Lawrence Berkeley National Laboratory
Recent Work

Title
Steady-state cracks in viscoelastic lattice models II.

Permalink
https://escholarship.org/uc/item/9236631p

Journal
Physical Review B. Condensed Matter and Materials Physics, 61(3)

Author
Kessler, David A.

Publication Date
1999-07-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9236631p
https://escholarship.org
http://www.cdlib.org/

LBNL-44075
Preprint

,,/,_:} \"\, ERNEST ORLANDO LAWRENCE

BERKELEY LAaB

BERKELEY NATIONAL LABORATORY

Steady-State Cracks in Visoelastic
Lattice Models II

David A. Kessler

Computing Sciences Directorate
Mathematics Department

July 1999

To be submitted
for publication

Pt " A.-)\ o T )
: LT [P
=0 . e
_ L T
‘ Lo L ~
' S S . ® m
e .‘.l;"ﬁ .“M . 1 OO'"
o S e e 2 8 o
- B v'} ,fr/: o (_"s 4 ;
B A Ly
L Gl H {UDTI .C_a 20
= K i sy . . o o
L v o= Co < B <
o Lo e
« T Zo—
5 - ) .' N = /,/ 7 J,;: PN e
T Sy PR B owm
§ ; s S S ®
- ‘;;‘W‘, P X N‘E’_‘ -
. o SR e
/ r_ 2"
& o
o3
- <
= o
° 5 )
Sn «
-
. L d

SL@bY-TNGT



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
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Steady-State Cracks in Viscoelastic Lattice Models I

David A. Kessler*
" Dept. of Mathematics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA

94720

Abstract

We present the analytic solution of the Mode III steady-state crack in a
square lattice with piecewise linear springs and Kelvin viscosity. We show
how the results simplify in the limit of large width. We relate our results to
a model where the continuum limit is taken only aloﬁg the crack direction.
We present results for small velocity, and for large viscosity, and discuss the
structure of the critical bifurcation for smé.ll velocity. We compute the size of

the process zone wherein standard continuum elasticity theory breaks down.
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. I. INTRODUCTION

The problem of the dynamics of cracks has received renewed interest recently, [1] mo-
tivated in large part by new sets of experiments. t2,3] These experiments have called into
- question some of the predictions of the traditional, continuum mechanics approach to frac-
ture dynamics. The most striking experimental finding is that cracks exhibit a branching
instability long before they reach the predicted limiting speed of advance. This instability
causes increased dissipation and sets an effectivé limit on the speed of crack propagation.
There are hints of such an instability in the continuum approach, [4] but a systematic treat-
ment remains elusive. [5]

One avenue of exploration that has proven fruitful is the lattice models of fracture pi-
oneered by Slepyan [6,7] and further developed by Marder and collaborators. [9,10] These
modeis, especially in the extreme brittle limit, are simple enough to allow comprehensive
study, both analytically and by numerical simulation. The lattice models exhibit some novel
effects, not seen in the continuum description. Foremost is the existence of arrested cracks.
The lattice models also show instabilities at large velocities that may be relevant to the ex-
perimentally seen branching instabilities. Thus, it is useful to understand the lattice models
in as much detail as possible.

In a previous paper, [11] we embarked on a study of the effect of dissilz;ation, in the form
of a Kelvin viscosity, [12] on the behavior of steady-state cracks. We solved numerically
for the dependence of velocity as a function of the driving displacement A. We found that
dissipation acts to lower the velocity and sigﬁiﬁcantly reduces the size of the lattice-induced
small velocity unstable regime where the velocity is a decreasing function of the driving.
We also showed that in the presence of dissipation, the stable regime is well approximated
by a ﬁovel :v—continﬁuxh mpdel, wherein the lattice structure perpendicular to the crack is
retained but along the crack is replaced by a naive continuum limit. We also showed that if
the transverse dimension N is large, then at distances of order N the elastic fields are given

by the results of standard continuum fracture theory. On small scales, however, there is a




boundary layer where the discreteness of the lattice in the transverse direction is important.
This boundary layer structure is all important in d,etermining‘the velocity versus driving
relation. However, as our z-continuum model demonstrated, the discreteness in thé direction
of the crack is less crﬁcial, and primarily affects the small velocity regime.

In this current paper, we study the large- N limit of the theory. We do this ﬁrét for our
z-continuum model, where the structure of the theory is simmpler. We then extend this to the

full lattice model. In both cases, we i)resent a formal Wiener-Hopf solution of the model for
arbitrary N, and then take thé-large-N limit. This is in contrast to the work of Slepyan, who,
forvthe case of infinitesimal dissipation, solves the iﬁﬁnite—N limit directly. The principal
advantage of our method is that it allows a discussion of case of large, but ﬁnite, N. Tt also
allows a comparison bétween the small-scale and the large-scale structure, whereas Slepyan’s
method only produces a solution for small to intermediate scales. Thus Slepyan must rely
on an implicit matching to large scales via the stress-intensity factor, as opposed to the
explicit matching contained in our solution. The>Slepya,n method, nevertheless, by avoiding
the neccesity of solving the finite-N problem, is more easily applied to other cases, such as
the mode-I problem, where the finite- NV solution is not so easily obtained.

The plan of the paper is as follows. In Section II, we describe the lattice model and the
simpler z-continuum version. In Section III, we lay out our major results. The details of
the calculation are contained in the following sectioné, first for the x—contiﬁuum problem in
Section IV, and then for the lattice problem in Section V. The small velocity limit is studied

in Section VI and the large viscosity limit in Section VII. We conclude with some comments

in Section VIII.

II. DESCRIPTION OF THE MODELS

The lattice model we study is identical to that described in our earlier work, [11]. We
have a square lattice of mass points undergoing (scalar) displacement out of the plane. The

lattice extends infinitely lohg in the z-direction, with N 4 1 rows in the y-direction. The



lattice points are connected by linear “springs”, with spring constant 1, to their nearest
neivghbors. The top row is displaced a fixed amount A. The bottom row is connected to
a fixed line, with piece-wise linear springs. These springs, with spring constant k, “crack”
irreversibly if they are stretched an amount e. When k = 2, this model is equivalent to
a system of 2N + 2 rows, loaded by A from top and bottom, with a symmetric crack
running down the middle, with extension at cracking of the springs that bridge the middle
being 2¢. All the (uncracked) springs have a. viscous damping 1. The equation of motion for

the system is then

" d .
Ui = (1 + na) (Wig1,j + Uivr,g + Uijer + w1 — 4ui ;) (1)

for j # 1 with u; ny1 = A, and

- d d
iy = (1 + na) (Wig1,; + Uic1,; + Uiz — 3us ;) — k(e — ui1) (1 + "2&) Uiy - (2)

Note that in these units, the elastic wave speed is unity, so all velocities are dimensionless,

expressed as fractions of the wave speed.

