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Abstract 

Embodied cognition is sometimes presented as an alternative 
to computational approaches, the argument being that 
cognition is strongly influenced by an agent's body movement. 
However, the exact nature of this influence is still uncertain. In 
the current paper, we add to the conversation by analyzing 
adults’ predictions in a high-ambiguity task: Adults had to 
decide which of two objects would sink faster (or slower) in 
water. Ambiguity was achieved by pitting object volume and 
object mass against buoyancy: The winning object of a pair was 
sometimes the bigger and heavier one, and sometimes it was 
the smaller and lighter one. The crucial manipulation was 
whether the stimuli were real-life objects or 2D pictures. All 
participants were presented with pictures of the objects during 
a training phase (when they received feedback on their 
predictions). Real-life objects were either present during the 
phase prior to the training (jars-first condition), or during the 
phase after the training (jars-last condition). Findings showed 
a clear influence of hands-on experiences: When allowed to 
hold the objects, adults were more likely to demonstrate a 
simplistic focus on object heaviness. These results call for a 
more nuanced understanding of the effect of embodied 
experiences on the stability of representations. While 
embodiment sometimes can help distinguish relevant from 
irrelevant information, we show that it can also destabilize 
representations acquired through visual information.  

Keywords: action; knowledge representation; predictions; 
ambiguity; misconceptions; hands-on explorations 

Introduction 

What is the source of our thoughts, beliefs, attitudes, and the 

like? Traditionally, this question has been addressed with 

models of symbolic activity of the mind: Thoughts might be 

formed on the basis of combining symbols, which themselves 

are computed on the basis of simpler symbols, derived from 

sub-symbolic codes of sensation and perception. Approaches 

of embodied cognition stand in sharp contrast to the 

traditional view of computational models. They claim that 

mental activity, seemingly a bodiless manipulation of 

symbols, is instead strongly influenced by the very physical 

non-symbolic movement of our bodies (e.g., Chemero, 2011; 

Gibbs, 2005; Wilson & Clark, 2009). Rather than suggesting 

purely symbolic activities of bodiless minds, proponents of 

embodied cognition make a convincing case that higher-level 

cognition is constrained by our bodily experience of being in 

the world (Goldin-Meadow, Cook, & Mitchell, 2009).  

In the current paper, we seek to explore the influence of 

embodied experiences in more detail. Our guiding theoretical 

framework does not subscribe to a specific representational 

format or cognitive architecture. Instead, we postulate that 

the mind makes use of whatever constraints are available in 

order to perform systematically (e.g., Kloos, Fisher, & Van 

Orden, 2010). These constraints could come from symbolic 

content, from bodily experiences, or from constraints outside 

the mental or bodily activity. The central question, then, 

pertains to how these different constraints interact. For 

example, to what extent does embodied experience override, 

support, or interfere with visual perception?  

To explore this question, we analyzed the responses of 

adults in a high-ambiguity prediction task: Adults had to 

decide which of two objects would sink faster (or slower) in 

water. Ambiguity was achieved by pitting object volume and 

object mass against buoyancy: The winning object of a pair 

was sometimes the bigger and heavier one, and sometimes it 

was the smaller and lighter one. Thus, the task could not be 

solved with a simplistic rule that focuses on one dimension 

only (i.e., just weight or just size). To be successful, one must 

integrate both mass and volume by paying attention to the 

distribution of mass. While this integration can be 

accomplished, even by children (Kohn, 1093), it is not likely 

to be an adult’s first guess (Castillo & Kloos, 2013). In fact, 

the initial tendency might be to focus on mass exclusively to 

make a decision (Castillo, Kloos, Richardson & Waltzer, 

2015).  

Note that high-ambiguity tasks, while not necessarily 

common in adults’ everyday experiences, have been used 

extensively to better understand the mind’s inner workings. 

The idea is that a high-ambiguity context reveals internal 

biases, natural preferences of the mind, so to speak. They are 

particularly useful to explore the role of embodied 

experiences: If embodied experience matters, then it should 

help disambiguate the constraints of the task. An added twist 
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here is that the specific task we chose – predicting the sinking 

behavior of objects – yields common misconceptions, namely 

that a reliance on mass alone could lead to successful 

performance. Would haptic explorations allow adults to 

overcome these misconceptions faster? Or would it in fact be 

more difficult for adults to benefit from such experiences?  

