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Abstract

Structuring light to manipulate multipolar resonances for metamaterial applications

by

Tanya Das

Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart

of metamaterial science and technology. Typically, researchers engineer multipolar light-

matter interactions by modifying the size, shape, and composition of the resonators.

Here, we instead engineer multipolar interactions by modifying properties of the incident

radiation. In this dissertation, we propose a new framework for determining the scattering

response of resonators based on properties of the local excitation field.

First, we derive an analytical theory to determine the scattering response of spher-

ical nanoparticles under any type of illumination. Using this theory, we demonstrate

the ability to drastically manipulate the scattering properties of a spherical nanoparti-

cle by varying the illumination and demonstrate excitation of a longitudinal quadrupole

mode that cannot be accessed with conventional illumination. Next, we investigate the

response of dielectric dimer structures illuminated by cylindrical vector beams. Using

finite-difference time-domain simulations, we demonstrate significant modification of the

scattering spectra of dimer antennas and reveal how the illumination condition gives rise

to these spectra through manipulation of electric and magnetic mode hybridization. Fi-

nally, we present a simple and efficient numerical simulation based on local field principles

for extracting the multipolar response of any resonator under illumination by structured

light. This dissertation enhances the understanding of fundamental light-matter interac-

tions in metamaterials and lays the foundation for researchers to identify, quantify, and

manipulate multipolar light-matter interactions through optical beam engineering.
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Chapter 1

Introduction

The word metamaterial comes from the Greek word meta meaning “beyond.” Hence,

metamaterials refer to materials that have light manipulating properties that go beyond

those of naturally-occurring materials. Metamaterials enable unique applications such as

invisibility cloaks [3, 4, 5], optical antennas [6, 7, 8], negative refractive index materials

[9], and superlenses capable of imaging beyond the diffraction limit [10].

Metamaterials derive their unique properties from the collective interference of elec-

tromagnetic fields in arrays of sub-wavelength particles. Such particles, when excited by

light, exhibit a series of resonances in wavelength space, called multipolar resonances,

that can be characterized as electric and magnetic in nature, along with a mode order

(dipole, quadrupole, hexapole, etc.). In order to engineer the response of these particles,

researchers typically focus on manipulating their physical properties such as their size,

shape, and composition [11, 10, 12]. However, the other part of this interaction – the light

– is typically completely ignored, and researchers exclusively use plane wave illumination

for metamaterial design. The focus of this thesis is instead to manipulate the properties

of the illumination beam to uncover new metamaterial phenomena that are inaccessible

by conventional plane wave illumination. Existing work in exploring the effects of illu-

1



Introduction Chapter 1

mination are limited in scope to plasmonic antennas [13, 14, 15, 16], with a few studies

on single dielectric particles [2, 17, 18]. However, much remains to be explored on the

utility and scope of engineering the illumination beam in designing new metmaterials.

This dissertation explores the use of exotic illumination schemes in exposing new

metamaterial phenomena. First, chapter 2 introduces a new analytical framework for

determining the multipolar response of a spherical particle under illumination by any

arbitrary illumination beam, known as the local field theory. Chapter 3 applies the

local field expressions to uncover the scattering response of a spherical particle under

illumination by cylindrical vector beams, and shows how engineering of the illumination

beam can achieve selective excitation of individual multipolar modes. Chapter 4 explores

the response of a dimer antenna to cylindrical vector beams, and shows that such systems

can be used to generate unprecedented magnetic field enhancement and coupling to dark

modes. Finally, chapter 5 presents a numerical implementation of the analytical local

field theory as a method for efficiently and quickly determining the scattering response

of arbitrary particles under any type of illumination.

2



Chapter 2

Analytical local field theory

In this chapter, we rigorously derive a simplified, analytical method to quantify multi-

polar light absorption and scattering for a spherical nanoparticle (NP) illuminated by

any light source of interest, deemed the local field theory. We prove that dipolar and

quadrupolar interactions depend only on local fields or field gradients respectively. The

expressions derived in this chapter describe the scattering, absorption, and extinction

of a spherical nanoparticle of any size and composition within a homogenous medium,

under illumination by any kind of beam.

3
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2.1 Background

The basis for metamaterial design centers on an analytical theory known as Mie

theory, formulated by Gustav Mie in 1908 [19]. Mie theory analytically describes the

interaction between a linearly polarized plane wave and a spherical particle of any size

and composition within a homogenous medium. First, the plane wave is expanded into

spherical vector harmonics (SVHs), a complete basis set for

Conventionally, scattering and absorption of spherical nanoparticles (NPs) under ar-

bitrary types of illumination are calculated with Generalized Lorenz Mie theory (GLMT)

[20], which involves expressing an incident beam as a plane wave or spherical wave ex-

pansion [21]. These expansions require knowing the electric field everywhere on a pla-

nar [E (x, y, z = z0)] or spherical [E (θ, φ, r = r0)] surface respectively. This approach is

complete, and can be used to describe interactions with spherical NPs of any size or

composition. However, NPs used in plasmonics or metamaterials are typically in a size

regime where only dipolar and quadrupolar modes contribute to the optical response.

For these cases, we derive a greatly simplified approach for calculating scattering and

absorption in inhomogeneous fields, inspired by the multipolar interaction Hamiltonian

[22, 23, 24, 25, 26, 27], given as,

H = −p · E(rp)︸ ︷︷ ︸
ED

−m ·H(rp)︸ ︷︷ ︸
MD

− [
←→
QO] · E(rp)︸ ︷︷ ︸

EQ

− [
←→
GO] ·H(rp)︸ ︷︷ ︸

MQ

... (2.1)

The light-matter interaction energy is described by a collection of multipolar terms,

corresponding to electric dipole (ED), magnetic dipole (MD), electric quadrupole (EQ),

and magnetic quadrupole (MQ) interactions. Each interaction term depends on a light-

independent multipole moment (p for ED,m for MD, etc.), as well as a matter-independent

electromagnetic field quantity (E is the electric field, and H is the magnetic field) that

4



Analytical local field theory Chapter 2

only depends on the local field at the NP center (rp), which can be placed at any point of

interest within the inhomogeneous field distribution. These principles are combined with

Mie Theory [28] to rigorously derive simple local-field relations that fully describe the

dipolar and quadrupolar scattering interaction of NPs in inhomogeneous fields. These

derivations are given in the next section.

2.2 Electromagnetic fields radiated by a sphere under

arbitrary illumination

In this section, expressions are derived for the internal and scattered electric and

magnetic fields of a spherical particle under illumination by an arbitrary incident beam.

Expressions for the electric and magnetic fields of the arbitrary incident beams are also

derived, and are expressed both as a summation plane waves (plane wave spectrum, or

PWS), and a subsequent expansion into SVHs.

2.2.1 Incident electric and magnetic fields

Any arbitrary incident beam can be expressed as a summation of plane waves, as is

the convention in the plane wave spectrum technique [29, 21]. The angular spectrum

representation [30] of such a beam is given as,

Einc (r) =
∫ 2π

0

∫ α

0

Ê(θ, φ)eik·r sin θdθdφ (2.2)

Here, Ê(θ, φ) is the angular spectrum for the incident beam, k · r = k(sin θ cosφx +

sin θ sinφy+cos θz) where k is the wavenumber of the wave in the medium, and α is the

collection angle of a lens for a focused wave. The vector r describes the position of the

nano particle (NP) within the beam. This integral may be consequently converted to a

5
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summation as,

E (r) = lim
Nθ,Nφ→∞

Nθ∑
i=1

Nφ∑
j=1

Ê(θi, φi)e
ik·rdθidφi (2.3)

where dθi = α
Nθ

and dφi = 2π
Nφ

. Taking a finite number of plane waves Nθ and Nφ, the

integral in equation (2.2) is approximated by a discrete summation of plane waves with

varying polarization, angle of incidence, and complex amplitude, each given by a pair

of rotation angles θi and φj. By fixing the location of the NP within the beam r, this

discrete summation becomes a summation of plane waves with varying polarization and

complex amplitude.

The convention in Mie theory, which fully describes the interaction between a plane

wave and a spherical NP, is that the plane wave be x-polarized and incident along the

z-axis [28]. Here, we describe the incident beam with as a collection of plane waves with

arbitrary polarization and angle of incidence. We treat each incident plane wave as if,

in a local coordinate system which is specific to each wave, it is x-polarized and incident

along the z-axis. Then, using rotation angles, each plane wave in the angular spectrum

may be expressed using rotation angles about the y- (θp) and z- (φp) axes, to translate

each wave from being polarized along the x-axis and incident along the z-axis in a local

coordinate system, to being arbitrarily polarized in a main coordinate system, as depicted

in Fig. 2.1. For simplicity, we only consider rotations about the y- and z-axes, but a

rotation about the x-axis can be included for completeness.

Using this convention, the the electric field due to the pth plane wave in the summation

is given by equation (2.4), in which kp is the rotated wave vector expressed in the main

coordinate system, defined as k (sin θp cosφpêx + sin θp sinφpêy + cos θpêz) and E ′
p is the

6
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k
z

x
y

EH

k

E

H
θ
nk

E
H ф

n

Figure 2.1: In order to translate waves from being polarized along the x-axis and
incident along the z-axis in a local coordinate system, to being oriented in some arbi-
trary direction in a main coordinate system, each plane wave in angular spectrum is
described by two rotation angles about the y- and z-axes.

amplitude of the incident plane wave.

Ep = E
′

p (cos θp cosφpêx + cos θp sinφpêy − sin θpêz) e
ikp·r (2.4)

The particle may be located at any point in the incident beam. By fixing this location

r, equation (2.4) can be rewritten as,

Ep(r) = Ep (cos θp cosφpêx + cos θp sinφpêy − sin θpêz) (2.5)

where the amplitude of the incident plane wave changes from E
′
p to Ep when the location

within the beam is fixed. Thus, for a total number of plane waves P , the electric field of

the incident beam is given by,

EPWS
inc =

P∑
p=1

Ep (cos θp cosφpêx + cos θp sinφpêy − sin θpêz) (2.6)

Alternatively, the plane waves in (2.6) could be expanded into SVHs, and the resulting

expression for the electric field of the incident beam is given by,

ESV H
inc =

P∑
p=1

∞∑
l=1

ElEp
(
RM
li M

p
o1l − iR

N
liN

p
e1l

)
(2.7)

7
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which is adapted from equation (4.37) in reference [28]. Here, El = il 2l+1
l(l+1)

, where l refers

to the mode order, in the context of Mie Theory. RN
li describes the radial dependence,

and is defined as,

RN
li,s =


ψ

′

l (ρ) /ρ for incoming (i) fields

ξ
′

l (ρ) /ρ for scattered (s) fields
RM
li,s =


ψl (ρ) /ρ for incoming (i) fields

ξl (ρ) /ρ for scattered (s) fields
(2.8)

where ψl and ξl are the Riccati-Bessel functions, and ρ = kr. The p superscripts on

Mo1l and Ne1l indicate that these SVHs include rotation information, which are defined

explicitly in later sections. We ignore the radial vector component of the N SVHs for

simplicity, since only the êtheta and êphi components of the SVHs are needed for our

derivations.

Similarly, the magnetic field of the incident beam can be expressed as a summation

of plane waves and as a subsequent expansion into SVHs, given by,

HPWS
inc =

P∑
p=1

Hp (− sinφpêx + cosφpêy) (2.9)

HSV H
inc = − k

ωµ

P∑
p=1

∞∑
l=1

ElEp
(
RM
li M

p
e1l + iRN

liN
p
o1l

)
(2.10)

2.2.2 Internal and scattered electric and magnetic fields

Using the formulation provided in section 2.2.1, the electric and magnetic fields in-

ternal to the particle are given by,

Eint =
P∑
p=1

∞∑
l=1

ElEp
(
clR

M
li M

p
o1l − idlR

N
liN

p
e1l

)
(2.11)

8
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Hint = −
knp
ωµnp

P∑
p=1

∞∑
l=1

ElEp
(
dlR

M
li M

p
e1l + iclR

N
liN

p
o1l

)
(2.12)

where knp refers to the wave number inside the particle and µnp refers to the magnetic

permeability inside the particle.

Similarly, the scattered electric and magnetic fields are given by,

Esca =
P∑
p=1

∞∑
l=1

ElEp
(
ialR

N
lsN

p
e1l − blR

M
lsM

p
o1l

)
(2.13)

Hsca =
k

ωµ

P∑
p=1

∞∑
l=1

ElEp
(
iblR

N
lsN

p
o1l + alR

M
lsM

p
e1l

)
(2.14)

The coefficients al, bl, cl and dl refer to the appropriate Mie coefficients obtained by

applying the Maxwell boundary conditions, and are defined in [28]. Using these ex-

pressions, the scattered, extinction, and absorbed power may be derived for the dipole

and quadrupole modes, given in section 2.3, and are shown to depend on specific field

properties for each type of mode.

2.3 Power absorbed and radiated by a sphere under

arbitrary illumination

In this section, expressions are provided for the scattered, extinction, and absorbed

power of the electric and magnetic dipole and quadrupole modes. The expressions are de-

rived for the electric modes explicitly, while the derivations for the magnetic modes follow

straightforwardly from the information contained within. These expressions demonstrate

an explicit dependence upon the properties of the illuminating field, where the illuminat-

ing field magnitudes are shown to drive the dipole mode interactions, and the illuminating

9
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field gradients are shown to drive the quadrupole mode interactions.

2.3.1 Scattered power: dipole modes

As mentioned previously, the power scattered by the electric dipole mode is derived

explicitly, and the expression for the power scattered by the magnetic dipole mode is

provided. In order to calculate the power scattered by the electric dipole mode, the

scattered electric and magnetic fields for the electric dipole mode are required. These

may be obtained from equations (2.13) and (2.14), in which the mode order is chosen as

l = 1, as these correspond to the dipole modes, and the an Mie coefficients are chosen,

as these correspond to the electric modes. The resulting expressions for the scattered

electric and magnetic fields are given by,

EED
sca =

P∑
p=1

El=1Ep
(
ia1R

N
1sN

p
e11

)
= EEDs

P∑
p=1

EpN
p
e11 (2.15)

HED
sca =

k

ωµ

P∑
p=1

El=1Ep
(
a1R

M
1sM

p
e11

)
= HEDs

P∑
p=1

EpM
p
e11 (2.16)

where EEDs = ia1El=1R
N
1s = −a1 32

ξ
′
1(kr)

kr
and HEDs = a1

k
ωµ
El=1R

M
1s = ia1

k
ωµ

3
2
ξ1(kr)
kr

. The

notation here differs from [28] in that the radial dependence of the SVHs is expressed

independently. The scattered power is then calculated from the scattered electric and

magnetic fields as,

Psca =
1

2
Re

∫ 2π

0

∫ π

0

(EsθH
∗
sφ − EsφH∗sθ)r2 sin θdθdφ (2.17)

10
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Using equations (2.15) and (2.16) in (2.17) gives (2.18),

PED
sca =

1

2
Re EEDsH∗EDs

∫ 2π

0

∫ π

0

[(
E1N

1
e11θ + ...+ EPN

P
e11θ

) (
E∗1M

1∗
e11φ + ...+ E∗PM

P∗
e11φ

)
−
(
E1N

1
e11φ + ...+ EPN

P
e11φ

) (
E∗1M

1∗
e11θ + ...+ E∗PM

P∗
e11θ

)]
r2 sin θdθdφ

(2.18)

Explicitly performing the multiplications in (2.18) gives,

PED
sca = Re WEDs

∫ 2π

0

∫ π

0

[
|E1|2

(
N1
e11θM

1∗
e11φ −N1

e11φM
1∗
e11θ

)
+ ...

+|EP |2
(
NP
e11θM

P∗
e11φ −NP

e11φM
P∗
e11θ

)
+

E1E
∗
2

(
N1
e11θM

2∗
e11φ −N1

e11φM
2∗
e11θ

)
+ ...

+EP−1E
∗
P

(
NP−1
e11θM

P∗
e11φ −NP−1

e11φM
P∗
e11θ

)
+

E2E
∗
1

(
N2
e11θM

1∗
e11φ −N2

e11φM
1∗
e11θ

)
+ ...

+EPE
∗
P−1

(
NP
e11θM

P−1∗
e11φ −N

P
e11φM

P−1∗
e11θ

)]
sin θdθdφ

(2.19)

where WEDs = 1
2
EEDsH

∗
EDsr

2. This integral is composed of two types, each of which

can be solved explicitly. In order to do so, we now introduce the explicit expressions for

Np
e11 and Mq

e11, given by,

Np
e11 = (cos θp cos (φp + φ) cos θ + sin θp sin θ) êθ − cos θp sin (φp + φ)êφ (2.20)

Mp
e11 = cos θp sin (φp + φ)êθ + (cos θp cos (φp + φ) cos θ + sin θp sin θ) êφ (2.21)

11
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As such, the first type of integral in (2.19) is given by equation (2.22), and can be solved

to give,

|Ep|2
∫ 2π

0

∫ π

0

(
Np
e11θM

p∗
e11φ −N

p
e11φM

p∗
e11θ

)
sin θdθdφ = −8π

3
|Ep|2 (2.22)

Due to the spherical symmetry of this scattering problem, equation (2.22) is true for any

value of p, i.e., for every plane wave in the summation. The second type of integral is

given by,

∫ 2π

0

∫ π

0

[
EpE

∗
q

(
N q
e11θM

p∗
e11φ −N

p
e11φM

q∗
e11θ

)
+ EqE

∗
p

(
N q
e11θM

p∗
e11φ −N

q
e11φM

p∗
e11θ

)]
sin θdθdφ

(2.23)

Using symmetry arguments, it can be shown thatN q
e11θM

p∗
e11φ−N

p
e11φM

q∗
e11θ = N q

e11θM
p∗
e11φ−

N q
e11φM

p∗
e11θ. This reduces equation (2.23) to equation (2.24), which can also be solved to

give,

(
EpE

∗
q + EqE

∗
p

) ∫ 2π

0

∫ π

0

(
N q
e11θM

p∗
e11φ −N

p
e11φM

q∗
e11θ

)
sin θdθdφ

= −8π

3

(
EpE

∗
q + EqE

∗
p

)
(cos θp cos θq cos (φp − φq) + sin θp sin θq)

(2.24)

Thus the expression for the power scattered by the electric dipole mode (2.19) reduces

to,

PED
sca = −Re WEDs

8π

3

P∑
p=1

∑
q 6=p

|Ep|2+

(
EpE

∗
q + EqE

∗
p

)
(cos θp cos θq cos (φp − φq) + sin θp sin θq)

(2.25)

12
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We previously defined WEDs = 1
2
EEDsH

∗
EDsr

2 = −i9
8
|a1|2 1

kωµ
ξ1ξ

′∗
1 . Since we are

dealing with far-field expressions, we take the limit for large kr: limkr→∞ ξ1ξ
′∗
1 = −i.

Inserting this into equation (2.25) gives our final expression for the power scattered by

the electric dipole mode to be,

PED
sca =

3π

kωµ
|a1|2

P∑
p=1

∑
q 6=p

|Ep|2 +
(
EpE

∗
q + EqE

∗
p

)
(cos θp cos θq cos (φp − φq) + sin θp sin θq)

(2.26)

To simply this expression further we turn to our original expression for the incident

electric field. Using equation (2.6), we can calculate the magnitude of the incident electric

field as follows:

|Einc|2 = |Einc,x|2 + |Einc,y|2 + |Einc,z|2

|Einc,x|2 =
P∑
p=1

∑
q 6=p

|Ep|2 cos θp2 cosφp2 +
(
EpE

∗
q + E∗pEq

)
(cos θp cos θq cosφp cosφq)

|Einc,y|2 =
P∑
p=1

∑
q 6=p

|Ep|2 cos θp2 sinφp2 +
(
EpE

∗
q + E∗pEq

)
(cos θp cos θq sinφp sinφq)

|Einc,z|2 =
P∑
p=1

∑
q 6=p

|Ep|2 sin θp2 +
(
EpE

∗
q + E∗pEq

)
(sin θp sin θq)

=⇒ |Einc|2 =
P∑
p=1

∑
q 6=p

|Ep|2 +
(
EpE

∗
q + EqE

∗
p

)
(cos θp cos θq cos (φp − φq) + sin θp sin θq)

(2.27)

We see that (2.26) is simplified by (2.27) and our final expression for the power

13
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scattered by the electric dipole mode is directly given by the magnitude of the incident

electric field as,

PED
sca =

3π

kωµ
|a1|2|Einc|2 (2.28)

The power scattered by the magnetic dipole mode may be derived similarly, and is given

by,

PMD
sca =

3π

kωµ
|b1|2Z2|Hinc|2 (2.29)

where Z is the impedance of the medium.

2.3.2 Extinction and absorbed power: dipole modes

The extinction power for the electric dipole mode is derived explicitly and the ex-

pression for the extinction power of the magnetic dipole mode is provided. In order to

calculate the extinction power of the electric dipole mode, the electric and magnetic field

components of the incident beam that drive the electric dipole interaction are required,

as well as the scattered electric and magnetic fields for the electric dipole mode. The

latter are given in (2.15) and (2.16). The former may be obtained from (2.7) and (2.10),

in which the mode order is chosen as l = 1 and the even SVHs are chosen (N for the

electric field and M for the magnetic field), as these correspond to the electric dipole

mode. The resulting expressions for the incident electric and magnetic fields driving the

electric dipole interaction are given by,

EED
inc =

P∑
p=1

El=1Ep
(
−iRN

1iN
p
e11

)
= EEDi

P∑
p=1

EpN
p
e11 (2.30)

14
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HED
inc = − k

ωµ

P∑
p=1

El=1Ep
(
RM

1iM
p
e11

)
= HEDi

P∑
p=1

EpM
p
e11 (2.31)

where EEDi = −iEl=1R
N
1i =

3
2

ψ
′
1(kr)

kr
and HEDi = − k

ωµ
El=1R

M
1i = −i kωµ

3
2
ψ1(kr)
kr

.

The extinction power is given by,

Pext =
1

2
Re

∫ 2π

0

∫ π

0

(EiφH
∗
sθ − EiθH∗sφ − EsθH∗iφ + EsφH

∗
iθ)r

2 sin θdθdφ (2.32)

Using equations (2.15)-(2.16) and (2.30)-(2.31) in (2.32) gives,

PED
ext =

1

2
Re (EEDiH

∗
EDs + EEDsH

∗
EDi)∫ 2π

0

∫ π

0

[(
E1N

1
e11θ + ...+ EPN

P
e11θ

) (
E∗1M

1∗
e11φ + ...+ E∗PM

P∗
e11φ

)
−
(
E1N

1
e11φ + ...+ EPN

P
e11φ

) (
E∗1M

1∗
e11θ + ...+ E∗PM

P∗
e11θ

)]
r2 sin θdθdφ

(2.33)

The integral in equation (2.33) is the same as that in equation (2.18), which has

already been solved. Thus we can rewrite the extinction power of the electric dipole

mode as,

PED
ext = −Re WEDe

8π

3

P∑
p=1

∑
q 6=p

|Ep|2+

(
EpE

∗
q + EqE

∗
p

)
(cos θp cos θq cos (φp − φq) + sin θp sin θq)

(2.34)
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where the prefactor can be simplified as follows,

Re (WEDe) = Re
1

2
(EEDiH

∗
EDs + EEDsH

∗
EDi) r

2

= Re
1

kωµ

9

8

(
ia∗1ψ

′

1ξ
∗
1 + ia1ξ

′

1ψ
∗
1

)
= Re

1

kωµ

9

8

(
ia∗1ψ

′

1 (ψ
∗
1 + iχ∗1) + ia1(ψ

′

1 − iχ
′

1)ψ
∗
1

)
=

1

kωµ

9

8
Re
(
i(a∗1 + a1)ψ

′

1ψ
∗
1 − a∗1ψ

′

1χ
∗
1 + a1χ

′

1ψ
∗
1

)
=

1

kωµ

9

8

(
Re(a1)Im(ψ

′

1ψ
∗
1)− Re(a1)Re

(
ψ

′

1χ
∗
1 − χ

′

1ψ
∗
1

))
= − 1

kωµ

9

8
Re(a1)

(2.35)

Here, the last step follows since ψn is always real for real argument, and ψ′
nχ
∗
n−χ

′
nψ
∗
n = 1.

Inserting this back into (2.34), and using the definition for the magnitude of the incident

electric field in (2.27), the expression for the extinction power of the electric dipole mode

simplifies to,

PED
ext =

3π

kωµ
Re (a1) |Einc|2 (2.36)

and once again the dipole mode is shown to be driven by the incident electric field

magnitude. The extinction power of the magnetic dipole mode may be derived similarly,

and is given by,

PED
ext =

3π

kωµ
Re (b1) |Hinc|2 (2.37)

where Z is the impedance of the medium.

Correspondingly, the absorbed power for the dipole modes is obtained from the scat-
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tered and extinction power equations, and is given by,

Wabs = Wext −Wsca (2.38)

where Psca and Pext are given in equations (5.1), (2.36) and (2.29), (2.37) for the electric

and magnetic dipoles, respectively.

2.3.3 Scattered power: quadrupole modes

In this section, the power scattered by the electric quadrupole mode is derived ex-

plicitly, and the expression for the power scattered by the magnetic quadrupole mode is

provided. Similar to the derivation for the power scattered by the electric dipole mode,

we begin by obtaining expressions for the scattered electric and magnetic fields for the

electric quadrupole mode. These may be obtained from equations (2.13) and (2.14), in

which the mode order is chosen as l = 2, as these correspond to the quadrupole modes,

and the an coefficient are chosen, as these correspond to the electric modes. The result-

ing expressions for the scattered electric and magnetic fields for the electric quadrupole

modes are given by,

EEQ
sca =

P∑
p=1

El=2Ep
(
ia2R

N
2sN

p
e12

)
= EEQs

P∑
p=1

EpN
p
e12 (2.39)

HEQ
sca =

k

ωµ

P∑
p=1

El=2Ep
(
a2R

M
2sM

p
e12

)
= HEQs

P∑
p=1

EpM
p
e12 (2.40)

where EEQs = ia2El=2R
N
2s = −ia2 56

ξ
′
2(kr)

kr
and HEQs = a2

k
ωµ
El=2R

M
2s = −a2 k

ωµ
5
6
ξ2(kr)
kr

.

The scattered power is then calculated from (2.17) to give an expression very similar

to equation (2.18), in which we simply replace Ne11,Me11 with Ne12,Me12. The explicit
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expressions for Np
e12 and Mq

e12 are given by,

Np
e12 =

(
3 cos 2θp cos 2θ cos (φ− φp) +

3

4
(3 + sin 2θp sin 2θ cos 2(φ− φp))

)
êθ

− 3 (cos 2θp cos θ + cos (φ− φp) sin 2θp sin θ) sin (φ− φp)êφ
(2.41)

Mp
e12 = −3 (cos 2θp cos θ + cos (φ− φp) sin 2θp sin θ) sin (φ− φp)êθ

−
(
3 cos 2θp cos 2θ cos (φ− φp) +

3

4
(3 + sin 2θp sin 2θ cos 2(φ− φp))

)
êφ

(2.42)

Similarly to before, we have two types of integrals to solve for, and the integrals as

well as their exact solutions are given below as,

|Ep|2
∫ 2π

0

∫ π

0

(
Np
e12θM

p∗
e12φ −N

p
e12φM

p∗
e12θ

)
sin θdθdφ = −72π

5
|Ep|2 (2.43)

(
EpE

∗
q + EqE

∗
p

) ∫ 2π

0

∫ π

0

(
N q
e12θM

p∗
e12φ −N

p
e12φM

q∗
e12θ

)
sin θdθdφ

= −18π

5

(
EpE

∗
q + EqE

∗
p

)
∗

(4 cos 2θp cos 2θq cos (φp − φq) + sin 2θp sin 2θq (3 + cos 2 (φp − φq)))

(2.44)

Thus the expression for the power scattered by the electric quadrupole mode is given by,

PEQ
sca = −Re WEQs

18π

5

P∑
p=1

∑
q 6=p

4|Ep|2 +
(
EpE

∗
q + EqE

∗
p

)
(4 cos 2θp cos 2θq cos (φp − φq)

+ sin 2θp sin 2θq (3 + cos 2 (φp − φq)))

(2.45)
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where previously defined WEQs =
1
2
EEQsH

∗
EQsr

2 = i25
72
|a2|2 1

kωµ
ξ2ξ

′∗
2 . Since we are dealing

with far-field expressions, we take the limit for large kr: limkr→∞ ξ2ξ
′∗
2 = −i. Inserting

this into equation (2.45) gives our final expression for the power scattered by the electric

quadrupole mode to be,

PEQ
sca = −5π

4

1

kωµ
|a2|2

P∑
p=1

∑
q 6=p

4|Ep|2 +
(
EpE

∗
q + EqE

∗
p

)
(4 cos 2θp cos 2θq cos (φp − φq)

+ sin 2θp sin 2θq (3 + cos 2 (φp − φq)))

(2.46)

To simply this expression, we calculate the gradient of the incident electric field

(reprinted here) along the different Cartesian directions at a fixed point in space.

