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Everyday we are presented with choices that require us to make decisions. How we 

understand these choices and the processes that guide us in making decisions are 

important aspects of cognition. Cognition with respect to decision making has been 

previously studied using goal-directed behavioral tasks such as Go/No-Go tasks. In 

Go/No-Go tasks, participants are required to make decisions in providing responses to 

presented stimuli, where one stimuli is a ‘go’ signal and one stimuli is a ‘no-go’ signal. 

Previous research has looked into the performances of participants completing Go/No-Go 

tasks (e.g. do participants respond highly to ‘go’ stimuli or ‘no-go’ stimuli). Such 

observations of behavior are at the core of response selection and response inhibition. 

Response selection and response inhibition are cognitive strategies utilized by individuals 
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to complete stimulus-based tasks. Response selection is present when a subject's behavior 

is determined by the subject’s ability to select and execute appropriate behavioral 

responses. Response inhibition is present when a subject's behavior is determined by the 

subject’s ability to withhold the execution of inappropriate behavioral responses. The 

learning of either cognitive strategy and the behavioral mechanisms that drive such 

learning is not yet fully understood. To identify and characterize the cognitive strategy 

being learned by our mice, we analyzed behavioral variables (hit rate, false alarm rate, 

discrimination, target detection, distractor detection, pretrial spontaneous rate, and target 

reaction time) that were recorded when mice trained to master our Go/No-Go whisker 

detection task. Our task is a goal-directed behavioral task that requires mice to learn to 

respond to whisker deflection stimuli and distinguish target detection from distractor 

detection. We found that mice learned and exhibited response selection across learning 

and mastery of the task. During mastery of the task, target detection drives increases in 

Hit Rate, and Pretrial Spontaneous Rate drives increases in False Alarm Rate. Lastly, 

reduction in target reaction times confirmed that mice were exhibiting response selection. 

The approaches used in this study to characterize response selection can serve as a model 

for explaining behavioral trends exhibited by individuals with behavioral deficits, such as 

ADHD. 
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Chapter 1: Introduction  

Every day we are faced with events or situations that require us to respond to them in 

some way. Simple examples of this include responding to a traffic light turning green 

when we are at a red light. When you see the light turn green, do you push on the gas 

pedal to accelerate your vehicle or do you not? Most people would say that if you pushed 

on the gas pedal, you provided a correct appropriate response to green traffic light 

stimuli. If you saw the green light but did not push on the gas pedal, you would have 

responded incorrectly. Situations like this where a correct and wrong response can be 

provided in response to a presented stimulus can be described by Signal Detection 

Theory. 

 

Signal Detection Theory 

Signal Detection Theory, as adapted to psychology by David M. Green and John A. 

Swets, is a framework that describes behaviors in the context of stimulus-dependent 

tasks. To elaborate, Signal Detection theory, in the context of its adaptation to behavioral 

psychology, provides means to qualitatively define decision making and consequential 

behaviors (Heeger & Landy, 2009). Signal Detection Theory states that actions provided 

in response to certain stimuli can be classified as being either Hits, False Alarms, Correct 

Rejections, and Misses. Hits are defined as providing a correct response associated with 

the correct detection of a particular (target) stimulus. False Alarms are defined as 

providing a response when the target specific stimulus is not present. Correct Rejections 

are defined as the providing of no response when there is no target stimulus presented. 
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Misses are defined as the providing of no response when there is a target stimulus 

presented. These different types of behaviors, particularly hits and false alarms, under 

Signal Detection Theory, can be attributed to and correlated with a mouse's ability to 

detect stimuli and a mouse’s bias in responding (e.g. do the mice have response rates 

generally). Under Signal Detection Theory, a subject can have high response rates 

without high levels of detection. Subsequently, a subject can have high response rates 

that are caused by a general tendency to respond to anything.  

 

Two of these response classifications, Hits and False Alarms, have been widely used by 

behavioral psychologists and researchers to characterize behaviors that can be exhibited 

by participants completing goal-directed tasks. Additionally, behaviors that can be 

characterized as being hits and false alarms have also been used in behavioral studies that 

focus on how behaviors change across learning. Such studies have looked at how rates of 

hits (Hit Rate) and false alarms (False Alarm Rate) change over time as a participant 

learns to complete and master a goal-directed task.  

 

Goal-Directed Tasks and Behaviors 

Previous studies looking into behavioral changes that occur during learning have often 

utilized various forms of behavioral goal-directed tasks to study such behavior changes. 

Such tasks, often referred to as Goal-directed behavior tasks (Marrero et al., 2023), can 

be exist in many forms: stop-signal, go–no-go, Stroop, flanker, single-response selection, 

psychological refractory period, and attentional blink tasks (Bender et al., 2016). In these 
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goal-directed tasks, participants may be required to identify and detect stimuli and 

provide an appropriate response. Additionally, depending on the nature and setup of the 

goal-directed task being used, a participant may be required to learn to ignore distractor 

stimuli. Generally, the execution of the task correctly results in the receiving of a reward 

and incorrect performance of the task results in no reward or a punishment. Some tasks 

have been developed to enact punishments upon participants that engage in inappropriate 

performance (e.g. punish subjects that engage in false alarms). Punishments serve as a 

means to teach subjects to withhold inappropriate responses or behaviors.  

 

Participants that are learning to master these tasks have their performance characterized 

by changes in their Hit Rates and False Alarm Rates. Hit Rate can be defined as the rate 

of which a correct response is provided in response to the detection of the correct 

corresponding stimuli. False Alarm Rate can be defined as the rate at which incorrect 

responses are provided when a wrong stimulus is presented. Previous research reviewing 

Hit Rate and False Alarm Rate exhibited by participants completing goal-directed studies 

has connected these response rates to two cognitive strategies: response selection and 

response inhibition. 

 

Response Selection v.s. Response Inhibition 

Response Selection is a behavioral strategy that can allow an organism to carry out and 

improve goal-directed behaviors. To elaborate, when an organism exhibits a response 

selection behavioral strategy, they will show increases in correct response behaviors 
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(Goghari & MacDonald, 2009). Response Inhibition is a behavioral strategy that can 

allow an organism to carry out and improve goal-directed behaviors. To elaborate, when 

an organism exhibits a response inhibition behavioral strategy, they will show decreases 

in incorrect response behaviors (Mostofsky & Simmonds, 2008). There is also the 

possibility that both response selection and response inhibition can take place at the same 

time. If this were to occur, subjects would show increases in correct response behaviors 

and decreases in incorrect response behaviors simultaneously. 

 

Previous Response Selection Studies & Response Inhibition Studies 

Previous studies that have studied response selection and response inhibition have 

primarily studied the intensity of response selection in subjects completing goal-directed 

behavioral tasks. To elaborate, most studies have utilized reaction times to measure 

strength of response selection and false alarm rate to measure the strength of response 

inhibition (Bender et al., 2016; Waring et al., 2019). Regarding reaction times as a means 

to measure response selection, previous studies have suggested that shorter reaction times 

are associated with strong utilization of response selection as a strategy, the idea being 

that if an individual is proficient in responding to a particular stimulus, they will also 

show an improved target trial reaction times. With respect to false alarm rate as being a 

measure of response inhibition, previous studies have suggested that high levels of false 

alarm rates are associated with poor inhibitory response, the idea being that a false alarm 

rate indicates a failure to withhold inappropriate responses (Congdon et al., 2012; 

Mostofsky & Simmonds, 2008). Despite many studies using paradigms to study response 
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selection and response inhibition, the paradigms themselves do not provide information 

beyond measuring the intensity of response selection or response inhibition behaviors. 

There are many questions that cannot be answered using these current paradigms. What 

underlying behavioral mechanisms (behaviors caused by stimuli detection and impulsive 

tendencies) drive changes in response selection or response inhibition behaviors? How do 

behavioral measures reflective of response selection or response inhibition change across 

the learning of stimuli-dependent tasks? Part of this current study aims to address these 

previously unanswered questions. 

 

The Investigation Outlined in This Study 

In this study, we answer five main questions. What cognitive strategy (response selection 

or response inhibition) is being learned and exhibited in mice training to master a Go/No-

go selective whisker detection task? Does detection-induced behaviors and/or impulsive 

tendencies drive changes in observed response rates? How do behavioral variables used 

to identify a response selection or response inhibition cognitive strategy differ across 

naïve performance status and expert status days? What behavioral mechanisms, if any, 

drive changes in observed response rates during the naïve and expert periods and how do 

they differ across periods? How do target reaction times change across the learning and 

mastery of a response selection and response inhibition cognitive strategy? To address 

and answer these questions, this study utilizes a Go/No-Go selective whisker detection 

task previously used in other behavioral studies conducted in the Dr. Edward Zagha 
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Research Lab to record specific mouse behavioral variables that can help us answer these 

questions (Marrero et al., 2023).  

 

Experimental Mice 

Mice used in this study were acquired from The Jackson Laboratory. The mice ordered 

and used in the study were designed to express GCaMP6s under the Snap25-2A-

GCaMP6s-D promoter (JAX #025111). Six mice in total were used in the experiment. 

Mice used in the experiment were either male or female.  

 

Mouse Care and Surgical Procedures 

All experiments conducted in this study received approval from the Institutional Animal 

Care and Use Committee (IACUC) of the University of California, Riverside. Mice were 

housed in the designated Zagha Lab mouse care room in one of the University’s 

vivariums. Each mouse included in this study had their own mouse cage, each of which 

contained hydrogels and mouse food. The mice cages had an opening that allowed for the 

insertion of a water sipper into the cage, thus providing another source of water for the 

mice. The room in the vivarium that housed the mice living in their cages had 

programmed lighting settings; the room utilized a 12-hour light/12-hour dark cycle. 