We are interested in steady-state cracks, described by the Slepyan traveling wave ansatz,

- uij(t) = u(t —i/v) | | (3)

which implies that every mass point in a given row undergoes the same time history, trans-
lated in time. We choose the origin at time such that u,(0) = € so that it represents the
moment of cracking of the spring attached to the bottom row mass point. The equation of

motion is best expressed in terms of the N X N coupling matrix

—(m+1) 1

M(m) = T | (@




The steady-state equation then reads

3500 = 00) (14 15 ) Moo 0us) - 0-0) (14 1.5 ) Mo By

- (14 0%) ate +10) =200+ use - 1/0)) = 5)

We will also consider in this paper an z-continuum version of this model, where we

replace the nonlocal in time coupling along the crack with its continuum analog
) d N - d
- a5(8) = 0(8) { L+ oy | Migr(0)ujr(t) = 0(=t) { 1+ | My (R)uje(t)

(140g) gm0 ©

III. SURVEY OF RESULTS

In this section, we survey the major rééﬁlts derived in the bulk of the paper. As-the
derivations are exceedingly technical, it is useful to present the results first by themselves
‘so that they may be appreciated without getting lost in a welter of technical complications.
We begin by completing the Wiener-Hopf (WH) solution of the continuous z, discrete .y
model, as the results are simpler and are a useful basis for assimilating the more complicated
results of the full lattice model. The key aspect of the solution is the calculation of A as a

function of the crack velocity v (in units where the wave speed is unity). We find

Ag m @1,m(1 + 1vq1,m)

which expresses A (normalized to the Griffith value
Ag=eV/2NF1 (8

" at which the uncracked state becomes meté,sta,ble) in terms of the wave vectors corresponding
to the various normal modes of the problem. If we label the normal mode eigenvalues of the
“y-coupling matrix on the uncracked side M(k) by An, then @1, is the unique positive root

- of thé dispersion relation




Q>+ (1 - v*)Q* + (1 + wQ)An = 0. (9)

Similarly, g1 is the unique positive root of the dispersion relation using the normal mode
eigenvalue ), of the cracked side M(0).

This formula is fairly complicated, but simpliﬁes tremendously for the case of symmetric
cracks (k = 2) in the macroscopic limit N >> 1. Then, the product above can be performed

analytically, with the simple result

A _ oy e |20+ 0@i(1)
(=29 J (1) 1o

Ac
where (Q1(1) is the mode associated with the highest frequency y-mode, with A = —4. For

typical #’s of order 1, @1(1) does not vary much from its zero velocity value of 9. The
resulting curve A(v)/Ag starts linearly at v = 0 from 1 with slope 7 and diverges at v = 1.
Thus, in the infinite N limit, the velocity never exceeds the wave-speed. At any finite N,
however, the velocity crosses the wave speed at a A of order NY/®Ag. Since the divergence
with NV is so weak, crossing the wave—épeed barrier may not be as difficult as one would
naively think. This is especially true for small dissipation, where the critical A scales as
(nN )1/€. This appears a more likely mechanism for explaining the experimental observation
of supersonic cracks than the time-dependent forcing hypothesis of Slepyan. [16]

The basic structure is unchaﬁged when we go over to the full lattice model. The essential
difference is that the lattice dispersion relation is nonpolynomial and has an infinite number

of positive (real;.part) solutions for each eigenmode m. The A — v relationship is

A Q1hm(1 +77lenm) .
= = VEN 1] Lo o 11
AG J;;[n 1,n,m(1 + ﬂvql,n,m) ( )

where now the product extends over all positive real-part roots )1 n,m of the lattice dispersion

rela,tion
0 = (1 +nvQ)(4sink*(Q/2) + An) — v?Q? BT

for each A,, (Am in the case of ¢y nm). For a given m, there is one real positive root,

®@1,0,m (g1,0,m), and an infinite series of complex-conjugate pairs of complex roots, ordered

6




by increasing imaginary part. For large n, the imaginary part increases by roughly 27 for

each successive root.

Again, for symmetric cracks we can evaluate analytically the macroscopic (large V) limit.

We obtain
. 1/2
A (1 = v?) 14, 2(1 + 7vgoo,0) gon(1 + 79gc0,n) (13)
AG 40,0 n#0 qoo,n(l + nqu,n)
where geo, is the root corresponding to the highest fiequency A = —4 eigenmode and plays

the role of Q;(1) of the previous z-continuum result. The go,n are the roots corresponding
to the A = 0 eigenmode. These do not have a counterpart in the z-continuum calculation
as the n = 0 real solution vanishes, and only the lattice-induced n # 0 modes enter.

As indicated by the way we expressed this result, we can consider it as essentially the
z-continuum result, Eq. (11), with the real lattice goo,0 replacing Q1(1), modified by a
multiplicative correction factor invoiving the complex lattice modes. To understand the
usefulness of this way of thinking, as well as its limitations, we present in Fig. 1, for n = .5,
the exact numerically computed relationship Eq. (13), along with the z-continuum result
Eq. (11). In addition, we plot the lattice result, truncaﬁed after its n = 0, |n| = 1 and
[n| = 5 terms. We see that at larger velocities all these results are close, indicating that
the lattice-induced shift in g as well as the additional lattiée modes play little role at these
velocities. At smaller velocities, the various approximations differ significantly from each
other and from the exact curve. We see, in fact, that as v approaches 0, more and more
terms must be included in the product to achieve an accurate result. The éalcuiatioﬁ of
the limiting behavior at small velocities requires summing all the terms. The result of the
calculation is that for all 5, as v — 0, A approaches Ajg+ = /1 + V2A¢, the maximal A
- for which an arrested crack exists. This generalizes the resu‘it of Slepyan for infinitesimal
dissipa,tio;l. As -v‘ incfeas;es, A dectreases lin‘"e'aﬂy with the n—independent slope, —A'|0+ /2 s0
that the bifurcation from the arrested is subcritical and universal.