Our overall method was as follows: Adults were presented 

with pairs of transparent objects that differed in size and 

contained a certain number of weights, clearly visible to 

participants. There were three phases: a pre-test, a training, 

and a post-test. Each phase had the same prediction trials, the 

difference being only in whether participants received 

feedback (training) or not (pre-test, post-test). The crucial 

manipulation was, before each prediction, whether adults 

were presented with real-life objects, or whether they merely 

saw the objects via 2D pictures. Specifically, one group of 

participants could explore real-life objects during the pre-test 

(jars-first condition), and one group of participants could 

explore real-life objects during the post-test (jars-last 

condition). During all other phases, stimuli were the 2D 

pictures of the objects. To what extent does the embodied 

experience affect performance?  

Method 

Participants 

Participants were 112 adults between 18 and 27 years of age, 

recruited from a Midwestern university. They were each 

assigned to one of two conditions: the jars-first condition (17 

men, 38 women; M = 19.03 years, SD = 1.69), or the jars-last 

condition (14 men, 43 women; M = 19.02 years, SD = 1.67). 

They received partial course credit for participation, 

following an IRB-approved procedure. 

Material and Apparatus 

Real-life sinking objects were used in this experiment, 

dropped into a water tank to create feedback for adults’ 

predictions. The objects were transparent glass jars that 

differed in their sizes. Round aluminum discs (43g) could be 

placed inside the jars to manipulate mass. The water tank was 

1m tall and had a vertical dividing wall to make it possible 

for each jar to sink without being affected by the other’s 

turbulences.  

The jars were combined into pairs of objects. Figure 1 

shows an example for various different trials, which differ in 

how mass and volume correlated with rate of sinking. The 

faster sinking object within a pair is marked with a star. In 

two of the trial types, only one of the features was varied 

(either mass or volume), and in three of the trial types, both 

mass and volume were varied. Specifically, in the small-wins 

pair (Fig. 1A), mass was held constant and the size of the jar 

was varied in such a way that the smaller jar sank faster. In 

the heavy-wins pair (Fig. 1B), volume was held constant and 

mass was varied in such a way that the heavier jar sank faster. 

In the big/heavy-wins pair (Fig. 1C), the faster sinking object 

was bigger and heavier than the slower object. In the 

small/heavy-wins pair (Fig. 1D), the faster sinking object was 

smaller and heavier than the slower object. And finally, in the 

small/light-wins pair (Fig. 1E), the faster sinking object was 

smaller and lighter than the slower object. There were nine 

pairs of each trial type, resulting in a total of 45 unique pairs. 

 

 
 

Figure 1: Example trials. Star marks jar that sinks faster. 

A: Small-wins pair. B: Heavy-wins pair. C: Big/heavy-wins 

pair. D: Small/heavy-wins pair. E: Small/light-wins pair. 

 

For simplicity, we will only report performance on the 

big/heavy-wins pairs (Fig. 1C) and the small/light-wins pairs 

(Fig. 1E). These two types of pairs create the high-ambiguity 

task context needed for the current purposes. This is because, 

while mass and volume correlate positively (the bigger of the 

two objects was also the heavier one), it was sometimes the 

heavier and sometimes the lighter object that sank fastest. 

Thus, to perform correctly, it would not be sufficient to pay 

attention to either mass or volume alone. All other trials had 

low ambiguity and will be considered fillers (indeed, adults 

performed largely at ceiling during those trials).  

Pairs were presented either as actual jars or as pictures on 

a screen. Figure 2 shows the picture versions of the stimuli. 

Each trial included a close-up picture of a pair with discs 

outside the jar (Fig. 2A) as well as a close-up with discs inside 

the jar (Fig. 2B). Feedback was always provided as a picture 

of the jars being dropped in the tank of water (Fig. 2C). A 

numeric keypad was used to record participants’ predictions.  
 