Ep = E
′

p (cos θp cosφpêx + cos θp sinφpêy − sin θpêz) e
ik(sin θp cosφpx+sin θp sinφpy+cos θpz)

(2.47)

The gradient components for each plane wave p in the plane wave summation are

given as,

∂Ex
∂x

= ikEp cos θp sin θp cos
2 φp

∂Ex
∂y

= ikEp cos θp sin θp cosφp sinφp

∂Ex
∂z

= ikEp cos
2 θp cosφp

∂Ey
∂x

= ikEp cos θp sin θp cosφp sinφp

∂Ey
∂y

= ikEp cos θp sin θp sin
2 φp

∂Ey
∂z

= ikEp cos
2 θp sinφp

∂Ez
∂x

= −ikEp sin2 θp cosφp
∂Ez
∂y

= −ikEp sin2 θp sinφp

∂Ez
∂z

= −ikEp cos θp cos θp

(2.48)
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We define Qij as the summation of these field gradients, where i, j iterate over the

Cartesian components x, y, z and the expression is given by,

Qij =
1

2

(
∂Ei
∂j

+
∂Ej
∂i

)
(2.49)

Using this expression, each of the Qij terms are given as,

Qxx = ikEp cos θp sin θp cos
2 φp Qxy = Qyx = ikEp cos θp sin θp cosφp sinφp

Qxz = Qzx =
ik

2
Ep cos 2θp cosφp Qyy = ikEp cos θp sin θp sin

2 φp

Qyz = Qzy =
ik

2
Ep cos 2θp sinφp Qzz = −ikEp cos θp sin θp

(2.50)

Finally, computing summation of the absolute value of Qij gives,

∑
i,j

|Qi,j|2 = |Qxx|2 + ...+ |Qzz|2

= −k
2

8

P∑
p=1

∑
q 6=p

4|Ep|2 +
(
EpE

∗
q + EqE

∗
p

)
(4 cos 2θp cos 2θq cos (φp − φq)

+ sin 2θp sin 2θq (3 + cos 2 (φp − φq)))

(2.51)

This reduces our expression for the power scattered by the electric quadrupole mode

(2.46) to,

PEQ
sca =

10π

k3ωµ
|a2|2

∑
i,j

|Qi,j|2 (2.52)

and the power scattered by the electric quadrupole mode is directly given by the sum-

mation of the incident electric field gradients. The power scattered by the magnetic
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qudrupole mode may be derived similarly, and is given by,

PMQ
sca =

10π

k3ωµ
|b2|2Z2

∑
i,j

|Gi,j|2 (2.53)

where Gij is defined analogously to (2.49), where the electric fields are replaced with

magnetic fields.

2.3.4 Extinction and absorbed power: quadrupole modes

The extinction power for the electric quadrupole mode is derived explicitly and the

expression for the extinction power of the magnetic quadrupole mode is provided. The

procedure is similar to that outlined in section 2.3.2, so the extinction power for the

electric quadrupole mode is written directly as,

PEQ
sca = −Re WEQe

18π

5

P∑
p=1

∑
q 6=p

4|Ep|2 +
(
EpE

∗
q + EqE

∗
p

)
(4 cos 2θp cos 2θq cos (φp − φq)

+ sin 2θp sin 2θq (3 + cos 2 (φp − φq)))

(2.54)

in which WEQe =
1
2

(
EEQiH

∗
EQs + EEQsH

∗
EQi

)
r2, and EEQi, HEQi are given as,

EEQ
inc =

P∑
p=1

El=2Ep
(
−iRN

2iN
p
e12

)
= EEQi

P∑
p=1

EpN
p
e12 (2.55)

HEQ
inc = − k

ωµ

P∑
p=1

El=2Ep
(
RM

2iM
p
e12

)
= HEQi

P∑
p=1

EpM
p
e12 (2.56)
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Similarly to before, the prefactor can be simplified as follows,

Re (WEQe) = Re
1

2

(
EEQiH

∗
EQs + EEQsH

∗
EQi

)
r2

= Re
1

kωµ

25

72

(
ia∗2ψ

′

2ξ
∗
2 + ia2ξ

′

2ψ
∗
2

)
= Re

1

kωµ

25

72

(
ia∗2ψ

′

2 (ψ
∗
2 + iχ∗2) + ia2(ψ

′

2 − iχ
′

2)ψ
∗
2

)
=

1

kωµ

25

72
Re
(
i(a∗2 + a2)ψ

′

2ψ
∗
2 − a∗2ψ

′

2χ
∗
2 + a2χ

′

2ψ
∗
2

)
=

1

kωµ

25

72

(
Re(a2)Im(ψ

′

2ψ
∗
2)− Re(a2)Re

(
ψ

′

2χ
∗
2 − χ

′

2ψ
∗
2

))
= − 1

kωµ

25

72
Re(a2)

(2.57)

Inserting this back into (2.54), and using the definition of Qij in (2.51), the expression

for the extinction power of the electric quadrupole mode simplifies to,

PEQ
sca =

10π

k3ωµ
Re (a2)

∑
i,j

|Qi,j|2 (2.58)

The extinction power of the magnetic quadrupole mode may be derived similarly, and is

given by equation as,

PMQ
sca =

10π

k3ωµ
Z2Re (b2)

∑
i,j

|Gi,j|2 (2.59)

And again, the the absorbed power for the dipole modes is obtained from the scattered

and extinction power equations, as given in equation (2.38). Building from this local-field

approach, we investigate the scattering response of spherical NPs under illumination by
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focused linearly, azimuthally, and radially polarized focused light beams, given in the

following chapter.
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Chapter 3

Manipulating multipolar resonances in

a spherical particle using structured

light

In this chapter, we use the expressions derived in chapter 2 to demonstrate selective sup-

pression and enhancement of individual multipolar modes by manipulating beam symme-

tries and numerical apertures. These calculations reveal a longitudinal quadrupole mode,

which is completely inaccessible by conventional linearly polarized light. Additionally, we

achieve selective excitation of individual multipolar modes. These findings demonstrate a

method for quantifying multipolar interactions in sub-wavelength particles and establish

beam engineering as a powerful method for manipulating multipolar phenomena.
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3.1 Validating the local field theory

As derived in chapter 2, the total power scattered via dipolar modes for a spherical

NP under arbitrary illumination is given by,

P dip
sca =

3π

kωµ

 |a1|
2|Einc (rp)|2, electric (3.1)

Z2|b1|2|Hinc (rp)|2, magnetic (3.2)

where, Z, µ, and k are respectively the impedance, permeability, and wave number of

the background medium. an and bn are Mie coefficients, determined from standard plane

wave illumination. Lastly, |Einc (rp)|2 and |Hinc (rp)|2 are the electric and magnetic field

intensity at the center of the NP, in the absence of the NP. In analogy with the multipolar

interaction Hamiltonian, the scattering is proportional to a field-independent “moment”,

i.e., the Mie coefficient, and a particle-independent driving term, i.e., the field intensity.

Similarly, the power scattered by quadrupole modes is given by,

P quad
sca =

10π

k3ωµ


|a2|2

∑
i,j

|Qij|2, electric (3.3)

Z2|b2|2
∑
i,j

|Gij|2, magnetic (3.4)

where the driving term depends on a summation of field gradients and is defined as,

Qij =
1

2

(
∂Ei
∂j

+
∂Ej
∂i

)
(3.5)

and i, j refer to the Cartesian coordinates x, y, z [31]. There are nine terms in this

summation, but only six unique terms, since Qij = Qji. The MQ field interaction term

Gij is defined similarly, replacing electric field gradients with magnetic field gradients.
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Figure 3.1: Fraction of scattered power to incident power of silver spherical NP in
water with radius 100nm under focused linearly polarized illumination, as a function
of wavelength. Local field results (shapes) are superimposed on GLMT results (solid
lines) from ref [1] at four different focus angles, and the two show excellent agreement.
The Mathematica code used to generate this figure is given in Appendix A.1.

These expressions may be used to determine the power scattered by a spherical particle

at any location in an inhomogeneous illuminating field.

Local-field based expressions may also be used to describe higher order multipole in-

teractions; here we restrict discussion to the dipole and quadrupole modes that dominate

the response of typical plasmonic and metamaterial NP constituents. Although we focus

on scattering cross-sections here, expressions for the electromagnetic fields and absorbed

power are included in chapter 2. The local field approach confers a variety of advantages

over GLMT. It is particularly useful in cases where the spatial electromagnetic field dis-

tributions are already known – the need for spherical wave or plane wave decompositions

is eliminated. Additionally, the local field expressions intuitively reveal opportunities for

tuning multipolar light-matter interactions via beam engineering.

To validate the expressions for the scattered power (eqns. 3.1-3.4), the ratio of the

scattered to incident power is calculated for a gold particle in water under illumination
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by a focused linearly polarized wave, and compared with published results from [1]. The

results obtained using the local field method are given in the shapes (triangle, square,

diamond, circle), while the original data, obtained using the generalized Lorenz Mie

theory, is plotted in solid lines, as shown in Fig. 3.1. The two methods are shown to give

excellent agreement.

Additionally, the scattering spectra obtained from an experimental work on focused

azimuthally polarized illumination of a Silicon spherical particle on a glass substrate

are compared with the results obtained from the local field theory, shown in Fig. 3.2.

The slight deviations in the resonant wavelengths of the magnetic multipolar modes are

explained by the use of a glass substrate in a) and an air medium in b). The presence of

the glass substrate causes shifting of the multipolar resonances, as explained in ref [32].

Accounting for the substrate-induced shifts, the spectra match very well.

3.2 Engineering the scattering response of a sphere

Next, the validity of this local field model is demonstrated in Fig. 3.4 for the case

of a Silicon NP with index n = 3.7 and radius rNP = 100nm. The ratio of scattered

power to incident power is plotted as a function of a normalized frequency parameter:

the radius of the NP divided by the wavelength of the incident light. A focused, linearly

polarized beam (LP) is expressed as a discrete summation of plane waves. Scattering

spectra determined via GLMT (dashed red line) and the local field approach (blue line)

are identical. The ratio of scattered to incident power sometimes exceeds 1 due to the

normalization used. Because the incident beam is described as a discrete superposition

of plane waves, the incident power transmitted through the xy-plane does not converge.

This is because the focused incident beams are expressed as a discrete summation of plane

waves. All the focused beams in the main text are described as summation of 10,000 total
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Figure 3.2: a) Experimental results of transmission/reflection of a single Si spherical
particle on a glass substrate under illumination by a focused azimuthally polarized
beam, reprinted from ref [2]. b) Scattered power of same Si spherical particle in air
using local field theory.
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Figure 3.3: Power as a function of radius of integration for focused LP beam. Due
to the discretization of the incident beam, the power does not converge, even when
integrated over a large area. The Mathematica code used to generate the scattered
power in this figure is given in Appendix B.3.

Table 3.1: Electric and magnetic field magnitudes and gradients, and orientations of
each, under LP, AP, and RP illumination, for ED, MD, EQ, and MQ modes.

Dipoles Quadrupoles
Illumination Electric Magnetic Electric Magnetic

LP x y Qxz Qyz

AP z 0 Qxx=Qyy =-2Qzz 0
RP 0 z 0 Qxx=Qyy=-2Qzz

plane waves. The incident power of the illumination beam is calculated by integrating

the z-component of the Poynting vector over a circular area, with a specified radius of

integration. Even when the radius of integration is quite large (up to 0.1 cm), the incident

power does not converge, as is shown in Fig 3.3. Thus the fraction of scattered to incident

power sometimes exceeds 1, since the incident power does not converge even when a large

number of plane waves (10,000) are included in the summation that describes the incident

beam. In order to obtain the incident power we integrate the incident Poynting vector

over a circular area comprising the main intensity lobe of the focused beam, as shown in

the inset of Fig. 3.4.

Illumination by a LP beam results in excitation of all multipole modes, since the
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Figure 3.4: Ratio of scattered power to incident power for a spherical NP with refractive
index n = 3.7 under linearly (LP, blue line), azimuthally (AP, dashed green line),
and radially (RP, dot-dashed orange line) polarized illumination, as a function of
normalized frequency. GLMT calculations for scattering by a LP beam (dashed red
line) show excellent agreement with the local field expressions derived in this chapter.
Multipolar mode peaks are labeled, with E = electric, M = magnetic, D = dipole,
and Q = quadrupole. Inset depicts the normalization scheme in which the incident
Poynting vector is integrated over the main intensity lobe of the illumination beam,
as indicated by arrow, where Sz is the z-component of the Poynting vector plotted as
a function of distance along the x-axis (shown for focused LP illumination). The
Mathematica code used to generate the scattered power in this figure is given in
Appendix A.3, and the incident power is given in B.3.
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Figure 3.5: Radiation patterns of ED (top row) and EQ (bottom row) modes under LP
(left column) and RP (right column) illumination, with corresponding field components
that drive each excitation. LP illumination results in (a) an x-oriented dipole and RP
illumination results in (b) a z-oriented dipole. Due to incident field gradients, LP
illumination couples to (c) a transverse quadrupole whereas RP illumination couples
to (d) a longitudinal quadrupole mode, which is typically thought to be non-radiating.
The Mathematica code used to generate this figure is given in Appendix B.6.

relevant dipolar and quadrupolar driving fields are all nonzero (Table 3.1). In contrast, a

focused azimuthally polarized (AP) beam exhibits a null in the electric field at the beam’s

focus [33]. Additionally, although individual electric field gradients are quite strong, the

electric quadrupole moment depends on a sum of gradients (equation 4) that cancel each

other at the beam’s focus. As such, the resultant scattering spectrum (Fig. 3.4, green

line) for a NP at the focus of an AP beam exhibits only magnetic modes. A focused ra-

dially polarized (RP) beam exhibits identical symmetries to that of an AP beam, except

that the electric and magnetic fields are switched. Consequently, illumination by a RP

wave excites only electric modes. The selective excitation of magnetic (electric) modes

[34, 35] via azimuthally (radially) polarized illumination is explained here by consider-

ing the appropriate local field quantities. By changing symmetries of the illuminating

radiation, scattering spectra are strongly modified.

Changing the illumination condition affects not only the scattering spectra of the
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NP, but also the orientation of the excited multipolar modes. Although the individual

multipole resonance frequencies are unchanged, the associated radiation patterns vary

with illumination conditions. For example, an x-polarized LP beam excites an in-plane

ED, with a dipole moment along the x-axis. The associated radiation pattern is shown

in Fig. 3.5(a). Conversely, the RP wave excites an out-of-plane ED, with a dipole

moment along the z-axis, as seen in Fig. 3.5(b). Thus, changing illumination symmetries

allows rotation of the dipole orientation in space. Such modifications of the multipolar

radiation patterns are more significant for the case of quadrupole modes, which are

driven by field gradients (see Table 1). The x-polarized LP beam only exhibits a non-

zero gradient for the x-component of the electric field along the z-direction
(
∂Ex
∂z
6= 0
)
;

Qxz = Qzx are the relevant driving terms. This results in a characteristic four-lobe

radiation pattern, as shown in Fig. 3.5(c). We refer to this as a transverse quadrupole.

In contrast, the RP beam has only nonzero longitudinal gradients: ∂Ex
∂x

= ∂Ey
∂y

= −2∂Ez
∂z

,

andQxx = Qyy = −2Qzz (Table 1). This results in excitation of a longitudinal quadrupole

mode. The associated two-lobe radiation pattern (Fig. 3.5(d)) is markedly distinct from

the typical transverse quadrupole mode. Interestingly, this type of quadrupole excitation

is typically referred to as a “dark” mode in plasmonic dimer antennas [36, 37]. These

results highlight the fact that such modes are only “dark” because they cannot be excited

by conventional linearly (or circularly) polarized sources. Thus, beam engineering allows

for excitation of new classes of multipole modes.

Even when the beam symmetries are unchanged, the multipole spectra depend strongly

on other beam properties such as the focused spot size, determined here by changing the

numerical aperture (NA = sin(α)). Previously, the focusing angle was fixed to 0.86

(α = ±60◦). Varying the NA changes the relative weight of dipole and quadrupole driv-

ing terms. This effect is shown in plots of the fraction of incident power scattered by

dipole (red) and quadrupole (green) modes, as well as their ratio, under LP (Fig. 3.6(a))
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Figure 3.6: Change in fraction of scattered power to incident power (right axis) with
increasing numerical aperture (i.e., focusing), for ED and EQ modes (on resonance)
under (a) LP illumination, and (b) RP illumination. The EDmode generally dominates
in LP beams, while the opposite is true of RP beams. The ratio of quadrupole to dipole
scattering decreases in both cases (left axis). The Mathematica code used to generate
this figure is given in Appendix A.6.

and RP (Fig. 3.6(b)) illumination. For the LP beam, the EQ response is generally weaker

than the ED response at higher focus, and increases much more slowly with focusing. As

a result, the ratio of EQ:ED scattering decreases with tighter focusing. The scaling for

RP illumination is quite different: the EQ response is always larger than the ED response

(EQ:ED ratio > 1), although the ratio also decreases with tighter focusing. The behavior

for the magnetic modes is identical when illuminated by AP beams. Beam engineering

not only allows for selective excitation of electric vs. magnetic modes, but also the tuning

of the relative weight of quadrupoles vs. dipoles.

Previous methods for directly quantifying multipolar light-matter interactions have

relied on decomposing output light from e.g., photoluminescence [38, 39] or Rayleigh

scattering [40, 41]. More recently, researchers have proposed [42, 43, 44, 45, 34, 46, 16,

47, 48, 49] and experimentally demonstrated [13, 50, 15, 51, 2] enhancement or sup-

pression of multipolar scattering in engineered light beams. In general, selecting out

individual multipolar modes requires light beams in which all other multipole orders

have been suppressed. Taking advantage of the previously discussed beam symmetries,

we achieve selective excitation of individual dipole and quadrupole modes using standing
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Figure 3.7: Scattering cross-section as a function of normalized frequency. Standing
wave (SW) illumination by an AP with a π phase shift between the two beams (dashed
red line), RP with a π phase shift (dashed blue line), AP (dashed green line), and RP
beam (dashed orange line) beam results in selective excitation of the MD, ED, MQ, and
EQ modes, respectively. Inset depicts illumination scheme for RP SW illumination.

wave illumination–i.e., by illuminating from both the top and bottom. Selective excita-

tion of dipole modes requires that all field gradients in the cross terms cancel. This can be

achieved by illuminating with two counter-propagating focused RP beams that are π out

of phase with each other, enabling complete suppression of the magnetic field and both

field gradients. A NP placed at the beam focus exhibits only a z-oriented ED mode (see

Fig. 3.7). Similarly, selective excitation of a z-oriented MD mode is achieved via stand-

ing wave (SW) illumination comprising of two counter-propagating AP beams that are

π out of phase with each other. Similarly, selective excitation of the quadrupole modes

is achieved by removing the phase difference between two counter-propagating beams. A

longitudinal EQ (MQ) mode is excited by SW illumination of two counter-propagating

RP (AP) beams. The scattering spectra resulting from these SW illumination profiles is

shown in Fig. 3.7, where the inset depicts the illumination condition for a RP standing-

wave without any phase shift. Since these standing waves produce zero power flux (the

power from one beam is canceled by the counter-propagating beam) we plot the scat-
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tering cross-section: the scattered power divided by the incident intensity. As seen in

Fig. 3.7, individual multipolar resonance spectra are clearly resolved by this illumination

method.

In summary, we have derived a simplified method for determining the multipolar scat-

tering of NPs in inhomogeneous beams. Our approach only requires knowing the local

electromagnetic fields and their gradients at one point in space, obviating the need for

plane wave or spherical wave decompositions. Using this method, we demonstrate the

manipulation of multipolar spectra via beam engineering. We show selective excitation of

electric and magnetic modes and the emergence of a “bright” longitudinal quadrupole. We

subsequently demonstrate how to tune the relative weight of dipole and quadrupole con-

tributions by manipulating the beam focusing conditions. We conclude by demonstrating

selective excitation of individual multipole modes in standing wave configurations. This

establishes beam engineering as a powerful approach for manipulating the multipolar

scattering properties of nanostructures, and for studying the multipolar light-matter in-

teractions in nanoscale elements. In the next chapter, we explore how a dimer antenna

(consisting of two spherical particles) responds to different types of polarizations, and

how the phenomena observed in single particles carry over to dimer antennas.
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Chapter 4

Dark modes and field enhancement in

dimers illuminated by cylindrical

vector beams

In chapters 2 and 3, we used analytical expressions to explore the multipolar response

of spherical particles. In this chapter, we use numerical simulations to investigate the

response of dielectric dimer structures illuminated by cylindrical vector beams. Using

FDTD simulations, we demonstrate significant modification of the scattering spectra of

dimer antennas and reveal how the illumination condition gives rise to these spectra

through manipulation of electric and magnetic mode hybridization. By appropriately

combining dimer geometries and beam symmetries, we demonstrate coupling to high-Q

dark quadrupole modes with exceptional magnetic intensity enhancements. This ap-

proach exploits structured light as a powerful framework for manipulating multipolar

phenomena in multi-particle dielectric resonators.
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4.1 Introduction

The optical properties of metamaterials are made possible by engineering multipolar

resonances in sub-wavelength structures. The ability of dielectric particles to support

magnetic modes permits a variety of useful applications including optical switching [52],

efficient polarization conversion [53], and tunable beam steering [54]. The optical response

of such antennas is typically engineered by modifying the size, shape, or composition of

the antenna structures [55, 56, 57, 58, 32]. An alternative approach for engineering

these antenna properties is to use structured light [59], such as cylindrical vector beams,

Airy beams, and Laguerre Gaussian beams of varying orbital angular momentum. For

instance, when applied to plasmonic antennas [60, 51, 61, 34, 46] the unique properties

of azimuthally and radially polarized beams [62, 63] enable coupling to dark modes

[13, 47, 14, 15, 16] and produce exceptionally high electric field enhancement [47, 34, 64].

The unique properties of radially (RP) and azimuthally polarized (AP) beams have

unveiled similar effects in dielectric particles [65, 2, 17, 18, 66]. However, existing studies

are limited to the response of single particles. In this chapter, we use exotic illumination

schemes to modify the hybridization of electric and magnetic modes in dielectric dimer

antennas. We demonstrate how the spectra and radiation patterns of dimers illuminated

with RP and AP beams are significantly modified relative to conventional linearly po-

larized illumination. We show that such beams can produce narrow-linewidth spectral

features due to high-Q magnetic resonances, enable coupling to dark electric and mag-

netic modes, and generate unprecedented magnetic intensity enhancements external to

the dielectric resonators.
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4.2 Exploring the scattering response of a dimer an-

tenna to cylindrical vector beam illumination

Scattering spectra of spherical dimers illuminated by focused beams of varying sym-

metries [34, 67, 33] are calculated with Finite Difference Time Domain simulations [68].

Full details of the simulation files and post-processing scripts are given in Appendix B.

First we study the response of a dimer antenna consisting of two spherical nanoparticles

(NPs) in air, each with radius rnp = 100nm and index of refraction n = 3.7, sepa-

rated along the x-axis by 10nm. We refer to this antenna as an x-dimer to highlight

the separation direction relative to the illumination, which is incident along the z-axis.

Scattering spectra for focused (half-angle annular aperture of the focusing lens α = 60◦)

linearly polarized beams with E-field polarized parallel (x-polarized) and perpendicu-

lar (y-polarized) to the dimer axis are shown in Figs. 4.1(a) and (b) respectively. As

compared to the spectra of a single sphere (see inset in Fig. 4.1(a)), dimers exhibit

modified scattering spectra. The spectral location of single sphere magnetic dipole, elec-

tric dipole, and magnetic quadrupole modes are shown with dashed vertical lines. As

discussed in previous studies [69, 70, 71] the x-polarized scattering spectrum exhibits

significant broadening and overlap of the two lowest order resonances. The y-polarized

scattering spectrum more closely matches that of a single particle, suggesting that mode

hybridization is strongest when the E-field is oriented along the dimer axis.

In contrast, AP and RP beams exhibit a number of unique properties that alter the

way they interact with dielectric particles. In particular, AP and RP beams exhibit

zero electric and magnetic fields, respectively, along the beam axis. As a consequence,

when a spherical particle is placed at the focus of an AP (RP) beam, only magnetic

(electric) modes are excited. However, the underlying multipolar spectral line-shapes are

unchanged; only the coupling to different modes is affected [65]. Away from the focus of
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Figure 4.1: Ratio of scattered power to incident power for a dimer antenna consisting
of two spherical NPs oriented along the x-axis under tightly focused (a) x-polarized,
(b) y-polarized, (c) AP, and (d) RP illumination, as a function of normalized frequency.
y-axes are normalized such that the largest scattering peak has unity amplitude. The
dashed vertical lines indicate, from left to right, the locations of the magnetic dipole
(MD), electric dipole (ED), and magnetic quadrupole (MQ) resonances in a single
sphere under plane wave illumination. Dashed curves in in (a), (c), and (d) depict the
spectral response of a single sphere for each type of illumination. Inset in (a) shows
the illumination geometry.
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an AP or RP beam, both beams have nonzero electric and magnetic field properties, re-

sulting in excitation of both electric and magnetic modes in spheres offset from the focus.

However, the different symmetries of these fields leads to different mode hybridization

and modification of the scattering spectra. The scattering spectra of the x-dimer under

AP and RP illumination are shown in Figs. 4.1(c) and (d) respectively. Both AP and

RP illumination excite resonances with higher Q-factors than those accessible with x- or

y-polarized illumination. Unlike the case of single spheres, where AP and RP beams can

only change the relative coupling to different multipolar modes, dimer structures exhibit

qualitatively different spectra due to the different nature of the mode hybridization.

The unique symmetries of AP and RP beams suggest that this spectral engineering

may be particularly pronounced in longitudinal dimer geometries, i.e. when structures are

separated along the z-axis. To probe this further, we investigate the scattering response

of a z-oriented dimer (z-dimer) under LP, AP, and RP illumination. The z-dimer has the

same nanoparticle radius, index, and gap size as the x-dimer, but the two constituent

spheres are separated along the z-axis (see inset in Fig. 4.2(a)). Under linearly polarized

(LP) illumination each sphere sees a mixture of electric and magnetic fields and the

vertical z-dimer exhibits a rich series of broad resonances. In comparison, under RP and

AP illumination the individual spheres see only electric and magnetic fields respectively.

As expected, then, the RP beam exhibits only a single resonance in the frequency range

shown, corresponding to a hybridization of the lone single-particle electric dipole mode

near rnp/λ = 0.175 (Fig. 4.2(b)).

In contrast, the resultant AP scattering exhibits a drastically modified spectrum

(Fig. 4.3(a)). The AP beam excites a series of high Q-factor magnetic modes with

narrower linewidths than the underlying single-particle resonances. The narrow spectral

features seen under AP illumination correspond to dark modes that are unseen under

LP illumination. For instance, consider the prominent lowest order feature at rnp/λ
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Figure 4.2: Ratio of scattered power to incident power for a dimer antenna consisting
of two spherical NPs oriented along the z-axis under tightly focused (a) LP and (b) RP
illumination, as a function of normalized frequency. y-axes are normalized such that
the largest scattering peak has unity amplitude. The dashed lines indicate, from left
to right, the locations of the magnetic dipole (MD), electric dipole (ED), and magnetic
quadrupole (MQ) resonances in a single sphere under plane wave illumination. Inset
in (a) depicts the illumination geometry.

= 0.126. The resonance is slightly red-shifted relative to the single-particle magnetic

dipole mode (see dashed line), which is driven by the strong z-oriented magnetic fields

along the beam axis. The phase of this z-oriented field evolves along the beam axis

and can thus couple to both symmetric and anti-symmetric oscillations of the two dimer

constituents. The prominent feature at rnp/λ = 0.135 corresponds to an anti-symmetric

oscillation–the evolving phase provides the driving source of a longitudinal magnetic

quadrupole mode [65]. The longitudinal magnetic quadrupole character is evident in the

four-fold radiation pattern shown in Fig. 4.3(b). Such modes are frequently described as

dark modes, accessible only through symmetry breaking structures [35, 72]. The mode

hybridization becomes even more complex at higher frequencies.