' More progress can be made in the la;rge n limit. Here, at ﬁxed\A, the velocity goes to

zero as 1) increases, so-that the ratio ¢ = nv is fixed. In this limit, we can calculate the

7
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FIG. 1. v vs. A/Ag in the z-continuum approximation, Eq. (11), and in the exact lattice

model, together with the lattice result truncated after the n = 0 term, |n| = 1 and |n| = 5 terms.

infinite product and find

A 1 M2 '
A= [coth(ﬁ) + \/5] | (14)

This infinite-n result, together with the exact result for various n’s, is presented in Fig. 2.
We see that this calculation does not reproduce the subcritical bifurcation from the
arrested crack at small velocities, which is a higher order effect. We can evaluate this 1/y

correction near the bifurcation at small ¢, and find
AZ |
A Al (14 oE e - (15)

which repfoduces the small v behavior described above and shows that the 7 dependent
corrections are in. fact exponentially small in v. The resulting A — v curve starts at Alo+
at v = 0, heads back linearly for a short distaﬁce of order 1/7(ln7)? and then sharply veers
forw_a,rd’.

A last result worth noting is that whereas the Kelvin viscdsity model analyzed herein has
a nice macrbscopic limit when expressed in terms of Ag, the model with Stokes viscosity,
where the dissipation in put in the masses and not in the bon‘ds, does not have such a limit.
There an O(1) Stokes viscosity at the microscopic level ;:hanges the continuum elastic fields

and requires an ever-increasing A/Ag as the sample is made wider.

8
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FIG. 2. nv vs. A/Ag for n = 2,4,8,16 along with the asymptotic result for large n, Eq. (14).

- IV. THE z—CONTINUUM MODEL

We begin our analysis with the solution of the z—continuum model, Eq. (6), introduced
in Kessler, et. al. [11]. It is important to remember that is this model, the lattice structure
in the y-direction is left unchanged. The solution of the lattice model is similar in structure
to-that of the z—continuum model, but the latter is a simpler context in which to develop the
necessary techniques. Furthermore, the m—continuurn model is an interesting approximation
in its own right, which captures a significant amount of the structure of the full lattice
problem.

In Kessler, et. al. [11], a Wiener-Hopf analysis of the problem was initiated. In this
analysis, the key technique is to decompose all the terms in the eteady—state equation of
motion into terms analytic in the upper- and lower-half planes respectively. However, the

a;n‘alysis was not carri-ed to completion due to the presence of one term whose decomposition

i Was not ev1dent Here We use a trick to accomphsh the decomposrtlon of this last remammg (

' ,term and thereby complete the solution of the problem We choose not to reproduce the
lengthy preliminary stages of this calculation, for which the interested reader is referred to

[11}. We do however reiterate the definition of the relevant notations introduced there, so



that the current exposition is minimally self-contained.
The problematic term, from [11] Eq. (42), is

IL(K —ix2,0) (K + ix2,) (K +ix3,)
Hm(K qu,m)(K + ZQZ,m)(K + 7'QS,'rn.)

where the x, ¢, and @ are the roots of a certain family of cubic polynomials. In detail, let

(16)

4, (I=1,...,N—1) be the eigenvalues of the (N —1) x (N — 1) coupling matrix My_;(1)
- defined in Eq. (4) above. Define the polynomial specifying the diépersion relation, P(),Q),
by | .

P(X\,Q) =nvQ° + (1 —v*)Q* + (1 + nvQ)A | (17)

Then, P({,, Q) has, for each m, three roots, one positive which we denote x m, and two with
negative real parts, which we denote by —x2,m, —X3,m, so that all the x’s have positive real
parts. Similarly, denote the eigenvalues of the N x N matrix My(k) by Ay, m=1,...,N.
Then Q1,m, —Q2,m, and —Q3. are the roots of P(A,,,Q). Likewise, denote the eigenvalues
of M(0) by An. Then ¢1,m, —g2,m, and —gsn are the roots of P(An,, Q).

It is apparent from these brief remarks that the troublesome term in its current state
involves singularities and poles in both the upper- and lower-half planes. To proceed, we

rewrite the numerator using the following manipulations:

H(K ix1,1)( K + zXzz)(K-i- iX3,1)

=<.1:Z_:7117)25)N detw_1 (f(K)T + M(1)
- (1 ‘i;’:’K ) [detN (FE)T + M(0)) — detn (F(K)T + M(k))]

_ —‘H( K — iQun)(K +iQom)(K +iQam)|  (18)

The first line of this chain employed an identity from [11], Eq. (40), relating the numerator
to the determinant of a certain matrix formed from My_;(1) and the identity matrix T

together with the function

10




FK) = [gnvzﬁ ~ (1=K /(1 —ipvK). (19)

The second line in this chain, claiming this determinant is equivalent, up to a constant
factor, to the difference of two N x N determinants can be proven by expanding each of the -
matrices about the ﬁrst r(;W. The last line reexpresse.s-each of these two deferminants using
more identities from [11], Egs. (38-39).

After these manipulations, our term can be written

LK — ixa) (K + ixa)(K +ixas)
(K = 1q1m)(K + iQ2,m)(K + iQ3,m) |
7]'0 H K - in,m ‘ (K + ZQ2,m)(K + 'l.q3,m)

= 1wk U KT L K+ 100m) (K + Qo) (20)

ik

As the outside factor has a pole at —i/nv in the lower-half plane, the second term only
has singularities and poles in the lower-half plane and so is in the desired form. The first
term is still mixed and requires further massaging. The idea is to subtract out the unique

lower-half plane pole so that what is left has only upper-half plane poles and zeros. Thus,

. 1 :
nv K —1Q1m nv wt @Q1m _
11 = 21
1—ipvK 5 K —igim  1—ipuK o L4 qim 9 1)

where now ¢~ has only upper-half plane poles and zeros. We will not need the explicit
form of g~ in the calculation. What we have is now sufficient to solve for @*, the Fourier

transform of the displacement of the bottom masses in the crack region, u;(z)8(z). Using