 
 

Figure 2: Example pictures.  

A: Empty jars with weights on either side. B: Jars filled 

with weights. C: Jars sinking in the water tank.  

Procedure 

Participants were tested individually in the lab, using 

DirectRT Precision Timing Software (2012 Version) to 

administer the experiment on a desktop computer. The 

experiment consisted of a total of 360 prediction trials, 

divided into three phases. The first phase was the pre-test (90 

trials): Participants made predictions across various jar 

combinations, without receiving any feedback. The second 

phase served as training (180 trials): Adults’ predictions were 

followed by corrective feedback. Finally, the last phase was 
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the post-test (90 trials), featuring prediction trials that were 

identical to the pre-test (no feedback provided). 

Our main manipulation was the timing of the embodied 

experience. Participants held the real objects either during the 

pre-test (jars-first condition), or during the post-test (jars-last 

condition). The training was always carried out with pictures. 

For generalizability purposes, we also manipulated the type 

of predictions adults had to make: Participants were either 

asked to predict which of two jars would sink faster, or which 

of two jars would sink slower.  

During familiarization, participants were shown empty jars 

of different sizes, as well as several aluminum discs. They 

were told that all the discs have the same weight. The 

experimenter then filled the large and small jars with 

aluminum discs and asked the participant to predict which of 

them would sink faster in water (or slower). Participants were 

encouraged to lift the jars before making their predictions. 

Then they were provided with feedback pictures showing the 

outcome of the jars after being dropped in water. Finally, 

participants were shown the keypad and how it works. Prior 

to the experiment proper, they were informed that the pictures 

were taken from the real objects. 

For predictions with real-life objects (pre-test or post-test, 

depending on condition), participants sat in front of an 

opaque box (60 x 25 x 40 cm) that served as a table to hold 

the objects. It also served as a barrier behind which the 

researcher kept the 12 jars (see Fig. 3 for a schematic over-

head view of this arrangement). Based on a random order 

determined for each participant prior to the start of the 

experiment, the jar pairs were presented one at a time. For 

each pair, participants were asked to make a prediction about 

which one of the two jars would sink faster (or slower) in 

water. Participants were encouraged to respond by saying 

“left” or “right”, corresponding to whether the winning (or 

losing) jar was in their left hand or right hand.  

 

 
 

Figure 3: Diagram of the set-up for prediction trials with 

real jars. R: Researcher. C: Video camera. P: Participant. 

 

For predictions with pictures (pre-test or post-test, 

depending on condition), participants were first shown an 

image of two empty jars next to each other, with a stack of 

discs by each jar. This allowed participants a clear view of 

the number of discs for each object. After 1.5 seconds, the 

image was replaced with a picture of the same two jars, but 

now filled with the discs and closed with a lid. Participants 

were asked to decide which of the two jars would sink faster 

(or slower). Figure 4A shows such a trial in schematic form. 

There was no time restriction for making a prediction. The 

trial ended when the participant pressed the keypad to provide 

a prediction. A fifth of the all trials were big/heavy-wins 

trials, and a fifth of the trials were small/light-wins trials, 

interspersed with filler trials.  

Training was identical to pre- and post-test predictions, the 

only difference being that a feedback picture was shown for 

1.5 seconds, right after the participant made a prediction. On 

the very first feedback trial, the image was explained. The 

faster sinking object was pointed out on the computer screen, 

and participants were provided with explicit feedback (e.g., 

“Yes, you were right”; “No, look, it was the other one that 

sank faster”). Training took place between pre- and post-test. 

Of all the training trials, a fifth were big/heavy-wins trials, 

and a fifth were small/light-wins trials, interspersed with 

filler trials.  

 

 
 

Figure 4: Schematic representation of the prediction trials.  

A: Example picture trial during pre- or post-test.  

B: Example picture trial during feedback training.  

Results and Discussion 

Our dependent variable was the proportion of correct 

predictions on big/heavy-wins and small/light-wins trials. 

Figure 5 presents the accuracy data for these two trial types, 

separated by phase (pre-test, training and post-test), and by 

the embodiment manipulation (jars-first vs. jars-last).  