 

Prior to the training and running of mice in the behavioral apparatus to collect behavioral 

data, mice first underwent cranial headpost implantation surgery necessary for the mice 

to be placed into the behavioral apparatus. This surgery was performed on the mice when 
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they were aged 2 to 5 months. Mice were first anesthetized using a combination of 

isoflurane (1-2%), ketamine (100 mg/kg), and xylazine (10 mg/kg). Scissors were used to 

remove as much hair as possible from the head post implantation site. Once enough hair 

was removed, a separate set of scissors were used to remove a 10 mm x 10 mm section of 

the scalp and expose the skull. Any connective tissue covering the exposed skull was 

thoroughly removed. Once all connective tissues had been removed, a clean custom-built 

headpost was acquired and disinfected. Custom-built headposts were made of lightweight 

titanium or stainless steel, 3 cm in length, and weighed approximately 1.5 grams. Each 

headpost had a 5 mm x 7 mm central window that could be used for vivo widefield Ca2+ 

imaging and recording (in vivo widefield Ca2+ imaging and recording are not utilized in 

this study). Disinfected headposts then had a layer of cyanoacrylate glue placed on the 

parts of the headpost that would be in direct contact with the exposed skull. Once the glue 

was applied, the headpost was meticulously placed onto the center of the exposed skull 

area. A thin layer of cyanoacrylate gap-filling medium was subsequently applied to the 

window to seal the exposed skull. Post-surgery, mice were placed on a heating pad to 

awaken from being anesthetized and recover. Additionally, meloxicam (0.3 mg/kg) and 

enrofloxacin (5 mg/kg) were administered post-surgery. Daily administrations of 

meloxicam and enrofloxacin occurred up to three days post-surgery. Mice were given a 

minimum of three days to recover from surgery before undergoing water restriction and 

behavioral training. 
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Mice that successfully recovered from the surgery were then placed into water restricted 

mouse cages. In these cages, there is no opening for any type of water dispenser or bottle. 

Mice that began the water restriction process had their initial weight measured in grams 

on the first day of water restriction. Every day that the mice underwent water restriction, 

their weight was monitored and recorded until they reached a weight that was between 85 

to 90 percent of the original recorded weight. Once the weight of the mice was within the 

range, they then began the process of training.  

 

Two Paddle Go/No-Go Whisker Selective Detection Task  

This study used a Go/No-go selective whisker detection task previously utilized in 

previous studies conducted in the Zagha Lab at the University of California, Riverside 

(Aruljothi et al., 2020; Marrero et al., 2022; Zareian et al., 2021, 2023; Zhang & Zagha, 

2023). Headposted water-restricted mice engaging in the task are placed into a behavioral 

apparatus controlled by custom MATLAB scripts and Arduino software. The headposts 

were compatible with the physical setup of the behavioral apparatus which allowed for 

the mice to be secured into the behavioral apparatus. Once mice were secured into the 

behavioral apparatus, two paddles were placed within the vicinity of their whisker 

detection fields (Figure 1A). One paddle was placed in the whisker detection field on the 

right side of the mouse’s face and the other paddle was placed in the vicinity of the 

opposite whisker field (Figure 1C). One paddle was designated as the target stimulus and 

the other paddle was designated as the distractor stimulus. A lick port was placed just 
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below the area where the mouth of the mice were located. Additionally, the lick port was 

positioned so that the tongue of the mouse could lick the lick port.   

 

When the task was initiated, either the target or distractor stimulus would deflect within 

their respective whisker detection field. The deflection of a target stimuli is known as a 

target trial and the deflection of the distractor stimuli is known as a distractor trial. 

Throughout the task, trials would be presented in the following order: Trial, Intertrial 

Interval, Trial, Intertrial Interval. The intertrial interval (ITI) is a period of time between 

the end of one trial and the beginning of the next upcoming trial. The intertrial interval 

was variable and could range between 5.5 and 9.5s. The implementation of the ITI aimed 

to reduce spontaneous sampling before the onset of an upcoming trial. Following the 

onset of any stimulus deflection, the mice are required to wait 200 ms after stimulus onset 

before licking the lick port. If the mouse licked the lick port between 200 ms and 1,200 

ms after the onset of a target stimulus, they received a 5 uL water reward and their 

behavior was recorded as a hit (hits are rewarded with water delivery). If the mouse 

licked the lick port between 200 ms and 1,200 ms after the onset of a distractor stimulus, 

they received no water reward, and their behavior was recorded as a false alarm (false 

alarms are not rewarded). If mice do not lick in response to a distractor trial, their 

behavior was recorded as a correct rejection. The correct rejection of a distractor stimulus 

initiated a target trial preceded by a shortened 0.2 to 1.9 s ITI. Overall, mice must 

withhold licking during the ITI (which has a range of 5.5 s (ITImin) to maximum 14.6 s 

(ITImax) to be presented with a target trial. Any licks detected during the ITI resulted in 
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a resetting of the ITI period. Additionally, any licks detected during the last 1 second of 

an ITI preceding any trial were defined as the Pretrial Spontaneous Rate (PSR).  

 

Animal Behavioral Variables Recorded and Analyzed from This Study’s Two 

Paddle Go/No-Go Whisker Selective Detection Task 

The setup of the behavioral apparatus and behavior recording custom MATLAB code 

allowed for the collection and measuring of various different behavioral measures and 

mechanisms: Hit Rate, False Alarm Rate, Discrimination, Target Detection, Distractor 

Detection, Pretrial Spontaneous Rate, and Target Reaction Time. Behavioral measures 

include Discrimination, Hit Rate, and False Alarm Rate. Behavioral mechanisms include 

Target Detection, Distractor Detection, and Pretrial Spontaneous. We also study Target 

Reaction Time throughout this study. Below are the descriptions and mathematical 

equations used to calculate each of these behavioral variables. 

 

1. Hit Rate  

a. Equation: Hit Rate = (# of Target Trial induced responses with a RT 

between 0.2 & 1.20 sec) / (# of target stimulus trials presented during a 

session day) 

b. Description: Hit Rate is a measure of how often the mice are able to 

correctly respond to a target stimulus. Hit Rate is calculated as the number 

of target trials where a mouse licked the lick port 200 ms to 1,200 ms after 
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stimulus onsent divided by the number of target trials provided during a 

daily training session. 

2. False Alarm Rate  

a. Equation: False Alarm Rate = (# of Distractor Trial induced responses 

with a RT between 0.2 & 1.20 sec) / (# of distractor stimulus trials 

presented during a session day) 

b. Description: False Alarm Rate is a measure of how often the mice respond 

to a distractor stimulus. False Alarm Rate is calculated as the number of 

distractor trials where a mouse licked the lick port 200 ms to 1,200 ms 

after stimulus onsent divided by the number of distractor trials provided 

during a daily training session. 

3. Pretrial Spontaneous Rate  

a. Equation: Pretrial Spontaneous Rate = % of trial types where a lick was 

detected within 1 second before an impending stimulus. 

b. Pretrial Spontaneous Rate is classified as an impulsivity behavioral 

mechanism that can affect and proportionally drive both Hit Rate and 

False Alarm Rate behavioral performance. Pretrial Spontaneous Rate is 

calculated as the percentage of trial types in which the mouse licked 

within the final 1 second of an ITI that precedes any impending stimulus 

(target or distractor stimulus). 

4. Discrimination  

a. Equation: Discrimination = zHit Rate - zFalse Alarm Rate 



12 
 

b. Description: Discrimination is a measure that provides information 

regarding an individual mouse’s ability to discriminate between target and 

distractor stimuli and provide appropriate responses to them. 

Discrimination is calculated as the normative inverse of Hit Rate minus 

the normative inverse of False Alarm Rate. 

5. Target Detection  

a. Equation: Target Detection = zHit Rate - zPretrial Spontaneous Rate 

b. Description: Target Detection is a measure of how many hits recorded 

during a daily training session were most likely induced by the mouse 

actually detecting the target stimuli. Target Detection is calculated as the 

normative inverse of Hit Rate minus the normative inverse of Pretrial 

Spontaneous Rate. Target Detection is classified as one of two detection-

based behavioral mechanisms that can affect and proportionally drive Hit 

Rate behavioral performance. 

6. Distractor Detection  

a. Equation: Distractor Detection = zFalse Alarm Rate - zPretrial 

Spontaneous Rate 

b. Description: Disaster Detection is a measure of how many false alarms 

recorded during a daily training session were most likely induced by the 

mouse actually detecting the distractor stimuli. Distractor Detection is 

calculated as the normative inverse of False Alarm Rate minus the 

normative inverse of Pretrial Spontaneous Rate. Distractor Detection is 



13 
 

classified as one of two detection behavioral mechanisms that can affect 

and proportionally drive False Alarm Rate behavioral performance. 

7. Target Reaction Time  

a. Equation: Target Reaction Time = mean target reaction time during one 

session day. 

b. Description: Target Reaction Time is a measure of behavior that reveals 

how fast the mice are able to respond to a target stimulus trial.  

 

Definitions of Naïve and Expert Periods 

Throughout chapters 4, 5, and 6 of this thesis, behavioral analyses conducted used 

specific sets of data from the naïve session periods and expert session periods observed in 

each mouse. The expert session period is defined as the first three consecutive days a 

mouse achieves a Discrimination value of 1 or greater. All the session days that precede a 

mouse’s expert period is considered to be the naïve period of that particular mouse.  

 

Behavioral Data Analysis  

Data analyses were performed using functions in Excel, Google Sheets, and custom 

scripts in MATLAB. Linear regression analyses were used to determine slopes of 

behavioral variables (response rates, behavioral mechanisms, and reaction times) across 

sessions per mouse (Figures 2-7); the slopes of individual linear regressions for each 

behavioral variable were averaged to determine mean linear slopes for the behavioral 

variables. If the mean linear slope for a behavioral variable across mice was significantly 
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positive, the behavioral variable was identified as ‘increasing’. In contrast, if the mean 

linear slope for a behavioral variable across mice was significantly negative, the 

behavioral variable was identified as ‘decreasing’. Pearson correlation coefficient tests 

were used to determine levels of association between various behavioral variables during 

all session days, during naïve session days, and during expert session days. Reported 

correlations are calculated from the mean correlation using the individual correlations 

from each mouse. All mean values reported as the mean ± standard error of the mean 

(SEM). All values reported are rounded to three significant figures. 

