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Abstract

Researchers (see Siegler, 1987; Newell, 1973) have
demonstrated the dangers of aggregating data over
strategies.  In this paper, we provide a current
demonstration of this point using our recent work in the
study of cognitive skill acquisition as a case study.
Moreover, we call particular attention to the relation
between cognitive modeling and microanalysis as
driving forces toward a more thorough understanding of
the role of strategies in cognitive skill acquisition.

Overview

We begin by reviewing the general results of our prior skill
acquisition research. Following this summary, we put forth
the rationale for performing a microanalysis of these data,
which describes our latest effort at modeling skill learning
in the experimental paradigm introduced in Anderson and
Fincham (1994) and extended in Anderson, Fincham and
Douglass (1997). We describe the main results of our
microanalysis and finally conclude with a discussion of the
importance of performing such analyses in this domain,
particularly with regard to the research problem that
emerges when multiple strategies, both within and between
subjects, can be employed in a particular task.

Background

Anderson & Fincham (1994) and Anderson, Fincham &
Douglass (1997) introduced a paradigm designed to
understand the process and time course of skill acquisition.
At issue in this work were two seemingly opposing theories
of skill acquisition. One view was that the transition to
skilled performance in a task progressed from the use of
abstract rules to a reliance on retrieval of specific instances
(Logan, 1988; Logan & Klapp, 1991). The other view
characterized the development of skill as progressing from
initially using examples to the development and use of
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abstract rules (Anderson, 1993). Anderson, et al. (1997),
proposed a theory that is essentially a melding of these two
views. The proposal describes a four stage model of skill
acquisition.  These (unordered, possibly overlapping)
stages, ordered by increasing efficiency, characterize skill
acquisition as attributable to the use of (a) analogy to
examples, (b) declarative abstractions, (c) procedural rules
and (d) retrieval of examples. While this four stage theory
seems to be a reasonable qualitative account of the data, our
goal is to elaborate the theory with a more quantitative
account,

Modeling and Microanalysis Motivation

The goal of our current work is to generate a well specified,
mechanistic account of the transition that occurs when
moving from the novice level toward the skilled level of
performance in our skill acquisition task. In particular, our
intent is to develop a simulation model for the above
described paradigm using ACT-R (Anderson & Lebiere,
1998; Anderson, 1993), a general cognitive modeling
architecture. Developing a mechanistic account of this
transition process serves several purposes. First, it is proof
in principal that the qualitative account outlined above can
be described by and achieved through a more formally
specified process. Second, it allows us to quantify the
theory in such a way that we can then use the model to
make specific, testable predictions about behavior in novel
tasks. Third, we hope that the modeling effort will provide
additional insight into the underlying mental processes that
are involved in the skill acquisition process. Finally, the act
of generating the model should provide insights into subtle
nuances that may exist in this specific task or within the
ACT-R modeling architecture. In essence, the devil is in
the details.

Serendipitously, we had recorded detailed individual mouse
clicking data from Experiment 2 in Anderson, et al. (1997).
In order to facilitate modeling our skill acquisition task at
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the atomic level of granularity outlined above, the
heretofore dormant mouse clicking data were analyzed. In
what follows, we will outline the general method for our
task and present new results that this phase of our efforts
has yielded. @ To foreshadow, we have found that
participants employ multiple strategies when performing
this task. Upon doing separate analyses for the two most
common strategies, we have managed to (1) provide more
compelling empirical evidence for two components of the
proposed stage theory of skill acquisition and (2) identify at
the mouse click level what we believe to be the atomic
components involved in the execution of the task.

The Task

In the first part of these experiments participants commit to
memory 8 specific facts such as "Skydiving was practiced
on Saturday at 5 PM and Monday at 4 PM." Although
participants were not informed of it at the time, they were
learning examples of eight different rules about the time
relationship between the two events for each sport. In the
current example, the rule is that the second skydiving event
always occurs two days later and one hour earlier than the
first skydiving event. We denote this rule as "+2,-1". After
successfully memorizing these eight examples, participants
were told of the nature of the underlying rules associated
with each sport. Participants were then tested with novel
problems over a period of five days in an interface like that