[11], Eq. (42), we find

0= &_*. H (K + Zq2,m)(1{ + iq3,m) _ S VAN 42,m43m
e (K +1Qom) (K +iQ3m) K +1i0F 1 QomQ@3m

nv {H 14+ 9vQum 1 (K +192m)(K + ig3m) ]

— oK | 14+ moqim o (K +iQ2m) (K +iQsm)

- Ful0)y
B SOlVlng for | at, we find
o A G2,m@3m(K +1Qam) (K +1Q3m)

T K 107 L Qs Qo m (K F igam) (K + ig3m)

_ nv.- - (1 + anl,m)(K 4+ iQ2m ) (K +1Q3.m) _
“1(0)1 — K [I;I (1 +nvg1m)(K + tq2,m) (K + iq3,m) 1]

(23)

11



Fourier transforming and. evaluating at =z = 0% yields

G2mi3m (1 4+ nv@, m)
u(® = A1l g e O L T eg 0+ 1) -1 24
so that
q2,m9q3, m(l + nvaq, m) '
“ (0) H QZ,mQIS m(l + TI'UQl,m) (25)

Using u1(0) = ¢, Ag = ev/kN + 1 and the relations (see [11] Eq (43))

[ amtzmazm = (no)™ (26a)
m

[1Q17mQ2mQ3m =»(kN+ 1).(71'0)_N ' - (26b)

we obtain our desired result

A qQ1 m(]- +77UQ1 'm.) .
— =+vVkN +1 ! ’ 27
A*G m Ql,m(1 + TIUQ1,m) - ( )

The primary benefit of this method of solution over the direct approach employed in [11]
is that for the symmetric crack (k = 2) we can take the large-N limit. To do this, we break

up the N—fold product into two terms. The first is

H (1 + nvQ1,m)

(14 nvq1,m) (28)

We transform the product into the exponential of a sum over logarithms, a sum which for

N large we can approximate by an integral, via the Euler-MacLauren Summation Formula

. (EMSF) [14]. Thus

N
InIl; =~ /0 dm [In(1 + nvQ1,m) — In(1 + nvg1,m)] (29)

) and A\ = ~4sin?(X222)) If we define @ = m/N,

2N 41

NOW, for k = 2, A'm. 431n2(2N+1

then we see that

01(@) = Qi(e— 1/(2N))  Qu(0) — 51 T (30)

The integral is now a total derivative, and so

12



il darge U1+ moQun)] = 3 Il +m0@u(1) =L+ 1@ ()

When ¢ =1, m = N and so A, & —4, and so Q1(1) satisfies

= P(=4,Q:1(1)) = nv@(1)° + (1 - 52)621(1_)2 — 4(1 + qvQ1(1)) (32)

Similarly, when a approaches 0, so does m and so also A,. This in turn implies that

@1(0) = 0. So, finally,

2

Iy ~ [1 4 7oQy (L] | (33)

The second factor is slightly more difficult to trea.f, since the numerator and denominator
i)oth vanish as m — 0. To handle this, we regularize the product by multiplying and dividing
by IT,,, m , which we can perform’ analytlca,lly Then, the regularized product, IT¥, can
be transformed to the exponential of an integral of a total derivative, which can be calculated

explicitly. In detail,

HleV m

m q1mV _A (34)

so that

Ry [yt 8y, Qule)
In L N/O das—1In S

:%[111(621'(1)/2)—_111(1/\/1—vz)] | - (35)

where we have used the fact that for a small, Q:(a \/ —A(a)/(1 —v?). Thus_

(36)

e (Ql(l)\/__l —v?)”
27 2 '

Also, N

I, = IIRH\/ mf Am

- HR\/detM(Z)/detM(O) o
= I2VAN + 1 (37)

13




so putting all the pieces together yields the simple result

EN +1— 0:(1)

A _ (1 apy \J 21+ 7vQu(1) )
which expresses A in terms of @1(1), the wave-vector at the end of the Brillioun zone.

The most striking lesson of this formula is that A diverges at v = 1, the wave speed.
Thus, while at any finite IV, there is no upper limit to the velocity, at infinite N the wave
speed is an absolute upper bound to the crack velocity. At large A, v approaches unity
from below as 1 /A*. A second lesson is that at small velocity, A ~ Ag(1 + 7nv), so that A

approaches Ag linearly, as is generally true for this z—continuum model. A third implication

is the behavior at_la;rge n. For fixed A, v decreases as 7 gets large, so that Q;(1) satisfies

0~ v@1(1)® + Q1(1)” — 4(1 +7v@Q1(1)) = (1 + nvQs(1))(Q1(1)* — 4) (39)

so that Q1(1) = 2. Substituting this in Eq. (38) gives

A — .

or

o & (Z%)z 1 | (41)

In this large n limit, of course, A is a function of the scaling variable nv, which was first
introduced in [15]. |

We have seen how at infinite NV, the crack speed v never crosses unity, the Wa\;e speed.
However, at any finite IV, there is a A for which the crack speed crosses unity, which must
diverge with N. We now calculate how this threshold scales with N. The key to the
calculation is II5, since it is the vanishing of II, which leads to the divergence of A at v =1
for N infinite. To compute the value of Hé-at v = 1 for finite large N, we need to choose a

different regularization. We now deﬁne

m )‘ 1/3 ‘ .
gff,m(( A )1/3 (42)

14




so that

; A T1/3 .
M, =0k [H —Aﬂ} = 2N+ 1)k (43)

m

Now, since Q1(a)/(—A(a))'/3 approaches the finite limit 1/7'/® as o goes to 0, IIE has a

finite limit at v = 1 as N goes to infinity, namely II¥ = 1/Q,(1)(n/4)'/3. Using the infinite
N limit of II; from Eq. (33), we get ‘ '

A I, e [2(1 + n@u(1))]*? |
Ao 2_N+1H2 ~ (N)Y [—Q—l(l)—-—-} (44)

Thus, the threshold A scales as N 1/6 Ag, in accord with the nﬁmerica,l evidence discussed in
[11]. The coefficient goes to 2 for 5 large, and vanishes as n'/® for small 1.

Another manifestation of this same phenomenon, the disappearance of the v = 1 crossing
in the infinite-/V limit, is the nonuniformify of the the large-N limit as v approaches 1.