 

Statistical Tests Used 

One sample t-tests were used to determine if slopes across mice were significantly 

different from zero (Excel and Google Sheets Functions). One sample t-tests were also 

used to determine if the correlation coefficient values for two behavioral variables was 

significantly different from zero. Paired t-tests were used to determine whether individual 

mean slopes for naïve and expert behavioral variables were significantly different from 

each other. Additionally, a two-way ANOVA with replication was used to study whether 

observed changes in Discrimination and Behavioral Responses were significantly driven 

by response behavior type, performance status, and/or both. The two-way ANOVA with 

replication was used to see if there is any interaction between response behavior type and 

performance status. The following statistical tests were used in each of the chapters 

outlined in this thesis. 

1. Chapter 2: one sample t-test 
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2. Chapter 3: one sample t-test 

3. Chapter 4: one sample t-test, two-way ANOVA with replication, paired t-

test 

4. Chapter 5: one sample t-test, paired t-test 

5. Chapter 6: one sample t-test, paired t-test 

 

Data Inclusion Criteria 

We trained and examined 9 mice with potential learning data but included only 6 mice 

who met all criteria described below. First, mice were included if they transitioned from 

naïve status to expert status. The status level of a mouse was defined by discrimination 

performance. A mouse was considered to have reached expert status when they achieved 

a Discrimination value (normalized separation between hit rate and false alarm rate) 

greater than one for three consecutive days. Second, mice were included if they 

transitioned from naïve to expert performance status within 21 days of training 

(μmNaiveStatusDays = 11.83 days). Third, the data required a minimum of fourteen 

training sessions with no more than a 7-day gap between sessions 

(μmTrainingSessionDays = 16 days).  

 

 

 

 

 

 

 

 

 



16 
 

Figures 

 

 
                   

 

 

 
 

 

 

 

 

 

Figure 1: A. Placements of Paddles and Lick Port B. Visual representation of the 

response rates, their equations, and other behavioral variables studied throughout 

the study C. Application of Signal Detection Theory to Our Task to Define 

Recorded Behaviors and Timing Layout of Task (Marrero et al., 2023) 

 



17 
 

Chapter 2: Identification of Response Selection Behaviors in Mice Learning and 

Mastering a Selective Detection Task 

 

Introduction 

As mentioned in chapter 1, the traditional way of measuring strength of response 

selection and/or response inhibition being exhibited by participants completing goal-

directed behavioral tasks is through analysis of behavioral responses. Hit Rate is used to 

measure response selection. False Alarm Rate is used to measure response inhibition. In 

our Go/No-Go task, we first seek to identify any behavioral trends that could inform us 

regarding which cognitive strategy is being utilized and/or learned. The specific 

behavioral variables analyzed to help us address this include hit rate, false alarm rate, and 

discrimination. We test three alternative hypotheses to determine whether mice are 

learning response selection, response inhibition, and/or both to complete the task. One 

alternative hypothesis predicts that changes in Discrimination d’ reflect increases in 

response selection, as reflected by increases in Hit Rates. Another alternative hypothesis 

predicts that changes in Discrimination d’ reflect increases in response selection, as 

reflected by decreases in False Alarm Rates. The final alternative hypothesis predicts 

changes in Discrimination d’ reflect increases in response selection and response 

inhibition, as reflected by simultaneous increases in Hit Rates and decreases in False 

Alarm Rates. Response selection will be defined by significant hit rate increases across 

sessions and a significant positive correlation between hit rate and discrimination. 

Response inhibition will be defined by significant false alarm rate decreases across 
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sessions and a significant negative correlation between hit rate and discrimination. If 

response inhibition and response selection are both occurring, we would expect to see 

both requirements previously outlined for response selection and response inhibition 

occurring simultaneously. 

 

Methods 

In this chapter, we used the following tests to analyze changes in Hit Rate, False Alarm 

Rate, and Discrimination across all session days: Linear Regression, Pearson Correlation 

Coefficient, and One Sample t-tests. Linear regression analyses were used to determine 

slopes of response rates (Hit Rate and False Alarm Rate) and Discrimination across 

sessions per mouse (Figures 1A, 1B, 1C); the slopes of individual linear regressions for 

each response rate type were averaged to determine mean linear slopes for the response 

rates. If the mean linear slope for a response rate or Discrimination across mice was 

significantly positive, the trend of the measure was identified as ‘increasing’. In contrast, 

if the mean linear slope for a response rate or Discrimination across mice was 

significantly negative, the measure was identified as ‘decreasing’. Pearson correlation 

coefficient tests were used to determine levels of association between response rates and 

Discrimination across all session days. Reported correlations are calculated from the 

mean correlation using the individual correlations from each mouse. All mean values 

reported as the mean ± standard error of the mean (SEM). All reported values are also 

round to three significant figures. 
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Results 

Hit Rate, False Alarm Rate, and Discrimination Across All Session Days 

In this study we present longitudinal data from 6 mice. We first investigated changes in 

Discrimination (separation of hit rate and false alarm rate) across training sessions. We 

expected that Discrimination would significantly increase across training session days. 

An increase in discrimination across training sessions indicated a learning direction from 

naïve to expert status (Figure 2C, one sample t-test μmDiscrimination=0.128±0.0103, 

p<0.0005, n=6 mice). Changes in Hit Rates and False Alarm Rates were assessed to 

determine which of them were improving across training days. Improvements in Hit Rate 

and False Alarm Rate were determined by the slopes of their linear fits across sessions. 

We expected that Hit Rates would show significant increases while False Alarm Rates 

would decrease. Hit rates significantly increased across sessions (Figure 2A, one sample 

t-test μmHitRate=0.0346±0.00290, p<0.00005, n=6 mice). We then determined the 

average False Alarm Rate (FAR) amongst all mice across session days. Unexpectedly, 

False Alarm Rates also significantly increased across sessions (Figure 2B, one sample t-

test μmFalseAlarmRate=0.0103±0.00386, p<0.05, n=6 mice). 

 

Discrimination Correlations With Hit Rate and False Alarm Rate 

We first investigated the correlation between Discrimination and Hit Rate across all 

sessions. As Hit Rate improves, we would expect Discrimination to improve and be 

positively and strongly correlated with Hit Rate. To measure the correlational relationship 

between Discrimination and Hit Rate across all mice, we first determined the mean 
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Discrimination and Hit Rate correlation coefficient using all the behavioral data from the 

six mice (individual data for each mouse not shown). We found that the correlation 

between Discrimination and Hit Rate was positive and significant (Table 1, one sample t-

test μmDiscrimmination&HR corr =0.895±0.0195, p<0.0000005, n=6 mice). To measure 

the correlational relationship between Discrimination and False Alarm Rate across all 

mice, we determined the mean Discrimination and False Alarm Rate correlation 

coefficient using all the behavioral data from the six mice (individual data for each mouse 

not shown). We found that the correlation between Discrimination and False Alarm Rate 

was not significant (Table 1, one sample t-test μmDiscrimination&FAR corr 

=0.307±0.150, p=0.0962, n=6 mice). Our data is consistent with response selection 

behavioral performance. 

 

Discussion 

Mice Exhibit a Response Selection Strategy Across All Session Days   

In this chapter, we have identified changes in response rate exhibited by mice learning 

and mastering a Go/No-Go whisker-based selective detection task. When reviewing 

mouse performance holistically (using their behavioral data from all session days they 

completed), mice demonstrated a significant improvement in their Hit Rates across 

learning (Figure 2A, 2D). Mice also showed that False Alarm Rate increased across 

learning but not in a significant manner (Figure 2B, 2D). When looking at changes in 

Discrimination across session days, Discrimination significantly increases (Figure 2C, 
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2D) which meets our expectation and matches observed Discrimination increases in other 

studies utilizing the same task (Aruljothi et al., 2020). 

 

The changes in Hit Rate and False Alarm Rate best resemble a cognitive strategy of 

response selection. Response selection, in the context of goal-directed behaviors and 

tasks, involves the selection and execution of an appropriate response in reaction to the 

presentation of a task related stimulus (Goghari & MacDonald, 2009). The significant 

increases in Hit Rate suggests that mice are choosing to selectively respond to target 

trials. This increase of selectivity may be the result of the mice learning to associate 

responding to target trials with receiving water rewards. Furthermore, the insignificant 

increases of False Alarm Rate across learning suggests that the mice are selectively 

choosing to not respond to distractor trials. The insignificant increases in False Alarm 

Rate may be the result of the mice establishing a preference regarding which trial they 

will respond to (preferring target trials over distractor trials). It is also worth noting that 

the significant increases of False Alarm Rate across learning suggest that response 

inhibition is not the primary strategy being used by mice. If response inhibition was the 

strategy being used, we would expect to observe a significant decrease in False Alarm 

Rate; response inhibition involves the suppression of inappropriately executed actions 

that interfere with the execution of goal-driven behaviors (Mostofsky & Simmonds, 

2008). 
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When looking at the correlation between response rates (Hit Rate and False Alarm Rate) 

with Discrimination, the correlation between Hit Rate and Discrimination is positive and 

significant (Figure 2E, Table 1). We also see that the correlation between False Alarm 

Rate and Discrimination is positive but not significant (Figure 2E, Table 1). It is expected 

that there would be some form of significant correlation between response rates and 

Discrimination given that the calculation of Discrimination is directly calculated by the 

difference between the normative inverse of Hit Rate and False Alarm Rate (see 

Materials and Methods). It is worth noting that in the case of False Alarm Rate, despite 

False Alarm Rate significantly increasing, it still was not statistically significant with 

respect to being correlated with and driving Discrimination. In summary, we suggest that 

our mice demonstrate a cognitive behavioral strategy of response selection across 

learning and mastery of the task. 
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Figures 
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Figure 2: A. Average Rate of Change of Hit Rates for Six Mice. The y-axis is the 

recorded hit rates. The x-axis is session days. Each set of colored dots represents the 

daily Hit Rates for a single mouse. The slope of each line represents the rate of change 

for the Hit Rates of a single mouse. B. Average Rate of Change of False Alarm Rates 

for Six Mice. The y-axis is the recorded false alarm rates. The x-axis is session days. 

Each set of colored dots represents the daily False Alarm Rates for a single mouse. 