Consider the two higher order modes in Fig. 4.3(a). One is red-shifted (rnp/λ =

0.183) and the other blue-shifted (rnp/λ = 0.195) relative to the single-particle longi-

tudinal magnetic quadrupole mode at rnp/λ = 0.188. In the single particle resonance
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Figure 4.3: (a) Ratio of scattered power to incident power for a dimer antenna consist-
ing of two spherical NPs oriented along the z-axis under tightly focused AP illumina-
tion, as a function of normalized frequency. y-axis is normalized such that the largest
scattering peak has unity amplitude. (b) Far-field radiation pattern of longitudinal
magnetic quadrupole mode under focused AP illumination at rnp/λ = 0.135. (c, d)
Amplitude (left) and phase (right) in z-dimer antenna at (c) rnp/λ = 0.183 and (d)
0.195.
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the z-oriented magnetic field points in opposite directions on the top and bottom of the

sphere. The associated field patterns in the dimer are shown in Figs. 4.3(c, d). The

two modes correspond to anti-symmetric and symmetric combinations of single-particle

modes respectively. In the anti-symmetric combination, the magnetic fields in the gap

region add up constructively (Fig. 4.3(c)), and the dimer resonance is red-shifted relative

to the single particle mode. In the symmetric combination the z-fields in the gap must

cancel. There is an additional null in the magnetic field distribution (Fig. 4.3(d)) and

the mode is blue-shifted relative to the single-particle resonance. The strong longitudinal

fields of the AP beam lead to longitudinal modes that in turn exhibit the unusual mode

hybridization phenomena seen in Fig. 4.3(c, d).

4.3 Electric and magnetic field enhancement from a

dimer antenna

A principal motivation for investigating plasmonic and dielectric dimers is the possi-

bility of generating large electromagnetic intensity enhancements in gap regions between

the particles. Dielectric dimers, in particular, can support both electric and magnetic

hotspots [69, 70, 73, 74, 75]. For instance, electric intensity enhancements for x-dimers

under various beams are shown in Fig. 4.4(a). Here, intensity enhancement is calculated

by dividing the field intensity at the origin with the dimer in place by the field intensity

at the origin with no dimer. The x-dimer exhibits a significant electric field intensity

in the gap when illuminated by an x-polarized beam (blue). The enhancement peaks

near the lowest order dipole mode and no significant enhancement is seen at higher fre-

quencies. The intensity enhancement is similarly modest for y-polarized (red) and RP

(orange) beams. The field enhancement is only seen when the relevant field points along
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Figure 4.4: (a, b) Electric and (c, d) magnetic intensity enhancement (i.e.
|Htot|2/|Hinc|2 = total field intensity divided by incident field intensity at origin) for
x-dimer (a, c) and z-dimer (b, d) under focused x-polarized, y-polarized (identical
to x-polarized for z-dimer), AP, and RP illumination, as a function of normalized
frequency.

the dimer axis [64]. This rule is similarly seen in the magnetic intensity enhancements of

the x-dimer. The y-polarized beam generates a significant enhancement that is compara-

ble to the enhancement produced by the AP beam (Fig. 4.4(c)). Following this trend, we

can expect interesting field enhancements in RP and AP beams to emerge in the vertical

dimer geometries introduced here.

Electric intensity enhancements for the z-dimer are plotted in Fig. 4.4(b). In this

case x- and y-polarized beams are identical and exhibit modest enhancements. AP beams
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Figure 4.5: (a) Magnetic intensity enhancement of vertical disk dimer antenna under
AP illumination. Insets depict (top) magnetic field profile on resonance and (bottom)
structure of disk antenna on SiO2 substrate, with dimensions of 2tSi = 1µm and
tSiO2 = 50nm. (b) Electric intensity enhancement of same disk antenna under RP
illumination. Inset depicts electric field profile on resonance.

exhibit zero E-fields at the origin and thus no enhancement is defined, but as expected

the fields in the gap are small. In RP illumination, however, the intensity enhancement is

large (380) and higher than that seen in horizontal dimers illuminated with an x-polarized

beam (211).

Just as horizontal dimers can generate strongly enhanced x-oriented fields, vertical

dimers can strongly enhance the z-oriented fields of RP beams. The high electric inten-

sity enhancement occurs near the wavelength of the single-particle electric quadrupole

resonance. This enhancement due to hybridization of single-particle quadrupole modes

is particularly striking for z-dimers illuminated by AP beams (Fig. 4.4(d)). The max-

imum field intensity achieved by the AP beam occurs near the single-particle magnetic

quadrupole mode, and provides nearly two orders of magnitude improvement in the

magnetic intensity enhancement (950) compared to that of the x-dimer (68). Struc-

tured illumination enables significantly larger field enhancements than that possible in

conventionally illuminated dimer structures.
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We apply these principles to a more practical dimer antenna design and demonstrate

comparable magnetic intensity enhancements. We design a dielectric dimer antenna

comprising of two silicon (Si) disks with a silicon dioxide (SiO2) spacer placed on a

silicon dioxide substrate, and determine the intensity enhancement of this antenna under

AP and RP illumination. The diameter and height of the Si disks are 2tSi = 1µm, and

the thickness of the SiO2 gap is tSiO2 = 50nm. As seen in Fig. 4.5(a), AP illumination

of the Si-SiO2 disk antenna results in a high magnetic intensity enhancement of 336

[69, 70, 73, 74]. This high magnetic intensity enhancement is made possible by the

use of AP instead of LP illumination, which removes electric modes in the longitudinal

antenna and allows for higher magnetic intensity enhancement. This magnetic intensity

enhancement may be used to experimentally boost magnetic dipole transitions in rare

earth ions [38] embedded within the SiO2 spacer. A previous experimental work used AP

illumination to excite such transitions[76], and there are many methods for experimentally

generating AP and RP beams [77]. Similar to the disk antenna under AP illumination,

RP illumination provides excellent confinement and enhancement of the electric field in

the dimer gap (Fig. 4.5(b)). This high electric intensity enhancement (302) may be used

in Surface Enhanced Raman Spectroscopy (SERS) applications [78], where dielectrics are

emerging as a powerful basis for achieving sub-wavelength concentration of light.

In conclusion, structuring light significantly alters the scattering response of dielectric

dimer antennas. In particular, RP and AP illumination enable coupling to dark dimer

modes that cannot be accessed with linearly or circularly polarized light sources. These

effects are most pronounced in vertical dimer geometries where only electric or magnetic

modes hybridize. We show that RP and AP beams couple to high-Q magnetic resonances

and dark quadrupole modes. In addition, the different symmetries and resultant mode

hybridization enable far larger electromagnetic enhancements with RP and AP illumina-

tion, even for the same particle geometries. Building from these concepts, we design an
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easily-fabricated dimer structure that leverages the unique properties of AP illumination

to achieve high magnetic field enhancements within a spacer material. Thus we have

used structured light to uncover the rich response of dielectric dimer antennas and high-

lighted the potential for using structured illumination to maximize the desired response

of structured dielectric resonators. In the next chapter, we introduce a simpler method

for modeling structured light using FDTD.
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Chapter 5

Numerical implementation of the local

field theory

In this chapter, we present a simple and efficient simulation framework, based on the

local field concepts introduced in chapter 2, for extracting the multipolar response of any

resonator under illumination by structured light. This method is based on the principle

that each multipolar mode is driven by a specific property of the illumination beam. We

present an extremely simple and efficient method for modeling structured light in FDTD

that relies on local field principles, which is twenty times faster than existing simulation

methods. We then apply this method to qualitatively match the scattering response of

spherical and dimer antennas.
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5.1 Introduction

Recently there has been growing interest in using structured light to design new

metamaterials. Structuring the illumination beam completely changes the response of

metamaterial resonators in ways that are impossible to access with plane wave illumina-

tion. For example, researchers have demonstrated tunable beam steering [17], controlled

excitation of modes [79], and plasmonic focusing [80], all metamaterial applications that

are made possible by the unique properties of the structured light that excites them.

The fundamental building blocks of metamaterials are the resonator structures that

compose them. Thus the first step in engineering any metamaterial is to design a res-

onator that possess the appropriate scattering properties for a desired application. These

properties include the spectral response, the multipolar modes of the resonator, the wave-

length regime in which these modes occur, the field enhancement capabilities, the shape

of its modes, etc. Typically, these resonator properties are designed using numerical sim-

ulations. The growing interest in structured light has led researchers to explore different

methods for modeling the interactions between engineered beams and metamaterial res-

onators. Analytical formulations rely on an extension of Mie Theory based on a summa-

tion of plane waves, and are limited in scope to spherical particles [34, 67]. Some FDTD

methods numerically implement the summation of waves technique [81, 82, 83, 84, 45, 85].

Other techniques involve a full two-dimensional representation of the input beam [14, 86].

The former method, similar to analytical techniques, requires expressing the incident il-

lumination beam on a planar surface. The latter method suffers from long simulation

times due to the necessity of generating the incident fields in a two-dimensional plane and

propagating them through three-dimensional space, in addition to the large simulation

region required for convergence.

Here, we introduce a new numerical technique for modeling the interaction between
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any type of illumination beam and any resonator geometry. This technique, deemed

the local field simulation, provides two orders of magnitude time speedup as compared

to the full beam simulation. First, we numerically validate the analytical local field

theory using FDTD full beam simulations. We then extend the principles of the local

field theory to implement an extremely simple and computationally efficient method for

modeling the scattering response of any arbitrary particle under illumination by an inho-

mogeneous beam in FDTD, based on reproducing the incident field with dipole sources.

After confirming that this method accurately predicts the qualitative scattering response

of a spherical particle, we apply these methods to investigate the multipolar response of

a more complex resonator geometry, namely a dimer antenna, although the methodology

is generalizable to arbitrary collections of particles. The local field simulation uncov-

ers all the important features in engineering light-matter interactions for metamaterial

applications, including the spectral locations of multipolar resonances, the approximate

Q-factor of these resonances, and the electric and magnetic fields inside the resonators,

at a fraction of the time and effort required by other simulation methods.

5.2 Developing the numerical local field theory

Introduced in chapter 2, the analytical local field theory reframes the interaction

between an arbitrary light beam and a spherical particle by revealing that each multipolar

mode is driven by specific field properties. For example, the dipole and quadrupole

modes are directly driven by field magnitude and gradients, respectively. The exact

mathematical relationship between these field components and the power scattered by

these modes, is given by (where dip = dipole and quad = quadrupole):

P dip
sca =

3π

kωµ
|a1|2|E|2 (5.1)
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P quad
sca =

10π

k3ωµ
|a2|2

∑
i,j

∣∣∣∣12
(
∂Ei
∂j

+
∂Ej
∂i

)∣∣∣∣2 (5.2)

where µ, k, and ω are respectively the permeability, wave number of the background

medium, and frequency of the incident beam. an is the Mie coefficient, determined

from standard plane wave illumination [28], E is the electric field at the center of the

spherical nanoparticle, in the absence of the nanoparticle, and i, j refer to the Cartesian

coordinates x, y, andz. The relevant expressions for the magnetic dipole and quadrupole

modes are obtained by replacing an with Zbn and E with H in Eq. (5.1-5.2), where Z is

the impedance of the background medium. The analytical local field theory implies that

the scattering response of a spherical particle can be reconstructed by knowing the field

properties of the illumination beam at the location of the particle, without any need for

mathematical reformulations for different types of beams.

This method enables quick and simple analytical extraction of the scattering response

of a spherical particle under any type of structured light. We later show that these

principles may be applied to numerically extract the response of any resonator illuminated

by any beam of interest. First, we validate the analytical theory using Lumerical FDTD

[68], a commercial FDTD solver. We implement a three-dimensional model of focused

radially polarized (RP) and azimuthally polarized (AP) illumination using expressions

for the full beams in a plane (see Appendix B for full details on simulation methodology).

These beams are incident on a spherical particle with radius rnp = 100nm and index of

refraction n = 3.7, which is placed at the focus of these beams. A schematic of the full

beam simulation setup is given in Fig. 5.1 (a).
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Figure 5.1: (a) Schematic of full beam FDTD simulation: In this simulation setup,
the electric and magnetic fields of the incident illumination beam are calculated in a
2D plane and are injected into the 3D simulation at a plane 1µm away from the focus
of the beam. The beam profile is pictured, and the resonator of interest, in this case a
spherical particle, is placed at the focus of the beam. The dimensions of the simulation
are shown. (b) Schematic of local field simulation: The incident beam properties are
recreated by a series of dipole sources at six points along the x-, y-, and z-axes, along
with additional dipoles at (±x, ±y, 0), (±x, 0, ±z), and (0, ±y, ±z), not pictured
here. The resonator of interest is placed at the center of the exciting dipoles, and the
dimensions of the simulation are a cube measuring 0.5µm on each side. The exact
dipoles needed at each point in space varies according to the type of illumination, and
the configuration pictured here is for radially polarized illumination.
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5.3 Results for dielectric antennas

From the full beam simulation, we extract the fraction of power scattered by the

sphere normalized by the power incident in the beam, and plot this as a function of

a normalized frequency parameter, which is the radius of the sphere divided by the

wavelength of the incident light. The spectra obtained from the analytical local field

theory are shown in Fig. 5.2 in the dashed lines. Note that the ratio of scattered to

incident power sometimes exceeds 1 due to the normalization used, the reason for which

is discussed in section 3.2. To compare the analytical local field results with the full

beam results, we extract the electric and magnetic field magnitudes and gradients of the

RP and AP beams and insert these into Eq. (5.1-5.2) to determine the scattered power.

The resulting spectra are shown in Fig. 5.2 in the colored shapes. The analytical local

field model and the full beam simulation show excellent quantitative agreement.

(a) Radially polarized (b) Azimuthally polarized

P
    

   
   /P

sc
a

in
c

2

3

1

0
0.12 0.15

r       / λ
0.18

np

0.24

Local "eld

Full beam

Analytical model

Local "eld

Full beam

Analytical model

0.25

0.50

0.75

1.00

P
         (a.u

.)
sca

0.00
0.21 0.12 0.15

r       / λ
0.18

np

0.240.21

Figure 5.2: Scattering response of spherical nanoparticle under tightly focused (a)
radially polarized and (b) azimuthally polarized illumination, as a function of normal-
ized frequency (radius of sphere divided by wavelength of incident light). Results from
analytical local field results are shown in colored shapes, FDTD full beam simulation
results are shown in dashed lines, and FDTD local field simulation results are shown
in solid lines.
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The analytical theory simplifies the scattering interaction by connecting specific prop-

erties of the illuminating beam to individual multipolar modes. This concept suggests

that the same multipolar modes should be excited in a spherical particle if the appro-

priate illuminating beam field properties are reproduced, without constructing the entire

illumination beam. Based on this concept, we developed a new simulation technique to

model structured light that uses a small number of dipole sources to recreate the field

properties that drive multipolar modes in our resonator of interest. A schematic of the

local field simulation is given in Fig. 1(b), and a full description of the files used to im-

plement the local field simulations is given in Appendix C. Using the relevant equations

for the illumination in question, we extract the amplitude and phase of the electric or

magnetic field at eighteen points: two points along each of the x-, y-, and z-axes, and at

(±x, ±y, 0), (±x, 0, ±z), and (0, ±y, ±z). We place broadband dipole sources at each of

these points and tune the amplitudes and phases to reflect those present in the incident

illumination beam at a single wavelength (see Appendix C for more details). The scat-

tering spectra obtained by the local field simulation for a spherical particle under RP and

AP illumination is given in Fig. 5.2, shown in the solid lines. The local field FDTD simu-

lation demonstrates excellent qualitative agreement with the full beam FDTD simulation

in predicting the locations of multipolar mode resonances for a spherical particle.

The local field simulation confers a variety of advantages over the full beam simulation.

First, the simulation region for the local field method can be made extremely small and is

limited only by the size of the resonator in question, as the dipole sources can be placed

within a few nanometers of the resonator. This results in a 2000x decrease in the required

simulation volume. Additionally, the local field approach only requires knowledge of the

excitation field at a few points in space, which is enough information to adequately

reconstruct the field properties that drive the multipolar response of a resonator. This

obviates the need to describe the illuminating beam in a full two-dimensional plane.
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Figure 5.3: Scattering response of (a) x-dimer and (b) z-dimer antennas under tightly
focused radially polarized illumination as a function of normalized frequency. FDTD
results from full beam simulation are shown in dashed lines and FDTD local field sim-
ulation results are shown in solid lines. The two methods show excellent qualitative
agreement in predicting the scattering response of the dimer antennas. Additionally,
the field plots from the full beam simulations (top row/left column) are also com-
pared with the field plots obtained from the local field simulations (bottom row/right
column), which show good qualitative agreement with each other.
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Combined, the advantages listed here result in a 60x speedup in the time required to

obtain the scattering spectra. In addition to the time savings provided by this method,

the local field simulation method is conceptually simpler and more intuitive than existing

methods for modeling structured light interactions with nanoscale resonators.

The local field simulation effectively predicts the scattering response of spherical

particles, and can also be used to predict the scattering response of arbitrary particles

under illumination by any type of structured light. In this case, we use dimer antennas,

an antenna system that has been explored extensively in chapter 4, as a stand-in for an
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arbitrary resonator configuration. The dimer antenna considered here consists of two

spherical particles with radius rnp = 100nm, index of refraction n = 3.7, and separation

distance of 10nm. Here we consider two types of antennas: 1) the x-dimer antenna,

which is oriented along the x-axis, and 2) the z-dimer antenna, which is oriented along

the z-axis. The vastly different symmetries of these antennas demonstrate the flexibility

of the local field simulation method. We model the response of the dimer antennas under

RP illumination using the local field simulation method, using the same setup that was

used for the spherical particle. The resultant scattering response is compared with the

response from the full beam simulation.

As seen in Fig. 5.3, the qualitative scattering response obtained by the local field

simulation matches extremely well with the full beam simulation. The qualitative spectral

response obtained from the local field simulation provides a wealth of information about

the resonator response to RP illumination. We find that the x-dimer antenna couples to

three modes in this wavelength regime, while the z-dimer antenna only couples to one. We

can also extract the field plots of the excited modes from the local field simulation, which

are compared with the field plots obtained from the full beam simulations, also pictured

in Fig. 5.4. Using the information provided by the field plots, we can see, for example,

that the x-dimer mode at rnp/λ = 0.126 provides better field electric enhancement in the

dimer gap than the mode at rnp/λ = 0.178. We can also gain insight into the nature

of the multipolar modes excited in the resonator from the field plots. For example,

the null electric field in the center of the spheres that constitute the x-dimer mode at

rnp/λ = 0.126may be indicative of magnetic dipole-like modes, whereas the bright electric

field in the spheres that constitute the x-dimer antenna in the mode at rnp/λ = 0.178

may be indicative of electric dipole-like modes. The real and imaginary parts of the

electric and magnetic fields, which can also be obtained from the local field simulations,

can provide additional insight about the nature of the dimer modes.
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As another example, we model the interaction between the x- and z-dimer antennas

and an AP beam. As seen in Fig. 5.4, we find excellent qualitative agreement between the

spectral response and field plots obtained from the full beam simulation in comparison

with the local field simulation. We see that the dimer antennas respond very differently

to AP illumination as compared to RP illumination. The spectra obtained from the local

field simulation show us that the dimers exhibit sharper resonances under AP illumina-

tion as compared with RP illumination. For example, we see that the z-dimer antenna

couples to modes with a higher Q factor under AP illumination than the mode under RP

illumination. Additionally, the local field method is able to accurately reproduce subtle

nuances in the scattering spectra, such as the faint shoulder in the x-dimer response at

rnp/λ = 0.126. The field plots also provide insight into the nature of the dimer modes.

For example, the four-fold symmetry evident in the field plot of the x-dimer mode at

rnp/λ = 0.189 suggests that the AP beam is exciting a higher order multipole mode at

this wavelength.

As seen from Figs. 5.3 and 5.4, the local field simulation accurately predicts the

coupling response for two completely different dimer geometries, quickly distinguishing

between the scattering response under RP and AP illumination. The behavior of electric

and magnetic fields within the resonators for both types of geometries is also easily

extracted, even when the field patterns are complex. The wealth of information provided

by the local field method, including the scattering response, approximate Q-factor of

modes, and field plots, is essential information needed to evaluate resonator designs for

specific metamaterial applications.

In conclusion, we presented a new method for modeling multipolar phenomena in

arbitrary resonators under any type of illumination. We first validate the analytical local

field theory for a sphere using numerical simulations. We then extend the concepts of

the local field theory to implement a computationally efficient method for simulating
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Numerical implementation of the local field theory Chapter 5

illumination of a sphere by structured light, deemed the local field simulation method.

After demonstrating that this method works for a spherical particle, we extend our

simulations to model the scattering response of dimer antennas under illumination by

RP and AP beams, and show that the local field simulation accurately reproduces the

fields in the resonators. This establishes the local field approach as a simple, intuitive, and

efficient method for modeling the interaction of structured light with arbitrary particles

for engineering novel metamaterials.
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Chapter 6

Summary and future work

Metamaterials have proven to be a ground-breaking technology for achieving a wide

variety of light control applications. However, conventional metamaterial design is limited

to engineering particle properties and uses only linearly polarized plane wave illumination

for manipulating light-matter interactions. This thesis shows that engineering the light

source enables a new range of phenomena inaccessible by conventional metamaterial

designs.

In chapter 2 we derived a new framework for determining the response of a spherical

particle to any arbitrary type of illumination beam, known as the local field theory. We

proved that individual multipolar resonances are driven by specific field properties of

the illuminating beam. The local field theory drastically simplifies the steps required

to determine the scattering response of a sphere to different types of illumination and

provides an intuitive understanding of the origin of multipolar modes in sub-wavelength

particles.

In chapter 3 we used the analytical local field equations to explore the response

of a single dielectric sphere under illumination by cylindrical vector (CV) beams. We

demonstrated that such beams are capable of coupling to dark modes and selectively
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exciting individual multipolar modes, by engineering the relevant beam properties that

drive dipolar and quadrupolar interactions. These beams significantly alter not just the

scattering spectra of the spherical particle, but also the physical radiation of the excited

multipolar modes.

In chapter 4 we investigated the response of dielectric dimer antennas to CV beams.

We found that the beams induce hybridized electric and magnetic modes in the dimer

antennas and that these hybridized modes provide excellent electric and magnetic field

enhancements in the dimer gap. Horizontal dimers exhibited scattering responses with a

mixture of electric and magnetic modes. Conversely, vertical dimers, in which the dimer

axis coincides with the beam axis, exhibited selective excitation of electric or magnetic

modes, similar to a sphere under CV beam illumination.

In chapter 5 we implemented a numerical simulation technique based on the analytical

local field theory that drastically reduces the computation time required to determine

the scattering response and radiation fields of an arbitrary particle under any type of

illumination. This technique is very useful for qualitatively predicting a number of im-

portant features when screening particles for use in building metamaterials, including the

frequency locations of multipolar resonances, Q-factors of resonances, and field profiles

of excited modes.

This thesis focuses primarily on theories of multipolar scattering. Future work on

theoretical formulations will be to improve on the numerical local field simulation to

achieve quantitative agreement with the full beam simulation, to explore the response

of dielectric particles to other types of illumination beams, and to explore optical forces

that arise from multipolar modes [87, 88]. Experimentally, future work will include

constructing an experimental setup to validate the theoretical phenomena proposed in

this thesis, measuring the magnetic dipole enhancement in lanthanide ions using the

structures proposed in this thesis [76], as well as extending the principles introduced
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here to other material systems and geometries, particularly particle arrays. Based on the

results presented in this thesis, beam engineering may prove to be an essential technique

for designing metamaterials in the future.
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Appendix A

Analytical theory: Mathematica code

A.1 Comparing Local field theory and Generalized Lorenz

Mie Theory

User input: Input parameters and setup

SetDirectory[NotebookDirectory[]];

(* !!! INPUT !!! *)rnp=50*10^-9; (* radius of particle *)

(* !!! INPUT !!! *)\[Alpha]x=\[Pi]/2; (* half-angle of focus in radians *)

(* !!! INPUT !!! *)f=10.5rnp; (* fitting parameter *)

(* !!! INPUT !!! *)E0=1; (* fitting parameter *)

(* !!! INPUT !!! *)N1=1.3; (* refractive index of medium *)

(* !!! INPUT !!! *)\[Mu]1=1; (* permeability of medium *)

(* constants *)

\[Mu]0=4\[Pi]*10^\[Minus]7; (* permeability of free space *)

\[Epsilon]0=8.839388314328648‘*^-12; (* permittivity of free space *)
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(* properties of medium *)

\[Epsilon]1=N1^2; (* permittivity of medium *)

Z=Sqrt[(\[Mu]0*\[Mu]1)/(\[Epsilon]0*\[Epsilon]1)]; (* impedance of medium *)

k[\[Lambda]_]:=(2\[Pi])/\[Lambda]*N1; (* wavenumber in medium *)

c=299792458/N1; (* speed of light in medium *)

\[Omega][\[Lambda]_]=c*k[\[Lambda]]; (* frequency of light in medium *)

data1=Flatten[Import["J&C_Ag_n.xlsx"],1]; (* data on real part of index of Silver *)

data2=Flatten[Import["J&C_Ag_k.xlsx"],1]; (* data on imaginary part of index of Silver

*)

nAg=Interpolation[data1];

\[Kappa]Ag=Interpolation[data2];

(* properties of particle *)

xm[\[Lambda]_]=k[\[Lambda]]*rnp; (* Mie parameter *)

Nr[\[Lambda]_]=nAg[\[Lambda]*1*^6]+I*\[Kappa]Ag[\[Lambda]*1*^6]; (* refractive index of

particle *)

k1[\[Lambda]_]:=(2\[Pi])/\[Lambda]*Nr[\[Lambda]]; (* wavenumber in particle *)

m[\[Lambda]_]=k1[\[Lambda]]/k[\[Lambda]];

GLMT code

(* pi and tau functions *)

pi[n_,\[Theta]_]:=If[n==0,0,If[n==1,1,((2n-1)/(n-1)*Cos[\[Theta]]*pi[n-1,\[Theta]]-n/(n

-1)*pi[n-2,\[Theta]])]];

tau[n_,\[Theta]_]:=n*Cos[\[Theta]]*pi[n,\[Theta]]-(n+1)*pi[n-1,\[Theta]]

(* beam coefficients *)

An[n_,\[Lambda]_,\[Alpha]_]:=(-I)^n*E0*k[\[Lambda]]*f*(2n+1)/(2n^2 (n+1)^2)*NIntegrate[

Sqrt[Cos[\[Theta]]]*(pi[n,\[Theta]]+tau[n,\[Theta]])*Sin[\[Theta]],{\[Theta],0,\[
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Alpha]}];

(* Bessel functions *)

J[n_,\[Rho]_]:=J[n,\[Rho]]=SphericalBesselJ[n,\[Rho]];

\[Psi]n[n_,\[Rho]_]=\[Rho]*SphericalBesselJ[n,\[Rho]];

d\[Psi]n[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]]+\[Rho] (-(SphericalBesselJ[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalBesselJ[-1+n,\[Rho]]-SphericalBesselJ[1+n,\[Rho]]));

\[Xi]n[n_,\[Rho]_]=\[Rho]*SphericalHankelH1[n,\[Rho]];

d\[Xi]n[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]]+\[Rho] (-(SphericalHankelH1[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalHankelH1[-1+n,\[Rho]]-SphericalHankelH1[1+n,\[Rho]]));

(* Mie coefficients *)

an[n_,\[Lambda]_]:=(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda]]*xm[\[Lambda]]]*d\[Psi]n[n,xm[\[

Lambda]]]-\[Psi]n[n,xm[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xm[\[Lambda]]])/(m[\[

Lambda]]*\[Psi]n[n,m[\[Lambda]]*xm[\[Lambda]]]*d\[Xi]n[n,xm[\[Lambda]]]-\[Xi]n[n,xm

[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xm[\[Lambda]]]);

bn[n_,\[Lambda]_]:=(m[\[Lambda]]*\[Psi]n[n,xm[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xm[\[

Lambda]]]-\[Psi]n[n,m[\[Lambda]]*xm[\[Lambda]]]*d\[Psi]n[n,xm[\[Lambda]]])/(m[\[

Lambda]]*\[Xi]n[n,xm[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xm[\[Lambda]]]-\[Psi]n[n,m

[\[Lambda]]*xm[\[Lambda]]]*d\[Xi]n[n,xm[\[Lambda]]]);

(* spherical vector harmonics for incoming fields *)

Mo1ni[n_,k_,r_,\[Theta]_,\[Phi]_]:=({{0},{Cos[\[Phi]]*pi[n,\[Theta]]*J[n,k*r]},{-Sin[\[

Phi]]*tau[n,\[Theta]]*J[n,k*r]}});

Ne1ni[n_,k_,r_,\[Theta]_,\[Phi]_]:=({{Cos[\[Phi]]*n(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*J[

n,k*r]/(k*r)},{Cos[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r)},{-Sin[\[Phi]]*pi[n

,\[Theta]]*d\[Psi]n[n,k*r]/(k*r)}});