Working out the corrections to the EMSF, we find that

Ty (N) & Ty (N = 00) » (1 - 8711%“27\7) (45)
and
IR(N) ~ (N = oo) * (1 + 55 _’7’;2)3/2 N) (46)

Thus, the relative error of the infinite-N approximation is O(1/N), and diverges as v ap-
proaches 1 as (1 —v)~%/2. It is also inf;eresting to note that the relative error vanishes as v
goes to zero, son that the infinite-N approximation becomes better at small velocities.
One last interesting piece of information we can derive from our solution is the size of .the
“process zone”, the region where the solution from continuum elastic theory breaks down.
The leading-order_ fnacroscopic solution was derived in [11], and exhibited the classic équare— ‘
root: 51ngular1ty at the crack tlp, z = 0. This singularity in really present only at infinite
N, and is cut off by the upper limit on the Q’s, (rela,tlve to the smallest ) ~ 1 /N ) at finite
N. We can determine the structure of the process zone which <replaces the singularity by
studying our exact solution for #*, Eq. (23), for K’s of order 1. Using the EMSF to evalute

- the infinite product, similar to the derivations above, we find
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i 7 (QI(I) L — vH(K +iQa(1))(K + iQs(l)))llz
VN + (K +i07) 2(K +iQa(0)(K +1@5(0))

ie (L@ (D) + iQa(1)(K +iQs(1)\
T [1 (G 1@ O)(K + Q0K + Zx0) ] )
Using @1(0) = Q2(0) =0, @3(0) = (1 — v?)/nv, and the result for A, Eq. (38), we get
i e [(1 RGN QN QU (L LY
B (K +i0+)(K +i(1 — v2)/nv) K+t K+i/gv) K+i/nu
| (48)

Ekamining this expression for small K, we find the expected K~3/2 singularity, which
gives rise to the square-root singularity of the outer solution. The coefficient of the K ~3/2
singularity to leading order in N is Ai%2N-/?(1 — v?)~'/4  which reproduces the same 7
~ independent coefficient of the square-root singularity, or equivalently stress-intensity factor,
found in [11]. The structure of the process zone is governed by the other singularities in
@t that lie off the origin. In particular, the size of the process zone is determined by the
singularity nearest the real line. For small 5, this is at K = —iQa(1) ~ —2i/+/1 — 2, so
the process zone is truly microscopic, unless the velocii:y is very close to 1. For large 7, the
dominant singularity is at K = —iQ3(1) & —t/nv, so the process zone grows linearly with 7

in size.

- V.. THE LATTICE MODEL

In this section, wé generalize our solution of the contiﬁuurﬁ model to the lattice model.
For ease of presentation, we will present the derivation only in the N = 1 case. The case of
general N follows in a straightforward manner from this derivation and that of the continuum
finite N model presented in the previous section.

Our derivation follows directly along the lines of our WH treatment of the contiﬁuum

N =1 problem in [11]. The equation of motion of the steady-state crack is

u(t) = (1 + n%) [u(t+1/v) — 3u(t) + u(t — 1/v)] — k0(—t)(i + ngdz)u(t) (49)
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Upon Fourier transforming, we find
: . K
0 = (1 —invK) (4 smhz(zz—) - 1) i+ v K% — k(1 — ipuK)a™ + AS(K) — knou(0) (50)

- where @ is the Fourier transform of u and @* are the transforms of 8(&t)u(t). We define the

function
R(5Q) = (1+mQ)(4sinh®(Q/2) + ) - v?Q* (51)
in terms of which
0= R(—(l + k); —iK)i~ + R(=1; ~iK)i* + A§(K) — knou(0) (52)

This function, R(); @), which is the lattice equivalent of the polynomial P employed

in the previous section, has not 3 roots, but in fact an infinite set of zeros in the complex -

plane. We shall label these zeros according to their real parts, Q1,» (¢1,n) are the zeros of
R(—(1 + k); @) (R(—1;Q)) with positive real parts, and Q2 (g2,n+) are their counterparts
with negative real parts. The indices n, n’ run over the entire infinite set of zeros but are

otherwise left unspecified for now. We can decompose R in terms of its zeros

o N SV ¢
R(—(1+k);—iK)=—(1+ ’“),E,(l + Ql,n)(l QW)
R(—1;—iK) = - [[(1 - if-)(l + iq’i{,) : (53)

Using this, we rewrite the equation of motion:

- Qi(K — 2Q1n)~—_ QoK +ig2m) oy
- (1 + k) H Ql n(l( - qu ‘n) n' q2,n’(I( + ZQ2,n')
1
FAKE) = ko) 11 7=y =y

'
n,n q1,n Q2,n’

at

(54)

As in the last section, the hard part is to decompose the last term. The trick is the same,

rewriting the m}lm_era.tbvrb as the difference of R’s.

L H 1 1 R(~1;—iK) — R(—(1 + k); —iK)
(1- zq—:)(l - zQ“ ) 1—mvK I, (= i—K—)(1 - z‘an,)
1+ k (41 n(K - ZQI n) l Q2,n’(K + iQ2,n')

1 —iquK Ql (K — Z‘Il,n) 1 -k ) ‘h,n'(K + iQ2,n’)
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As before, the second term is now fine, but the first term is still mixed. Again we subtract

out the uni(iue pole in the lower-half plane which is what we need to find 4t.

1+k I QoK —iQin) _ 1+k I Q75 + Q1n) (56)
1- ”TUK n l,n(K - ian) 1-— Z'f]'UK Ql’n(nv + qu,n) .

where g~ only has poles and zeros in the upper-half plane. Separating out the pieces analytic
in the uppef-ha,lf plane yields

QZ n’(K + ZQ2 n’)
n' qz.»'n'(K + ZQZ»’"-')

A ’ 14+ k ql,n(,,L + Q1) 1 Qan (K + iqan)
= v ! 2 37
& oo~ 0 [1 ey U Oor( i) 1=K ot gos( K F Q)| 1)

at

Solving for u™* yields

. 1A q2 n'(K +1Q)2 n')
+ ) 1
"= Rraor H o F )
91,n92,n(1 +70Q10) (K +1Q2.n)
—u(0)———— (1 + k) 2 s - -1 58
w0 |0+ ] o Qan T moaun) K + i) (%)
Fourier transforming and evaluating at z = 0%, we find
Go,n | q1,ng2,m (1 + nvQ1,n)
u1(0 — —u1(0) (1 + & : -1 : 59
1( ) H Q 2. l( ) ( )n,n/ Ql,nQZ,n’(l +77'UQ1,m) ( )
so that
’ q1,n(1 + 0@y 5)
A=u(0)(1+% e ’ 60
u1(0)(1 + k) L O T moa1n) (60)
As Ag = u1(0)v1 + k, we obtain our desired result
A Q1 'n.(]- + 7vQ1,0)
— =14k : L2 61
Ag n @12(1+ nvq1) (61)