The slope of each line represents the rate of change for the False Alarms Rate of a 

single mouse. C. Average Rate of Discrimination for Six Mice. The y-axis is the 

recorded discrimination. The x-axis is session days. Each set of colored dots 

represents the daily Discriminations for a single mouse. The slope of each line 

represents the rate of change for the Discriminations of a single mouse. D. Mean Rate 

of Change for Discrimination and Response Rates Across Six Mice. The y-axis is the 

mean rate of change for Discrimination d’, Hit Rate, and False Alarm Rate. The x-axis 

categorically lists out the behavioral measures being analyzed (Discrimination d’, Hit 

Rate, and False Alarm Rate). Asterisks above any column representing the mean rate 

of change value for a behavioral measure indicates significance (one sample t-test). E. 

Correlation Between Discrimination d’ and Response Rates. The y-axis is the mean 

pearson correlation coefficient value for Discrimination d’vs Hit Rate and for 

Discrimination d’vs False Alarm Rate. The x-axis categorically lists out the 

correlations of behavioral measures being analyzed (Discrimination d’ vs Hit Rate and 

Discrimination d’ vs False Alarm Rate). Asterisks above any column representing the 

mean pearson correlation coefficient between two behavioral measures indicates 

significance (one sample t-test). 
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Table 1: Discrimination Correlations With Hit Rate and False Alarm Rate. 

 

 Disc & HR Disc & FAR 

Mean Correlation R 

Value 

0.895 0.307 

One Sample t-test P-

Value 

0 0.0962 

 

Table 1: Discrimination Correlations With Hit Rate and False Alarm Rate. The 

middle column has the mean correlation R value for Disc & HR. The middle 

column also contains the p-value that originated from doing a one sample t test for 

the mean Disc & HR. The right column has the mean correlation R value for 

Discrimination & FAR. The right column also contains the p-value that originated 

from doing a one sample t test for the mean Disc & FAR. 
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Chapter 3: Characteristics of Response Selection Behaviors 

 

Introduction  

As mentioned in chapter 1, there is little research that has been done to characterize the 

behavioral measures that are used to identify response selection and response inhibition 

in mouse models. In this chapter, we analyze the changes in and relationships between 

behavioral mechanisms (Target Detection, Distractor Detection, Pretrial Spontaneous 

Rate) and response selection behaviors (response rates) across all session days. We 

expect that as mice learn to associate which trials and behaviors grant them rewards, they 

will prioritize licking to the target stimuli and reducing all other behavioral outcomes. To 

elaborate, we expect that mice will show increases in target detection (stimulus-detection 

behavioral mechanism) and decreases in pretrial spontaneous rate (impulsive behavioral 

mechanism). Additionally, we expect that target detection will be positively and 

significantly correlated with Hit Rate. These expectations allow us to test three 

alternative hypotheses regarding which behavioral mechanisms (detection of stimuli and 

impulsivity) drive the learning of response selection. Our first alternative hypothesis is 

that the learning of response selection will be driven by improvements in detection of the 

target stimuli, as evidenced by a positive and significant correlation between Hit Rate and 

Target Detection. Our second alternative hypothesis is that the learning of response 

selection will be driven by increases in impulsivity, as evidenced by a positive and 

significant correlation between Hit Rate and Pretrial Spontaneous Rate. Our final 

alternative hypothesis is that the learning of response selection will be driven by both 
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improvements in detection of the target stimuli and increases in impulsivity, as evidenced 

by positive and significant correlations between Hit Rate and both Pretrial Spontaneous 

Rate and Target Detection. These hypotheses are also tested for False Alarm Rate as well. 

 

Methods 

In this chapter, we used the following tests to analyze the relationships and changes in 

Target Detection, Distractor Detection, Pretrial Spontaneous Rate, False Alarm Rate, and 

Hit Rate across all session days: Linear Regression, Pearson Correlation Coefficient, and 

One Sample t-tests. Linear regression analyses were used to determine slopes of 

behavioral mechanisms (Target Detection, Distractor Detection, and Pretrial Spontaneous 

Rate) across sessions per mouse (Figures 3,4); the slopes of individual linear regressions 

for each behavioral mechanism were averaged to determine mean linear slopes for the 

behavioral mechanism. If the mean linear slope for a behavioral mechanism across mice 

was significantly positive, the behavioral variable was identified as ‘increasing’. In 

contrast, if the mean linear slope for a behavioral mechanism across mice was 

significantly negative, the behavioral variable was identified as ‘decreasing’. Pearson 

correlation coefficient tests were used to determine levels of association between various 

behavioral variables during all session days. Reported correlations are calculated from the 

mean correlation using the individual correlations from each mouse. All mean values 

reported as the mean ± standard error of the mean (SEM). 
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Results 

The behaviors of Hit Rate and False Alarm Rate are proportional driven based on 

changes to the following behavioral mechanisms: Target Detection (T DP), Distractor 

Detection (D DP), and Pretrial Spontaneous Rate (PSR) (Materials & Methods). We 

expect that T DP will significantly increase, D DP will not significantly increase, and 

PSR will significantly decrease. Regarding correlation expectations, we expect that T DP 

will be positively and significantly correlated with Hit Rate. We also expect that D DP 

will be positively but not significantly correlated with False Alarm Rate. Additionally, we 

also expect that PSR will be negatively and significantly correlated with observed 

increases in Hit Rate and False Alarm Rate given that the mice are expected to learn that 

spontaneous behaviors result in the delaying of both target and distractor trials. These 

expectations are guided by the principle that mice are anticipated to learn that only 

licking in response to the detection of the target stimuli provides them with a water 

reward. The mice are expected to learn that any other behavior will result in them 

receiving a timeout and no water rewards.  

 

Characteristics of Response Selection Behaviors: Hit Rate 

We first assessed changes in Target Detection (T DP) across session days. T DP is the 

measure of the amount of Hit Rates that are actually caused by the mice detecting the 

target stimuli (Materials & Methods). Target Detection significantly increased across 

sessions (Figure 3A, 3C, one sample t-test μmTargetDetection=0.126±0.00901, 

p<0.0000005, n=6 mice). We then investigated changes in Pretrial Spontaneous Rate 
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(PSR) across session days. PSR is the rate of licks detected one second prior to the onset 

of either a target or distractor stimuli (Materials & Methods). PSR did significantly 

increase from a non-zero value across session days (Figure 3B, 3C, one sample t-test 

μmPSR=0.00993±0.00438, p<0.05, n=6 mice). 

 

Hit Rate Correlations With Related Behavioral Mechanisms 

We next investigated the correlational relationship between T DP and Hit Rate and the 

correlational relationship between PSR and Hit Rate across all session days. We tested 

the hypothesis that, given that mice are expected to learn that properly responding to the 

target stimulus results in a water reward, observed increases in Target Detection will 

proportionally drive observed increases in Hit Rate. We also tested the hypothesis that, 

given that mice are expected to learn that spontaneous behaviors delay the onset of trails, 

observed increases in Pretrial Spontaneous Rate will not proportionally drive observed 

increases in Hit Rate. The null hypothesis is that changes in Target Detection and/or 

Pretrial Spontaneous Rate do not proportionally drive observed increases in Hit Rate 

across learning.  

 

To measure the correlational relationship between Hit Rate and Target Detection across 

all mice, we first determined the mean Target Detection and Hit Rate correlation 

coefficient using behavioral data from all session days (individual data for each mouse 

not shown). We found that the correlation between Target Detection and Hit Rate 
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significantly positive across all session days (one sample t-test μmHR&T DP corr 

=0.871±0.0311, p<0.0005, n=6 mice).  

 

To measure the correlational relationship between Hit Rate and PSR across all mice, we 

then determined the mean Hit Rate and PSR correlation coefficient using behavioral data 

from all session days (individual data for each mouse not shown). We found that the 

correlation between PSR and Hit Rate was significantly positive across all session days 

(one sample t-test μmHR&PSR corr =0.567±0.0906, p<0.005, n=6 mice).  

 

Characteristics of Response Selection Behaviors: False Alarm Rate 

We assessed changes in Distractor Detection (D DP) across session days. D DP is the 

measure of the amount of False Alarm Rates that are actually caused by the mice 

detecting the distractor stimuli (Materials and Methods). Distractor Detection did not 

increase significantly across sessions (Figure 4A, one sample t-test 

μmDistractorDetection=0.00732±0.00630, p=0.298, n=6 mice). 

 

False Alarm Rate Correlations With Related Behavioral Mechanisms 

We next investigated the correlational relationship between D DP and False Alarm Rate 

and the correlational relationship between PSR and False Alarm Rate across all session 

days. We tested the hypothesis that, given that the observed increases in Distractor 

Detection are not significant, Distractor Detection will not be significantly correlated 

with False Alarm Rate across learning. We also tested the hypothesis that, given that the 
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observed increase in Pretrial Spontaneous Rate is significant, Pretrial Spontaneous Rate 

will be significantly correlated with False Alarm Rate across learning. The null 

hypothesis is that changes in Distractor Detection and/or Pretrial Spontaneous Rate do 

not drive decreases in False Alarm Rate across learning.  

 

To measure the correlational relationship between False Alarm Rate and Distractor 

Detection across all mice, we first determined the mean False Alarm Rate and Distractor 

Detection correlation coefficient using behavioral data from all session days (individual 

data for each mouse not shown). We found that the correlation between Distractor 

Detection and False Alarm Rate was not significant across sessions (Figure 4B, one 

sample t-test μmFAR&D DP corr =0.258±0.112, p=0.0704, n=6 mice).  

 

To measure the correlational relationship between False Alarm Rate and PSR across all 

mice, we first determined the mean False Alarm Rate and PSR correlation coefficient 

using behavioral data from all session days (individual data for each mouse not shown). 

We found that the correlation between PSR and False Alarm Rate was positive and 

significant across sessions (one sample t-test μmFAR&PSR corr =0.875±0.0203, 

p<0.0000005, n=6 mice).  
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Discussion 

Detection and Impulsivity Proportionally Drive Observed Response Selection Response 

Rates  

In this chapter, we have identified changes in three behavioral mechanisms that drive and 

impact observed changes in response rates. When looking at how Target Detection 

changes across learning, we see that Target Detection significantly increases over time 

(Figure 3A). When looking at how Distractor Detection changes across learning, we see 

that Distractor Detection rate of change is not significantly different from zero (Figure 

4A). When looking at how Pretrial Spontaneous Rate changes across learning, see that 

Pretrial Spontaneous Rate significantly increases over time (Figure 3B).  