Me1ni[n_,k_,r_,\[Theta]_,\[Phi]_]:=({{0},{-Sin[\[Phi]]*pi[n,\[Theta]]*J[n,k*r]},{-Cos[\[

Phi]]*tau[n,\[Theta]]*J[n,k*r]}});

No1ni[n_,k_,r_,\[Theta]_,\[Phi]_]:=({{Sin[\[Phi]]*n*(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*J
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[n,k*r]/(k*r)},{Sin[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r)},{Cos[\[Phi]]*pi[n

,\[Theta]]*d\[Psi]n[n,k*r]/(k*r)}});

(* electric and magnetic fields of incident beam *)

EiFPWsph[\[Lambda]_,\[Alpha]_, nmax_, r_,\[Theta]_,\[Phi]_]:=Flatten[Total[Table[An[n,\[

Lambda],\[Alpha]]*(Ne1ni[n, k[\[Lambda]], r,\[Theta],\[Phi]]-I*Mo1ni[n, k[\[Lambda

]], r,\[Theta],\[Phi]]), {n, 1, nmax}]]];

HiFPWsph[\[Lambda]_,\[Alpha]_, nmax_,r_,\[Theta]_,\[Phi]_]:=Flatten[Total[Table[-(k[\[

Lambda]]/(\[Omega][\[Lambda]]*\[Mu]0))An[n,\[Lambda],\[Alpha]]*(No1ni[n, k[\[Lambda

]], r,\[Theta],\[Phi]]+I*Me1ni[n, k[\[Lambda]], r,\[Theta],\[Phi]]), {n, 1, nmax

}]]];

(* Poynting vector of incident beam *)

Si[\[Lambda]_,\[Alpha]_,nmax_,r_,\[Theta]_,\[Phi]_]:=1/2 Re[EiFPWsph[\[Lambda],\[Alpha],

nmax,r,\[Theta],\[Phi]]\[Cross]Conjugate[HiFPWsph[\[Lambda],\[Alpha],nmax,r,\[Theta

],\[Phi]]]];

(* power of incident beam integrated over a circular area *)

Pinc[\[Lambda]_,\[Alpha]_,nmax_,r_]:=f^2*NIntegrate[Re[Si[\[Lambda],\[Alpha],nmax,r,\[

Theta],\[Phi]]][[1]]*Sin[\[Theta]],{\[Theta],\[Pi]/2,\[Pi]},{\[Phi],0,2\[Pi]}];

(* power scattered by sphere from GLMT *)

Psca[\[Lambda]_,\[Alpha]_,nmax_]:=\[Pi]/(2Z*k[\[Lambda]]^2)*Total[Table[(2n^2 (n+1)^2)

/(2n+1) Abs[An[n,\[Lambda],\[Alpha]]]^2*(Abs[an[n,\[Lambda]]]^2+Abs[bn[n,\[Lambda

]]]^2),{n,1,nmax}]];

(* fraction of power scattered by the sphere to incident power from GLMT *)

Ksca[\[Lambda]_,\[Alpha]_,nmax_,r_]:=Psca[\[Lambda],\[Alpha],nmax]/Pinc[\[Lambda],\[

Alpha],nmax,r];

Local field code
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(* conversion of spherical unit vectors to cartesian unit vectors *)

SphtoCarUV[\[Theta]_,\[Phi]_]:={{Sin[\[Theta]]*Cos[\[Phi]],Cos[\[Theta]]*Cos[\[Phi]],-

Sin[\[Phi]]},{Sin[\[Theta]]*Sin[\[Phi]],Cos[\[Theta]]*Sin[\[Phi]],Cos[\[Phi]]},{Cos

[\[Theta]],-Sin[\[Theta]],0}};

(* electric and magnetic fields of incident beam in spherical coordinates and unit

vectors *)

EiFPW[\[Lambda]_,\[Alpha]_,n_,r_,\[Theta]_,\[Phi]_]:=An[n,\[Lambda],\[Alpha]]*(Ne1ni[n,

k[\[Lambda]], r,\[Theta],\[Phi]]-I*Mo1ni[n, k[\[Lambda]], r,\[Theta],\[Phi]]);

HiFPW[\[Lambda]_,\[Alpha]_,n_,r_,\[Theta]_,\[Phi]_]:=-(k[\[Lambda]]/(\[Omega][\[Lambda

]]*\[Mu]0))An[n,\[Lambda],\[Alpha]]*(No1ni[n, k[\[Lambda]], r,\[Theta],\[Phi]]+I*

Me1ni[n, k[\[Lambda]], r,\[Theta],\[Phi]]);

(* electric and magnetic fields of incident beam in Cartesian coordinates and unit

vectors *)

EiFPWcar[\[Lambda]_,\[Alpha]_,nmax_,x_,y_,z_]:=SphtoCarUV[ArcTan[z,Sqrt[x^2+y^2]],

ArcTan[x, y]].EiFPW[\[Lambda],\[Alpha],nmax,Sqrt[x^2+y^2+z^2], ArcTan[z,Sqrt[x^2+y

^2]], ArcTan[x, y]];

HiFPWcar[\[Lambda]_,\[Alpha]_,nmax_,x_,y_,z_]:=SphtoCarUV[ArcTan[z,Sqrt[x^2+y^2]],

ArcTan[x, y]].HiFPW[\[Lambda],\[Alpha],nmax,Sqrt[x^2+y^2+z^2], ArcTan[z,Sqrt[x^2+y

^2]], ArcTan[x, y]];

(* summation of electric field gradients for local field theory *)

delsumFPW[\[Lambda]_,nmax_,x_,y_,z_]:=

1/2*{{2*D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[1]],x],D[EiFPWcar[\[Lambda],\[Alpha]

x,nmax,x,y,z][[1]],y]+D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],x],D[EiFPWcar

[\[Lambda],\[Alpha]x,nmax,x,y,z][[1]],z]+D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z

][[3]],x]},{D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],x]+D[EiFPWcar[\[Lambda

],\[Alpha]x,nmax,x,y,z][[1]],y],2*D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],y

],D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],z]+D[EiFPWcar[\[Lambda],\[Alpha]x,

nmax,x,y,z][[3]],y]},{D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[3]],x]+D[EiFPWcar
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[\[Lambda],\[Alpha]x,nmax,x,y,z][[1]],z],D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z

][[3]],y]+D[EiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],z],2*D[EiFPWcar[\[Lambda

],\[Alpha]x,nmax,x,y,z][[3]],z]}};

deltotFPW[\[Lambda]_,nmax_,x_,y_,z_]=delsumFPW[\[Lambda],2,x,y,z];

del[\[Lambda]_,nmax_,x_,y_,z_]:=Total[Flatten[Table[Norm[(deltotFPW[\[Lambda],nmax,x,y,z

]^2)[[i]]],{i,1,Length[deltotFPW[\[Lambda],nmax,x,y,z]]}]]];

(* summation of magnetic field gradients for local field theory *)

delsumFPWH[\[Lambda]_,nmax_,x_,y_,z_]:=

1/2*{{2*D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[1]],x],D[HiFPWcar[\[Lambda],\[Alpha]

x,nmax,x,y,z][[1]],y]+D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],x],D[HiFPWcar

[\[Lambda],\[Alpha]x,nmax,x,y,z][[1]],z]+D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z

][[3]],x]},{D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],x]+D[HiFPWcar[\[Lambda

],\[Alpha]x,nmax,x,y,z][[1]],y],2*D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],y

],D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],z]+D[HiFPWcar[\[Lambda],\[Alpha]x,

nmax,x,y,z][[3]],y]},{D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[3]],x]+D[HiFPWcar

[\[Lambda],\[Alpha]x,nmax,x,y,z][[1]],z],D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z

][[3]],y]+D[HiFPWcar[\[Lambda],\[Alpha]x,nmax,x,y,z][[2]],z],2*D[HiFPWcar[\[Lambda

],\[Alpha]x,nmax,x,y,z][[3]],z]}};

deltotFPWH[\[Lambda]_,nmax_,x_,y_,z_]=delsumFPWH[\[Lambda],2,x,y,z];

delFPWH[\[Lambda]_,nmax_,x_,y_,z_]:=Total[Flatten[Table[Norm[(deltotFPWH[\[Lambda],nmax,

x,y,z]^2)[[i]]],{i,1,Length[deltotFPWH[\[Lambda],nmax,x,y,z]]}]]];

w=10^-30;

(* power scattered by sphere from local field theory *)

Ws2[e_,M_,\[Lambda]_,r_]:=e*Abs[an[1,\[Lambda]]]^2*(3\[Pi])/(k[\[Lambda]]*\[Omega][\[

Lambda]]*\[Mu]0)*Norm[EiFPWsph[\[Lambda],\[Alpha]x,1,w,w,w]]^2+M*Abs[bn[1,\[Lambda

]]]^2*(3\[Pi])/(k[\[Lambda]]*\[Omega][\[Lambda]]*\[Mu]0)*Norm[HiFPWsph[\[Lambda],\[

Alpha]x,1,w,w,w]]^2+e*Abs[an[2,\[Lambda]]]^2*(10\[Pi])/(k[\[Lambda]]^3*\[Omega][\[

Lambda]]*\[Mu]0)*del[\[Lambda],2,w,w,w]+M*Abs[bn[2,\[Lambda]]]^2*(10\[Pi])/(k[\[
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Lambda]]^3*\[Omega][\[Lambda]]*\[Mu]0)*Z^2*delFPWH[\[Lambda],2,w,w,w];

(* fraction of power scattered by the sphere to incident power from local field theory

*)

Ksca2[e_,M_,\[Lambda]_,\[Alpha]_,nmax_,r_]:=Ws2[e,M,\[Lambda],10^3]/Pinc[\[Lambda],\[

Alpha],nmax,r];

Plots of spectral response

(* results from GLMT *)

data1=ParallelTable[{x,Abs[Re[Ksca[x,\[Alpha]x,3,10rnp]]]},{x,300*^-9,700*^-9,(700*^-9-

300*^-9)/200}];

ListPlot[{data1},Joined->True,PlotRange->All]

(* results from local field theory *)

data2=ParallelTable[{x,Abs[Re[Ksca2[1,1,x,\[Alpha]x,3,10rnp]]]},{x

,300*^-9,700*^-9,(700*^-9- 300*^-9)/200}];

ListPlot[{data2},Joined->True,PlotRange->All]
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A.2 Calculation of incident power for a focused beam

Setup

SetDirectory[NotebookDirectory[]];

(* constants -- assuming medium is vacuum *)

c=3*^8; (* speed of light in a vacuum *)

\[Mu]=1.257*^-6; (* permeability of free space *)

\[Epsilon]0=1/(c^2 \[Mu]);(* permittivity of free space *)

\[Omega][\[Lambda]_]=(2.\[Pi]*c)/(\[Lambda]*1.*^-9); (* angular frequency in terms of

wavelength *)

Z=Sqrt[\[Mu]/\[Epsilon]0]; (* impedance of free space *)

User input: Properties of medium and particle

(* physical properties of medium *)

(* !!! INPUT !!! *) Nr[\[Lambda]_]=1; (* refractive index of medium*)

(* !!! INPUT !!! *) N1[\[Lambda]_]=3.7; (* refractive index of particle *)

(* !!! INPUT !!! *) rNP=100; (* radius of particle *)

kw[\[Lambda]_]=(2\[Pi])/(\[Lambda]*1*^-9)*Nr[\[Lambda]]; (* wavenumber of light in

medium *)

\[Epsilon]1[\[Lambda]_]=N1[\[Lambda]]^2;

d[rNP_]=2*rNP; (* diameter of particle *)

m[\[Lambda]_]=N1[\[Lambda]]/Nr[\[Lambda]]; (* relative refractive index of medium and

particle *)

kp[\[Lambda]_]=kw[\[Lambda]]*m[\[Lambda]]; (* wavenumber of light in particle *)

xM[xm_]=2\[Pi]*Nr[\[Lambda]]*m; (* Mie parameter, as defined on pg. 100of B&H, where xm=

rNP/lambda *)

Bessel functions
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(* Bessel and Hankel functions *)

J[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]];

Y[n_,\[Rho]_]=SphericalBesselY[n,\[Rho]];

H[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]];

(* Ricatti-Bessel functions *)

\[Psi]n[n_,\[Rho]_]=\[Rho]*SphericalBesselJ[n,\[Rho]];

d\[Psi]n[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]]+\[Rho] (-(SphericalBesselJ[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalBesselJ[-1+n,\[Rho]]-SphericalBesselJ[1+n,\[Rho]]));

\[Xi]n[n_,\[Rho]_]=\[Rho]*SphericalHankelH1[n,\[Rho]];

d\[Xi]n[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]]+\[Rho] (-(SphericalHankelH1[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalHankelH1[-1+n,\[Rho]]-SphericalHankelH1[1+n,\[Rho]]));

Mie scattering coefficients and spherical vector harmonics

(* Mie coefficients *)

an[n_,\[Lambda]_,xm_]=(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[Psi]n[n,xM[xm]]-\[

Psi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]])/(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda

]]*xM[xm]]*d\[Xi]n[n,xM[xm]]-\[Xi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]]);

bn[n_,\[Lambda]_,xm_]=(\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[Psi]n[n,xM[xm]]-m[\[Lambda]]*\[

Psi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]])/(\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[

Xi]n[n,xM[xm]]-m[\[Lambda]]*\[Xi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]]);

User input: Angular spectrum decomposition of incident beam

(* !!! INPUT !!! *) \[Alpha]t=\[Pi]/3; (* half-angle annular aperture of focusing lens

*)

(* !!! INPUT !!! *) N\[Theta]t=10; (* number of plane waves in theta *)

(* !!! INPUT !!! *) N\[Phi]t=10; (* number of plane waves in phi *)

(* angular spectrum of incident wave in Cartesian unit vectors *)

(* linearly polarized *)

71



angspecLP[\[Theta]_,\[Phi]_]={(Cos[\[Theta]]Cos[\[Phi]]^2+Sin[\[Phi]]^2),(Cos[\[Theta]]

Cos[\[Phi]]Sin[\[Phi]]-Cos[\[Phi]]Sin[\[Phi]]),-Sin[\[Theta]]Cos[\[Phi]]};

angspecMLP[\[Theta]_,\[Phi]_]=-{(1-Cos[\[Theta]])Cos[\[Phi]]Sin[\[Phi]],-(1-(1-Cos[\[

Theta]])Sin[\[Phi]]^2),Sin[\[Theta]]Sin[\[Phi]]};

(* radially polarized *)

angspecRP[\[Theta]_,\[Phi]_]={Cos[\[Theta]]Cos[\[Phi]],Cos[\[Theta]]Sin[\[Phi]],Sin[\[

Theta]]};

angspecMRP[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

(* azimuthally polarized *)

angspecAP[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

angspecMAP[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],Sin

[\[Theta]]};

\[Theta]ii=Table[((i-1)\[Alpha]t)/N\[Theta]t,{i,1,N\[Theta]t+1,1}]; (**)

\[Phi]jj=Table[((j-1) 2 \[Pi])/N\[Phi]t,{j,1,N\[Phi]t+1,1}];

(* incident electric and magnetic fields *)

ikr[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[Phi

]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)-Cos[\[Theta]]*(zp));

(* !!! INPUT !!! *)

(*-- choose desired angular spectrum*)Ei[\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[

Lambda]*angspecAP[\[Theta],\[Phi]]*Sqrt[Abs[Cos[\[Theta]]]]*Sin[\[Theta]]*Exp[ikr[\[

Lambda],\[Theta],\[Phi],x,y,z]]*\[Alpha]t/N\[Theta]t*2\[Pi]/N\[Phi]t;

Einc[\[Lambda]_,xp_,yp_,zp_]=Flatten[Table[Table[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi]t+1,1.}],1];

E0sum[\[Lambda]_,xp_,yp_,zp_]=Total[Einc[\[Lambda],xp,yp,zp]];

(* !!! INPUT !!! *)

(*-- choose desired angular spectrum*)Hi[\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[
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Lambda]*1/Z*angspecMAP[\[Theta],\[Phi]]*Exp[I*\[Pi]]*Sqrt[Abs[Cos[\[Theta]]]]*Sin[\[

Theta]]*Exp[ikr[\[Lambda],\[Theta],\[Phi],x,y,z]]*\[Alpha]t/N\[Theta]t*2\[Pi]/N\[Phi

]t;

Hinc[\[Lambda]_,xp_,yp_,zp_]=Flatten[Table[Table[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi]t+1,1.}],1];

H0sum[\[Lambda]_,xp_,yp_,zp_]=Total[Hinc[\[Lambda],xp,yp,zp]];

Calculation of incident power

w=10^-30;

(* !!! INPUT !!! *) lb=0.05; (* lower bound of rnp/lambda *)

(* !!! INPUT !!! *) ub=0.25; (* upper bound of rnp/lambda *)

(* !!! INPUT !!! *) numS=100; (* number of wavelength steps *)

r\[Lambda]=Table[x,{x,lb,ub,(ub-lb)/numS}];

(* table of normalized frequency points *)

\[Lambda]t=rNP/r\[Lambda];(* table of wavelength points *)

w=10^-30;

(* calculation of Poynting vector in Cartesian coordinate system *)

Sw[\[Lambda]t_,x_,y_,z_]:={1/2*Re[E0sum[\[Lambda]t,x,y,z][[2]]*Conjugate[H0sum[\[Lambda]

t,x,y,z]][[3]]-E0sum[\[Lambda]t,x,y,z][[3]]*Conjugate[H0sum[\[Lambda]t,x,y,z

]][[2]]],1/2*Re[E0sum[\[Lambda]t,x,y,z][[3]]*Conjugate[H0sum[\[Lambda]t,x,y,z

]][[1]]-E0sum[\[Lambda]t,x,y,z][[1]]*Conjugate[H0sum[\[Lambda]t,x,y,z]][[3]]],1/2*Re

[E0sum[\[Lambda]t,x,y,z][[1]]*Conjugate[H0sum[\[Lambda]t,x,y,z]][[2]]-E0sum[\[Lambda

]t,x,y,z][[2]]*Conjugate[H0sum[\[Lambda]t,x,y,z]][[1]]]};

(* calculation of Poynting vector in spherical coordinate system *)

Swsph[\[Lambda]t_,r_,\[Theta]_,\[Phi]_]:=1/2*Re[E0sum[\[Lambda]t,r Cos[\[Phi]] Sin[\[
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Theta]],r Sin[\[Theta]] Sin[\[Phi]],r Cos[\[Theta]]]\[Cross]Conjugate[H0sum[\[Lambda

]t,r Cos[\[Phi]] Sin[\[Theta]],r Sin[\[Theta]] Sin[\[Phi]],r Cos[\[Theta]]]]];

(* algorithm for finding width of main lobe of incident beam, stored in ’rrpp’ *)

rrpp={};

(* !!! INPUT !!! *) ll=10^-8; (* lower bound for width of main lobe of incident beam in

m *)

(* !!! INPUT !!! *) ul=10^-5; (* upper bound for width of main lobe of incident beam in

m*)

(* !!! INPUT !!! *) numl=100; (* number of width steps *)

(* algorithm for finding minimum and maximum points in a list *)

findExtremaPos[list_List] :=

Module[{signs, extremaPos, minPos, maxPos},

signs = Sign[Differences[list]];

signs = signs //. {a___, q_, 0, z__} -> {a, q, q, z};

extremaPos = 1 + Accumulate@(Length /@ Split[signs]);

If[First@signs == 1, minPos = extremaPos[[2 ;; -2 ;; 2]];

maxPos = extremaPos[[1 ;; -2 ;; 2]],

minPos = extremaPos[[1 ;; -2 ;; 2]];

maxPos = extremaPos[[2 ;; -2 ;; 2]]];

{minPos, maxPos}]

(* loop over all wavelengths of interest *)

Do[

S[x_]=Sw[\[Lambda]t[[i]],x,w,w];

ff =Table[Abs[S[x]][[3]],{x,ll,ul,(ul-ll)/numl}];

(* get extreme points *)
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{min, max} = findExtremaPos[ff];

ListPlot[ff, Joined -> True,

Epilog -> {PointSize[Large], Red, Point[{#, ff[[#]]} & /@ min],

Blue, Point[{#, ff[[#]]} & /@ max]}, PlotRange -> All]

AppendTo[rrpp,min[[1]]*(ul-ll)/numl]

,{i,1,Length[\[Lambda]t]}]

(* incident power in a circular area *)

Pn[i_]:=NIntegrate[Norm[Swsph[\[Lambda]t[[1]],r,\[Pi]/2,\[Phi]][[3]]]*(r)*Sin[\[Pi]/2],{

r,0,rrpp[[i]]},{\[Phi],0,2\[Pi]},Method->{"MonteCarloRule","SymbolicProcessing"->

None},WorkingPrecision->5,PrecisionGoal->3];

Plot of incident power

(* plot of incident power over wavelength spectrum *)

power=ParallelTable[{\[Lambda]t[[x]],Re[Pn[x]]},{x,1,Length[rrpp],1}];

ListPlot[power,Joined->True,PlotRange->All]

rrpp={10^-7,10^-6,10^-5,10^-4};

(* plot of incident power over different radii of integration defined above in rrpp *)

power=ParallelTable[{rrpp[[x]],Re[Pn[x]]},{x,1,Length[rrpp],1}];

ListPlot[power,Joined->True,PlotRange->All]
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A.3 Power scattered by a sphere under focused lin-

early, radially, and azimuthally polarized illumi-

nation

Setup

SetDirectory[NotebookDirectory[]];

(* constants -- assuming medium is vacuum *)

c=3*^8; (* speed of light in a vacuum *)

\[Mu]=1.257*^-6; (* permeability of free space *)

\[Epsilon]0=1/(c^2 \[Mu]);(* permittivity of free space *)

\[Omega][\[Lambda]_]=(2.\[Pi]*c)/(\[Lambda]*1.*^-9); (* angular frequency in terms of

wavelength *)

Z=Sqrt[\[Mu]/\[Epsilon]0]; (* impedance of free space *)

User inputs: Properties of medium and particle

(* physical properties of medium *)

(* !!! INPUT !!! *) Nr[\[Lambda]_]=1; (* refractive index of medium*)

(* !!! INPUT !!! *) N1[\[Lambda]_]=3.7; (* refractive index of particle *)

(* !!! INPUT !!! *) rnp=100; (* radius of particle *)

kw[\[Lambda]_]=(2\[Pi])/(\[Lambda]*1*^-9)*Nr[\[Lambda]]; (* wavenumber of light in

medium *)

\[Epsilon]1[\[Lambda]_]=N1[\[Lambda]]^2;

d[rnp_]=2*rnp; (* diameter of particle *)

m[\[Lambda]_]=N1[\[Lambda]]/Nr[\[Lambda]]; (* relative refractive index of medium and

particle *)

kp[\[Lambda]_]=kw[\[Lambda]]*m[\[Lambda]]; (* wavenumber of light in particle *)
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xM[xm_]=2\[Pi]*Nr[\[Lambda]]*xm; (* Mie parameter, as defined on pg. 100of B&H, where xm

=rNP/lambda *)

Bessel functions

(* Bessel and Hankel functions *)

J[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]];

Y[n_,\[Rho]_]=SphericalBesselY[n,\[Rho]];

H[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]];

(* Ricatti-Bessel functions *)

\[Psi]n[n_,\[Rho]_]=\[Rho]*SphericalBesselJ[n,\[Rho]];

d\[Psi]n[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]]+\[Rho] (-(SphericalBesselJ[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalBesselJ[-1+n,\[Rho]]-SphericalBesselJ[1+n,\[Rho]]));

\[Xi]n[n_,\[Rho]_]=\[Rho]*SphericalHankelH1[n,\[Rho]];

d\[Xi]n[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]]+\[Rho] (-(SphericalHankelH1[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalHankelH1[-1+n,\[Rho]]-SphericalHankelH1[1+n,\[Rho]]));

Mie scattering coefficients and spherical vector harmonics

(* Mie coefficients *)

an[n_,\[Lambda]_,xm_]=(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[Psi]n[n,xM[xm]]-\[

Psi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]])/(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda

]]*xM[xm]]*d\[Xi]n[n,xM[xm]]-\[Xi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]]);

bn[n_,\[Lambda]_,xm_]=(\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[Psi]n[n,xM[xm]]-m[\[Lambda]]*\[

Psi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]])/(\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[

Xi]n[n,xM[xm]]-m[\[Lambda]]*\[Xi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]]);

User input: Angular spectrum decomposition of incident beam

(* !!! INPUT !!! *) \[Alpha]t=\[Pi]/3; (* half-angle annular aperture of focusing lens

*)

(* !!! INPUT !!! *) N\[Theta]t=100; (* number of plane waves in theta *)
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(* !!! INPUT !!! *) N\[Phi]t=100; (* number of plane waves in phi *)

(* angular spectrum of incident wave in Cartesian unit vectors *)

(* linearly polarized *)

angspecLP[\[Theta]_,\[Phi]_]={(Cos[\[Theta]]Cos[\[Phi]]^2+Sin[\[Phi]]^2),(Cos[\[Theta]]

Cos[\[Phi]]Sin[\[Phi]]-Cos[\[Phi]]Sin[\[Phi]]),-Sin[\[Theta]]Cos[\[Phi]]};

angspecMLP[\[Theta]_,\[Phi]_]=-{(1-Cos[\[Theta]])Cos[\[Phi]]Sin[\[Phi]],-(1-(1-Cos[\[

Theta]])Sin[\[Phi]]^2),Sin[\[Theta]]Sin[\[Phi]]};

(* radially polarized *)

angspecRP[\[Theta]_,\[Phi]_]={Cos[\[Theta]]Cos[\[Phi]],Cos[\[Theta]]Sin[\[Phi]],Sin[\[

Theta]]};

angspecMRP[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

(* azimuthally polarized *)

angspecAP[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

angspecMAP[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],Sin

[\[Theta]]};

\[Theta]ii=Table[((i-1)\[Alpha]t)/N\[Theta]t,{i,1,N\[Theta]t+1,1}]; (**)

\[Phi]jj=Table[((j-1) 2 \[Pi])/N\[Phi]t,{j,1,N\[Phi]t+1,1}];

(* incident electric and magnetic fields *)

ikr[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[Phi

]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)-Cos[\[Theta]]*(zp));

(* !!! INPUT !!! *)

(*-- choose desired angular spectrum*)Ei[\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[

Lambda]*angspecAP[\[Theta],\[Phi]]*Sqrt[Abs[Cos[\[Theta]]]]*Sin[\[Theta]]*Exp[ikr[\[

Lambda],\[Theta],\[Phi],x,y,z]]*\[Alpha]t/N\[Theta]t*2\[Pi]/N\[Phi]t;

Einc[\[Lambda]_,xp_,yp_,zp_]=Flatten[Table[Table[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi]t+1,1.}],1];
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E0sum[\[Lambda]_,xp_,yp_,zp_]=Total[Einc[\[Lambda],xp,yp,zp]];

(* !!! INPUT !!! *)

(*-- choose desired angular spectrum*)Hi[\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[

Lambda]*1/Z*angspecMAP[\[Theta],\[Phi]]*Exp[I*\[Pi]]*Sqrt[Abs[Cos[\[Theta]]]]*Sin[\[

Theta]]*Exp[ikr[\[Lambda],\[Theta],\[Phi],x,y,z]]*\[Alpha]t/N\[Theta]t*2\[Pi]/N\[Phi

]t;

Hinc[\[Lambda]_,xp_,yp_,zp_]=Flatten[Table[Table[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi]t+1,1.}],1];

H0sum[\[Lambda]_,xp_,yp_,zp_]=Total[Hinc[\[Lambda],xp,yp,zp]];

Gradient of incident beam at a point in space

(* gradient of incident electric field *)

delsum1[i_,j_,\[Lambda]_,x_,y_,z_]=

1/2*{{2D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],x],D[Ei[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y]+D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[2]],x],D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z]+D

[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]},{D[Ei[\[Theta]ii[[i]],\[

Phi]jj[[j]],\[Lambda],x,y,z][[2]],x]+D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,

y,z][[1]],y],2D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],y],D[Ei[\[

Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z]+D[Ei[\[Theta]ii[[i]],\[Phi]jj[[

j]],\[Lambda],x,y,z][[3]],y]},{D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z

][[3]],x]+D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z],D[Ei[\[Theta]

ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]+D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[2]],z],2D[Ei[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],z

]}};

deltot[\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsum1[i,j,\[Lambda],x,y,z],{i,1,

N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

del[\[Lambda]_,x_,y_,z_]:=Norm[Flatten[deltot[\[Lambda],x,y,z]]]^2;
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(* gradient of incident magnetic field *)

delsumH1[i_,j_,\[Lambda]_,x_,y_,z_]=

1/2*{{2D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],x],D[Hi[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y]+D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[2]],x],D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z]+D