As there is exactly one real positive rooﬁ of R(); @), it is convenient to assign this the index
0 and -?o label the complex roots in order of imaginary part, so that for example ¢ , and
" Q1,-r are complex conjugates. It is clear the basic structure of the lattice result is similar to
the continuum result Eq. (27) a.bove,. with the continuum @11, ¢1,1 replaced by their lattice
counterparts @0, q1,0, and multiplied by a correction fa;ctor due to the additional infinite

hierarchy of complex @, ¢’s which solve the lattice dispersion relation.
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The generalization to.finite NV is straightforward and is left as an exercise to the reader.
The result is the direct generalization of the N = 1 result. At finite N, ‘there is a set of
zeros with positive real part of R(Am; @), (R(Am;@)), for each m = 1,..., N, now labeled
Qinm (G1nm)- Then | '

A / H qlnm(1+anlnm)
—_— = k,N + 1 Ehkd) i 35y 62
Ag am Qam (L +7vg1,0,m) , (62)

is the solution to the lattice problem at finite. N. It of course reduces in the limit  — 0%
to the result of Marder and Gross [9].

As in the continuum, this rather unwieldy formula simplifies tremendously in the sym-
metric crack case k = 2 as N goes to infinity. The procedure for evaluating the limit is similar
to the continuum calculation and so we do not present the details. What enters again are
@Q1.n(), at the two extremes of the Brillouin zone a = 0, 1. If we label Q1,4(1) = oo,

Q@1,(0) = o, then they satisfy the dispersion relations

0 = R(—4;4oo) = (1 + N0qeo,n)(45inh* (oo n/2) — 4) — v2q207n ' (63a)

0 = R(0; go,n) = (1 + nvgo.n)(4sinh*(gon/2)) — v2g2,, - (63b)

In terms of these g’s, the infinite N limit solution is

1/2
A (1 — v?)-1/4 2(1 + nvgeo,0) go,n(1 + NVgco,n) _ (64)
Ag Goo,0 w6 Qoo (1 + 7000

Again, this is very essentially similar to its continuum counterpart, with the real lattice wave-
vector ¢ o playing the role of the continuurn wave vector @1(1), and with a multiplicative
correction due to the presence of complex lattice wave-vectors. It should also be noted that

"this result reduces to that of Slepyan [6] in the n — 0% limit.

VI. THE SMALL VELOCITY LIMIT

We begin our explorations of the content of our key result, Eq. (64) by examining the

7 fixed, v — 0F limit. It is not sufficient to simply set v = 0, since as v gets smaller,
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more and more terms contribute significantly to the infinite product, as seen in Fig. 1. The
proper treatment is to replace the infinite product by an infinite sum of logarithms and then
approximate the infinite sum by an integral via the EMSF. Note that for v = 0, oo, satisfies

sinh” 222 =1, with the solution

gy = 2min + w, 4 ' (65a)

where w is the unique real root of the equation, namely w = 2In(1 4 +/2). Similarly,

v=0

Qon = 2min. (65b)

As we discussed above, we need to consider v — 0, n — 0o, @ = 27nvn fixed. Then, writing

Goon = 2TiN + We, Woo satisfies

. oo 21N + Weo )20
h2 L()_ = ( o
ST L+ 4(1 4+ nv(27in + wy)) (66)
o?
Similarly, 7
sinh? %0 O (68)
2 7 4n2(14ia) :
We can now easily approximate the first infinite product,
oo 1+ NVGoon .
I, = e : 69
! ngm. 14 nvgon : (69)
yielding
1nn~/°°da[11'+ ) —In(1 44
1 | o Zem n(l + ta + Nvws) — In(1 + 2a + puws)] |
% dawg —.
—~ a W, - Wo (70)

e 21 14t
- The second product is somewhat trickier, because a naive expansion diverges at small o.

We define a regularized product

o Goom 2min) | '
HR = | qoovn( ~
e, o
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so that (using the product formula for sink, and the fact that sinh(w/2) = 1)

2rin 4+ w
HR
H 27in

_ smh(w/Z) IR
T w/2 2
2 ,
= ;Hf | : (72)

Our regularized product is now easily approximated,

. ©  do [ln (ia +w°o77v) I (z'a +w0nv)}

~o0 27V | 1 + wnu 1164 ‘
®© dowe, — W — wo )
s 7
o 21 1e% ‘ (73)

Using the idenf,ity

/ Y oY = (74)
-0 14z«
. we obtain our desired result
) A|0+ . [ 2H1 ]1/2
Ag qoo,0H2 _ ,
~ e/ L[ dows —w—wo 75
P (2 ~00 21 ol +ia) ) (75)

This result is, as desired, explicitly independent of v, but would appear to depend on 7
through the very nontrivial 5 dependencé of wy and wy under the integral. It is possible to
explicitly evaluate the integral for small and large 5. For large 7, weo —w ~ O(1/7?) and

wo ~ O(1/n), so the integral vanishes and so

Alo+[Dg = e*/* = /1 + V2 ~ 1.554. : (76)

- .vFor small n [6] , Weo ‘——‘wtoﬂxig concentré,t'_éd at small @ ~ O(n), so'it is appropriate to cor;vert- the
integral into a principal value integral and do the w integral immediately. In the reinaining
integral, we change variables to 8 = a/ 2n. Then, the denominator in the integrand reduces

to 1/, so only the odd (i.e. imaginary) part of w,, — wp contributes. For § > 0 we find
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Imuwe, =2Im sinh™(\/1 — f2) ={ 2sin2yF7=1 1<8<2  (77)

and

2sin~! <1
Imwy = 2Im sinh™*(1/—p?) = § p Bs (78)
- 73 g>1 '
rI..‘he integral thus becomes

0 dawooi-—w-.wo w 1dﬂsm Lg 2d,Bsm VEE—1—7/2
-0 21 a(l +ia) 2 T B
3+ \/_

_zln(1+\/—)—zln2+—ll’l( n )
=0 (79)

So, a,g@in the integral vanishes, and the result> for large and small 7 is the same. One is
lead to guess that in fact the integral vanishes for all 7, as indeed a numerical computation
confirms. This is physida,lly reasonable, since Ao+ should be nothing other than the maximal
A for an arrested crack, which was previously found numerically [11] to be approximately
1.55A¢. _This maximal arrested crack A is the result of a static calculation, and is of course
completeiy independent of 7. The vanishing of the integral can be demonstrated analytically
and is the result of the fact that the integral has no singularities in the lower-half-plane.
One can then close the contour there and the result is identically zero.