 

 
 

Figure 5: Proportion of correct answers for trial type and 

phase, separated by condition. Error bars represent  

standard errors of the mean. Circles highlight when  

real-life jars were used. 

 

A 2 x 2 x 3 mixed-design ANOVA was carried out, with 

trial type (big/heavy-wins; small/light-wins) and phase (pre-

test; training; post-test) as within-group factors, and with 
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condition (jar-first; jar-last) as the between-group factor. We 

found a significant 3-way interaction, F(2, 220) = 22.47, p < 

.001, 2 = .17, prompting us to look at the results separately 

by phase (see Table 1 for a summary of the results).  

During the pre-test, participants’ performance was 

markedly different for the two types of trials: While 

performance was at ceiling (or close to) on big/heavy-wins 

trials (MPic = .94; MJar = .94), participants made systematic 

mistakes on the small/light-wins trials (MPic = .37; MJar = 

.24). It appears that participants resolved the ambiguity of the 

prediction task by focusing on weight exclusively. A 2 x 2 

mixed-design ANOVA, with trial type and condition as 

factors, revealed a main effect of trial type, F(1,110) >  100; 

p < .001, a main effect of condition, F(1,110) = 8.10; p < .01, 

as well as a significant interaction, F(1,110) =  4.74; p = .032. 

The interaction is driven by the fact that participants’ 

mistakes on small/heavy-wins trials were even more 

pronounced when they handled jars (jars-first condition) than 

when they viewed pictures (jars-last condition), F(1,110) =  

6.32; p = .013. 

During the training, the difference between trial types 

disappeared, whether participants were in the jars-first 

condition (MBig/heavy = .80, MSmall/light = 0.77) or in the jars-last 

condition (MBig/heavy = .80; MSmall/light = 0.82). A 2 x 2 mixed-

design ANOVA (trial type by condition) yielded no main 

effects and no interaction, Fs(1,110) < 2.37; ps > .12. 

Performance was clearly above chance, t(111) > 5; p < .01, 

implying that adults benefited from the training and  quickly 

learned that a focus on mass or volume alone yields mistakes.  

To compare performance during training and pre-test, we 

carried out two 2 x 2 repeated-measure ANOVAs (trial type 

by phase), one for the jar-first condition, and one for the jar-

last condition. For both conditions, the analysis yielded 

highly significant main effects and interactions, Fs > 80, ps < 

.001. While performance on big/heavy-wins pairs decreased 

slightly from pre-test to training in both conditions, ps < .001 

it starkly improved for small/light-wins pairs, ps < .001. The 

results show that training had very similar effects on 

performance, whether participants had a chance to haptically 

explore the objects prior to training or not. This confirms that 

the switch between 3D objects to 2D pictures of the objects 

did not have a discernable effect on performance.  

Finally, during the post-test, the difference between trial 

types was affected by condition. The trial type by condition 

mixed-design ANOVA revealed a main effect of trial type, 

F(1,110) = 11.21; p < .001, and a marginal main effect of 

condition, F(1,110) = 3.55; p = .06, both driven by the highly 

significant interaction, F(1,110) =  26.72; p < .001, 2 = .20. 

To be more specific, trial types yielded different performance 

when participants made their predictions using real jars (jars-

last condition: MBig/heavy = .88, MSmall/light = 0.67; F(1,110) = 

36.94; p < .001, 2 = .25), but not when they made their 

predictions using pictures (jars-first condition: MBig/heavy = 

.78; MSmall/light = 0.83; F(1,110) = 1.63; p = .20.)  

 

 

Comparing post-test performance with training 

performance, we found no significant main effect of trial type 

in the jars-first condition, F < 1. Put differently, when adults 

were presented with pictures, they retained what they learned 

during the training and performed well even without 

feedback. In contrast, in the jars-last condition, when 

participants were given the opportunity to explore the objects 

haptically, performance changed from training to post-test. 