 

When focusing on changes in detection, the significant increase in target detection across 

sessions suggests that the mice are responding specifically when they detect/sense the 

target stimulus. The increase in Hit Rate observed in chapter 2 is being driven as a result 

of the mice responding specifically when they detect/sense the target stimulus (Figure 

4B). When looking at how distractor detection changes overtime, we see that the rate of 

change for distractor detection is not significant and is not significantly different from 

zero. This suggests that the mice are not learning to respond to distractor trials solely 

because they detected the moving distractor stimuli. When looking at how Pretrial 

Spontaneous Rate changes the cross sessions, we see that Pretrial Spontaneous Rate 

increases significantly across session days. Given these changes and considering that the 

Pretrial Spontaneous Rate precedes both target and distractor trials, this suggests that 
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reduction in impulsivity is not required for mice to become experts at the task. 

Additionally, one might suggest that the impulsivity is beneficial and essential for the 

increases in Hit Rate necessary for mice to achieve mastery status.  

 

It is currently unclear as to why mice in our study seemingly choose to change their 

response in ways that utilize both significant persistent impulsive strategies and 

fluctuating detection strategies. The mice used in this study were not genetically or 

surgically altered to mimic conditions such as ADHD. These circumstances bring forth 

the question as to why the mice don’t seemingly demonstrate a willingness nor tendency 

to decrease reward-reducing behaviors (False Alarm Rate). One might expect that mice 

would want to learn to maximize the number of rewards they receive by reducing 

generally any behaviors that disrupt goal-directed behaviors. If mice did adopt such as a 

strategy across learning and mastery, behavioral variables such as Pretrial Spontaneous 

Rate, Distractor Detection, and False Alarm Rate, would significantly decrease over time 

potentially while goal-directed behaviors that result in rewards would increase (Hit Rate 

and Target Detection would increase). Considerations that can be made include the 

possibility that mice completing our task might be under some form of anxiety and/or 

stress that is beyond our measurable capabilities. Another consideration that can be made 

include psychological factors; mice were water restricted as described in the methods of 

chapter 1. If the mice are desperate enough to the point where they are willing to engage 

in any behaviors that could potentially result in them getting water rewards (e.g. a mouse 

might decide to lick spontaneously or to everything with the hopes that some of their 
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licks are bound to result in the delivery of a reward), this could potentially explain why 

spontaneous behaviors persist despite evidence that shows the mice are learning to 

discriminate between target and distractor stimuli/trials (Goltstein et al., 2018). To 

evaluate whether psychological conditions cause variances in behaviors, we could train 

non-water restricted mice to complete our task and record their behaviors. We would 

predict that if the psychological condition of water-restriction is responsible for failure of 

impulsive behaviors to decrease, non-water restricted mice would show improvements in 

Discrimination and Hit Rates and potentially show decreases in Pretrial Spontaneous 

Rates. 
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Figures 
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Figure 3: A. Average Rate of Change of Target Detection for Six Mice. The y-axis is 

the recorded target detections. The x-axis is session days. Each set of colored dots 

represents the daily target detections for a single mouse. The slope of each line 

represents the rate of change for the target detections of a single mouse. B. Average 

Rate of Change of Pretrial Spontaneous Rates for Six Mice. The y-axis is the 

recorded pretrial spontaneous rates. The x-axis is session days. Each set of colored 

dots represents the daily Pretrial Spontaneous Rates for a single mouse. The slope of 

each line represents the rate of change for the pretrial spontaneous rates of a single 

mouse. C. Mean Rates of Change for Behavioral Measures. The y-axis is the mean 

rate of change for Target Detection, Distractor Detection, and Pretrial Spontaneous 

Rate. The x-axis categorically lists out the behavioral measures being analyzed 

(Target Detection, Distractor Detection, and Pretrial Spontaneous Rate). Asterisks 

above any column representing the mean rate of change value for a behavioral 

measure indicates significance (one sample t-test).  
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Table 2: Hit Rate Correlations With Target Detection and Pretrial Spontaneous Rate. 

 

 HR & T DP  HR & PSR 

Mean R Value 0.871 0.567 

One Sample T - Test P-

Value 

          0.000001 0.002 

 

Table 2: Hit Rate Correlations With Target Detection and Pretrial Spontaneous Rate. 

The middle column has the mean correlation R value for HR & T DP. The middle 

column also contains the p-value that originated from doing a one sample t test for 

the mean HR & T DP. The right column has the mean correlation R value for HR & 

PSR. The right column also contains the p-value that originated from doing a one 

sample t test for the mean HR & PSR. 
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Figure 4: A. Average Rate of Change of Distractor Detection for Six Mice. The y-

axis is the recorded distractor detections. The x-axis is session days. Each set of 

colored dots represents the daily distractor detections for a single mouse. The slope of 

each line represents the rate of change for the distractor detections of a single mouse. 

B. Correlations Between Response Rates and Behavioral Measures. The y-axis is the 

mean Pearson correlation coefficient value for Hit Rate vs Target Detection, Hit Rate 

vs Pretrial Spontaneous Rate, False Alarm Rate vs Distractor Detection, and False 

Alarm Rate vs Pretrial Spontaneous Rate. The x-axis categorically lists out the 

correlations of behavioral measures being analyzed (Hit Rate vs Target Detection, Hit 

Rate vs Pretrial Spontaneous Rate, False Alarm Rate vs Distractor Detection, and 

False Alarm Rate vs Pretrial Spontaneous Rate). Asterisks above any column 

representing the mean Pearson correlation coefficient between two behavioral 

measures indicates significance (one sample t-test). 
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Table 3: False Alarm Rate Correlations With Distractor Detection and Pretrial 

Spontaneous Rate 

 

 FAR & D DP FAR & PSR 

Mean R Value      0.258      0.875 

One Sample T - Test 

P-Value 

     0.070 0.0000001 

 

Table 3: False Alarm Rate Correlations With Distractor Detection and Pretrial 

Spontaneous Rate. The middle column has the mean correlation R value for FAR & 

D DP. The middle column also contains the p-value that originated from doing a one 

sample t test for the mean FAR & D DP. The right column has the mean correlation 

R value for FAR & PSR. The right column also contains the p-value that originated 

from doing a one sample t test for the mean FAR & PSR. 
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Chapter 4: Response Selection Behaviors During Naïve and Expert Periods 

 

Introduction  

As mentioned in chapter 2, we were able to determine that across all session days, mice 

exhibited response selection as their main cognitive strategy based on analyses of their 

Hit Rates and False Alarm Rates. However, these findings only apply to behavior across 

all session days. They do not provide insight into how response rates change (which can 

tell us whether response selection or response selection is being learned) during the naïve 

periods and expert periods specifically. One might wonder whether response rates 

significantly increase during the naïve periods but not during the expert period (implying 

that response selection is learned during the naïve periods) and vice versa. The null 

hypothesis tested in this chapter is that changes in response rates and their correlations 

with Discrimination during the naïve and expert periods will not significantly reflect the 

learning of either response selection and/or response inhibition. An alternative hypothesis 

is that changes in response rates and their correlations with Discrimination during the 

naïve periods will reveal that response selection first appears during the naïve days 

(learning days). Another alternative hypothesis is that changes in response rates and their 

correlations with Discrimination during the expert periods will reveal that response 

selection first appears during the expert days (mastery days).  
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Methods 

In this chapter, we used the following tests to analyze changes in Hit Rate, False Alarm 

Rate, and Discrimination across the naïve and expert session periods: Linear Regression, 

Pearson Correlation Coefficient, One Sample t-tests, Paired t-tests, and a two-way 

ANOVA. Linear regression analyses were used to determine slopes of response rates (Hit 

Rate and False Alarm Rate) and Discrimination across sessions per mouse; the slopes of 

individual linear regressions for each response rate type were averaged to determine 

mean linear slopes for the response rates. If the mean linear slope for a response rate or 

Discrimination across mice was significantly positive, the trend of the measure was 

identified as ‘increasing’. In contrast, if the mean linear slope for a response rate or 

Discrimination across mice was significantly negative, the measure was identified as 

‘decreasing’. Pearson correlation coefficient tests were used to determine levels of 

association between response rates and Discrimination across all session days. Paired t-

tests were used to determine whether the mean naïve and expert response rates differed 

significantly from each other. Paired t-tests were also used to determine whether the 

mean naïve and expert response rates correlations with Discrimination differed 

significantly from each other. A two-way ANOVA with replication was used to see if 

there is any interaction between response behavior type (Hit Rate and False Alarm Rate) 

and performance status (naïve and expert periods). Reported correlations are calculated 

from the mean correlation using the individual correlations from each mouse. All mean 

values reported as the mean ± standard error of the mean (SEM). 
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Results 

The data presented in chapter 2 is consistent with response selection behavioral 

performance being exhibited by the mice. The data presented in chapter 3 provides 

information regarding which behavioral mechanisms driving observed changes in Hit 

Rate and False Alarm Rate. The analyses and findings presented in chapters 2 and 3, 

however, can only be utilized when studying mice behaviors across all session days 

completed. As previously stated in Materials and Methods, for any mouse that was 

included in this study, they experienced a period of naïve performance followed by a 

period of expert performance. As mentioned in the Materials and Methods, a mouse has 

achieved expert status when they achieve three consecutive days of a Discrimination 

value of 1 or greater. During all the session days that precede a mouse’s expert period, 

their performance is their naive. In this chapter, we utilize the same statistical tests and 

analyses used in chapter 2 to examine behaviors (Hit Rate and False Alarm Rate) and 

behavioral correlations separately during the naïve and expert periods. Additionally, with 

the use of paired t-tests and subsequent analyses, we study how the behaviors and 

behavioral correlations change (transition) across the naïve and expert periods. 