To see this, one has to study the analtyic structure of the functions Qoo(a')', wo(a).
Consider first wo(a) = 2sinh™(y(a)), where y2(a) = —a?/(49*(1 + ia)). Since sinh~(y) =
2 ln(\/— 1,12)+\/1—-I-—y2 , wo has a branch cut singularity along the line y> = —r where 1 > r > 0.

- Working out the algebra, in the complex a plane this works out to be, for n > 1, two separa.te ,

B curves. The first is a segment along the upper imaginary axis from o = 227](77 = /%= 1) )

up to @ = 2in(n+ /9% — 1). The second is the circle of radius 1 centered at the point n=1.
Similarly, we; has branch cuts for 2 > r > 1, which are two finite segments along the positive

imaginary axis extending above and below the wg branch cuts. For v/2 /2n < 1, the branch
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cut for wy is a sector of the circle, while the branch cut for we is the rest of the circle and
a finite piece of the the entire imaginary axis extending centered about 2:. For < V2/2,
the branch cuts are confined entirely to a part of fhe circle. Thus, the singularities for all
n lie entirely in the upper-half plane and, as advertised, the integrand is analytic in the
lower-half-plane and so the integral vanishes. |

The next step is to extend this calculation to next order in v. There are two sources
for this first correction in v. One comes from the higher-order velocity dependence of geo,n,
qon- The other comes from the EMSF correction to the replacement of the infinite sum by
an integral. The calculation of the first piece is similar in structure to the leading order
calculation, just more involved. We expand ¢, = 2min + ws + vo,, where the subscript

s = 00,0, and'ﬁnd

aw, 2N—a
Os = — —.
. 2nsinhwg 1 + 1a?

(80)

It is straightforward, though tedious, to substitute this in II;, IIf¥ and expand, giving a
multiplicative correction factor of

1+ 2t L w?

— —————epeerever——— y 2 —— 2 D ————— ————
L+ ol +ia) +in(we w0)2a2(1 + 10)? "0

- 81
2 -~00 271' ( )

w oo da[a_oo—ao

The integrand is again a very nontrivial function of 7 and «, but again a miracle occurs
and the integral vanishes identically (as seen by numériéaj computation) for all 7! The same
analytic argument as above can be used to prove this point. |

This leaves us with only the second source for a O(v) correction, namely the first éndpoint
EMSF correction to the integral. There are only exponentially small corrections to the
integral representation of II;, but since IIF does not include an n = 0 term, we need to
subtract the n = 0 limit of the summand, namely

2mwin | 1

limIn(m——m) = ln(1 o

n—=0 “2min + wy

)~ v, O (®)

from In IIE. This gives a multiplicative correction factor of (1 + v) to TIF, so we find that

for small velocity

23



0.5 /
04 //
03} /
ES
. ‘ — n=
0.2 n=1
\ -~—- =05
0.1} . Small-v
0.0 - L 1 1 2
1.0 1.2 1.4 1.6 . 1.8 2.0

NI,
- FIG. 3. v vs. A/Ag for n=0.5,1,2 a,loﬁg with the asymptotic result for small v, Eq. (83).

A ~ Algs (1 — v/2) (83)

Thus the leading small v behavior of A is completely independent of n. However, it has A
as a strictly decrc?asing function of v. As we shall see in the next section, the turnaround
for larger v is a nonperturbative effect. For now, we will conclude this section by showing
in Fig. 3 a plot of the small velocity region of the graph for various 7’s, together with our

analytic approximation. We see that the analytic result is confirmed.

VII. LARGE » LIMIT

We now turn to a study of the large  limit. In this limit, as first pointed out by Pla, et.
al. [15], the relevant variable is v. Thus, we gtudy the limit  — oo, v — 0, gi) = ﬁv fixed.
As we shall see, this calculation will shed much light on the small v results we obtained in
thé previous section.

To begin the calculation, ‘V\jrev need the goo s and '(Io,n’S at v = 0 that we obtained in the

previous section, Eq. (65). Then

I, = ﬁ 1 4 nvqoon _ ﬁ 1+ ¢(27in + w) _ Sinh(H'T;"ﬁ) -
- n=—00 1 + "7’0(]0',75 —00 1 + ¢(27l’2'n) Sinh(';?) .

Similarly,
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w -

n#0 qu R0 2min w
Thus,

1/2

A [ 211, ]1/2-= [s,inh(p'z—"”’é)]l/2 _ [coth(;—¢)+\/§] - (86)

K(-;- - qoo,0H2 smh(ﬁ)
‘We can invert this relation, solving for ¢ in terms of A, which yields
(&) -va+1
In AG 5
(&) -v2-1

For large A, this approaches 1 [(A/ Ag)? — \/2—] This asymptotic result, which is also

-1

¢= (87)

presented in Fig. 2, is to be contrasted with the result of our continuum calculation, where
we found ¢ = 1[(A/Ag)? —1]. Thus, the continuum infinite-n calculation for @11 A es-
‘sentially reproduces the large-A limit of the lattice calculation, with the correct functional
dependence, but with the graph just shifted down slightly. It is also worth noting that in-
cluding just the n = 0 term, instead of the whole infinite product, also gives the same result,
with an intercept of 2/w which is intermediate between the continuum calculation and the
exact asymptotic result. As A decreases, the true 7 = oo curve falls below the asymptotic

result, so as to intercept the A-axis at Alo+. The approach is singular, as can be seen by

looking at Eq. (86) for small . We find
A2
A Algr(1+ S8 ) (58)

with an essential singularity at small ¢.