The 2 x 2 repeated-measure ANOVA (trial type by phase) 

revealed a significant main effect of trial type F(1,56) = 

14.83; p < .001; a significant main effect of phase, F(1,56) = 

5.56; p = .02; and a significant interaction, F(1,56) = 42.63; 

p < .001. From training to post-test, performance on 

big/heavy-wins pairs increased, p < .001, while performance 

on small/light-wins pairs decreased, p < .001. Put differently, 

participants in the jars-last condition reverted back to 

disambiguating the conflict in making predictions by 

focusing on the feature of weight. 

 

Table 1. Summary of results. 

 

Pre-test 

 Independent of condition, performance was at 

ceiling when the winning jar was big and heavy. 

 Independent of condition, systematic mistakes 

were made when the winning jar was small and 

light. 

 Systematic mistakes were higher when 

participants used jars (compared to pictures).  

Training 

 Independent of condition, performance was 

equally high on both big/heavy-wins and 

small/light-wins pairs. 

 Participants made some mistakes, but 

performance was overall above chance. 

Post-test 

 When participants used pictures, performance 

remained unchanged (compared to the training).  

 When participants used jars, performance 

increased for the big/heavy-wins pairs, while it 

decreased for the small/light-wins pairs.  

 

Difference scores. To capture these findings on the level of 

individual participants, we calculated a difference score for 

each participant, based on their performance on the 

big/heavy-wins and small/light-wins trials. Specifically, we 

subtracted average accuracy scores for the small/light-wins 

trials from the big/heavy-wins trials. This difference reflects 

the extent to which participants held a big/heavy bias, 

choosing the bigger/heavier jar as the winner more often than 

the smaller/lighter jar. Figure 6 shows obtained results.  
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Figure 6: Average difference between big/heavy-wins and 

small/light-wins trials, per phase and condition.  

Error bars represent standard errors of the mean.  

Circles highlight when real-life jars were used. 

 

Results are very much in line with our analysis of trial-

based performance: Highest difference scores were obtained 

during pre-test (MPic = .56; MJar = .71), reflecting the naïve 

heaviness bias. Importantly, the difference score was higher 

for participants who were given the opportunity to explore 

the objects haptically than for participants who saw pictures, 

F(1,110) = 4.74; p = .03.  

Difference scores decreased substantially during training, 

(MPic = .02; MJar = .03), reaching values that were statistically 

undistinguishable from zero, simple-sample t < 1. This 

suggests that participants no longer based their predictions on 

mass or volume alone. They quickly discovered a new 

criterion, yielding the same degree of success (i.e., number of 

mistakes) in both types of trials.  

The central finding is during the post-test, after participants 

had learned about the shortcomings of a naïve heaviness bias. 

While participants in the jars-first condition largely retained 

the difference scores that they had obtained during training 

(MPic = .04), participants in the jars-last condition did not 

(MJar = .21). Their difference scores shot up, significantly 

more than the difference scores obtained in the jars-first 

condition, F(1,110) = 26.72; p < .001. Participants who were 

allowed to handle the real objects during the post-test phase 

seemed to unlearn some of what was learned during training.  

Summary and Conclusion 

We set out to explore the extent to which embodied 

experiences override, support, or interfere with experiences 

that are gained from visual perception. Adults participated in 

a prediction task about sinking objects, a task that is thought 

to elicit mistaken beliefs about what makes an object sink 

faster or slower in water. Feedback during part of the 

prediction task was expected to change some of those initial 

misconceptions. Indeed, adults demonstrated a substantial 

amount of learning during training. At the same time, we 

succeeded in creating a task that was sufficiently difficult for 

adults to perform below ceiling, but not so difficult that they 

would merely make random guesses. This is the kind of 

regime that is likely to shed light on the constraints on mental 

activity.  

How did embodied experience interface with performance 

when using 2D pictorial stimuli? Our results are clear: there 

was no evidence that embodied experience simply overrode 

visual perception. Even though adults were presented with 

the exact same trials across conditions, when their chance to 

explore objects haptically took place before training (jars-

first condition), performance was decidedly different from 

when it took place after the training (jars-last condition). This 

suggests that behavior derived from embodied experiences is 

not separable from behavior derived from other means of 

perception. This, of course, is no surprise to a one-mind-one-

behavior systems view (e.g., Clark, 2013; Smith, 2005). 