[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]},{D[Hi[\[Theta]ii[[i]],\[

Phi]jj[[j]],\[Lambda],x,y,z][[2]],x]+D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,

y,z][[1]],y],2D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],y],D[Hi[\[

Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z]+D[Hi[\[Theta]ii[[i]],\[Phi]jj[[

j]],\[Lambda],x,y,z][[3]],y]},{D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z

][[3]],x]+D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z],D[Hi[\[Theta]

ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]+D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[2]],z],2D[Hi[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],z

]}};

deltotH[\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsumH1[i,j,\[Lambda],x,y,z],{i

,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

delH[\[Lambda]_,x_,y_,z_]:=Norm[Flatten[deltotH[\[Lambda],x,y,z]]]^2;

User input: Calculation of scattered power

(* power scattered by spherical particle, local field expressions *)

Ws2[e_,M_,\[Lambda]_,xp_,yp_,zp_,xm_]:=e*Abs[an[1,\[Lambda],xm]]^2*(3\[Pi])/(kw[\[Lambda

]]*\[Omega][\[Lambda]]*\[Mu])*Norm[E0sum[\[Lambda],xp,yp,zp]]^2+e*Abs[an[2,\[Lambda

],xm]]^2*(10\[Pi])/(kw[\[Lambda]]^3*\[Omega][\[Lambda]]*\[Mu])*del[\[Lambda],xp,yp,

zp]+M*Abs[bn[1,\[Lambda],xm]]^2*(3\[Pi])/(kw[\[Lambda]]*\[Omega][\[Lambda]]*\[Mu])*Z

^2*Norm[H0sum[\[Lambda],xp,yp,zp]]^2+M*Abs[bn[2,\[Lambda],xm]]^2*(10\[Pi])/(kw[\[

Lambda]]^3*\[Omega][\[Lambda]]*\[Mu])*Z^2*delH[\[Lambda],xp,yp,zp];

w=10^-30;

(* !!! INPUT !!! *) lb=0.05; (* lower bound of rnp/lambda *)
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(* !!! INPUT !!! *) ub=0.25; (* upper bound of rnp/lambda *)

(* !!! INPUT !!! *) numS=20; (* number of wavelength steps *)

r\[Lambda]=Table[x,{x,lb,ub,(ub-lb)/numS}]; (* table of normalized frequency points *)

\[Lambda]t=rNP/r\[Lambda];

Plot of spectral response

(* plot of spectral response of scattered power *)

data=ParallelTable[{r\[Lambda][[x]],Re[(Ws2[1,1,\[Lambda]t[[x]],w,w,w,r\[Lambda][[x]]])

]},{x,1,Length[r\[Lambda]],1}];

ListPlot[data,Joined->True,PlotRange->All]
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A.4 Radiation patterns of a sphere

Setup

SetDirectory[NotebookDirectory[]];

(* constants -- assuming medium is vacuum *)

c=3*^8; (* speed of light in a vacuum *)

\[Mu]=1.257*^-6; (* permeability of free space *)

\[Epsilon]0=1/(c^2 \[Mu]);(* permittivity of free space *)

\[Omega][\[Lambda]_]=(2.\[Pi]*c)/(\[Lambda]*1.*^-9); (* angular frequency in terms of

wavelength *)

Z=Sqrt[\[Mu]/\[Epsilon]0]; (* impedance of free space *)

User input: Properties of medium and particle

(* physical properties of medium *)

(* !!! INPUT !!! *) Nr[\[Lambda]_]=1; (* refractive index of medium*)

(* !!! INPUT !!! *) N1[\[Lambda]_]=3.7; (* refractive index of particle *)

(* !!! INPUT !!! *) rnp=100; (* radius of particle *)

kw[\[Lambda]_]=(2\[Pi])/(\[Lambda]*1*^-9)*Nr[\[Lambda]]; (* wavenumber of light in

medium *)

\[Epsilon]1[\[Lambda]_]=N1[\[Lambda]]^2;

d[rnp_]=2*rnp; (* diameter of particle *)

m[\[Lambda]_]=N1[\[Lambda]]/Nr[\[Lambda]]; (* relative refractive index of medium and

particle *)

kp[\[Lambda]_]=kw[\[Lambda]]*m[\[Lambda]]; (* wavenumber of light in particle *)

xM[xm_]=2\[Pi]*Nr[\[Lambda]]*m[\[Lambda]]; (* Mie parameter, as defined on pg. 100of B&H

, where xm=rNP/lambda *)

Bessel functions and angle-dependent functions
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(* Bessel and Hankel functions *)

J[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]];

Y[n_,\[Rho]_]=SphericalBesselY[n,\[Rho]];

H[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]];

(* Ricatti-Bessel functions *)

\[Psi]n[n_,\[Rho]_]=\[Rho]*SphericalBesselJ[n,\[Rho]];

d\[Psi]n[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]]+\[Rho] (-(SphericalBesselJ[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalBesselJ[-1+n,\[Rho]]-SphericalBesselJ[1+n,\[Rho]]));

\[Xi]n[n_,\[Rho]_]=\[Rho]*SphericalHankelH1[n,\[Rho]];

d\[Xi]n[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]]+\[Rho] (-(SphericalHankelH1[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalHankelH1[-1+n,\[Rho]]-SphericalHankelH1[1+n,\[Rho]]));

(* angle-dependent functions *)

pi[n_,\[Theta]_]=If[n==0,0,If[n==1,1,(2 n-1)/(n-1) Cos[\[Theta]] pi[n-1,\[Theta]]-n/(n

-1) pi[n-2,\[Theta]]]];

tau[n_,\[Theta]_]=n Cos[\[Theta]] pi[n,\[Theta]]-(n+1) pi[n-1,\[Theta]];

p[n_,\[Theta]_]=If[\[Theta]==0,1,LegendreP[n, 0, Cos[\[Theta]]]];

t[n_,\[Theta]_]=If[\[Theta]==0,0,1/Sin[\[Theta]] ((-1-n) Cos[\[Theta]]p[n,\[Theta]]+(1+n

) p[n+1,\[Theta]]) ];

Mie scattering coefficients and spherical vector harmonics

(* Mie coefficients *)

an[n_,\[Lambda]_]=(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]*d\[Psi]n[n,xM[\[

Lambda]]]-\[Psi]n[n,xM[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]])/(m[\[

Lambda]]*\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]*d\[Xi]n[n,xM[\[Lambda]]]-\[Xi]n[n,xM

[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]);

bn[n_,\[Lambda]_]=(\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]*d\[Psi]n[n,xM[\[Lambda]]]-m[\[

Lambda]]*\[Psi]n[n,xM[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]])/(\[Psi]n[n

,m[\[Lambda]]*xM[\[Lambda]]]*d\[Xi]n[n,xM[\[Lambda]]]-m[\[Lambda]]*\[Xi]n[n,xM[\[
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Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]);

(* spherical vector harmonics for incoming waves *)

Mo1ni[n_,k_,r_,\[Theta]_,\[Phi]_]={0,Cos[\[Phi]]*pi[n,\[Theta]]*J[n,k*r],-Sin[\[Phi]]*

tau[n,\[Theta]]*J[n,k*r]};

Ne1ni[n_,k_,r_,\[Theta]_,\[Phi]_]={Cos[\[Phi]]*n(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*J[n,k

*r]/(k*r),Cos[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r),-Sin[\[Phi]]*pi[n,\[

Theta]]*d\[Psi]n[n,k*r]/(k*r)};

Me1ni[n_,k_,r_,\[Theta]_,\[Phi]_]={0,-Sin[\[Phi]]*pi[n,\[Theta]]*J[n,k*r],-Cos[\[Phi]]*

tau[n,\[Theta]]*J[n,k*r]};

No1ni[n_,k_,r_,\[Theta]_,\[Phi]_]={Sin[\[Phi]]*n*(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*J[n,

k*r]/(k*r),Sin[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r),Cos[\[Phi]]*pi[n,\[

Theta]]*d\[Psi]n[n,k*r]/(k*r)};

(* spherical vector harmonics for outgoing waves, far field *)

Mo1n[n_,k_,r_,\[Theta]_,\[Phi]_]={0,Cos[\[Phi]]*pi[n,\[Theta]]*SphericalBesselJ[n,k*r],-

Sin[\[Phi]]*tau[n,\[Theta]]*SphericalBesselJ[n,k*r]};

Me1n[n_,k_,r_,\[Theta]_,\[Phi]_]={0,-Sin[\[Phi]]*pi[n,\[Theta]]*SphericalBesselJ[n,k*r

],-Cos[\[Phi]]*tau[n,\[Theta]]*SphericalBesselJ[n,k*r]};

No1n[n_,k_,r_,\[Theta]_,\[Phi]_]={Sin[\[Phi]]*n(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*

SphericalBesselJ[n,k*r]/(k*r),Sin[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r),Cos

[\[Phi]]*pi[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r)};

Ne1n[n_,k_,r_,\[Theta]_,\[Phi]_]={Cos[\[Phi]]*n(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*

SphericalBesselJ[n,k*r]/(k*r),Cos[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r),-Sin

[\[Phi]]*pi[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r)};

Ne0ni[n_, k_, r_, \[Theta]_, \[Phi]_]={n*(n + 1)*p[n,\[Theta]]*(J[n, k*r]/(k*r)), t[n,\[

Theta]]*d\[Psi]n[n, k*r]/(k*r), 0};

Me0ni[n_,k_,r_,\[Theta]_,\[Phi]_]={0,0,-t[n,\[Theta]]*J[n,k*r]};

Ne0n[n_, k_, r_, \[Theta]_, \[Phi]_]={{n*(n + 1)*p[n,\[Theta]]*(H[n, k*r]/(k*r))}, {t[n
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,\[Theta]]*d\[Xi]n[n, k*r]/(k*r)}, {0}};

Me0n[n_,k_,r_,\[Theta]_,\[Phi]_]=({{0},{0},{-t[n,\[Theta]]*H[n,k*r]}});

Coordinate system transformations

(* conversion from Cartesian coordinates to spherical coordinates *)

CartoSphCS[x_,y_,z_]:=CoordinateTransform[{"Cartesian"->"Spherical"},{x,y,z}];

rp[x_,y_,z_]:=CartoSphCS[x,y,z][[1]];

\[Theta]p[x_,y_,z_]:=CartoSphCS[x,y,z][[2]];

\[Phi]p[x_,y_,z_]:=CartoSphCS[x,y,z][[3]];

(* conversion from spherical unit vectors to Cartesian unit vectors *)SphtoCarUV[\[Theta

]_,\[Phi]_]:={{Sin[\[Theta]]*Cos[\[Phi]],Cos[\[Theta]]*Cos[\[Phi]],-Sin[\[Phi]]},{

Sin[\[Theta]]*Sin[\[Phi]],Cos[\[Theta]]*Sin[\[Phi]],Cos[\[Phi]]},{Cos[\[Theta]],-Sin

[\[Theta]],0}};

User input: Scattered electric fields

(* Specify the scattered electric fields by the particle in this section. Expressions

here are taken from 1) plane wave illumination: C.F.Bohren and D.R.Huffman,

Absorption and scattering of light by small particles, John Wiley & Sons, 2008. and

2) focused radially polarized illumination: N.M.Mojarad and M.Agio,Tailoring the

excitation of localized surface plasmon-polariton resonances by focusing radially-

polarized beams, Optics Express 17 (1), 117\[Dash]122, 2009. *)

(*

n = mode order;

e = electric modes;

M = magnetic modes;

\[Lambda] = wavelength of light;

r, \[Theta], \[Phi] = spherical coordinates

*)
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(* scattered electric field under plane wave illumination *)

EsSphPW[n_,e_,M_,\[Lambda]_,r_,\[Theta]_,\[Phi]_]:=I^n*(2n+1)/(n(n+1))*(e*I*an[n,\[

Lambda]]*Ne1n[n,kw[\[Lambda]],r,\[Theta],\[Phi]]-M*bn[n,\[Lambda]]*Mo1n[n,kw[\[

Lambda]],r,\[Theta],\[Phi]]);

(* conversion to spherical unit vectors *)

EsSphPWCarUV[n_,e_,M_,\[Lambda]_,r_,\[Theta]_,\[Phi]_]:=SphtoCarUV[\[Theta],\[Phi]].

EsSphPW[n,e,M,\[Lambda],r,\[Theta],\[Phi]];

(* scattered electric field under focsued radially polarized illumination *)

(* !!! INPUT !!! *)\[Alpha]=\[Pi]/3; (* half-angle of focusing aperture *)

(* beam coefficient *)

Bn[n_]:=I^n (2n + 1)/(2n(n+1)) NIntegrate[Sqrt[Cos[\[Theta]]]*t[n,\[Theta]]*Sin[\[Theta

]]^2, {\[Theta], 0,\[Alpha]}, PrecisionGoal->2, MaxRecursion->5,Method->{"

NewtonCotesRule", "SymbolicProcessing"->0}];

EsSphFRPW[n_,e_,M_,\[Lambda]_,r_,\[Theta]_,\[Phi]_]:=Bn[n]*e*an[n,\[Lambda]]*Ne0n[n,kw

[\[Lambda]],r,\[Theta],\[Phi]];

(* conversion to spherical unit vectors *)

EsSphFRPWCarUV[n_,e_,M_,\[Lambda]_,r_,\[Theta]_,\[Phi]_]:=SphtoCarUV[\[Theta],\[Phi]].

EsSphFRPW[n,e,M,\[Lambda],r,\[Theta],\[Phi]];

User input: Plot of radiation patterns

(* !!! INPUT !!! *)

(* Replace "EsSphFRPWCarUV[n,e,M,\[Lambda],r,\[Theta],\[Phi]]" in the following plot

expression with desired expression from previous section above. \[Lambda] choice

should not matter. For example, to plot radiation pattern of electric dipole under

focused radially-polarized illumination, choose n=1 to select the dipole modes, e =

1 to select electric modes, M = 0 to suppress magnetic modes, \[Lambda] = anything,

r = 1 for far-field plots, and leave \[Theta] and \[Phi] as symbols *)
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plt=SphericalPlot3D[Norm[EsSphFRPWCarUV[2,1,0,420,1,\[Theta],\[Phi]]],{\[Theta],0,\[Pi

]},{\[Phi],0,2\[Pi]},Boxed->False,Axes->False,PlotStyle->Directive[Opacity[1]],

Lighting->Automatic,ViewVertical->{0,0,1},Mesh->None,ColorFunction->Function[{x,y,z,

r,\[Theta],\[Phi]},Darker[Hue[-\[Phi]]]],ColorFunctionScaling->True,PerformanceGoal

->"Quality",PlotPoints->10]

(* Inreacing "PlotPoints" gives a finer mesh for the radiation pattern plot. 200 should

be sufficient for high-quality plot but takes more time to compute *)
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A.5 Fraction of power scattered by quadrupole:dipole

modes

Setup

SetDirectory[NotebookDirectory[]];

(* constants -- assuming medium is vacuum *)

c=3*^8; (* speed of light in a vacuum *)

\[Mu]=1.257*^-6; (* permeability of free space *)

\[Epsilon]0=1/(c^2 \[Mu]);(* permittivity of free space *)

\[Omega][\[Lambda]_]=(2.\[Pi]*c)/(\[Lambda]*1.*^-9); (* angular frequency in terms of

wavelength *)

Z=Sqrt[\[Mu]/\[Epsilon]0]; (* impedance of free space *)

User input: Properties of medium and particle

(* physical properties of medium *)

(* !!! INPUT !!! *) Nr[\[Lambda]_]=1; (* refractive index of medium*)

(* !!! INPUT !!! *) N1[\[Lambda]_]=3.7; (* refractive index of particle *)

(* !!! INPUT !!! *) rnp=100; (* radius of particle *)

kw[\[Lambda]_]=(2\[Pi])/(\[Lambda]*1*^-9)*Nr[\[Lambda]]; (* wavenumber of light in

medium *)

\[Epsilon]1[\[Lambda]_]=N1[\[Lambda]]^2;

d[rnp_]=2*rnp; (* diameter of particle *)

m[\[Lambda]_]=N1[\[Lambda]]/Nr[\[Lambda]]; (* relative refractive index of medium and

particle *)

kp[\[Lambda]_]=kw[\[Lambda]]*m[\[Lambda]]; (* wavenumber of light in particle *)

xM[xm_]=2\[Pi]*N1[\[Lambda]]*xm; (* Mie parameter *)(* Mie parameter, as defined on pg.

100 of B&H, where xm=rNP/lambda *)
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Bessel functions and angle-dependent functions

(* Bessel and Hankel functions *)

J[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]];

Y[n_,\[Rho]_]=SphericalBesselY[n,\[Rho]];

H[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]];

(* Ricatti-Bessel functions *)

\[Psi]n[n_,\[Rho]_]=\[Rho]*SphericalBesselJ[n,\[Rho]];

d\[Psi]n[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]]+\[Rho] (-(SphericalBesselJ[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalBesselJ[-1+n,\[Rho]]-SphericalBesselJ[1+n,\[Rho]]));

\[Xi]n[n_,\[Rho]_]=\[Rho]*SphericalHankelH1[n,\[Rho]];

d\[Xi]n[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]]+\[Rho] (-(SphericalHankelH1[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalHankelH1[-1+n,\[Rho]]-SphericalHankelH1[1+n,\[Rho]]));

(* angle-dependent functions *)

pi[n_,\[Theta]_]=If[n==0,0,If[n==1,1,(2 n-1)/(n-1) Cos[\[Theta]] pi[n-1,\[Theta]]-n/(n

-1) pi[n-2,\[Theta]]]];

tau[n_,\[Theta]_]=n Cos[\[Theta]] pi[n,\[Theta]]-(n+1) pi[n-1,\[Theta]];

p[n_,\[Theta]_]=If[\[Theta]==0,1,LegendreP[n, 0, Cos[\[Theta]]]];

t[n_,\[Theta]_]=If[\[Theta]==0,0,1/Sin[\[Theta]] ((-1-n) Cos[\[Theta]]p[n,\[Theta]]+(1+n

) p[n+1,\[Theta]]) ];

Mie scattering coefficients and spherical vector harmonics

(* Mie coefficients *)

an[n_,\[Lambda]_,xm_]=(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[Psi]n[n,xM[xm]]-\[

Psi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]])/(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda

]]*xM[xm]]*d\[Xi]n[n,xM[xm]]-\[Xi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]]);

bn[n_,\[Lambda]_,xm_]=(\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[Psi]n[n,xM[xm]]-m[\[Lambda]]*\[

Psi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]])/(\[Psi]n[n,m[\[Lambda]]*xM[xm]]*d\[

Xi]n[n,xM[xm]]-m[\[Lambda]]*\[Xi]n[n,xM[xm]]*d\[Psi]n[n,m[\[Lambda]]*xM[xm]]);
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(* spherical vector harmonics for incoming waves *)

Mo1ni[n_,k_,r_,\[Theta]_,\[Phi]_]={0,Cos[\[Phi]]*pi[n,\[Theta]]*J[n,k*r],-Sin[\[Phi]]*

tau[n,\[Theta]]*J[n,k*r]};

Ne1ni[n_,k_,r_,\[Theta]_,\[Phi]_]={Cos[\[Phi]]*n(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*J[n,k

*r]/(k*r),Cos[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r),-Sin[\[Phi]]*pi[n,\[

Theta]]*d\[Psi]n[n,k*r]/(k*r)};

Me1ni[n_,k_,r_,\[Theta]_,\[Phi]_]={0,-Sin[\[Phi]]*pi[n,\[Theta]]*J[n,k*r],-Cos[\[Phi]]*

tau[n,\[Theta]]*J[n,k*r]};

No1ni[n_,k_,r_,\[Theta]_,\[Phi]_]={Sin[\[Phi]]*n*(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*J[n,

k*r]/(k*r),Sin[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r),Cos[\[Phi]]*pi[n,\[

Theta]]*d\[Psi]n[n,k*r]/(k*r)};

(* spherical vector harmonics for outgoing waves, far field *)

Mo1n[n_,k_,r_,\[Theta]_,\[Phi]_]={0,Cos[\[Phi]]*pi[n,\[Theta]]*SphericalBesselJ[n,k*r],-

Sin[\[Phi]]*tau[n,\[Theta]]*SphericalBesselJ[n,k*r]};

Me1n[n_,k_,r_,\[Theta]_,\[Phi]_]={0,-Sin[\[Phi]]*pi[n,\[Theta]]*SphericalBesselJ[n,k*r

],-Cos[\[Phi]]*tau[n,\[Theta]]*SphericalBesselJ[n,k*r]};

No1n[n_,k_,r_,\[Theta]_,\[Phi]_]={Sin[\[Phi]]*n(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*

SphericalBesselJ[n,k*r]/(k*r),Sin[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r),Cos

[\[Phi]]*pi[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r)};

Ne1n[n_,k_,r_,\[Theta]_,\[Phi]_]={Cos[\[Phi]]*n(n+1)*Sin[\[Theta]]*pi[n,\[Theta]]*

SphericalBesselJ[n,k*r]/(k*r),Cos[\[Phi]]*tau[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r),-Sin

[\[Phi]]*pi[n,\[Theta]]*d\[Psi]n[n,k*r]/(k*r)};

Ne0ni[n_, k_, r_, \[Theta]_, \[Phi]_]={n*(n + 1)*p[n,\[Theta]]*(J[n, k*r]/(k*r)), t[n,\[

Theta]]*d\[Psi]n[n, k*r]/(k*r), 0};

Me0ni[n_,k_,r_,\[Theta]_,\[Phi]_]={0,0,-t[n,\[Theta]]*J[n,k*r]};

Ne0n[n_, k_, r_, \[Theta]_, \[Phi]_]={{n*(n + 1)*p[n,\[Theta]]*(H[n, k*r]/(k*r))}, {t[n

,\[Theta]]*d\[Xi]n[n, k*r]/(k*r)}, {0}};
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Me0n[n_,k_,r_,\[Theta]_,\[Phi]_]=({{0},{0},{-t[n,\[Theta]]*H[n,k*r]}});

Rotations and coordinate transformations

RzCCW[\[Phi]r_]={{Cos[\[Phi]r],Sin[\[Phi]r],0},{-Sin[\[Phi]r],Cos[\[Phi]r],0},{0,0,1}};

RxCCW[\[Theta]r_]={{1,0,0},{0,Cos[\[Theta]r],Sin[\[Theta]r]},{0,-Sin[\[Theta]r],Cos[\[

Theta]r]}};

RyCCW[\[Theta]r_]={{Cos[\[Theta]r],0,-Sin[\[Theta]r]},{0,1,0},{Sin[\[Theta]r],0,Cos[\[

Theta]r]}};

(* conversion from MCS (Cartesian) to RCS (Cartesian) by rotation angles \[Theta]xr, \[

Theta]yr, and \[Phi]r *)

R[\[Theta]xr_,\[Theta]yr_,\[Phi]r_]=RxCCW[\[Theta]xr].RyCCW[\[Theta]yr].RzCCW[\[Phi]r];

Rinv[\[Theta]xr_,\[Theta]yr_,\[Phi]r_]=Inverse[R[\[Theta]xr,\[Theta]yr,\[Phi]r]];

SphtoCarp[\[Theta]_,\[Phi]_]={{Sin[\[Theta]]*Cos[\[Phi]],Cos[\[Theta]]*Cos[\[Phi]],-Sin

[\[Phi]]},{Sin[\[Theta]]*Sin[\[Phi]],Cos[\[Theta]]*Sin[\[Phi]],Cos[\[Phi]]},{Cos[\[

Theta]],-Sin[\[Theta]],0}};

SphtoCarCS[r_,\[Theta]_,\[Phi]_]=CoordinateTransform[{"Spherical"->"Cartesian"},{r,\[

Theta],\[Phi]}];

CartoSphCS[x_,y_,z_]=CoordinateTransform[{"Cartesian"->"Spherical"},{x,y,z}];

User input: Angular spectrum decomposition of incident beam

(* !!! INPUT !!! *) N\[Theta]t=100; (* number of plane waves in theta *)

(* !!! INPUT !!! *) N\[Phi]t=100; (* number of plane waves in phi *)

(* angular spectrum of incident wave in Cartesian unit vectors *)

(* linearly polarized *)

angspecLP[\[Theta]_,\[Phi]_]={(Cos[\[Theta]]Cos[\[Phi]]^2+Sin[\[Phi]]^2),(Cos[\[Theta]]
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Cos[\[Phi]]Sin[\[Phi]]-Cos[\[Phi]]Sin[\[Phi]]),-Sin[\[Theta]]Cos[\[Phi]]};

angspecMLP[\[Theta]_,\[Phi]_]=-{(1-Cos[\[Theta]])Cos[\[Phi]]Sin[\[Phi]],-(1-(1-Cos[\[

Theta]])Sin[\[Phi]]^2),Sin[\[Theta]]Sin[\[Phi]]};

(* radially polarized *)

angspecRP[\[Theta]_,\[Phi]_]={Cos[\[Theta]]Cos[\[Phi]],Cos[\[Theta]]Sin[\[Phi]],Sin[\[

Theta]]};

angspecMRP[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

(* azimuthally polarized *)

angspecAP[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

angspecMAP[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],Sin

[\[Theta]]};

\[Theta]ii[\[Alpha]t_]=Table[((i-1)\[Alpha]t)/N\[Theta]t,{i,1,N\[Theta]t+1,1}];

\[Phi]jj=Table[((j-1) 2 \[Pi])/N\[Phi]t,{j,1,N\[Phi]t+1,1}];

(* incident electric and magnetic fields *)

ikr[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[Phi

]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)-Cos[\[Theta]]*(zp));

(* !!! INPUT !!! *)

(*-- choose desired angular spectrum*)

Ei[\[Alpha]t_,\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[Lambda]*angspecRP[\[Theta],\[

Phi]]*Sqrt[Abs[Cos[\[Theta]]]]*Sin[\[Theta]]*Exp[ikr[\[Lambda],\[Theta],\[Phi],x,y,z

]]*\[Alpha]t/N\[Theta]t*2\[Pi]/N\[Phi]t;

Einc[\[Lambda]_,\[Alpha]t_,xp_,yp_,zp_]=Flatten[Table[Table[Ei[\[Alpha]t,\[Theta]ii[\[

Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi

]t+1,1.}],1];

E0sum[\[Lambda]_,\[Alpha]t_,xp_,yp_,zp_]=Total[Einc[\[Lambda],\[Alpha]t,xp,yp,zp]];
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(* !!! INPUT !!! *)

(*-- choose desired angular spectrum*)

Hi[\[Alpha]t_,\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-kw[\[Lambda]]/(\[Omega][\[Lambda

]]*\[Mu])*I*angspecMRP[\[Theta],\[Phi]]*Sqrt[Abs[Cos[\[Theta]]]]*Sin[\[Theta]]*Exp[

ikr[\[Lambda],\[Theta],\[Phi],x,y,z]]*\[Alpha]t/N\[Theta]t*2\[Pi]/N\[Phi]t;

Hinc[\[Lambda]_,\[Alpha]t_,xp_,yp_,zp_]=Flatten[Table[Table[Hi[\[Alpha]t,\[Theta]ii[\[

Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi

]t+1,1.}],1];

H0sum[\[Lambda]_,\[Alpha]t_,xp_,yp_,zp_]=Total[Hinc[\[Lambda],\[Alpha]t,xp,yp,zp]];

Gradient of incident beam at a point in space

delsum1[\[Alpha]t_,i_,j_,\[Lambda]_,x_,y_,z_]=

1/2*{{2D[Ei[\[Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],x],

D[Ei[\[Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y]+D[

Ei[\[Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],x],D[Ei

[\[Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z]+D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]},{D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],x]+D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y],2D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],y],D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z]+D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]},{D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]+D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z],D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]+D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z],2D[Ei[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],z]}};

deltot[\[Alpha]t_,\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsum1[\[Alpha]t,i,j

,\[Lambda],x,y,z],{i,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

del[\[Alpha]t_,\[Lambda]_,x_,y_,z_]:=Norm[Flatten[deltot[\[Alpha]t,\[Lambda],x,y,z]]]^2;
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delsumH1[\[Alpha]t_,i_,j_,\[Lambda]_,x_,y_,z_]=

1/2*{{2D[Hi[\[Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],x],

D[Hi[\[Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y]+D[

Hi[\[Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],x],D[Hi

[\[Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z]+D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]},{D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],x]+D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y],2D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],y],D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z]+D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]},{D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]+D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z],D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]+D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z],2D[Hi[\[

Alpha]t,\[Theta]ii[\[Alpha]t][[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],z]}};

deltotH[\[Alpha]t_,\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsumH1[\[Alpha]t,i,j

,\[Lambda],x,y,z],{i,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

delH[\[Alpha]t_,\[Lambda]_,x_,y_,z_]:=Norm[Flatten[deltotH[\[Alpha]t,\[Lambda],x,y,z