Examining Fig. 2 more carefully, we see that our infinite 5 result has failed to capture
one of the most salient features of the finite n. data, namely the subcritical nature of the
bifurcation from the arrested state. Instead, it possesses a (very-) margmally supercritical
onset of the moving crack To ‘reproduce the subcntlcal bifurcation from our analytics, we
need to generate the next order correction in 1/7.

We begin by generating the next order correction to the ¢’s. We find that ¢e, does not

change to this order, but now go, = 27in + wy where
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2ming

_ —% tan—?! 2rnd
T n(1+ 47r2n2¢2)1/4e 2 (%)

This induces a multiplicative correction to A of

u;)o ' ’ -
1= g&% 4dming(l + 2wing) _ ‘ (90)

We are interested in the effect of this correction at small ¢, iﬁ which case we are again free
to replace the sum by -an integral. If we add in the n = 0 term to the sum, the error will be
exponentially small in 1/¢. So, up to exponentiélly small terms, the correction for small ¢
is (defining a = 2}rn¢)

¢ (®da 1

—iftan~la
— 1
27 = n(l+ a?)/4(1 + z'cv)e ’ (91)

1

The integral vanishes, as can be seen by a substitution of variables = (1 + o2)~*/4. In
fact, the integral is nothing more than the first-order expansion in 1/7 of the integfal in Eq.
(75) which we found vanishes identically in 7. We are thus left with a correction factor of
simply (1 — ¢/27) = (1 — v/2) up to exponentially small terms. This is precisely the small
v correction we found in the previous section. The. full behavior to this order for small ¢ is

thus
' 2
A~ Alps (1 + —éie'l/"s)(l _9 _ _ (92)

This has the subcritical bifurcation we ére seeking. As ¢ increases from 0, A decreases from
Alo+ due to the influence of the second factor, until the exponential kicks-in and causes A
to turn around and start increasing. The ¢ at which the turn-around occurs is, for large 7,
of order 1/1n 7 (translating to a velocity of order 1/91n 77) which goes to 0 as 7 goes to oo,
but very slowly. Thus at infinite 5 there is no turnaround and A strictly iqcreases with ¢
as we found in the zeroth-order calculation atfhe’ beginning of this section. The minimum
A lies, for large 77, an amount of order 1/n(In n)é belovs.l Alg+.

Thus we see that it is the subdominant pieces that are responsible for the increase of

A with v, while the perturbative pieces give rise to the subcritical bifurcation. Analyzing
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the subdominant pieces.in a little more depth, it is easy to see that for n > 1/2/2 the
leading subdominant piece goes as exp(—1/nv). For smaller 7, the subdominant piece falls
less rapidly, and has an oscillating component, due to the off-axis branch cut assuming a

dominance. This picture is consistent with the numerical evidence.

VIII. STOKES VISCOSITY

It is worthwhile to contrast the behavior we have seen for Kelvin viscosity with that
which obtains for Stokes viscosity, where the dissipation is associated with the mass points
aﬁd not the bonds. The calculation in this case is much simpler, since the troublesome 7
~ term is not preéent. For our purposes, it is sufficient to consider our z-continuum theory, as

the conclusions we obtain carry over to the full lattice model. The result for @t is

ﬁ+ tA q2,m(K + Z.QZ,m)

= 93
K +10% 1;[ Q2m (K +iq2.m) (39)
where now the )’s satisfy the dispersion relation

| (1 - vZ)an‘_ vam +An=0 ‘ . (94)

(and the ¢’s the parallel form with ),,) and b is the Stokes viscosity. This can be seen by a
simple limiting procedure applied to Eq. (23), or by replaying the derivation leading up to
Eq. (41) of [11] with b instead of 5. This form of the solution can be shown to be equivalent
to that obtained by Marder and Gross [9]. This result leads to the solution for A:
A= &m (95)
m q2,m

We are interested in the large-N limit, which we obtain be defining the renormalized product

e ©

since the (),’s are linear in A for small A. Applying the EMSF, we find that for large NV,

R lim 'Qz(l)(;A(a)) - ‘2‘1,2 N V7 bv
n ‘“"J @) () ~ Y ) T 0
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so that

bv

- 2 2 a\y1/4 VY
A~ (2N + De(bo? + 1601~ ")y [er 5

(98)

The key difference between this formula and the parallel one for 7 is that A/e is proportional
to N, and not N1/2 as before. The rea,soﬁ for this is that the Stokes viscosity is most
effective at damping small wavelengths, and so affects the macroscopic stress fields. The
Kelvin viscosity d<;es not damp out small wavelengths and only acts on short wavelengths.
Another way to see this is to compute the stress intensity factor, which in the Stokes case is
inversely proportional to v/5. The driving force required to propagate the crack is thus much
larger in the Stokes case. Iﬁ particular, in the Stokes case there is no macroscopic scaling
limit, where things just scale with the Griffith driving, Ag. For these reasons, we feel that
the Stokes viscosity is not a good model of dissipation for studying crack propagation.

The only way to obtain a nice macroscopic limit where A scales like Ag is to artificially

scale b with N so that b = by/N. However, this procedure has no physically satisifying

motivation, especially when the Kelvin viscosity model suffers none of these defects.

IX. CONCLUDING REMARKS

We close by making a few comments about this work and prospects for future extensions.
First it is important to note that the present work is limited to a consideration of the
steady-state crack. Thus, aside from general issues of the size of the process zone, the major
output of this problem is the velocity-driving' relation. Here the most striking qualitative
effect of Kelvin viscosity is near threshold, reducing the extent of the backward bifurcation.
Significantly above threshold, the major role of viscosity is to provide a velocity scale, so -
that thie craék’ v_vélqcity becomes inversely proportio;lal to the viécd_sity. It is imporf,a,nt to
understand how viscosity impacts on the sté,bility ;)f the crack. It is clear, as Marder and
Gross have pointed out [9], that the Steady—state crack is unstable in the regime of the

backward bifurcation. The more interesting question is in the higher-velocity regime. Here,
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no systematic studies have been done to examinne the role of viscosity. It is not clear that the
piecewise-linear model considered here is altogether appropriate for studies of stability, as
instabilities can be masked by inconsistencies of the steady-state solution. We look forward
to reporting on work in this direction soon, along with generalization to the problem of

Mode I cracking.
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