y, Drechsler M, Wantha S, Kemmerich K, Lievens D, et al. (2012)

SoehnleinO.Lack of neutrophil-derived CRAMP reduces atherosclerosis in

mice.Circ Res.110: 1052–1056.

24. Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O (2010)

Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circula-

tion. 122: 1837–1845.

25. Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in

metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 7: 489–

503.

26. Furuhashi M, Tuncman G, Görgün CZ, Makowski L, Atsumi G, et al. (2007)

Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding

protein aP2. Nature 447: 959–965.

27. Agardh HE, Folkersen L, Ekstrand J, Marcus D, Swedenborg J, et al. (2011)

Expression of fatty acid-binding protein 4/aP2 is correlated with plaque

instability in carotid atherosclerosis. J Intern Med. 269: 200–210.

28. Holm S, Ueland T, Dahl TB, Michelsen AE, Skjelland M, et al. (2011) Fatty

Acid binding protein 4 is associated with carotid atherosclerosis and outcome in

patients with acute ischemic stroke. PLoS One 6: e28785.

29. Cheneval D, Christy RJ, Geiman D, Cornelius P, Lane MD (1991) Cell-free

transcription directed by the 422 adipose P2 gene promoter: activation by the

CCAAT/enhancer binding protein. ProcNatlAcadSci USA 88: 8465–8469.

30. Graves RA, Tontonoz P, Spiegelman BM (1992) Analysis of a tissue-specific

enhancer: ARF6 regulates adipogenic gene expression. Mol Cell Biol. 12: 1202–

1208.

31. Tuncman G, Erbay E, Hom X, De Vivo I, Campos H, et al. (2006) A genetic

variant at the fatty acid-binding protein aP2 locus reduces the risk for

hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. ProcNatlA-

cadSci USA 103: 6970–6975.

32. Vitale C, Mendelsohn ME, Rosano GM (2009) Gender differences in the

cardiovascular effect of sex hormones. Nat Rev Cardiol. 8: 532–542.

33. Teupser D, Persky AD, Breslow JL (2003) Induction of atherosclerosis by low-

fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice:

comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta

(en face measurement).ArteriosclerThrombVasc Biol. 23: 1907–1913.

34. Smith DD, Tan X, Tawfik O, Milne G, Stechschulte DJ, et al. (2010) Increased

aortic atherosclerotic plaque development in female apolipoprotein E-null mice

is associated with elevated thromboxane A2 and decreased prostacyclin

production.JPhysiolPharmacol. 61: 309–316.

35. Surra JC, Guillén N, Arbonés-Mainar JM, Barranquero C, Osada J, et al. (2010)

Sex as a profound modifier of atherosclerotic lesion development in

apolipoprotein E-deficient mice with different genetic backgrounds.

J AtherosclerThromb.17: 712–721.

36. Engelbertsen D, To F, Dunér P, Kotova O, Söderberg I, et al. (2012) Increased
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