]]]^2;

Power scattered by spherical particle

Ws2[\[Alpha]t_,e_,M_,\[Lambda]_,xp_,yp_,zp_,xm_]:=e*Abs[an[1,\[Lambda],xm]]^2*(3\[Pi])/(

kw[\[Lambda]]*\[Omega][\[Lambda]]*\[Mu])*Norm[E0sum[\[Lambda],\[Alpha]t,xp,yp,zp

]]^2+e*Abs[an[2,\[Lambda],xm]]^2*(10\[Pi])/(kw[\[Lambda]]^3*\[Omega][\[Lambda]]*\[Mu

])*del[\[Alpha]t,\[Lambda],xp,yp,zp]+M*Abs[bn[1,\[Lambda],xm]]^2*(3\[Pi])/(kw[\[

Lambda]]*\[Omega][\[Lambda]]*\[Mu])*Z^2*Norm[H0sum[\[Lambda],\[Alpha]t,xp,yp,zp]]^2+

M*Abs[bn[2,\[Lambda],xm]]^2*(10\[Pi])/(kw[\[Lambda]]^3*\[Omega][\[Lambda]]*\[Mu])*Z

^2*delH[\[Alpha]t,\[Lambda],xp,yp,zp];
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(* power scattered by individual multipolar modes *)

WsED[\[Alpha]t_,\[Lambda]_,xp_,yp_,zp_,xm_]:=Abs[an[1,\[Lambda],xm]]^2*(3\[Pi])/(kw[\[

Lambda]]*\[Omega][\[Lambda]]*\[Mu])*Norm[E0sum[\[Lambda],\[Alpha]t,xp,yp,zp]]^2;

WsEQ[\[Alpha]t_,\[Lambda]_,xp_,yp_,zp_,xm_]:=Abs[an[2,\[Lambda],xm]]^2*(10\[Pi])/(kw[\[

Lambda]]^3*\[Omega][\[Lambda]]*\[Mu])*del[\[Alpha]t,\[Lambda],xp,yp,zp];

WsMD[\[Alpha]t_,\[Lambda]_,xp_,yp_,zp_,xm_]:=Abs[bn[1,\[Lambda],xm]]^2*(3\[Pi])/(kw[\[

Lambda]]*\[Omega][\[Lambda]]*\[Mu])*Z^2*Norm[H0sum[\[Lambda],\[Alpha]t,xp,yp,zp]]^2;

WsMQ[\[Alpha]t_,\[Lambda]_,xp_,yp_,zp_,xm_]:=Abs[bn[2,\[Lambda],xm]]^2*(10\[Pi])/(kw[\[

Lambda]]^3*\[Omega][\[Lambda]]*\[Mu])*Z^2*delH[\[Alpha]t,\[Lambda],xp,yp,zp];

Plot of ratio of power scattered by one mode to another

(* !!! INPUT !!! *)

(* Enter wavelengths of modes of interest on resonance. In this example the EQ mode

resonance is at r/\[Lambda] = 0.234 and the ED resonance is at r/\[Lambda] = 0.174

*)

w=10^-30;

data=ParallelTable[{x,WsEQ[x,rnp/0.234,w,w,w,0.234]/WsED[x,rnp/0.174,w,w,w,0.174]},{x

,0.1,\[Pi]/2,(\[Pi]/2-0.1)/40}];

ListPlot[data,Joined->True,PlotRange->All]
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A.6 Standing wave illumination for selective excitation

of multipolar modes

Setup

SetDirectory[NotebookDirectory[]];

(* constants -- assuming medium is vacuum *)

c=3*^8; (* speed of light in a vacuum *)

\[Mu]=1.257*^-6; (* permeability of free space *)

\[Epsilon]0=1/(c^2 \[Mu]);(* permittivity of free space *)

\[Omega][\[Lambda]_]=(2.\[Pi]*c)/(\[Lambda]*1.*^-9); (* angular frequency in terms of

wavelength *)

Z=Sqrt[\[Mu]/\[Epsilon]0]; (* impedance of free space *)

User input: Properties of medium and particle

(* physical properties of medium *)

(* !!! INPUT !!! *) Nr[\[Lambda]_]=1; (* refractive index of medium*)

(* !!! INPUT !!! *) N1[\[Lambda]_]=3.7; (* refractive index of particle *)

(* !!! INPUT !!! *) rNP=100; (* radius of particle *)

kw[\[Lambda]_]=(2\[Pi])/(\[Lambda]*1*^-9)*Nr[\[Lambda]]; (* wavenumber of light in

medium *)

\[Epsilon]1[\[Lambda]_]=N1[\[Lambda]]^2;

d[rnp_]=2*rNP; (* diameter of particle *)

m[\[Lambda]_]=N1[\[Lambda]]/Nr[\[Lambda]]; (* relative refractive index of medium and

particle *)

kp[\[Lambda]_]=kw[\[Lambda]]*m[\[Lambda]]; (* wavenumber of light in particle *)

xM[xm_]=2\[Pi]*N1[\[Lambda]]*xm; (* Mie parameter *)(* Mie parameter, as defined on pg.

100 of B&H, where xm=rNP/lambda *)
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Bessel functions

(* ALL THINGS BESSEL *)

(* Bessel and Hankel functions *)

J[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]];

Y[n_,\[Rho]_]=SphericalBesselY[n,\[Rho]];

H[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]];

(* Ricatti-Bessel functions *)

\[Psi]n[n_,\[Rho]_]=\[Rho]*SphericalBesselJ[n,\[Rho]];

d\[Psi]n[n_,\[Rho]_]=SphericalBesselJ[n,\[Rho]]+\[Rho] (-(SphericalBesselJ[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalBesselJ[-1+n,\[Rho]]-SphericalBesselJ[1+n,\[Rho]]));

\[Xi]n[n_,\[Rho]_]=\[Rho]*SphericalHankelH1[n,\[Rho]];

d\[Xi]n[n_,\[Rho]_]=SphericalHankelH1[n,\[Rho]]+\[Rho] (-(SphericalHankelH1[n,\[Rho]]/(2

\[Rho]))+1/2 (SphericalHankelH1[-1+n,\[Rho]]-SphericalHankelH1[1+n,\[Rho]]));

Mie scattering coefficients and vector spherical harmonics

(* ALL THINGS MIE *)

(* Mie coefficients *)

an[n_,\[Lambda]_]=(m[\[Lambda]]*\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]*d\[Psi]n[n,xM[\[

Lambda]]]-\[Psi]n[n,xM[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]])/(m[\[

Lambda]]*\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]*d\[Xi]n[n,xM[\[Lambda]]]-\[Xi]n[n,xM

[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]);

bn[n_,\[Lambda]_]=(\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]*d\[Psi]n[n,xM[\[Lambda]]]-m[\[

Lambda]]*\[Psi]n[n,xM[\[Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]])/(\[Psi]n[n

,m[\[Lambda]]*xM[\[Lambda]]]*d\[Xi]n[n,xM[\[Lambda]]]-m[\[Lambda]]*\[Xi]n[n,xM[\[

Lambda]]]*d\[Psi]n[n,m[\[Lambda]]*xM[\[Lambda]]]);

User input: Angular spectrum decomposition of incident beam

(* !!! INPUT !!! *) \[Alpha]t=\[Pi]/3; (* half-angle annular aperture of focusing lens

*)
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(* !!! INPUT !!! *) N\[Theta]t=100; (* number of plane waves in theta *)

(* !!! INPUT !!! *) N\[Phi]t=100; (* number of plane waves in phi *)

\[Theta]ii=Table[((i-1)\[Alpha]t)/N\[Theta]t,{i,1,N\[Theta]t+1,1}];

\[Phi]jj=Table[((j-1) 2 \[Pi])/N\[Phi]t,{j,1,N\[Phi]t+1,1}];

(* angular spectrum of incident wave in Cartesian unit vectors *)

(* Standing wave illumination of radially polarized beam *)

angspecRP1[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],Sin

[\[Theta]]};

angspecMRP1[\[Theta]_,\[Phi]_]={Sin[\[Phi]],-Cos[\[Phi]],0};

angspecRP2[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],-Sin

[\[Theta]]};

angspecMRP2[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

ikrRP1[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[

Phi]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)+Cos[\[Theta]]*(zp));

ikrRP2[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[

Phi]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)-Cos[\[Theta]]*(zp));

(* Standing wave illumination of radially polarized beam with pi phase shift in one beam

*)

angspecRPpi1[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],Sin

[\[Theta]]};

angspecMRPpi1[\[Theta]_,\[Phi]_]={Sin[\[Phi]],-Cos[\[Phi]],0};

angspecRPpi2[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],-

Sin[\[Theta]]};

angspecMRPpi2[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};
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ikrRPpi1[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[

Phi]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)+Cos[\[Theta]]*(zp));

ikrRPpi2[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*\[Pi]+I*kw[\[Lambda]]*(Sin[\[Theta

]]*Cos[\[Phi]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)-Cos[\[Theta]]*(zp));

(* Standing wave illumination of azimuthally polarized beam *)

angspecAP1[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

angspecMAP1[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],Sin

[\[Theta]]};

angspecAP2[\[Theta]_,\[Phi]_]={Sin[\[Phi]],-Cos[\[Phi]],0};

angspecMAP2[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],-Sin

[\[Theta]]};

ikrAP1[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[

Phi]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)+Cos[\[Theta]]*(zp));

ikrAP2[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[

Phi]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)-Cos[\[Theta]]*(zp));

(* Standing wave illumination of azimuthally polarized beam with pi phase shift in one

beam *)

angspecAPpi1[\[Theta]_,\[Phi]_]={-Sin[\[Phi]],Cos[\[Phi]],0};

angspecMAPpi1[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],

Sin[\[Theta]]};

angspecAPpi2[\[Theta]_,\[Phi]_]={Sin[\[Phi]],-Cos[\[Phi]],0};

angspecMAPpi2[\[Theta]_,\[Phi]_]={-Cos[\[Theta]]Cos[\[Phi]],-Cos[\[Theta]]Sin[\[Phi]],-

Sin[\[Theta]]};

ikrAPpi1[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*kw[\[Lambda]]*(Sin[\[Theta]]*Cos[\[

Phi]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)+Cos[\[Theta]]*(zp));
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ikrAPpi2[\[Lambda]_,\[Theta]_,\[Phi]_,xp_,yp_,zp_]=I*\[Pi]+I*kw[\[Lambda]]*(Sin[\[Theta

]]*Cos[\[Phi]]*(xp)+Sin[\[Theta]]*Sin[\[Phi]]*(yp)-Cos[\[Theta]]*(zp));

(* electric field of incident beam *)

(* !!! INPUT !!! *)

(*-- choose desired angular spectrum*)

Ei1[\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[Lambda]*\[Alpha]t/N\[Theta]t*2\[Pi]/N\[

Phi]t*angspecAPpi1[\[Theta],\[Phi]]*Sqrt[Cos[\[Theta]]]*Sin[\[Theta]]*Exp[ikrAPpi1

[\[Lambda],\[Theta],\[Phi],x,y,z]];

Einc1[\[Lambda]_,xp_,yp_,zp_]=Flatten[Table[Table[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi]t+1,1.}],1];

Ei2[\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[Lambda]*\[Alpha]t/N\[Theta]t*2\[Pi]/N\[

Phi]t*angspecAPpi2[\[Theta],\[Phi]]*Sqrt[Cos[\[Theta]]]*Sin[\[Theta]]*Exp[ikrAPpi2

[\[Lambda],\[Theta],\[Phi],x,y,z]];

Einc2[\[Lambda]_,xp_,yp_,zp_]=Flatten[Table[Table[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi]t+1,1.}],1];

Einc[\[Lambda]_,xp_,yp_,zp_]=Join[Einc1[\[Lambda],xp,yp,zp],Einc2[\[Lambda],xp,yp,zp]];

E0sum[\[Lambda]_,xp_,yp_,zp_]=Total[Einc[\[Lambda],xp,yp,zp]];

a=Length[Einc[\[Lambda],xp,yp,zp]];

(* magnetic field of incident beam *)

(* !!! INPUT !!! *)

(*-- choose desired angular spectrum*)

Hi1[\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[Lambda]*1/Z*\[Alpha]t/N\[Theta]t*2\[Pi]/

N\[Phi]t*angspecMAPpi1[\[Theta],\[Phi]]*Sqrt[Cos[\[Theta]]]*Sin[\[Theta]]*Exp[

ikrAPpi1[\[Lambda],\[Theta],\[Phi],x,y,z]];

Hinc1[\[Lambda]_,xp_,yp_,zp_]=Flatten[Table[Table[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi]t+1,1.}],1];

Hi2[\[Theta]_,\[Phi]_,\[Lambda]_,x_,y_,z_]=-I/\[Lambda]*1/Z*\[Alpha]t/N\[Theta]t*2\[Pi]/

N\[Phi]t*angspecMAPpi2[\[Theta],\[Phi]]*Sqrt[Cos[\[Theta]]]*Sin[\[Theta]]*Exp[

ikrAPpi2[\[Lambda],\[Theta],\[Phi],x,y,z]];
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Hinc2[\[Lambda]_,xp_,yp_,zp_]=Flatten[Table[Table[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],xp,yp,zp],{i,1.,N\[Theta]t+1,1.}],{j,1.,N\[Phi]t+1,1.}],1];

Hinc[\[Lambda]_,xp_,yp_,zp_]=Join[Hinc1[\[Lambda],xp,yp,zp],Hinc2[\[Lambda],xp,yp,zp]];

H0sum[\[Lambda]_,xp_,yp_,zp_]=Total[Hinc[\[Lambda],xp,yp,zp]];

w=10^-30;

Gradient of incident beam at a point in space

delsum1[i_,j_,\[Lambda]_,x_,y_,z_]=

1/2*{{2D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],x],D[Ei1[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y]+D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[2]],x],D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z]+

D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]},{D[Ei1[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],x]+D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[1]],y],2D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],y

],D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z]+D[Ei1[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]},{D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[3]],x]+D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z],

D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]+D[Ei1[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z],2D[Ei1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[3]],z]}};

delsum2[i_,j_,\[Lambda]_,x_,y_,z_]=

1/2*{{2D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],x],D[Ei2[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y]+D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[2]],x],D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z]+

D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]},{D[Ei2[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],x]+D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[1]],y],2D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],y

],D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z]+D[Ei2[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]},{D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[
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Lambda],x,y,z][[3]],x]+D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z],

D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]+D[Ei2[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z],2D[Ei2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[3]],z]}};

deltot[\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsum1[i,j,\[Lambda],x,y,z]+

delsum2[i,j,\[Lambda],x,y,z],{i,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

del[\[Lambda]_,x_,y_,z_]:=Norm[Flatten[deltot[\[Lambda],x,y,z]]]^2;

delsumH1[i_,j_,\[Lambda]_,x_,y_,z_]=

1/2*{{2D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],x],D[Hi1[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y]+D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[2]],x],D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z]+

D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]},{D[Hi1[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],x]+D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[1]],y],2D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],y

],D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z]+D[Hi1[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]},{D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[3]],x]+D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z],

D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]+D[Hi1[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z],2D[Hi1[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[3]],z]}};

delsumH2[i_,j_,\[Lambda]_,x_,y_,z_]=

1/2*{{2D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],x],D[Hi2[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],y]+D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[2]],x],D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z]+

D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],x]},{D[Hi2[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],x]+D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[1]],y],2D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],y

],D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z]+D[Hi2[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]},{D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[3]],x]+D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[1]],z],
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D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[Lambda],x,y,z][[3]],y]+D[Hi2[\[Theta]ii[[i

]],\[Phi]jj[[j]],\[Lambda],x,y,z][[2]],z],2D[Hi2[\[Theta]ii[[i]],\[Phi]jj[[j]],\[

Lambda],x,y,z][[3]],z]}};

deltotH[\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsumH1[i,j,\[Lambda],x,y,z]+

delsumH2[i,j,\[Lambda],x,y,z],{i,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

delH[\[Lambda]_,x_,y_,z_]:=Norm[Flatten[deltotH[\[Lambda],x,y,z]]]^2;

w=10^-30;

deltot1[\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsum1[i,j,\[Lambda],x,y,z],{i

,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

deltot2[\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsum2[i,j,\[Lambda],x,y,z],{i

,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

deltotH1[\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsumH1[i,j,\[Lambda],x,y,z],{i

,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

deltotH2[\[Lambda]_,x_,y_,z_]=Total[Flatten[Table[Table[delsumH2[i,j,\[Lambda],x,y,z],{i

,1,N\[Theta]t+1,1}],{j,1,N\[Phi]t+1}],1]];

User input: Calculation of scattered cross section

(* !!! INPUT !!! *) lb=0.05; (* lower bound of rnp/lambda *)

(* !!! INPUT !!! *) ub=0.25; (* upper bound of rnp/lambda *)

(* !!! INPUT !!! *) numS=20; (* number of wavelength steps *)

r\[Lambda]=Table[x,{x,lb,ub,(ub-lb)/numS}];

\[Lambda]t=rNP/r\[Lambda];

(* Local field expression for power scattered by spherical particle *)

Ws2[e_,M_,\[Lambda]_,x_,y_,z_]:=Abs[e*an[1,\[Lambda]]]^2*(3\[Pi])/(kw[\[Lambda]]*\[Omega

][\[Lambda]]*\[Mu])*Norm[E0sum[\[Lambda],w,w,w]]^2+M*Abs[bn[1,\[Lambda]]]^2*(3\[Pi])
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/(kw[\[Lambda]]*\[Omega][\[Lambda]]*\[Mu])*Z^2*Norm[H0sum[\[Lambda],w,w,w]]^2+e*Abs[

an[2,\[Lambda]]]^2*(10\[Pi])/(kw[\[Lambda]]^3*\[Omega][\[Lambda]]*\[Mu])*del[\[

Lambda],w,w,w]+M*Abs[bn[2,\[Lambda]]]^2*(10\[Pi])/(kw[\[Lambda]]^3*\[Omega][\[Lambda

]]*\[Mu])*Z^2*delH[\[Lambda],w,w,w];

(* Calculation of power scattered by sphere over a range of rnp/lambda *)

data=Table[{x,Re[Ws2[1,1,\[Lambda]t[[x]],w,w,w]]},{x,1,Length[\[Lambda]t],1}];

(* Calculation of incident intensity over a range of rnp/lambda *)

rrpp={};

Do[

S[x_]=Ec[\[Lambda]t[[i]],x,w,w];

ff =Table[S[x],{x,ll,ul,(ul-ll)/num}];

(* Evaluate extreme points *)

{min, max} = findExtremaPos[ff];

ListPlot[ff, Joined -> True,

Epilog -> {PointSize[Large], Red, Point[{#, ff[[#]]} & /@ min],

Blue, Point[{#, ff[[#]]} & /@ max]}, PlotRange -> All]

AppendTo[rrpp,min[[1]]*(ul-ll)/num]

,{i,1,Length[\[Lambda]t]}]

EcSphint[i_]:=1/(\[Pi]*rrpp[[i]]^2)*NIntegrate[EcSph[\[Lambda]t[[i]],r,\[Pi]/2,\[Phi]]*r

,{r,0,rrpp[[i]]},{\[Phi],0,2\[Pi]}];

eng=Table[{r\[Lambda][[x]],Re[EcSphint[x]]},{x,1,Length[r\[Lambda]],1}];

f=Interpolation[eng];

engsmart=Table[f[j],{j,0.05,0.25,(0.25-0.05)/500}];
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(* Calculation of scattering cross-section over a range of rnp/lambda *)

data2=data1[[All,2]]/engsmart;

ListPlot[data2]
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Appendix B

Numerical full beam simulations using

Lumerical FDTD

This section contains instructions on using Lumerical FDTD to obtain the scattering

response of spherical and dimer antennas under focused beam illumination using the full

beam technique. The steps required are as follows:

1. Generate simulation files of the incident illumination beam, without the resonator

of interest in place (referred to as "source" files), using the script file given in B.1

and run these files

2. Generate simulation files of the incident illumination beam, with the resonator of

interest in place (referred to as "scatt" files), using the script file given in B.2 and

run these files

3. Run the appropriate post-processing scripts, given in sections B.3 - B.7, to calculate:

incident power, scattered power, field enhancement, radiation patterns, and field

plots.
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All simulation files and script files used to generate the figures in chapter 4 are available for

download online through Google Drive. We implemented a three dimensional simulation

in which the resonator of interest was placed at the focus of the beam under consideration.

The electric and magnetic fields for focused radially (RP) and azimuthally polarized (AP)

beams were calculated in a 2D plane using expressions from previous studies [34, 33].

These beams were injected into the simulation in a plane 1 µm away from the focus

by using the Lumerical FDTD “Import Source" feature. The illumination beam was

incident along the z-axis. We used symmetric boundary conditions along x and y for

the RP beam and anti-symmetric boundary conditions for the AP beam, and perfectly

matched layer (PML) boundary conditions for the remaining boundaries. A non-uniform

mesh was used with a minimum element size of 5nm in the region of the scatterer. In all

cases the simulations were run until the fields decayed to less than one millionth of the

incident field strength. To construct the spectral response, the simulations were run at

single wavelengths with and without the scatterer in place, and the scattered fields were

obtained by subtracting the incident fields from the scattered plus incident fields.

B.1 Script file for generating source files

#####

# This script file is used to generate files that can be run in Lumerical FDTD

# The generated files simulate propagation of a focused linearly polarized beam in space

#####

# --- INPUT --- #

# load source file template

load("6282016-flpw-pws-dimer-inactive");
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# --- INPUT --- #

lambda0 = floor(linspace(400,900,500)); # wavelengths to simulate at in units of nm

for(i=1:length(lambda0)) {

# --- INPUT --- #

NA = sin(pi/3); # numerical aperture of focusing lens

f = c/(lambda0(i)*10^-9); # frequency

w = 2*pi*f;

k = 2*pi/(lambda0(i)*10^-9); # wavenumber

knum=100; # number of k-vectors in discretizations

xynum=knum*2+1; # number of position vectors in discretization

simsize=5e-6; # size of x- and y- dimensions of input plane in units of m

# define position vectors

x = linspace(-simsize,simsize,xynum); # array of position vectors in x

y = linspace(-simsize,simsize,xynum); # array of position vectors in y

z = 0; # this is z z-normal source

# --- INPUT --- #

z0=1e-6; # distance of injection plane from focal plane in units of m

X = meshgridx(x,y); # create a 2D grid of points in x

Y = meshgridy(x,y); # create a 2D grid of points in y

# define array of k-vectors

kx = linspace(-k,k,knum);

ky = linspace(-k,k,knum);

Kx = meshgridx(kx,ky);

Ky = meshgridy(kx,ky);
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Kz = k*sqrt(1-Kx^2/k^2-Ky^2/k^2);

phi = atan2(Ky,Kx);

theta = real(acos(sqrt(1-Kx^2/k^2-Ky^2/k^2)));

envelope = exp(-0.5*(Kx^2 + Ky^2)/(NA*k)^2); # envelope function to for chosen NA;

defined from M. Mansuripur, J. Opt. Soc. Am. A., 3(12), 2086 (1986)

# define filter to remove evanescent non-propagating plane waves

ux=kx/k;

uy=ky/k;

Ux = meshgridx(ux,uy);

Uy = meshgridy(ux,uy);

Uxy = sqrt(Ux^2+Uy^2)+1e-5; # add 1e-5 to avoid divide by zero problems

Uz = sqrt(1-Uxy^2);

filter = (Ux^2+Uy^2 < 1);

# --- INPUT --- #

# define angular spectrum of incident beam

# example here is for focused linearly polarized beam

Exk = (cos(theta)*cos(phi)*cos(phi)+sin(phi)*sin(phi))*envelope;

Eyk = (cos(theta)*cos(phi)*sin(phi)-cos(phi)*sin(phi))*envelope;

Ezk = sin(theta)*cos(phi)*envelope;

Ex = czt(Exk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Ey = czt(Eyk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Ez = czt(Ezk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Hxk = sqrt(eps0/mu0)*((1-cos(theta))*cos(phi)*sin(phi))*envelope;

Hyk = sqrt(eps0/mu0)*-(1-(1-cos(theta))*sin(phi)*sin(phi))*envelope;

Hzk = sqrt(eps0/mu0)*(sin(theta)*sin(phi))*envelope;

Hx = czt(Hxk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Hy = czt(Hyk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Hz = czt(Hzk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);
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# scale field so |E|^2=1

E2 = abs(Ex)^2+abs(Ey)^2+abs(Ez)^2;

scaleFactor = sqrt(max(E2));

Ex = Ex/scaleFactor;

Ey = Ey/scaleFactor;

Ez = Ez/scaleFactor;

Hx = Hx/scaleFactor;

Hy = Hy/scaleFactor;

Hz = Hz/scaleFactor;

# package field data into the EM fields dataset that can be loaded into the Import

source

EM = rectilineardataset("EM fields",x,y,z);

EM.addparameter("lambda",c/f,"f",f);

EM.addattribute("E",Ex,Ey,Ez);

EM.addattribute("H",Hx,Hy,Hz);

# directly load dataset into source

select("import_beam");

importdataset(EM);

set("z",z0);

set("center wavelength",lambda0(i)*10^-9);

set("wavelength span",0);

select("Psource");

set("lda",lambda0(i)*10^-9);

# output which simulation is being saved

?"saving simulation " + num2str(i) + " of " + num2str(length(lambda0));
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# save the simulation at every wavelength

f_name="4212017-frpw-pws-wl"+num2str(lambda0(i))+"nm-source";

save(f_name);

}

B.2 Script file for generating scatt files

#####

# This script file is used to generate files that can be run in Lumerical FDTD

# The generated files simulate propagation of a focused linearly polarized beam in space

with a resonator at the focus

#####

# --- INPUT --- #

# load source file template

load("6282016-flpw-pws-dimer-active");

# --- INPUT --- #

lambda0 = floor(linspace(400,900,500)); # wavelengths to simulate at in units of nm

for(i=1:length(lambda0)) {

# --- INPUT --- #

NA = sin(pi/3); # numerical aperture of focusing lens

f = c/(lambda0(i)*10^-9); # frequency

w = 2*pi*f;

k = 2*pi/(lambda0(i)*10^-9); # wavenumber

knum=100; # number of k-vectors in discretizations

xynum=knum*2+1; # number of position vectors in discretization

simsize=5e-6; # size of x- and y- dimensions of input plane in units of m
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# define position vectors

x = linspace(-simsize,simsize,xynum); # array of position vectors in x

y = linspace(-simsize,simsize,xynum); # array of position vectors in y

z = 0; # this is a z-normal source

# --- INPUT --- #

z0=1e-6; # distance of injection plane from focal plane in units of m

X = meshgridx(x,y); # create a 2D grid of points in x

Y = meshgridy(x,y); # create a 2D grid of points in y

# define array of k-vectors

kx = linspace(-k,k,knum);

ky = linspace(-k,k,knum);

Kx = meshgridx(kx,ky);

Ky = meshgridy(kx,ky);

Kz = k*sqrt(1-Kx^2/k^2-Ky^2/k^2);

phi = atan2(Ky,Kx);

theta = real(acos(sqrt(1-Kx^2/k^2-Ky^2/k^2)));

envelope = exp(-0.5*(Kx^2 + Ky^2)/(NA*k)^2); # envelope function to for chosen NA;

defined from M. Mansuripur, J. Opt. Soc. Am. A., 3(12), 2086 (1986)

# define filter to remove evanescent non-propagating plane waves

ux=kx/k;

uy=ky/k;

Ux = meshgridx(ux,uy);

Uy = meshgridy(ux,uy);

Uxy = sqrt(Ux^2+Uy^2)+1e-5; # add 1e-5 to avoid divide by zero problems

Uz = sqrt(1-Uxy^2);

filter = (Ux^2+Uy^2 < 1);
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# --- INPUT --- #

# define angular spectrum of incident beam

# example here is for focused linearly polarized beam

Exk = (cos(theta)*cos(phi)*cos(phi)+sin(phi)*sin(phi))*envelope;

Eyk = (cos(theta)*cos(phi)*sin(phi)-cos(phi)*sin(phi))*envelope;

Ezk = sin(theta)*cos(phi)*envelope;

Ex = czt(Exk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Ey = czt(Eyk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Ez = czt(Ezk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Hxk = sqrt(eps0/mu0)*((1-cos(theta))*cos(phi)*sin(phi))*envelope;

Hyk = sqrt(eps0/mu0)*-(1-(1-cos(theta))*sin(phi)*sin(phi))*envelope;

Hzk = sqrt(eps0/mu0)*(sin(theta)*sin(phi))*envelope;

Hx = czt(Hxk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Hy = czt(Hyk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

Hz = czt(Hzk*exp(-1i*Kz*z0)*filter,kx,ky,x,y);