 

Hit Rate: Naïve Days v.s. Expert Days 

We first assessed changes in Hit Rate (HR) during the naïve periods of all mice (changes 

during all days preceding three consecutive days of having a Discrimination value greater 

than one). Naïve Hit Rates significantly increased across naïve sessions days (Figure 5A, 

Table 4, one sample t-test μmnaiveHitRate=0.0483±0.0102, p<0.05, n=6 mice).  
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We then assessed changes in Hit Rate (HR) during the expert periods of all mice 

(changes during three consecutive days when the mice had a Discrimination DP greater 

than one). Hit Rates did not significantly increase and rather decreased across sessions 

(Figure 5B, Table 4, one sample t-test μmexpertHitRate=-0.0233±0.0581, p=0.706, n=6 

mice).  

 

False Alarm Rate: Naïve Days v.s. Expert Days 

We then assessed changes in False Alarm Rate (FAR) during the naïve periods of all 

mice (changes during all days preceding three consecutive days of having a 

Discrimination value greater than one). Naïve False Alarm Rates did not significantly 

increase across expert session days (Figure 6A, 7A, Table 4, one sample t-test 

μmnaiveFalseAlarmRate=0.0135±0.00546, p=0.0562, n=6 mice). 

 

We then assessed changes in False Alarm Rate (FAR) during the expert periods of all 

mice (changes during three consecutive days when the mice had a Discrimination DP 

greater than one). Expert False Alarm Rates non-significantly decreased across expert 

session days (Figure 6B, 7A, Table 4, one sample t-test μmexpertFalseAlarmRate=-

0.0587±0.0281, p=0.0910, n=6 mice). 

 

Differences in Hit Rate and False Alarm Rate Across Naïve and Expert Periods 

We compared and analyzed changes of Hit Rate during the naïve and expert periods 

using a paired t-test. The same statistical test and analyses were performed on changes of 
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False Alarm Rate during the naïve and expert periods as well (Table 4). The null 

hypothesis is that changes in behaviors (Hit Rate and False Alarm Rate) during the naïve 

and expert periods do not significantly differ from each other. An alternative hypothesis 

is that changes in behaviors (Hit Rate and False Alarm Rate) during the naïve and expert 

periods do significantly differ from each other. 

 

The results of the paired t-test for Hit Rate show that changes in naïve Hit Rate and 

changes in expert Hit Rate do not differ significantly (Table 4, paired t-test 

μmNaiveHR&ExpertHR, p=0.286, n=6 mice). Additionally, the results of the paired t-

test for False Alarm Rate show that changes in naïve False Alarm Rate and changes in 

expert False Alarm Rate do not differ significantly (Table 4, paired t-test 

μmNaiveFAR&ExpertFAR, p=0.0691, n=6 mice). 

 

False Alarm Rate, Hit Rate, and Discrimination Correlations Across Naïve Days 

We then investigated the correlational relationship between Discrimination and Hit Rate 

and the correlation relationship between Discrimination and False Alarm Rate across 

during naïve session days. To measure these relationships, we first determined the mean 

naïve Discrimination and Hit Rate correlation coefficient using behavioral data from just 

naïve session days (individual naïve data for each mouse not shown). We found that the 

naïve Discrimination and Hit Rate correlation was positive and significant (Table 5, one 

sample t-test μmnaiveDiscrimmination&HR corr =0.870±0.0291, p<0.0005, n=6 mice). 

To measure the correlational relationship between naïve Discrimination and False Alarm 
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Rate across all mice, we determined the mean naïve Discrimination and False Alarm Rate 

correlation coefficient using behavioral data from just naïve session days (individual 

naïve data for each mouse not shown). We found that the correlation between naïve 

Discrimination and naïve False Alarm Rate was positive and significant (Table 5, one 

sample t-test μmnaiveDiscrimination&FAR corr =0.410±0.0818, p<0.05, n=6 mice). 

 

False Alarm Rate, Hit Rate, and Discrimination Correlations Across Expert Days 

We then investigated the correlational relationship between Discrimination and Hit Rate 

and the correlation relationship between Discrimination and False Alarm Rate across 

during expert session days. To measure these relationships, we first determined the mean 

expert Discrimination and Hit Rate correlation coefficient using behavioral data from just 

expert session days (individual naïve data for each mouse not shown). We found that 

Discrimination and Hit Rate was not significantly correlated during expert session days 

(Table 5, one sample t-test μmexpertDiscrimination&HR corr =0.593±0.312, p<0.116, 

n=6 mice). To measure the relationship between expert Discrimination and expert False 

Alarm Rate across all mice, we determined the mean expert Discrimination and False 

Alarm Rate correlation coefficient using behavioral data from just expert session days 

(individual data for each mouse not shown). We found that Discrimination and False 

Alarm Rate was not significantly correlated during expert session days (Table 5, one 

sample t-test μmexpertDiscrimination&FAR corr =0.0663±0.391, p=0.872, n=6 mice). 
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Differences in Hit Rate v.s. Discrimination and False Alarm Rate v.s. Discrimination 

Across Naïve and Expert Days 

We then investigated whether the correlations between Discrimination and behaviors (Hit 

Rate and False Alarm Rate) change, fluctuate, or remain similar across the naïve and 

expert periods. A paired t-test was used to compare the mean naïve HR&Discrimination 

correlation coefficient and the mean expert HR&Discrimination correlation coefficient 

(Table 5). A further paired t-test was used to compare the mean naïve 

FAR&Discrimination correlation coefficient with the mean expert FAR&Discrimination 

correlation coefficient (Table 5). The results of the paired t-test comparing the correlation 

between naïve Discrimination and Naïve Hit Rate to the correlation between expert 

Discrimination and expert Hit Rate show that the pair of mean correlation values do not 

differ significantly (Table 5, paired t-test μmNaiveHRv.s.DiscriminationCorr v.s. 

μmExpertHRv.s.DiscriminationCorr, p=0.426, n=6 mice). Additionally, the results of the 

paired t test comparing the correlation between naïve Discrimination and naïve False 

Alarm Rate to the correlation between expert Discrimination and expert False Alarm Rate 

show that the pair of mean correlation values do not differ significantly (Table 5, paired t-

test, μmFARv.s.DiscCorr v.s. μmExpertFARv.s.DiscCorr, p=0.423, n=6 mice). 

 

Two Way ANOVA With Replication for Correlation Between Discrimination and 

Response Rates 

We investigate whether the changes in the correlation between Discrimination and 

Response Behaviors was dependent on the specific response behavior being correlated 
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(Hit Rate and False Alarm Rate) or the performance status of the mouse (naïve status and 

expert status). To set up the two-way ANOVA, we set the dependent variable to be 

correlation values between Discrimination and Response Behavior. One of the 

independent variables was Response Behavior Type (Hit Rate and False Alarm). The 

other independent variable was performance status type (naïve status and expert status). 

A null hypothesis proposed is that there exists no relationship between the independent 

variables and between each individual variable with the dependent variable. 

 

The results of the two-way ANOVA show that response behavior type does not have a 

significant effect on the correlation between Discrimination and Response Behavior (two-

way ANOVAResp|Disc&BehaviorCorr, p=0.0663). The results also show that performance 

status type does not have a significant effect on the correlation between Discrimination 

and Response Behavior (two-way ANOVAPerformanceStatus|Disc&BehaviorCorr, p=0.237). 

Lastly, the results show us there is no significant interaction between both response 

behavior type and performance status type (two-way ANOVAPerformanceStatus|Resp, 

p=0.896). 

 

Discussion 

Average of Response Rates During the Naïve and Expert Periods 

In this chapter, we have first shown how Hit Rate and False Alarm Rate differ across the 

naïve and expert periods. When looking at the average Hit Rate during the naïve and 

expert days, the average naïve Hit Rate was significantly increasing. We also noticed that 
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the average expert Hit Rate was decreasing although not significantly. When looking at 

the average False Alarm Rate during the naïve and expert days, the average naïve False 

Alarm Rate was increasing although not significantly. We also noticed that the average 

expert False Alarm Rate was decreasing although not significantly. When looking at the 

various differences between response rates between the naïve and expert periods, we see 

that expert Hit Rate was not significantly different from the naïve Hit Rate. We also see 

that the expert False Alarm Rate is not significantly different from the naïve False Alarm 

Rate. These initial findings, which were generated using paired t-tests, combined with the 

findings that the naïve Hit Rates were significantly increasing, tells us that Hit Rate, the 

response rate most important for mice to improve upon to receive rewards, experiences 

significant changes. This is to be expected. The paired t-tests comparing the naïve and 

expert False Alarm Rates tell us that the mice are not showing improvements in False 

Alarm Rate, which is desired. However, seeing that expert False Alarm Rate did not 

significantly change from naïve False Alarm Rate informs us that the mice are not 

learning to withhold licking behavior during False Alarm trials. Despite these revealing 

findings regarding False Alarm Rate during the naïve and expert periods, it is important 

to remember that all mice included in this study reached expert status. This suggests that 

improvements in withholding are not necessary for mice to learn and become masters at 

the task. This suggestion is supported by analyses conducted to study changes in response 

rates over time during the naïve and expert periods. 
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Comparisons of Changes of Response Rates During the Naïve and Expert Periods 

Linear regression analysis shows how Hit Rate and False Alarm Rate changes between 

naïve session days and expert session days in mice. Naïve Hit Rate significantly 

increased across naïve session days (Figure 5A, 7A, Table 4). Naïve False Alarm Rate 

was not significant from zero (Figure 6A, 7A, Table 4). Expert Hit Rate was not 

significant from zero (Figure 5B, 7A, Table 4). Expert False Alarm Rate was not 

significant from zero (Figure 6B, 7A, Table 4). 

 

When looking at just naïve response rates, the naïve response rate data is similar to 

observed changes in response rates across all session days (Figures 2A, 2B, 5A, 6A). The 

changes in naïve Hit Rate and False Alarm Rate best resemble a cognitive strategy of 

response selection. The significant increase in naïve Hit Rate suggests that mice are 

learning to shift more of their responses to target trials. Furthermore, the insignificant 

increases of naïve False Alarm Rate across learning suggests that the mice are not 

learning to suppress licking following onset of distractor stimuli. These findings suggest 

that mice included in this study are learning response selection as a strategy to become 

experts at the task and to maximize rewards. When looking at just expert response rates, 

the expert response rate data differs relative to observed response rates across all session 

days (Figures 2A, 2B, 5B, 6B; Table 4). We see that Discrimination does not change 

significantly across expert days (these days when the mice have reached expert status). 