User response displayed in bottom row

illustrated in Figure 1. Participants were given either the
first or second ume (day and hour) and had to compute the
other time using the rule associated with the given sport.
Figure | shows a training trial where the skydiving stimulus
is the first time (Friday at 3) and they would have to predict
that the target was Sunday at 2. They made their prediction
by clicking the relevant buttons in the boxes below. We
were interested in the speed and accuracy with which they
could do this. The example in Figure | involved going
from the first time to the second time but Anderson and
Fincham (1994) trained participants on 8 sports and half of
them involved going from the second time to first time. On
each of the five days, participants practiced 8 rules 32 times
each in one direction (four with the times presented on the
left hand side of the display and four presented with the
times on the right hand side). Two of these rules were then
tested in the other (“unpracticed”) direction (also 32 times
each) beginning on day 2, two more starting with day 3, two
more starting with day 4, and the final two starting on day 5.
We were interested in whether participants would be faster
in the more practiced direction. We found more asymmetry
(a greater latency advantage for rules in the more practiced
direction) for rules that were reversed after more practice in
one direction.
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Figure 1. User interface for Anderson & Fincham skill acquisition task.
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Table 1. Strategy counts as determined by response mouse click sequence for stimuli presented on the left side and right side
of the display. The labels A, B, C and D represent responses of the leftmost day, leftmost hour, rightmost day and
rightmost hour in the experimental interface, respectively.

Response Strategy Ss Left Side Right Side
(AB S xx) (xx S CD)

ST (stimulus then target) 16 ABCD CDAB
LR (left side then right side always) 8 ABCD ABCD
DH(st) (days then hours, stim side first) 1 ACBD CADB
DH(Ir) (days then hours, left side first) 4 ACBD ACBD
HD(Ir) (hours then days, left side first) 1 BDAC BDAC
ST(fast) (stimulus then target, efficient mousing) 2 ABCD DCBA
Other 15
Total 47

Response Strategies

Using their detailed mouse clicking data, participants were
classified according to the predominant response strategy
they employed. The classification was performed by
examining the mouse clicking patterns they exhibited on the
final day of the experiment. The classification criterion for a
particular strategy was that the mousing sequence was
consistent for at least 80% (Siegler & Taraban, 1986) of the
trials for each of the eight rules in both directions. Table |
shows the result of this classification scheme. Remember
that participants were required to fill in all four cells in the
user response row (see Figure 1). Consider, for example,
the response sequence we refer to as the Stimulus to Target
(ST) strategy in Table 1. When employing this response
strategy, participants move the mouse to the location of the
stimulus, click the radio-buttons to copy the givens and then
move to the opposite side of the display and enter the target
transformation. Thus, when the stimulus was presented on
the left, they would respond by clicking the leftmost
response buttons to copy the givens followed by movement
to the right side of the display and clicking the rightmost
response buttons to indicate the target transformation (click
sequence ABCD in the table). Conversely, when the
stimulus was presented on the right, they would respond by
clicking the rightmost response buttons to copy the givens
followed by movement to the left side of the display and
clicking the leftmost response buttons to indicate the target
transformation (click sequence CDAB in the table).

The predominant response strategy was the above described
ST strategy with 16 of the 47 participants using this method.
The second most popular strategy (8 Ss) was the Left to
Right (LR) strategy whereby participants consistently
entered responses in a strictly left to right order across the
display, independent of the location of the stimulus.
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In order to demonstrate the importance of discovering
varied strategy use by our participants, we will now present
a small subset of the analyses of the two predominant
strategies within the context of specific issues raised in our
earlier work.

Directional Asymmetry

We have previously argued (Anderson, et al., 1997) that the
emergence of a directional asymmetry in response latency is
evidence for the formation of production rules, stage (c) in
our skill acquisition model. In our previous work, we have
shown that indeed there exists a directional asymmetry
between practiced and unpracticed rules. Overall, sports
tested in the more practiced direction were on average
slightly (250ms) faster than when tested in the less practiced
direction. While this was a significant effect, we noted that
indeed it seemed relatively small.

However, we have in the past ignored the possibility of the
existence of the multiple response strategies that we have
currently identified. Thus, we inadvertently averaged over
these strategies when performing our analyses. To correct
for this problem, we have reanalyzed the latency data of the
current experiment.

A repeated measures ANOVA with a single between factor
of strategy (ST or LR) and within factors of day (4) and
practice (practiced and unpracticed direction) was
performed. There was no main effect of strategy, F(1,19)
=1.47, MSE = 62.95, indicating there is no overall latency
advantage for one strategy over another. More interesting is
the fact that strategy interacted only with practice, F(1,19) =
5.05, MSE = 2.97, p<0.05. As can be seen in Figure 2, the
LR strategy shows no latency difference when applying
rules in the practiced versus unpracticed direction. On the
other hand, the ST strategy shows a clear asymmetry
between the practiced and unpracticed directions, with the



rules in the practiced direction showing about a 470ms
advantage over rules in the unpracticed direction.