# scale field so |E|^2=1

E2 = abs(Ex)^2+abs(Ey)^2+abs(Ez)^2;

scaleFactor = sqrt(max(E2));

Ex = Ex/scaleFactor;

Ey = Ey/scaleFactor;

Ez = Ez/scaleFactor;

Hx = Hx/scaleFactor;

Hy = Hy/scaleFactor;

Hz = Hz/scaleFactor;

# package field data into the EM fields dataset that can be loaded into the Import

source

EM = rectilineardataset("EM fields",x,y,z);

EM.addparameter("lambda",c/f,"f",f);
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EM.addattribute("E",Ex,Ey,Ez);

EM.addattribute("H",Hx,Hy,Hz);

# directly load dataset into source

select("import_beam");

importdataset(EM);

set("z",z0);

set("center wavelength",lambda0(i)*10^-9);

set("wavelength span",0);

select("Psource");

set("lda",lambda0(i)*10^-9);

# output which simulation is being saved

?"saving simulation " + num2str(i) + " of " + num2str(length(lambda0));

# save the simulation at every wavelength

f_name="4212017-frpw-pws-wl"+num2str(lambda0(i))+"nm-scatt";

save(f_name);

}

B.3 Script file for calculating incident power of focused

beam

#####

# This script file is used to calculate the incident power of a focused beam

# This script should be run after the "source" simulations are complete

#####

# preliminary setup
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clear;

lda=0;

I_inc=0;

P_inc=0;

# --- INPUT --- #

lambda0 = floor(linspace(400,900,500)); # wavelengths in units of nm must be the same as

wavelengths of "source" and "scatt" files

# at each wavelength, run the "Psource" analysis, which extracts the electric and

magnetic fields on a cubic surface centered around the origin

for(i=1:length(lambda0)) {

?k=lambda0(i);

load("4212017-frpw-pws-wl"+num2str(lambda0(i))+"nm-source");

runanalysis("Psource");

load("4212017-frpw-pws-wl"+num2str(lambda0(i))+"nm-scatt");

runanalysis("Psource");

}

# at each wavelength, calculate the incident power

for(i=1:length(lambda0)) {

?k=lambda0(i);

# load the source file at each wavelength

load("4212017-frpw-pws-wl"+num2str(lambda0(i))+"nm-source");

loaddata("fields_source_"+num2str(k));

# get electric and magnetic fields

e_ref_z2Ex=getdata("z normal monitor","Ex");
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e_ref_z2Ey=getdata("z normal monitor","Ey");

h_ref_z2Hx=getdata("z normal monitor","Hx");

h_ref_z2Hy=getdata("z normal monitor","Hy");

# calculate area of the z monitor

z2x=getdata("z normal monitor","x");

z2y=getdata("z normal monitor","y");

areaz=(max(z2x)-min(z2x)) *(max(z2y)-min(z2y));

# calculate the z-oriented Poynting vector

temp =real(pinch(e_ref_z2Ex*conj(h_ref_z2Hy)-e_ref_z2Ey*conj(h_ref_z2Hx)));

# calculate the scattered power

ps=0.5*integrate(temp,1:2,z2x,z2y);

# calculate the average intensity over a 2D plane

ave_intensity=ps/areaz;

# save data to an array

lambda=c/f;

lda=[lda,lambda];

I_inc=[I_inc,ave_intensity];

P_inc=[P_inc,ps];

# write data (wavelength and incident power) to file

write("4232017-fapw-pws-Pinc.txt",num2str([lambda,ps]));

}
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B.4 Script file for calculating power scattered by res-

onator

#####

# This script file is used to calculate the power scattered by a resonator under

illumination by a focused beam

# This script should be run after the "source" and "scatt" simulations are complete

#####

# preliminary setup

clear;

lda=0;

I_inc=0;

P_inc=0;

# --- INPUT --- #

lambda0 = floor(linspace(400,900,500)); # wavelengths in units of nm must be the same as

wavelengths of "source" and "scatt" files

# at each wavelegnth, run the "Psource" analysis, which extracts the electric and

magnetic fields on a cubic surface centered around the origin

for(i=1:length(lambda0)) {

?k=lambda0(i);

# --- INPUT --- #

load("4212017-frpw-pws-wl"+num2str(lambda0(i))+"nm-source"); # load source files

runanalysis("Psource");

# --- INPUT --- #

load("4212017-frpw-pws-wl"+num2str(lambda0(i))+"nm-scatt"); # load scatt files
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runanalysis("Psource");

}

# at each wavelength, calculate the scattered power

for(i=1:length(lambda0)) {

?k=lambda0(i);

# load the "source" (incident) and "scatt" (incident+scattered) electric and magnetic

fields on a cubic surface around the origin

loaddata("fields_source_"+num2str(k));

loaddata("fields_scattered_"+num2str(k));

# calculate scattered fields at a single wavelength by subtracting the incident fields

from the incident+scattered fields

ey_x2=e_scatter_x2.Ey-e_ref_x2.Ey;

ez_x2=e_scatter_x2.Ez-e_ref_x2.Ez;

hy_x2=h_scatter_x2.Hy-h_ref_x2.Hy;

hz_x2=h_scatter_x2.Hz-h_ref_x2.Hz;

ex_y2=e_scatter_y2.Ex-e_ref_y2.Ex;

ez_y2=e_scatter_y2.Ez-e_ref_y2.Ez;

hx_y2=h_scatter_y2.Hx-h_ref_y2.Hx;

hz_y2=h_scatter_y2.Hz-h_ref_y2.Hz;

ex_z1=e_scatter_z1.Ex-e_ref_z1.Ex;

ey_z1=e_scatter_z1.Ey-e_ref_z1.Ey;

hx_z1=h_scatter_z1.Hx-h_ref_z1.Hx;

hy_z1=h_scatter_z1.Hy-h_ref_z1.Hy;

ex_z2=e_scatter_z2.Ex-e_ref_z2.Ex;

ey_z2=e_scatter_z2.Ey-e_ref_z2.Ey;

118



hx_z2=h_scatter_z2.Hx-h_ref_z2.Hx;

hy_z2=h_scatter_z2.Hy-h_ref_z2.Hy;

# calculate the Poynting vector in the x normal direction

temp =real(pinch(ey_x2*conj(hz_x2)-ez_x2*conj(hy_x2)));

# calculate the scattered power in the x normal direction

px2=integrate(temp,1:2,x2y,x2z);

# calculate the Poynting vector in the y normal direction

temp =real(pinch(ez_y2*conj(hx_y2)-ex_y2*conj(hz_y2)));

# calculate the scattered power in the x normal direction

py2=integrate(temp,1:2,y2x,y2z);

# calculate the Poynting vector in the z normal direction for the bottom z monitor

temp =real(pinch(ex_z1*conj(hy_z1)-ey_z1*conj(hx_z1)));

# calculate the scattered power in the z normal direction for the bottom z monitor

pz1=integrate(temp,1:2,z2x,z2y);

# calculate the Poynting vector in the z normal direction for the top z monitor

temp =real(pinch(ex_z2*conj(hy_z2)-ey_z2*conj(hx_z2)));

# calculate the scattered power in the z normal direction for the top z monitor

pz2=integrate(temp,1:2,z2x,z2y);

# add up all the scattered power

P_scat= px2+px2+py2+py2+-pz1+pz2;

# calculate the size parameter

r=100*10^(-9);

lambda=c/f;

size_parameter = r/(lambda);
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# save data to an array

sp=[sp,size_parameter];

lda=[lda,lambda];

P_sca=[P_sca,P_scat];

# write data (wavelength and scattered power) to file

write("4232017-flpw-dimer-pws-Pscat.txt",num2str([lambda,P_scat]));

}

B.5 Script file for calculating electric and magnetic in-

tensity enhancement

#####

# This script file is used to calculate the electric and magnetic field enhancement at

the origin

# This script should be run after the "source" and "scatt" simulations are complete

#####

# preliminary setup

clear;

sp=0;

lda=0;

E_mag=0;

H_mag=0;

# --- INPUT --- #

lambda0 = floor(linspace(400,900,500)); # wavelengths in units of nm must be the same as

wavelengths of "source" and "scatt" files
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for(j=1:length(lambda0)) { # iterate over all wavelengths

?lambda0(j); # display the current simulation wavelength

?"Importing source data";

# --- INPUT --- #

# load source file at each wavelength

load("4212017-frpw-pws-wl"+num2str(lambda0(j))+"nm-source");

# load the electric and magnetic fields in the xz-plane from the relevant field

monitor

Es = getresult("y normal monitor","E");

Hs = getresult("y normal monitor","H");

# extract the wavelength, x, and z coordinates from the field monitor

lambda = Es.lambda;

x = Es.x;

z = Es.z;

# remove irrelevant information from electric and magnetic field data

Es = pinch(Es.E);

Hs = pinch(Hs.H);

Exs = pinch(Es(1:length(x),1:length(z),1));

Eys = pinch(Es(1:length(x),1:length(z),2));

Ezs = pinch(Es(1:length(x),1:length(z),3));

Hxs = pinch(Hs(1:length(x),1:length(z),1));

Hys = pinch(Hs(1:length(x),1:length(z),2));

Hzs = pinch(Hs(1:length(x),1:length(z),3));
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?"Importing scatt data";

# --- INPUT --- #

# load scatt file at each wavelength

load("4212017-frpw-pws-wl"+num2str(lambda0(j))+"nm-scatt");

# load the electric and magnetic fields in the xz-plane from the relevant field

monitor

Esc = getresult("y normal monitor","E");

Hsc = getresult("y normal monitor","H");

# extract the wavelength, x, and z coordinates from the field monitor

lambda = Esc.lambda;

x = Esc.x;

z = Esc.z;

# remove irrelevant information from electric and magnetic field data

Esc = pinch(Esc.E);

Hsc = pinch(Hsc.H);

Exsc = pinch(Esc(1:length(x),1:length(z),1));

Eysc = pinch(Esc(1:length(x),1:length(z),2));

Ezsc = pinch(Esc(1:length(x),1:length(z),3));

Hxsc = pinch(Hsc(1:length(x),1:length(z),1));

Hysc = pinch(Hsc(1:length(x),1:length(z),2));

Hzsc = pinch(Hsc(1:length(x),1:length(z),3));
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?"Pre-processing";

Exfinal=Exsc;

Eyfinal=Eysc;

Ezfinal=Ezsc;

Hxfinal=Hxsc;

Hyfinal=Hysc;

Hzfinal=Hzsc;

# calculate the norm of the scattered electric and magnetic fields

EfinalN = sqrt((abs(Exfinal)^2)+(abs(Eyfinal)^2)+(abs(Ezfinal)^2));

HfinalN = sqrt((abs(Hxfinal)^2)+(abs(Hyfinal)^2)+(abs(Hzfinal)^2));

# calculate the norm of the incident electric and magnetic fields

EsN = sqrt((abs(Exs)^2)+(abs(Eys)^2)+(abs(Ezs)^2));

HsN = sqrt((abs(Hxs)^2)+(abs(Hys)^2)+(abs(Hzs)^2));

# calculate the electric and magnetic intensity enhancement at all points in the xz-

plane

EFH=(EfinalN/EsN)^2;

HFH=(HfinalN/HsN)^2;

?"Quantifying enhancement";

indexx=find(x,0); indexz=find(z,0); # find the correct x- and z-indices that

descirbe the origin

?EF=EFH(indexx,indexz); # extract the electric intensity enhancement at the origin

?HF=HFH(indexx,indexz); # extract the magnetic intensity enhancement at the origin
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# save enhancement data to file

f=getdata("import_beam","f");

lambda=c/f;

size_parameter=100e-9/lambda;

lda=[lda,lambda];

sp=[sp,size_parameter];

E_mag=[E_mag,EF];

H_mag=[H_mag,HF];

# write data to file

write("4232017-xpol-dimerx-EFH.txt",num2str([size_parameter,EF])); # electric

intensity enhancement

write("4232017-xpol-dimerx-HFH.txt",num2str([size_parameter,HF])); # magnetic

intensity enhancement

}

?"Done";

B.6 Script file for plotting radiation patterns

#####

# This script file is used to plot the radiation pattern of a resonator at a single

wavelength

# This script should be run after the "scatt" simulations are complete

#####

# --- INPUT --- #

twl=531e-9; # define wavelengths to simulate at in units of nm

ppres=100; # number of data points of radiation pattern
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# --- INPUT --- #

# load scatt file at chosen wavelength

load("4212017-frpw-pws-wl"+num2str(twl*10^9)+"nm-scatt");

##############################################

# automatically unfold field data if symmetry BC is applied

if (havedata("Psource::x1", "f")) {

symm_x = 0;

} else {

xtemp = getdata("Psource::y2", "x");

ztemp = getdata("Psource::y2", "z");

Eztemp = pinch(getdata("Psource::y2", "Ez"));

Ez2mid = sum(Eztemp(round(length(xtemp)/2), 1:length(ztemp))^2);

if (Ez2mid != 0) {

symm_x = 1;

} else {

symm_x = -1;

}

}

if (havedata("Psource::y1", "f")) {

symm_y = 0;

} else {

ytemp = getdata("Psource::x2", "y");

ztemp = getdata("Psource::x2", "z");

Eztemp = pinch(getdata("Psource::x2", "Ez"));

Ez2mid = sum(Eztemp(round(length(ytemp)/2), 1:length(ztemp))^2);

if (Ez2mid != 0) {

symm_y = 1;
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} else {

symm_y = -1;

}

}

if (havedata("Psource::z1", "f")) {

symm_z = 0;

} else {

xtemp = getdata("Psource::y2", "x");

ztemp = getdata("Psource::y2", "z");

Eytemp = pinch(getdata("Psource::y2", "Ey"));

Ey2mid = sum(Eytemp(1:length(xtemp), round(length(ztemp)/2))^2);

if (Ey2mid != 0) {

symm_z = 1;

} else {

symm_z = -1;

}

}

f = getdata("Psource::x2","f"); # get freqency data

#if (havedata("Psource::index","index_x")) { # get refractive index. Required to

calcualte H2 from E2

# n_index = getdata("Psource::index","index_x");

#} else {

# n_index = getdata("scatt_ff::index","index_z");

#}

n=1;
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##############################################

# define the angular resolution

phi = linspace(0,360,ppres);

npts = length(phi);

# define the field data matrices for angular distribution

E_xy = matrix(npts, 3, length(f)); # 3 for x, y, z component

E_yz = matrix(npts, 3, length(f)); # 3 for x, y, z component

E_xz = matrix(npts, 3, length(f)); # 3 for x, y, z component

E2_xy = matrix(npts,length(f));

E2_yz = matrix(npts,length(f));

E2_xz = matrix(npts,length(f));

H2_xy = matrix(npts,length(f));

H2_yz = matrix(npts,length(f));

H2_xz = matrix(npts,length(f));

# Identify the closest wavelength to target:

target_wavelength = twl;

i_target = find(f,c/target_wavelength);

?"Target wavelength = " + num2str(target_wavelength);

?"Wavelength used = " + num2str(c/f(i_target));

if (havedata("Psource::z2","Ex")) { # have z data, 3D simulation

##############################################

# Angular distribution calculation for a 3D simulation begins

for (i = 1:length(f)){ # loop for all frequencies

# print the frequency point number running in the loop

?"Angular distribution i="+num2str(i)+", "+num2str(c/f(i)*1e6)+"um";
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#n = n_index(i); # select the frequency point for the index

######## x-y plane (phi=0 corresponds to the direction (0,1,0))

?" Projecting in x-y plane";

x = -sin(phi*pi/180); y = cos(phi*pi/180); z = 0;

# Calculate far field by summing contribution from each monitor

temp = farfieldexact("Psource::x2",x,y,z,i) + farfieldexact("Psource::y2",x,y,z,i) +

farfieldexact("Psource::z2",x,y,z,i);

if(havedata("Psource::x1")){

temp = temp - farfieldexact("Psource::x1",x,y,z,i);

}else{

temp2 = farfieldexact("Psource::x2",-x,y,z,i);

s = symm_x*[1,-1,-1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

if(havedata("Psource::y1")){

temp = temp - farfieldexact("Psource::y1",x,y,z,i);

}else{

temp2 = farfieldexact("Psource::y2",x,-y,z,i);

s = symm_y*[-1,1,-1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

if(havedata("Psource::z1")){

temp = temp - farfieldexact("Psource::z1",x,y,z,i);
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}else{

temp2 = farfieldexact("Psource::z2",x,y,-z,i);

s = symm_z*[-1,-1,1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

E_xy (1:length(phi), 1:3, i) = temp;

E2_xy (1:length(phi), i) = sum(abs(temp)^2,2); # E2 = |Ex|^2 + |Ey|^2 + |Ez|^2

H2_xy (1:length(phi), i) = E2_xy (1:length(phi), i) * n^2 * eps0/mu0; # for a plane

wave, E^2 and H^2 only differ by a factor of n^2*eps0/mu0

######## y-z plane (phi=0 corresponds to the direction (0,1,0))

?" Projecting in y-z plane";

x = 0; y = cos(phi*pi/180); z = sin(phi*pi/180);

# Calculate far field by summing contribution from each monitor

temp = farfieldexact("Psource::x2",x,y,z,i) + farfieldexact("Psource::y2",x,y,z,i) +

farfieldexact("Psource::z2",x,y,z,i);

if(havedata("Psource::x1")){

temp = temp - farfieldexact("Psource::x1",x,y,z,i);

}else{

temp2 = farfieldexact("Psource::x2",-x,y,z,i);

s = symm_x*[1,-1,-1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

if(havedata("Psource::y1")){
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temp = temp - farfieldexact("Psource::y1",x,y,z,i);

}else{

temp2 = farfieldexact("Psource::y2",x,-y,z,i);

s = symm_y*[-1,1,-1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

if(havedata("Psource::z1")){

temp = temp - farfieldexact("Psource::z1",x,y,z,i);

}else{

temp2 = farfieldexact("Psource::z2",x,y,-z,i);

s = symm_z*[-1,-1,1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

E_yz (1:length(phi), 1:3, i) = temp;

E2_yz (1:length(phi), i) = sum(abs(temp)^2,2); # E2 = |Ex|^2 + |Ey|^2 + |Ez|^2

H2_yz (1:length(phi), i) = E2_yz (1:length(phi), i) * n^2 * eps0/mu0; # for a plane

wave, E^2 and H^2 only differ by a factor of n^2*eps0/mu0

######### x-z plane (theta=0 corresponds to the direction (0,1,0))

?" Projecting in x-z plane";

x = cos(phi*pi/180); y = 0; z = sin(phi*pi/180);

# Calculate far field by summing contribution from each monitor

temp = farfieldexact("Psource::x2",x,y,z,i) + farfieldexact("Psource::y2",x,y,z,i) +

farfieldexact("Psource::z2",x,y,z,i);

130



if(havedata("Psource::x1")){

temp = temp - farfieldexact("Psource::x1",x,y,z,i);

}else{

temp2 = farfieldexact("Psource::x2",-x,y,z,i);

s = symm_x*[1,-1,-1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

if(havedata("Psource::y1")){

temp = temp - farfieldexact("Psource::y1",x,y,z,i);

}else{

temp2 = farfieldexact("Psource::y2",x,-y,z,i);

s = symm_y*[-1,1,-1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

if(havedata("Psource::z1")){

temp = temp - farfieldexact("Psource::z1",x,y,z,i);

}else{

temp2 = farfieldexact("Psource::z2",x,y,-z,i);

s = symm_z*[-1,-1,1];

temp2(1:npts,1) = s(1)*temp2(1:npts,1);

temp2(1:npts,2) = s(2)*temp2(1:npts,2);

temp2(1:npts,3) = s(3)*temp2(1:npts,3);

temp = temp - temp2;

}

E_xz (1:length(phi), 1:3, i) = temp;
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E2_xz (1:length(phi), i) = sum(abs(temp)^2,2); # E2 = |Ex|^2 + |Ey|^2 + |Ez|^2

H2_xz (1:length(phi), i) = E2_xz (1:length(phi), i) * n^2 * eps0/mu0; # for a plane

wave, E^2 and H^2 only differ by a factor of n^2*eps0/mu0

} # end of the angular distribution for loop

if (1) { # polar plot for target wavelength

polar(phi*pi/180, E2_xy(1:length(phi), i_target), E2_yz(1:length(phi), i_target),

E2_xz(1:length(phi), i_target),

"angle (degrees)", "|E|^2", "|E|^2 vs angle @ "+num2str(c/f(i_target)*1e6)+"um");

legend("xy plane","yz plane","xz plane");

} # end of if polar plot

if (1) { # polar plot for target wavelength

polar(phi*pi/180,E2_yz(1:length(phi), i_target),

"angle (degrees)", "|E|^2", "|E|^2 vs angle @ "+num2str(c/f(i_target)*1e6)+"um");

legend("xy plane","yz plane","xz plane");

} # end of if polar plot

# create datasets for XY, YZ, XZ for angular distribution

XY = matrixdataset("XY");

XY.addparameter("phi",phi*pi/180.); #phi angle in radians

XY.addparameter("lambda",c/f,"f",f);

XY.addattribute("E",pinch(E_xy,2,1),pinch(E_xy,2,2),pinch(E_xy,2,3)); # Ex, Ey, Ez

XY.addattribute("E2",E2_xy);

XY.addattribute("H2",H2_xy);

YZ = matrixdataset("YZ");

YZ.addparameter("phi",phi*pi/180.); #phi angle in radians

YZ.addparameter("lambda",c/f,"f",f);

YZ.addattribute("E",pinch(E_yz,2,1),pinch(E_yz,2,2),pinch(E_yz,2,3)); # Ex, Ey, Ez
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YZ.addattribute("E2",E2_yz);

YZ.addattribute("H2",H2_yz);

XZ = matrixdataset("XZ");

XZ.addparameter("phi",phi*pi/180.); #phi angle in radians

XZ.addparameter("lambda",c/f,"f",f);

XZ.addattribute("E",pinch(E_xz,2,1),pinch(E_xz,2,2),pinch(E_xz,2,3)); # Ex, Ey, Ez

XZ.addattribute("E2",E2_xz);

XZ.addattribute("H2",H2_xz);

# end of the angular distribution for a 3D simulation

##############################################

}

B.7 Script file for extracting field plots

#####

# This script file is used to extract data on the norm, absolute value, and phase of the

electric and magnetic fields in the xy-, yz-, and xz-planes

# This script should be run after the "source" and "scatt" simulations are complete

#####

clear;

# --- INPUT --- #

lambda0 = 400; # define wavelengths to extract fields at in units of nm

# --- INPUT --- #

f_name = "10182016-flpw-long-dimer-xz"; # name of data files to save data to

# repeat for each wavelength of interest

for(i=1:length(lambda0)) {
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?"Importing source data";

# --- INPUT --- #

load("6282016-frpw-pws-wl"+num2str(lambda0(i))+"nm-source"); # load electirc and

magnetic fields from source files

# load the electric and magnetic fields in the xz-plane from the relevant field

monitor

Es = getresult("y normal monitor","E");

Hs = getresult("y normal monitor","H");

# extract the wavelength, x, and z coordinates from the field monitor

lambda = Es.lambda;

x = Es.x;

z = Es.z;

# remove irrelevant information from electric and magnetic field data

Es = pinch(Es.E);

Hs = pinch(Hs.H);

Exs = pinch(Es(1:length(x),1:length(z),1));

Eys = pinch(Es(1:length(x),1:length(z),2));

Ezs = pinch(Es(1:length(x),1:length(z),3));

Hxs = pinch(Hs(1:length(x),1:length(z),1));

Hys = pinch(Hs(1:length(x),1:length(z),2));

Hzs = pinch(Hs(1:length(x),1:length(z),3));

?"Importing scatt data";
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# --- INPUT --- #

load("6282016-frpw-pws-wl"+num2str(lambda0(i))+"nm-scatt"); # load electirc and

magnetic fields from scatt files

# load the electric and magnetic fields in the xz-plane from the relevant field

monitor

Esc = getresult("y normal monitor","E");

Hsc = getresult("y normal monitor","H");

# extract the wavelength, x, and z coordinates from the field monitor

lambda = Esc.lambda;

x = Esc.x;

z = Esc.z;

# remove irrelevant information from electric and magnetic field data

Esc = pinch(Esc.E);

Hsc = pinch(Hsc.H);

Exsc = pinch(Esc(1:length(x),1:length(z),1));

Eysc = pinch(Esc(1:length(x),1:length(z),2));

Ezsc = pinch(Esc(1:length(x),1:length(z),3));

Hxsc = pinch(Hsc(1:length(x),1:length(z),1));

Hysc = pinch(Hsc(1:length(x),1:length(z),2));

Hzsc = pinch(Hsc(1:length(x),1:length(z),3));

?"Pre-processing";

Exfinal=Exsc;

Eyfinal=Eysc;
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Ezfinal=Ezsc;

Hxfinal=Hxsc;

Hyfinal=Hysc;

Hzfinal=Hzsc;

# calculate the norm of the scattered electric and magnetic fields

EfinalN = sqrt((abs(Exfinal)^2)+(abs(Eyfinal)^2)+(abs(Ezfinal)^2));

HfinalN = sqrt((abs(Hxfinal)^2)+(abs(Hyfinal)^2)+(abs(Hzfinal)^2));

# calculate the norm of the incident electric and magnetic fields

EsN = sqrt((abs(Exs)^2)+(abs(Eys)^2)+(abs(Ezs)^2));

HsN = sqrt((abs(Hxs)^2)+(abs(Hys)^2)+(abs(Hzs)^2));

# calculate the absolute value of the scattered electric and magnetic field

components

EFxAbs = abs(Exfinal);

HFxAbs = abs(Hxfinal);

EFyAbs = abs(Eyfinal);

HFyAbs = abs(Hyfinal);

EFzAbs = abs(Ezfinal);

HFzAbs = abs(Hzfinal);

# calculate the phase of the scattered electric and magnetic field components

EFxArg = angle(Exfinal);

HFxArg = angle(Hxfinal);

EFyArg = angle(Eyfinal);

HFyArg = angle(Hyfinal);

EFzArg = angle(Ezfinal);

HFzArg = angle(Hzfinal);
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# calculate the electric and magnetic field intensity enhancement

EFH = (EfinalN/EsN)^2;

HFH = (HfinalN/HsN)^2;

?"Data is pre-processed. Saving files";

# prepare data for saving

wl = num2str(lambda0(i));

ExAbs = pinch(EFxAbs(1:length(x),1:length(z)));

HxAbs = pinch(HFxAbs(1:length(x),1:length(z)));

EyAbs = pinch(EFyAbs(1:length(x),1:length(z)));

HyAbs = pinch(HFyAbs(1:length(x),1:length(z)));

EzAbs = pinch(EFzAbs(1:length(x),1:length(z)));

HzAbs = pinch(HFzAbs(1:length(x),1:length(z)));

ExArg = pinch(EFxArg(1:length(x),1:length(z)));

HxArg = pinch(HFxArg(1:length(x),1:length(z)));

EyArg = pinch(EFyArg(1:length(x),1:length(z)));

HyArg = pinch(HFyArg(1:length(x),1:length(z)));

EzArg = pinch(EFzArg(1:length(x),1:length(z)));

HzArg = pinch(HFzArg(1:length(x),1:length(z)));

Ei = pinch(EFH(1:length(x),1:length(z)));

Hi = pinch(HFH(1:length(x),1:length(z)));

# clear data files

rm(f_name + "-wl" + wl + "-AbsEx.txt");

rm(f_name + "-wl" + wl + "-AbsHx.txt");

rm(f_name + "-wl" + wl + "-AbsEy.txt");

rm(f_name + "-wl" + wl + "-AbsHy.txt");

rm(f_name + "-wl" + wl + "-AbsEz.txt");
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rm(f_name + "-wl" + wl + "-AbsHz.txt");

rm(f_name + "-wl" + wl + "-ArgEx.txt");

rm(f_name + "-wl" + wl + "-ArgHx.txt");

rm(f_name + "-wl" + wl + "-ArgEy.txt");

rm(f_name + "-wl" + wl + "-ArgHy.txt");

rm(f_name + "-wl" + wl + "-ArgEz.txt");

rm(f_name + "-wl" + wl + "-ArgHz.txt");

rm(f_name + "-wl" + wl + "-EFH.txt");

rm(f_name + "-wl" + wl + "-HFH.txt");

# save data to files

write(f_name + "-wl" + wl + "-AbsEx.txt", num2str([0, transpose(x); z, transpose(

ExAbs)]));

write(f_name + "-wl" + wl + "-AbsHx.txt", num2str([0, transpose(x); z, transpose(

HxAbs)]));

write(f_name + "-wl" + wl + "-AbsEy.txt", num2str([0, transpose(x); z, transpose(

EyAbs)]));

write(f_name + "-wl" + wl + "-AbsHy.txt", num2str([0, transpose(x); z, transpose(

HyAbs)]));

write(f_name + "-wl" + wl + "-AbsEz.txt", num2str([0, transpose(x); z, transpose(

EzAbs)]));

write(f_name + "-wl" + wl + "-AbsHz.txt", num2str([0, transpose(x); z, transpose(

HzAbs)]));

write(f_name + "-wl" + wl + "-ArgEx.txt", num2str([0, transpose(x); z, transpose(

ExArg)]));

write(f_name + "-wl" + wl + "-ArgHx.txt", num2str([0, transpose(x); z, transpose(

HxArg)]));

write(f_name + "-wl" + wl + "-ArgEy.txt", num2str([0, transpose(x); z, transpose(
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EyArg)]));

write(f_name + "-wl" + wl + "-ArgHy.txt", num2str([0, transpose(x); z, transpose(

HyArg)]));

write(f_name + "-wl" + wl + "-ArgEz.txt", num2str([0, transpose(x); z, transpose(

EzArg)]));

write(f_name + "-wl" + wl + "-ArgHz.txt", num2str([0, transpose(x); z, transpose(

HzArg)]));

write(f_name + "-wl" + wl + "-EFH.txt", num2str([0, transpose(x); z, transpose(Ei)])

);

write(f_name + "-wl" + wl + "-HFH.txt", num2str([0, transpose(x); z, transpose(Hi)])

);

}

?"Done";
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Appendix C

Numerical local field simulations using

Lumerical FDTD

This section contains instructions on using Lumerical FDTD to obtain the scattering

response of spherical and dimer antennas under focused beam illumination using the

local field technique. The steps required are as follows:

1. Determine the amplitude and phase of the incident beam at the selected points in

space, using the MATLAB script file given in C.1

2. Input the amplitude and phase of the incident beam obtained in step 1 into the

dipole sources, without and without the resonator in place (referred to as the

"source" and "scatt" files, respectively), using the script file given in C.2 and run

these files

3. Run post-processing scripts to extract the scattering response, given in C.3, and

the field plots, given in C.4

All simulation files and script files used to generate the figures in chapter 5 are available

for download online through Google Drive. The field plots should be extracted using the
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"field" *.fsp files, where the dipole sources are placed further away from the scatterer. We

implemented a three dimensional simulation in which the resonator of interest was placed

at the origin. The electric and magnetic fields for RP and AP beams were calculated at

eighteen points in space: (±x, 0, 0), (0, ±y, 0); (0, 0, ±z); (±x, ±y, 0); (±x, 0, ±z); and

(0, ±y, ±z). Dipole sources were placed at each of these points and were oriented along

the x-, y-, and z-directions, and the amplitudes were taken to match those of the incident

beam at the points mentioned previously. The phases were tuned relative to the points in

the third and fourth quadrants in the Cartesian plane. We used perfectly matched layer

(PML) boundary conditions for the all boundaries. A non-uniform mesh was used with a

minimum element size of 5nm in the region of the scatterer. In all cases the simulations

were run until the fields decayed to less than one millionth of the incident field strength.