This suggests that once mice have reached expert status, they do not seek to continue 

making improvements in Discrimination led by changes in expert Hit Rate and False 
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Alarm Rate. This is also evident by expert Hit Rate and False Alarm Rate not 

significantly changing or being significantly different from zero (Figures 5B, 6B). These 

findings suggest that the learning of response selection as a cognitive strategy over the 

course of session days becomes the strategy that mice use to complete the task once they 

are experts at the task. This is supported by the fact that the expert Hit Rates and False 

Alarm Rates are not significantly increasing from zero.  

 

Comparison of Correlations Between Discrimination & Response Rates During Naïve 

and Expert Periods 

In this chapter, we have shown how Discrimination & Response Rate Behaviors differ 

between the naïve and expert periods. Naïve Hit Rate & Discrimination correlation was 

positive and significant across naïve session days (Table 5). Naïve False Alarm Rate & 

Discrimination correlation was positive and significant across naïve session days (Figure 

7B, Table 5). Expert Hit Rate & Discrimination correlation was positive and significant 

across expert session days (Figure 7B, Table 5). Expert False Alarm Rate & 

Discrimination correlation was not significant across expert session days (Figure 7B, 

Table 5). With the usage of paired t-tests, correlation differences between the naïve and 

expert periods were not statistically significant from each other (Figure 7B, Table 5). 

Despite the results of paired t-tests showing no significant differences, it is important to 

highlight that in the context of Hit Rate & Discrimination correlations, despite the 

apparent loss of correlational strength observed, the expert Hit Rate & Discrimination 

correlations remain significant. In contrast, in the context of False Alarm Rate & 
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Discrimination correlations, expert False Alarm Rate & Discrimination correlations are 

insignificant despite the results of the paired t-test indicating that the mean naïve and 

expert False Alarm Rate & Discrimination correlations are not significantly different 

from each other.  

 

Discrimination Correlates With Response Rates: Impact of Response Rate and 

Behavioral Status 

Our two-way ANOVA with replication reveals that there is no significant difference in 

the means of Discrimination & Response Rate correlations (the dependent variable) when 

grouping the dependent variable based on response rate type (one of the two independent 

factors used in the test). It is also revealed that there is no significant difference in the 

means of Discrimination & Response Rate correlations when grouping the dependent 

variable based on performance status (one of the two independent factors used in the 

test). There is also no significant interaction between both independent variables.  

 

Limitations 

One limitation that we acknowledge is that only the naïve periods studied fluctuate in 

duration across all mice. The variance in naïve period lengths could potentially be 

masking significant changes in False Alarm Rate and Hit Rate that occur during subsets 

of times within the naïve periods. Another limitation that could partially explain these 

results is the small sample size used for analyses; six mice were trained and had their 

behaviors analyzed. A larger sample size could present us with more behavioral data that 
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could either reinforce or refute current findings presented in this study (e.g. if we 

reviewed a sample size of 30 mice, perhaps the data collectively will reveal that False 

Alarm Rate during the expert period is significantly correlated with changes in expert 

Discrimination). 
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Figures 
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Figure 5: A. Average Rate of Change of Naïve Hit Rates for Six Mice. The y-axis is 

the recorded naïve hit rates. The x-axis is session days. Each set of colored dots 

represents the daily naïve Hit Rates for a single mouse. The slope of each line 

represents the rate of change for the naïve Hit Rates of a single mouse. B. Average 

Rate of Change of Expert Hit Rates for Six Mice. The y-axis is the recorded expert 

hit rates. The x-axis is session days. Each set of colored dots represents the daily 

expert Hit Rates for a single mouse. The slope of each line represents the rate of 

change for the expert Hit Rates of a single mouse. 
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Figure 6: A. Average Rate of Change of Naïve False Alarm Rates for Six Mice. The 

y-axis is the recorded naïve false alarm rates. The x-axis is session days. Each set of 

colored dots represents the daily naïve False Alarm Rates for a single mouse. The 

slope of each line represents the rate of change for the naïve False Alarm Rates of a 

single mouse. B. Average Rate of Change of Expert False Alarm Rates for Six Mice. 

The y-axis is the recorded expert false alarm rates. The x-axis is session days. Each 

set of colored dots represents the daily expert False Alarm Rates for a single mouse. 

The slope of each line represents the rate of change for the expert False Alarm Rates 

of a single mouse. 
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Table 4: Comparison of Naïve and Expert Performance Measures for Selective Detection 

Whisker Task 

 HR FAR 

Naïve Mean Rate of Change 0.048 0.0135 

One Sample T Test P-Value 0.005 0.06 

Expert Mean Rate of Change -0.023 -0.059 

One Sample T Test P-Value 0.706 0.091 

Paired T-Test Between Naïve and 

Expert Response Rates 

0.2860 0.0691 

 

Table 4: Comparison of Naïve and Expert Performance Measures for Selective 

Detection Whisker Task. The middle column, going from top to bottom, has the 

following information: behavior type (HR), mean naïve HR rate of change, p-value 

originating from one sample t test for mean naïve HR rate of change value, mean 

expert HR rate of change, p-value originating from one sample t test for mean expert 

HR rate of change value, and p-value originating from paired t test comparing mean 

naïve HR rate of change value and mean expert HR rate of change value. The right 

column, going from top to bottom, has the following information: behavior type 

(FAR), mean naïve FAR rate of change, p-value originating from one sample t test 

for mean naïve FAR rate of change value, mean expert FAR rate of change, p-value 

originating from one sample t test for mean expert FAR rate of change value, and p-

value originating from paired t test comparing mean naïve FAR rate of change value 

and mean expert FAR rate of change value. 
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Table 5: Comparison of Naïve and Expert Performance Correlations for Selective 

Detection Whisker Task 

 Disc & HR Disc & FAR 

Naïve Mean Correlation Value 0.870 0.410 

One Sample T Test P-Value 0.0000008 0.004 

Expert Mean Correlation Value 0.593 0.066 

One Sample T Test P-Value 0.116 0.872 

Paired T-Test Between Naïve and 

Expert Discrimination Correlations 

0.426 0.422 

 

Table 5: Discrimination Correlations With Hit Rate and False Alarm Rate. The 

middle column contains the mean Pearson correlation coefficient for naïve Disc & 

HR and its p-value (one sample t test for the mean naïve Disc & HR). The middle 

column also contains the mean Pearson correlation coefficient for expert Disc & HR 

and its p-value (one sample t test for the mean expert Disc & HR). Lastly, in the 

middle column, the result of a paired test between the naïve and expert mean 

Pearson correlation values for Disc & HR is provided. The right column contains the 

mean Pearson correlation coefficient for naïve Disc & FAR and its p-value (one 

sample t test for the mean naïve Disc & FAR). The right column also contains the 

mean Pearson correlation coefficient for expert Disc & FAR and its p-value (one 

sample t test for the mean expert Disc & FAR). Lastly, in the right column, the result 

of a paired test between the naïve and expert mean Pearson correlation values for 

Disc & FAR is provided. 
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Figure 7: A. Mean Rate of Change of Response Rates During Naïve and Expert 

Periods. The y-axis is the mean rate of change for naïve Hit Rate, expert Hit Rate, 

naïve False Alarm Rate, and expert False Alarm Rate. The x-axis categorically lists 

out the behavioral measures being analyzed (naïve Hit Rate, expert Hit Rate, naïve 

False Alarm Rate, and expert False Alarm Rate). Asterisks above any column 

representing the mean rate of change value for a behavioral measure indicates 

significance (one sample t-test). B. Correlations Between Discrimination d’ and 

Response Rates During the Naïve and Expert Periods. The y-axis is the mean 

Pearson correlation coefficient value for naïve Discrimination d’ vs naïve Hit Rate, 

expert Discrimination d’ vs expert Hit Rate, naïve Discrimination d’ vs naïve False 

Alarm Rate, and expert Discrimination d’ vs expert False Alarm Rate. The x-axis 

categorically lists out the correlations of behavioral measures being analyzed (naïve 

Discrimination d’ vs naïve Hit Rate, expert Discrimination d’ vs expert Hit Rate, 

naïve Discrimination d’ vs naïve False Alarm Rate, and expert Discrimination d’ vs 

expert False Alarm Rate). Asterisks above any column representing the mean 

Pearson correlation coefficient between two behavioral measures indicates 

significance (one sample t-test). 
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Chapter 5: Characterization of Response Selection Behaviors During the Naïve and 

Expert Periods 

 

Introduction  

Building off of the findings from chapter 4, we next sought to determine any significant 

relationships between behavioral measures and response rates during the naïve and expert 

periods. In this chapter, we analyze the relationships and changes in behavioral 

mechanisms (Target Detection, Distractor Detection, Pretrial Spontaneous Rate) and 

response rates (False Alarm Rate and Hit Rate) during the naïve and expert periods with 

comparison analyses. We expect that all three behavioral mechanisms (target detection, 

false alarm rate, and pretrial spontaneous rate) will be significantly correlated with naïve 

behaviors during the naïve period (the mice will lick in an uncontrollable manner 

initially). We also expect expert mice will show significantly elevated target detection 

(stimulus-detection behavioral mechanism) and subdued pretrial spontaneous rate 

(spontaneous behavioral mechanism). Given these expectations, we test the hypothesis 

that naïve and expert period correlations between behavioral mechanisms and response 

rates will significantly differ from each other. 

 

Methods 

In this chapter, we used the following tests to analyze the relationships and changes in 

Target Detection, Distractor Detection, Pretrial Spontaneous Rate, False Alarm Rate, and 

Hit Rate across all session days: Linear Regression, Pearson Correlation Coefficient, and 
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One Sample t-tests. Linear regression analyses were used to determine slopes of 

behavioral mechanisms (Target Detection, Distractor Detection, and Pretrial Spontaneous 

Rate) across sessions per mouse (Figures 3,4); the slopes of individual linear regressions 

for each behavioral mechanism were averaged to determine mean linear slopes for the 

behavioral mechanism. If the mean linear slope for a behavioral mechanism across mice 

was significantly positive, the behavioral variable was identified as ‘increasing’. In 

contrast, if the mean linear slope for a behavioral mechanism across mice was 

significantly negative, the behavioral variable was identified as ‘decreasing’. Pearson 

correlation coefficient tests were used to determine levels of association between various 

behavioral variables during all session days. Reported correlations are calculated from the 

mean correlation using the individual correlations from each mouse. All mean values 

reported as the mean ± standard error of the mean (SEM). 