At first blush, it is curious that the LR strategy did not
exhibit the predicted asymmetry between practiced and
unpracticed rules. Yet another examination of the data
sheds some light on this issue. Of the eight LR participants,
only two of them adopted the LR strategy consistently from
the onset of the experiment, while all ST participants
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Figure 2: Response latency as a function of practice and
strategy.

consistently applied their strategy throughout the
experiment. In fact, it was not until the last day of the
experiment that the remaining six LR participants

consistently applied the strategy. Over the course of the
experiment, these participants gradually changed their
strategy choice from an initial ST strategy to a mixture of
both ST and LR and finally entirely to the LR method. We
take this then as further evidence that proceduralization
goes hand in hand with asymmetry of access. Given that
most of the LR group were inconsistent in their strategy
choice, they were unable to develop proceduralized
embodiments of the declarative versions of the rules they
were applying and hence the corresponding lack of
asymmetry exhibited in the latency data.

It seems clear that by taking the role of strategy into account
we have managed to obtain much stronger evidence for,
given substantial practice, the formation of production rules
that encapsulate specific, directional transformations, stage
(c) of our skill acquisition model.
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Localization of Learning

To get to the heart of the atomic components involved in
this task, we performed a repeated measures ANOVA of the
latency data for the individual mouse clicks of user
responses. This analysis allows us to examine the mouse
click response profiles within strategy. Factors are day (4),
practice (practiced versus unpracticed direction), mouse
click sequence (ABCD or CDAB, see Table 1) and click
position (first through fourth). We will only consider the
data from the ST subjects here.

As we have noted, the mouse click response profile is of
particular interest for the present discussion. There was a
significant main effect of click position, F(3,39) = 43.57,
MSE = 165.95, p<0.0001. Figure 3 displays this result.

3.5

254

K K3 ka
Figure 3: Mouse click latency as a function of position for
the ST strategy.

The first mouse click latency corresponds to the time it
takes for ST participants to orient to the stimulus and copy
the given day. The second item corresponds to the copy
hour operation. We see that the third item in the response
carries with it the greatest latency. This is where the
participant must compute and respond with the appropriate
day transformation. Finally, the fourth item is where the
participant must compute and respond with the appropriate
hour transformation.
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Figure 4: Mouse click latency as a function of mouse click
position and practice for the ST strategy.

Note there is a subtlety here that is not necessarily obvious.
Because there are two distinct mousing sequences within the
ST strategy (ABCD and CDAB), we aggregated the mouse
clicking data into these categories. Had we not done so, we
would have missed the clear effects we have demonstrated
in the mouse click response profile.

Where is the asymmetry?

There were significant interactions between practice and
mouse click position, F(3,39) = B8.87, MSE 0.36,
p<0.0001, and between mouse click sequence and click
position, F(3,39) = 12.98, MSE = 1.20, p<0.0001. These
are shown in Figure 4 and Figure 5, respectively.

Figure 4 shows that the latency advantage for practiced over
unpracticed rules reported earlier (470ms) is almost entirely
driven by the third mouse click in the response sequence.
Given that the third mouse click corresponds to the
computation required for performing the target
transformation of the day (and possibly the hour as well),
we have further converging evidence that this computation
has been proceduralized as per stage (c) of our skill
acquisition model,

Figure 5 shows that a speed advantage for moving left to
right in the response sequence is also almost entirely driven
by the third mouse click in the response sequence. This is
due the fact that when processing the right side of display
first, the mouse must be moved from the far right of the
display to the far left of the display to enter the target
response,
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Figure 5: Mouse click latency as a function of mouse click

position and response sequence (ABCD vs. CDAB) for the
ST strategy.

By virtue of examining the mouse clicking data, we have
discovered several previously unknown features of this
particular task. The general response profile is consistent
with a task analysis enumerating the procedure for solving
these problems using the ST strategy, thus constraining
potential models of the task. Further, we have identified the
third mouse click as the predominant source of the
procedural asymmetry result. Finally, we have also
identified a potential problem with the current user interface
employed in our skill acquisition paradigm. It simply takes
longer responding from right to left across the display when
compared to moving in the left to right direction when using
the ST strategy.

Conclusions

We have provided here only a very small window into our
efforts at generating an ACT-R model of learning in our
skill acquisition task. Through this window, we hope to
have shown that there is a symbiotic relationship between
modeling, microanalysis, theory and empirical research
methods. Indeed, the importance of this interrelationship
has been characterized by others as well (Carpenter & Just,
1999).

The goal of constructing a quantitative model served as the
impetus to perform a microanalysis of the task at hand. In
so doing, we discovered a plethora of previously
unconsidered strategies. Because we were inadvertently
averaging over these strategies, we attenuated effects in
support of our general skill acquisition model. Finally, we
have uncovered a potential problem with the interface used
in our studies that also serves to attenuate the effects in
which we are most interested.



As a result of this effort, we have been able to constrain our
ACT-R model of this task. Further, this research has
spawned another study in which we control for response
strategy and eliminate potential problematic interface
problems.
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