To construct the spectral response, the simulations were run at single wavelengths with

and without the scatterer in place, and the scattered fields were obtained by subtracting

the incident fields from the scattered plus incident fields.

C.1 MATLAB script for determining the amplitude

and phase of incident beam

%%%%

% This script file is used to determine the amplitude and phase of the incident beam at

chosen points in space

% In this example, the beam is a focused azimuthally polarized beam

%%%%

% preliminary setup

clear;

c=3*10^8;
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mu=1.257*10^(-6);

eps0=1/(c^2*mu);

Z=(mu/eps0)^0.5;

% numerical integral of angular spectrum of incident beam

Hfieldx = @(x,y,z,alpha,lambda) integral2(@(th,phi) -1i/lambda*(-cos(th).*cos(phi)).*

sqrt(cos(th)).*sin(th).*exp(1i*2*pi/lambda*(sin(th).*cos(phi).*x+sin(th).*sin(phi).*

y-cos(th).*z)),0,alpha,0,2*pi);

Hfieldy = @(x,y,z,alpha,lambda) integral2(@(th,phi) -1i/lambda*(-cos(th).*sin(phi)).*

sqrt(cos(th)).*sin(th).*exp(1i*2*pi/lambda*(sin(th).*cos(phi).*x+sin(th).*sin(phi).*

y-cos(th).*z)),0,alpha,0,2*pi);

Hfieldz = @(x,y,z,alpha,lambda) integral2(@(th,phi) -1i/lambda*(sin(th)).*sqrt(cos(th))

.*sin(th).*exp(1i*2*pi/lambda*(sin(th).*cos(phi).*x+sin(th).*sin(phi).*y-cos(th).*z)

),0,alpha,0,2*pi);

Efieldx = @(x,y,z,alpha,lambda) integral2(@(th,phi) -1i/lambda*(-sin(phi)).*sqrt(cos(th)

).*sin(th).*exp(1i*2*pi/lambda*(sin(th).*cos(phi).*x+sin(th).*sin(phi).*y-cos(th).*z

)),0,alpha,0,2*pi);

Efieldy = @(x,y,z,alpha,lambda) integral2(@(th,phi) -1i/lambda*(cos(phi)).*sqrt(cos(th))

.*sin(th).*exp(1i*2*pi/lambda*(sin(th).*cos(phi).*x+sin(th).*sin(phi).*y-cos(th).*z)

),0,alpha,0,2*pi);

wavelength=1116; % wavelength to extract field properties in units of um -- chosen to be

longer wavelength so amplitude and phase are relatively stable

alphaA=pi/3; % half-angle annular aperture of focusing lens

wl=wavelength*10^-9;

lda=wl;

freq=c/wl;

coord=150*10^-9;
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% extract field properties at (-coord, 0 , 0)

xx=-coord;

yy=0;

zz=0;

Hx_nx00=Hfieldx(xx,yy,zz,alphaA,wl);

Hx_nx00A=round(abs(Hx_nx00)*10^-6/(abs(Hx_nx00)*10^-6));

Hx_nx00P=atan2(imag(Hx_nx00),real(Hx_nx00))*180/pi-atan2(imag(Hx_nx00),real(Hx_nx00))

*180/pi;

Hy_nx00=Hfieldy(xx,yy,zz,alphaA,wl);

Hy_nx00A=round(abs(Hy_nx00)*10^-6/(abs(Hx_nx00)*10^-6));

Hy_nx00P=atan2(imag(Hy_nx00),real(Hy_nx00))*180/pi-atan2(imag(Hx_nx00),real(Hx_nx00))

*180/pi;

Hz_nx00=Hfieldz(xx,yy,zz,alphaA,wl);

Hz_nx00A=round(abs(Hz_nx00)*10^-6/(abs(Hx_nx00)*10^-6));

Hz_nx00P=atan2(imag(Hz_nx00),real(Hz_nx00))*180/pi-atan2(imag(Hx_nx00),real(Hx_nx00))

*180/pi;

% extract field properties at other points relative to (-coord, 0, 0) -- input these

properties into dipole sources

% change values of xx, yy, and zz to obtain field properties at all points of interest

xx=0;

yy=-coord;

zz=-coord;

Hx_=Hfieldx(xx,yy,zz,alphaA,wl);

Hx_Amplitude=round(abs(Hx_)*10^-6/(abs(Hx_nx00)*10^-6))

Hx_Phase=atan2(imag(Hx_),real(Hx_))*180/pi-atan2(imag(Hx_nx00),real(Hx_nx00))*180/pi
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Hy_=Hfieldy(xx,yy,zz,alphaA,wl);

Hy_A=round(abs(Hy_)*10^-6/(abs(Hx_nx00)*10^-6))

Hy_P=atan2(imag(Hy_),real(Hy_))*180/pi-atan2(imag(Hx_nx00),real(Hx_nx00))*180/pi

Hz_=Hfieldz(xx,yy,zz,alphaA,wl);

Hz_Amplitude=round(abs(Hz_)*10^-6/(abs(Hx_nx00)*10^-6))

Hz_Phase=atan2(imag(Hz_),real(Hz_))*180/pi-atan2(imag(Hx_nx00),real(Hx_nx00))*180/pi

144



C.2 Script file for setting the dipole amplitude and

phase

#####

# This script file is used to set the dipole amplitude and phase for the numerical local

field simulation

#####

# (x,0,0)

select("NA source x_x00");

set("amplitude",1);

set("phase",0);

#set("x",0.22e-6);

#set("y",0);

#set("z",0);

select("NA source x_nx00");

set("amplitude",1);

set("phase",180);

#set("x",-0.22e-6);

#set("y",0);

#set("z",0);

select("NA source z_x00");

set("amplitude",3);

set("phase",-90);

#set("x",0.22e-6);

#set("y",0);

#set("z",0);
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select("NA source z_nx00");

set("amplitude",3);

set("phase",-90);

#set("x",-0.22e-6);

#set("y",0);

#set("z",0);

# (0,y,0)

select("NA source y_0y0");

set("amplitude",1);

set("phase",180);

#set("x",0);

#set("y",0.22e-6);

#set("z",0);

select("NA source y_0ny0");

set("amplitude",1);

set("phase",0);

#set("x",0);

#set("y",-0.22e-6);

#set("z",0);

select("NA source z_0y0");

set("amplitude",3);

set("phase",-90);

#set("x",0);

#set("y",0.22e-6);

#set("z",0);

select("NA source z_0ny0");

set("amplitude",3);
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set("phase",-90);

#set("x",0);

#set("y",-0.22e-6);

#set("z",0);

# (0,0,z)

select("NA source z_00z");

set("amplitude",3);

set("phase",-125);

#set("x",0);

#set("y",0);

#set("z",-0.22e-6);

select("NA source z_00nz");

set("amplitude",3);

set("phase",-55);

#set("x",0);

#set("y",0);

#set("z",-0.22e-6);

# (x,y,0)

select("NA source x_xy0");

set("amplitude",1);

set("phase",180);

#set("x",0.22e-6);

#set("y",0.22e-6);

#set("z",0);

select("NA source x_nxy0");

set("amplitude",1);

set("phase",0);
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#set("x",-0.22e-6);

#set("y",0.22e-6);

#set("z",0);

select("NA source x_xny0");

set("amplitude",1);

set("phase",180);

#set("x",0.22e-6);

#set("y",-0.22e-6);

#set("z",0);

select("NA source x_nxny0");

set("amplitude",1);

set("phase",0);

#set("x",-0.22e-6);

#set("y",-0.22e-6);

#set("z",0);

select("NA source y_xy0");

set("amplitude",1);

set("phase",180);

#set("x",0.22e-6);

#set("y",0.22e-6);

#set("z",0);

select("NA source y_nxy0");

set("amplitude",1);

set("phase",180);

#set("x",-0.22e-6);

#set("y",0.22e-6);

#set("z",0);
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select("NA source y_xny0");

set("amplitude",0.75);

#set("x",0.22e-6);

#set("y",-0.22e-6);

#set("z",0);

select("NA source y_nxny0");

set("amplitude",1);

set("phase",0);

#set("x",-0.22e-6);

#set("y",-0.22e-6);

#set("z",0);

select("NA source z_xy0");

set("amplitude",3);

set("phase",-90);

#set("x",0.22e-6);

#set("y",0.22e-6);

#set("z",0);

select("NA source z_nxy0");

set("amplitude",3);

set("phase",-90);

#set("x",-0.22e-6);

#set("y",0.22e-6);

#set("z",0);

select("NA source z_xny0");

set("amplitude",3);

set("phase",-90);
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#set("x",0.22e-6);

#set("y",-0.22e-6);

#set("z",0);

select("NA source z_nxny0");

set("amplitude",3);

set("phase",-90);

#set("x",-0.22e-6);

#set("y",-0.22e-6);

#set("z",0);

# (x,0,z)

select("NA source x_x0z");

set("amplitude",1);

set("phase",144);

#set("x",0.22e-6);

#set("y",0);

#set("z",0.22e-6);

select("NA source x_nx0z");

set("amplitude",1);

set("phase",-36);

#set("x",-0.22e-6);

#set("y",0);

#set("z",0.22e-6);

select("NA source x_x0nz");

set("amplitude",1);

set("phase",-144);

#set("x",0.22e-6);

#set("y",0);
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#set("z",-0.22e-6);

select("NA source x_nx0nz");

set("amplitude",1);

set("phase",36);

#set("x",-0.22e-6);

#set("y",0);

#set("z",-0.22e-6);

select("NA source z_x0z");

set("amplitude",3);

set("phase",-125);

#set("x",0.22e-6);

#set("y",0);

#set("z",0.22e-6);

select("NA source z_nx0z");

set("amplitude",3);

set("phase",-125);

#set("x",-0.22e-6);

#set("y",0);

#set("z",0.22e-6);

select("NA source z_x0nz");

set("amplitude",3);

set("phase",-55);

#set("x",0.22e-6);

#set("y",0);

#set("z",-0.22e-6);

select("NA source z_nx0nz");
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set("amplitude",3);

set("phase",-55);

#set("x",-0.22e-6);

#set("y",0);

#set("z",-0.22e-6);

# (0,y,z)

select("NA source y_0yz");

set("amplitude",1);

set("phase",144);

#set("x",0);

#set("y",0.22e-6);

#set("z",0.22e-6);

select("NA source y_0nyz");

set("amplitude",1);

set("phase",-36);

#set("x",0);

#set("y",-0.22e-6);

#set("z",0.22e-6);

select("NA source y_0ynz");

set("amplitude",1);

set("phase",-144);

#set("x",0);

#set("y",0.22e-6);

#set("z",-0.22e-6);

select("NA source y_0nynz");

set("amplitude",1);

set("phase",36);
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#set("x",0);

#set("y",-0.22e-6);

#set("z",-0.22e-6);

select("NA source z_0yz");

set("amplitude",3);

set("phase",-125);

#set("x",0);

#set("y",0.22e-6);

#set("z",0.22e-6);

select("NA source z_0nyz");

set("amplitude",3);

set("phase",-125);

#set("x",0);

#set("y",-0.22e-6);

#set("z",0.22e-6);

select("NA source z_0ynz");

set("amplitude",3);

set("phase",-55);

#set("x",0);

#set("y",0.22e-6);

#set("z",-0.22e-6);

select("NA source z_0nynz");

set("amplitude",3);

set("phase",-55);

#set("x",0);

#set("y",-0.22e-6);

#set("z",-0.22e-6);

153



C.3 Script file for extracting the scattering response

This script was adapted from the Lumerical Custom TFSF example.

#####

# This script file is used to extract the scattering response of an arbitrary resonator

# using the numerical local field simulation method

# This script should be run after the "source" and "scatt" simulations are complete

#####

# preliminary sertup

clear;

source_axis="z"; # the source is incident along the z-axis

# load data from monitors

y2x=getdata("scat::y2","x");

y2z=getdata("scat::y2","z");

aeray=(max(y2x)-min(y2x)) *(max(y2z)-min(y2z)); # area of the y monitor

z2x=getdata("scat::z2","x");

z2y=getdata("scat::z2","y");

areaz=(max(z2x)-min(z2x)) *(max(z2y)-min(z2y)); # area of the z monitor

# obtain electric and magnetic fields and power

if (havedata("scat::x1")) {

mx=1;e_ref_x1=getresult("scat::x1","E");

h_ref_x1=getresult("scat::x1","H");

}

e_ref_x2=getresult("scat::x2","E");

h_ref_x2=getresult("scat::x2","H");

if(source_axis=="x"){

temp =real(pinch(e_ref_x2.Ey*conj(h_ref_x2.Hz)-e_ref_x2.Ez*conj(h_ref_x2.Hy)));
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ps=0.5*integrate(temp,1:2,x2y,x2z);

area=areax;}

if (havedata("scat::y1")) {

my=1;e_ref_y1=getresult("scat::y1","E");

h_ref_y1=getresult("scat::y1","H");}

e_ref_y2=getresult("scat::y2","E");

h_ref_y2=getresult("scat::y2","H");

if(source_axis=="y"){

temp =real(pinch(e_ref_y2.Ez*conj(h_ref_y2.Hx)-e_ref_y2.Ex*conj(h_ref_y2.Hz)));

ps=0.5*integrate(temp,1:2,y2x,y2z);

area=aeray;

}

if (havedata("scat::z1")) {

mz=1;e_ref_z1=getresult("scat::z1","E");

h_ref_z1=getresult("scat::z1","H");

}

e_ref_z2=getresult("scat::z2","E");

h_ref_z2=getresult("scat::z2","H");

if(source_axis=="z"){

temp =real(pinch(e_ref_z2.Ex*conj(h_ref_z2.Hy)-e_ref_z2.Ey*conj(h_ref_z2.Hx)));

ps=0.5*integrate(temp,1:2,z2x,z2y);

area=areaz;

}

ave_intensity=ps/area; # calculate the average intensity

##################

# --- INPUT ---
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# load simulation with the resonator

load("AP-Dimerz-Scatt");

#obtain E,H

if(mx==1){e_scatter_x1=getresult("scat::x1","E");h_scatter_x1=getresult("scat::x1","H")

;}

e_scatter_x2=getresult("scat::x2","E");h_scatter_x2=getresult("scat::x2","H");

if(my==1){e_scatter_y1=getresult("scat::y1","E");h_scatter_y1=getresult("scat::y1","H")

;}

e_scatter_y2=getresult("scat::y2","E");h_scatter_y2=getresult("scat::y2","H");

if(mz==1){e_scatter_z1=getresult("scat::z1","E");h_scatter_z1=getresult("scat::z1","H")

;}

e_scatter_z2=getresult("scat::z2","E");h_scatter_z2=getresult("scat::z2","H");

# obtain the scattered field

## x1 x2

if(mx==1){

ey_x1=e_scatter_x1.Ey-e_ref_x1.Ey;

ez_x1=e_scatter_x1.Ez-e_ref_x1.Ez;

hy_x1=h_scatter_x1.Hy-h_ref_x1.Hy;

hz_x1=h_scatter_x1.Hz-h_ref_x1.Hz;}

ey_x2=e_scatter_x2.Ey-e_ref_x2.Ey;

ez_x2=e_scatter_x2.Ez-e_ref_x2.Ez;

hy_x2=h_scatter_x2.Hy-h_ref_x2.Hy;

hz_x2=h_scatter_x2.Hz-h_ref_x2.Hz;

## y1 y2

if(my==1){

ex_y1=e_scatter_y1.Ex-e_ref_y1.Ex;

ez_y1=e_scatter_y1.Ez-e_ref_y1.Ez;

hx_y1=h_scatter_y1.Hx-h_ref_y1.Hx;

hz_y1=h_scatter_y1.Hz-h_ref_y1.Hz;}

ex_y2=e_scatter_y2.Ex-e_ref_y2.Ex;
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ez_y2=e_scatter_y2.Ez-e_ref_y2.Ez;

hx_y2=h_scatter_y2.Hx-h_ref_y2.Hx;

hz_y2=h_scatter_y2.Hz-h_ref_y2.Hz;

##z1 z2

if(mz==1){

ex_z1=e_scatter_z1.Ex-e_ref_z1.Ex;

ey_z1=e_scatter_z1.Ey-e_ref_z1.Ey;

hx_z1=h_scatter_z1.Hx-h_ref_z1.Hx;

hy_z1=h_scatter_z1.Hy-h_ref_z1.Hy;}

ex_z2=e_scatter_z2.Ex-e_ref_z2.Ex;

ey_z2=e_scatter_z2.Ey-e_ref_z2.Ey;

hx_z2=h_scatter_z2.Hx-h_ref_z2.Hx;

hy_z2=h_scatter_z2.Hy-h_ref_z2.Hy;

###### power

su=1;#used for calculating cross sections

##scattering

#x monitors

if(mx==1){

temp =real(pinch(ey_x1*conj(hz_x1)-ez_x1*conj(hy_x1)));

px1=su*integrate(temp,1:2,x2y,x2z);}

temp =real(pinch(ey_x2*conj(hz_x2)-ez_x2*conj(hy_x2)));

px2=su*integrate(temp,1:2,x2y,x2z);

#y monitors

if(my==1){

temp =real(pinch(ez_y1*conj(hx_y1)-ex_y1*conj(hz_y1)));

py1=su*integrate(temp,1:2,y2x,y2z);}

temp =real(pinch(ez_y2*conj(hx_y2)-ex_y2*conj(hz_y2)));

py2=su*integrate(temp,1:2,y2x,y2z);

#z monitors

if(mz==1){

temp =real(pinch(ex_z1*conj(hy_z1)-ey_z1*conj(hx_z1)));
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pz1=su*integrate(temp,1:2,z2x,z2y);}

temp =real(pinch(ex_z2*conj(hy_z2)-ey_z2*conj(hx_z2)));

pz2=su*integrate(temp,1:2,z2x,z2y);

#totaling the power, for the case the source is along z axis

if( (mx==1) and (mz==1) ){

P_scat=-px1+px2-py1+py2-pz1+pz2;

# P_tot=px1_tot-px2_tot+py1_tot-py2_tot+pz1_tot-pz2_tot;

}

if( (mx==0) and (my==0) ){

P_scat= px2+px2+py2+py2-pz1+pz2;

# P_tot= -2*px2_tot+py1_tot-py2_tot+pz1_tot-pz2_tot;

}

if( (mx==1) and (mz==0) ){

P_scat=-px1+px2-py1+py2+pz2+pz2;

P_tot=px1_tot-px2_tot+py1_tot-py2_tot -2*pz2_tot;

}

if( (mx==0) and (mz==0) ){

P_scat= px2+px2-py1+py2+pz2+pz2;

P_tot= -2*px2_tot+py1_tot-py2_tot -2*pz2_tot;

}

scat_cross=P_scat;

f=getdata("scat::x1","f");

# write data (wavelength and qualitative scattered power) to file

write("Pscat_localfield_AP_dimerx.txt",num2str([(c/f*1e6),scat_cross]));
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C.4 Script file for extracting field plots

# This file is used to save data of the electric

# and magentic field amplitude and phase

# This script should be run after the scatt file is complete

clear;

# --- INPUT --- #

# load scatt file

load("AP-dimerz-scatt");

# --- INPUT!!! ---

# name of file to save data to

f_name = "AP-Dimerz-LocalField";

?"Importing scatt data";

# load the electric and magnetic fields in the xz-plane from the relevant field monitor

Esc = getresult("y normal monitor","E");

Hsc = getresult("y normal monitor","H");

# extract the wavelength, x, and z coordinates from the field monitor

lambda = Hsc.lambda;

x = Hsc.x;

z = Hsc.z;

# --- INPUT!!! ---

# Choose the wavelength to extract data at

lambda0=512e-9;
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wl = num2str(lambda0*10^9);

# Find the index of the correct wavelength since this is a broadband source

indexl = find(lambda, lambda0);

# remove irrelevant information from electric and magnetic field data

Esc = pinch(Esc.E);

Hsc = pinch(Hsc.H);

Exsc = pinch(Esc(1:length(x),1:length(z),indexl,1));

Eysc = pinch(Esc(1:length(x),1:length(z),indexl,2));

Ezsc = pinch(Esc(1:length(x),1:length(z),indexl,3));

Hxsc = pinch(Hsc(1:length(x),1:length(z),indexl,1));

Hysc = pinch(Hsc(1:length(x),1:length(z),indexl,2));

Hzsc = pinch(Hsc(1:length(x),1:length(z),indexl,3));

?"Pre-processing";

Exfinal=Exsc;

Eyfinal=Eysc;

Ezfinal=Ezsc;

Hxfinal=Hxsc;

Hyfinal=Hysc;

Hzfinal=Hzsc;

# calculate the norm of the scattered electric and magnetic fields

EfinalN = sqrt((abs(Exfinal)^2)+(abs(Eyfinal)^2)+(abs(Ezfinal)^2));

HfinalN = sqrt((abs(Hxfinal)^2)+(abs(Hyfinal)^2)+(abs(Hzfinal)^2));
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# calculate the norm of the incident electric and magnetic fields

EsN = sqrt((abs(Exs)^2)+(abs(Eys)^2)+(abs(Ezs)^2));

HsN = sqrt((abs(Hxs)^2)+(abs(Hys)^2)+(abs(Hzs)^2));

# calculate the absolute value of the scattered electric and magnetic field components

EFxAbs = abs(Exfinal);

HFxAbs = abs(Hxfinal);

EFyAbs = abs(Eyfinal);

HFyAbs = abs(Hyfinal);

EFzAbs = abs(Ezfinal);

HFzAbs = abs(Hzfinal);

# calculate the phase of the scattered electric and magnetic field components

EFxArg = angle(Exfinal);

HFxArg = angle(Hxfinal);

EFyArg = angle(Eyfinal);

HFyArg = angle(Hyfinal);

EFzArg = angle(Ezfinal);

HFzArg = angle(Hzfinal);

# calculate the electric and magnetic field intensity enhancement

EFH = (EfinalN/EsN)^2;

HFH = (HfinalN/HsN)^2;

?"Data is pre-processed. Saving files";

# prepare data for saving

wl = num2str(lambda0(i));

ExAbs = pinch(EFxAbs(1:length(x),1:length(z)));

HxAbs = pinch(HFxAbs(1:length(x),1:length(z)));

EyAbs = pinch(EFyAbs(1:length(x),1:length(z)));
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HyAbs = pinch(HFyAbs(1:length(x),1:length(z)));

EzAbs = pinch(EFzAbs(1:length(x),1:length(z)));

HzAbs = pinch(HFzAbs(1:length(x),1:length(z)));

ExArg = pinch(EFxArg(1:length(x),1:length(z)));

HxArg = pinch(HFxArg(1:length(x),1:length(z)));

EyArg = pinch(EFyArg(1:length(x),1:length(z)));

HyArg = pinch(HFyArg(1:length(x),1:length(z)));

EzArg = pinch(EFzArg(1:length(x),1:length(z)));

HzArg = pinch(HFzArg(1:length(x),1:length(z)));

Ei = pinch(EFH(1:length(x),1:length(z)));

Hi = pinch(HFH(1:length(x),1:length(z)));

# clear data files

rm(f_name + "-wl" + wl + "-AbsEx.txt");

rm(f_name + "-wl" + wl + "-AbsHx.txt");

rm(f_name + "-wl" + wl + "-AbsEy.txt");

rm(f_name + "-wl" + wl + "-AbsHy.txt");

rm(f_name + "-wl" + wl + "-AbsEz.txt");

rm(f_name + "-wl" + wl + "-AbsHz.txt");

rm(f_name + "-wl" + wl + "-ArgEx.txt");

rm(f_name + "-wl" + wl + "-ArgHx.txt");

rm(f_name + "-wl" + wl + "-ArgEy.txt");

rm(f_name + "-wl" + wl + "-ArgHy.txt");

rm(f_name + "-wl" + wl + "-ArgEz.txt");

rm(f_name + "-wl" + wl + "-ArgHz.txt");

rm(f_name + "-wl" + wl + "-EFH.txt");

rm(f_name + "-wl" + wl + "-HFH.txt");
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# save data to files

write(f_name + "-wl" + wl + "-AbsEx.txt", num2str([0, transpose(x); z, transpose(ExAbs)

]));

write(f_name + "-wl" + wl + "-AbsHx.txt", num2str([0, transpose(x); z, transpose(HxAbs)

]));

write(f_name + "-wl" + wl + "-AbsEy.txt", num2str([0, transpose(x); z, transpose(EyAbs)

]));

write(f_name + "-wl" + wl + "-AbsHy.txt", num2str([0, transpose(x); z, transpose(HyAbs)

]));

write(f_name + "-wl" + wl + "-AbsEz.txt", num2str([0, transpose(x); z, transpose(EzAbs)

]));

write(f_name + "-wl" + wl + "-AbsHz.txt", num2str([0, transpose(x); z, transpose(HzAbs)

]));

write(f_name + "-wl" + wl + "-ArgEx.txt", num2str([0, transpose(x); z, transpose(ExArg)

]));

write(f_name + "-wl" + wl + "-ArgHx.txt", num2str([0, transpose(x); z, transpose(HxArg)

]));

write(f_name + "-wl" + wl + "-ArgEy.txt", num2str([0, transpose(x); z, transpose(EyArg)

]));

write(f_name + "-wl" + wl + "-ArgHy.txt", num2str([0, transpose(x); z, transpose(HyArg)

]));

write(f_name + "-wl" + wl + "-ArgEz.txt", num2str([0, transpose(x); z, transpose(EzArg)

]));

write(f_name + "-wl" + wl + "-ArgHz.txt", num2str([0, transpose(x); z, transpose(HzArg)

]));

write(f_name + "-wl" + wl + "-EFH.txt", num2str([0, transpose(x); z, transpose(Ei)]));

write(f_name + "-wl" + wl + "-HFH.txt", num2str([0, transpose(x); z, transpose(Hi)]));
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?"Done";
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