Visual and embodied perception are likely to be interlinked. 

Thus, results that argue for a dissociation between visual and 

embodied experience need to be re-evaluated carefully. 

We also found no evidence that embodied experience 

supports visual perception. This is at least the case if support 

pertains to performing accurately. Whether participants got a 

chance to haptically explore objects before or after the 

training, their performance on the small/heavy-wins trials 

was lower with real jars than when they saw the objects as 

pictures. This is especially evident after the training, when 

participants reached equivalent levels of competence. 

Performance levels stayed the same during the post-test for 

adults presented with pictures, but critical mistakes arose 

from adults presented with the real-life objects. These 

findings undermine blanket claims of the general advantage 

of hands-on, embodied learning.  

Results show that embodied experience interfered with 

visual perception. It did not act separately, and it did not 

support it, but nevertheless, it interfered with it drastically. 

This finding far from trivial given the current task, because 

relevant information, say about object mass and volume, 

were available to both modalities: participants could count 

the number of weights and compare the sizes of the objects, 

whether they were presented in real life or as pictures. If the 

same information can be obtained in theory, why then did we 

find differing performance as a function of condition?  

Could it be that proprioceptive information simply made 

the task harder, yielding non-specific mistakes? This is 

unlikely, given that the differences in performance between 

the jar-based and picture-based contexts were rather specific, 

both in the pre-test and the post-test. In fact, there was not a 

general increase in mistakes for participants exposed to real-

life objects: When they explored objects haptically, they 

performed highly successfully on big/heavy-wins trials, even 

better than adults who merely saw pictures. Their mistakes 

increased only on the small/light-wins trials. This pattern of 

performance, to perform well on big/heavy-wins trials and 

poorly on small/light-wins trials, is the signature of a 

heaviness bias, a bias that was more pronounced when 

participants could hold objects, rather than view them on a 

computer screen.  
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One could argue that our set-up was an unfair comparison: 

Embodied experience might support visual perception, but 

not in a task in which salience to heaviness yields mistakes. 

Embodiment might make heaviness salient, due to the 

inherently salient down-ward force of holding objects. Our 

results might reflect nothing more but a bias of embodied 

experience to increase the salience of heaviness, failing to 

generalize to embodied experience outside of heaviness 

tasks. While our data do not speak directly to this criticism, it 

is nevertheless worth questioning. This is because the 

difference in mass between the two objects in a pair is likely 

to be far more salient in the picture case than the real-jar case. 

The weights were too light (only 43g) to create differences 

that could be readily perceived haptically. It is most likely 

that adults judged difference in weight on the basis of visual 

information. Thus, a high salience of heaviness in embodied 

experiences might not explain our results.  

There are several possible reasons for why the embodied 

experience increased the heaviness bias of adults. One 

possibility is that, rather than making heaviness more salient, 

the redundancy of information between visual and tactile 

information may have prompted the system to revert to a 

simpler belief (in this case, about heaviness). Without this 

redundancy of information, adults might have relied on their 

memory of feedback on specific pairs, and merely guessed on 

those pairs they could not remember. The haptic information 

might have disrupted this strategy to some extent. To test this 

possibility, the study would need to be expanded to include a 

manipulation of explicit, non-tactile disruption. 

Our results support the idea that performance emerges from 

the interaction of many components that change each other 

over time driven by the system’s own history (Smith, 2005; 

Smith & Breazeal, 2007). Such interactive processes have a 

non-linear character, and, beyond a certain size and number 

of relations among their constituents, they express a complex 

behavior of self-organization that cannot be explained by the 

simple features of the elements (Steenbeek & Van Geert, 

2008; Van Orden, Holden, & Turvey, 2003). This dynamic 

pattern is difficult to place in a single component, because it 

is a product of the coordination of the whole system 

(Steenbeek & Van Geert, 2008). It is possible that the mind 

capitalizes on the dynamics of the body when needed 

(Spencer, Austin, & Schutte, 2012; Turvey, 1990; 2007). 

However, our results call for a more nuanced understanding 

of the effect of embodied experiences on the stability of 

representations.  
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