 

Results 

This chapter examines the nature of behavioral mechanisms during the naïve and expert 

periods, how they are correlated with naïve and expert response behaviors (Hit Rate and 

False Alarm Rate), and how the naïve and expert correlations differ. We study the nature 

of the behavioral mechanisms and their respective correlations with behaviors using one 

sample t tests. We use paired t-tests to study how correlations between response 

behaviors and behavioral mechanisms differ and change across the naïve and expert 

periods.  
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Naïve Detection and Pretrial Spontaneous Rate During Naïve Session Days 

We first assessed changes in naïve Target Detection (T DP) using behavioral data from 

naïve session days. Naïve Target Detection significantly increased across naïve session 

days (Table 6, one sample t-test μmNaiveTargetDetection=0.117±0.0375, p<0.05, n=6 

mice). We then assessed changes in naïve Distractor Detection (D DP) using behavioral 

data from naïve session days. Naïve Distractor Detection did not significantly increase 

across naïve session days (Table 6, one sample t-test 

μmNaiveDistractorDetection=0.0188±0.0146, p=0.253, n=6 mice). We then investigated 

changes in naïve Pretrial Spontaneous Rate (PSR) using behavioral data from naïve 

session days. Naïve PSR did not significantly increase across naïve session days (Table 6, 

one sample t-test μmNaivePSR=0.0119±0.00594, p=0.101, n=6 mice). 

 

Naïve Target Detection and Pretrial Spontaneous Rate Correlations With Naïve Hit 

Rates 

We investigated the correlational relationship between naïve T DP & naïve Hit Rate and 

the correlational relationship between naïve PSR & naïve Hit Rate across naïve session 

days. We hypothesized that, given that observed increases in naïve T DP are significant, 

naïve T DP will be positively and significantly correlated with naïve Hit Rate. We also 

hypothesized that, given that observed increases in naïve PSR are not significant, naïve 

PSR will not be significantly correlated with naïve Hit Rate.  
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To measure the correlational relationship between naïve Hit Rate and naïve Target 

Detection, we first determined the mean naïve Hit Rate and naïve Target Detection 

correlation coefficient using behavioral data from naïve session days (individual data for 

each mouse not shown). We found that the correlation between naïve Target Detection 

and naïve Hit Rate was positive and significant (Table 7, one sample t-test 

μmNaiveHR&NaiveT DP corr =0.835±0.0351, p<0.00005, n=6 mice). To measure the 

correlational relationship between naïve Hit Rate and naïve PSR, we determined the 

mean naïve PSR and naïve Hit Rate correlation coefficient using behavioral data from 

naïve session days (individual data for each mouse not shown). We found that the 

correlation between naïve PSR and naïve Hit Rate was positively significant (Table 7, 

one sample t-test μmNaiveHR&NaivePSR corr =0.734±0.0598, p<0.0005, n=6 mice).  

 

Naïve Distractor Detection and Pretrial Spontaneous Rate Correlations With Naïve 

False Alarm Rates 

We investigated the correlational relationship between naïve D DP and naïve False Alarm 

Rate and the correlational relationship between naïve PSR and naïve False Alarm Rate 

across naïve session days. We hypothesized that, given that observed increases in naïve D 

DP are not significant, naïve D DP will not be significantly correlated with naïve False 

Alarm Rate. We also hypothesized that, given that observed increases in naïve PSR are 

not significant, naïve PSR will not be significantly correlated with naïve False Alarm 

Rate.  

 



67 
 

To measure the correlational relationship between naïve False Alarm Rate and naïve 

Distractor Detection, we first determined the mean naïve False Alarm Rate and naïve 

Distractor Detection correlation coefficient using behavioral data from naïve session days 

(individual data for each mouse not shown). We found that the correlation between naïve 

Distractor Detection and naïve False Alarm Rate was positive and significant (Table 7, 

one sample t-test μmNaiveFAR&μmNaiveD DP corr =0.244±0.0950, p<0.05, n=6 mice). 

To measure the correlational relationship between naïve False Alarm Rate and naïve 

PSR, we determined the mean naïve False Alarm Rate and naïve PSR correlation 

coefficient using behavioral data from naïve session days (individual data for each mouse 

not shown). We found that the correlation between naïve PSR and naïve False Alarm 

Rate was positive and significant (Table 7, one sample t-test 

μmNaiveFAR&μmNaivePSR corr =0.892±0.0255, p<0.000005, n=6 mice).  

 

Expert Detection and Pretrial Spontaneous Rate During Expert Days 

We first assessed changes in expert Target Detection (T DP) using behavioral data from 

expert session days. Expert Target Detection did not significantly decrease across expert 

session days (Table 6, one sample t-test μmexpertTargetDetection=-0.0592±0.139, 

p=0.688, n=6 mice). We then assessed changes in expert Distractor Detection (D DP) 

using behavioral data from expert session days. Expert Distractor Detection did not 

significantly increase across expert session days (Table 6, one sample t-test 

μmexpertDistractorDetection=0.136±0.147, p=0.398, n=6 mice). We then investigated 

changes in expert Pretrial Spontaneous Rate (PSR) using behavioral data from expert 
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session days. Expert PSR did not significantly decrease across expert session days (Table 

6, one sample t-test μmexpertPSR=-0.0202±0.0247, p=0.452, n=6 mice). 

 

Expert Target Detection and Pretrial Spontaneous Rate Correlations With Expert Hit 

Rates 

We investigated the correlational relationship between expert T DP and expert Hit Rate 

and the correlational relationship between expert PSR and expert Hit Rate across expert 

session days. We tested three alternative hypotheses. Our first alternative hypothesis is 

that Hit Rate during the expert periods will be driven by improvements in detection of the 

target stimuli, as evidenced by a positive and significant correlation between Hit Rate and 

Target Detection. Our second alternative hypothesis is that Hit Rate during the expert 

periods will be driven by increases in impulsivity, as evidenced by a positive and 

significant correlation between Hit Rate and Pretrial Spontaneous Rate. Our final 

alternative hypothesis is that Hit Rate during the expert periods will be driven by both 

improvements in detection of the target stimuli and increases in impulsivity, as evidenced 

by positive and significant correlations between Hit Rate and both Pretrial Spontaneous 

Rate and Target Detection. 

 

To measure the correlational relationship between expert Hit Rate and expert Target 

Detection, we first determined the mean expert Hit Rate and expert Target Detection 

correlation coefficient using behavioral data from expert session days (individual data for 

each mouse not shown). We found that the correlation between expert Target Detection 
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and expert Hit Rate was positive and significant (Table 7, one sample t-test 

μmexpertHR&T DP corr =0.716±0.141, p<0.005, n=6 mice). To measure the relationship 

between expert Hit Rate and expert PSR across all mice, we determined the mean expert 

PSR and expert Hit Rate correlation coefficient using behavioral data from expert session 

days (individual data for each mouse not shown). We found that the correlation between 

expert PSR and expert Hit Rate was not significant (Table 7, one sample t-test 

μmexpertHR&expertPSR corr =0.480±0.307, p=0.178, n=6 mice).  

 

Expert Distractor Detection and Pretrial Spontaneous Rate Correlations With Expert 

False Alarm Rates 

We investigated the correlational relationship between expert D DP and expert False 

Alarm Rate and the correlational relationship between expert PSR and expert False 

Alarm Rate across expert session days. We tested three alternative hypotheses. Our first 

alternative hypothesis is that False Alarm Rate during the expert periods will be driven by 

changes in detection of the distractor stimuli, as evidenced by a significant correlation 

between False Alarm Rate and Distractor Detection. Our second alternative hypothesis is 

that False Alarm Rate during the expert periods will be driven by changes in impulsivity, 

as evidenced by a significant correlation between False Alarm Rate and Pretrial 

Spontaneous Rate. Our final alternative hypothesis is that False Alarm Rate during the 

expert periods will be driven by both changes in detection of the distractor stimuli and 

changes in impulsivity, as evidenced by significant correlations between False Alarm 

Rate and both Pretrial Spontaneous Rate and Distractor Detection. 
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To measure the correlational relationship between expert False Alarm Rate and expert 

Distractor Detection, we first determined the mean expert False Alarm Rate and expert 

Distractor Detection correlation coefficient using behavioral data from expert session 

days (individual data for each mouse not shown). We found that the correlation between 

expert Distractor Detection and expert False Alarm Rate was positive and significant 

(Table 7, one sample t-test μmexpertFAR&D DP corr =0.213±0.389, p=0.608, n=6 

mice). To measure the correlational relationship between expert False Alarm Rate and 

expert PSR, we determined the mean expert False Alarm Rate and expert PSR correlation 

coefficient using behavioral data from expert session days (individual data for each 

mouse not shown). We found that the correlation between expert PSR and expert False 

Alarm Rate was positive and significant (Table 7, one sample t-test μmexpertFAR&PSR 

corr =0.830±0.0918, p<0.0005, n=6 mice).  

 

Differences in Target Detection, Distractor Detection, and Pretrial Spontaneous Rate 

Across Naïve and Expert Periods 

We compared and analyzed changes of Target Detection, Distractor Detection, and 

Pretrial Spontaneous Rate during the naïve and expert periods using a paired t-test. The 

null hypothesis is that changes in measures of detection (Target Detection and Distractor 

Detection) and measures of impulsivity (Pretrial Spontaneous Rate) during the naïve and 

expert periods do not significantly differ from each other. An alternative hypothesis is 

that changes in measures of detection (Target Detection and Distractor Detection) and 
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measures of impulsivity (Pretrial Spontaneous Rate) during the naïve and expert periods 

do significantly differ from each other. 

 

The results of the paired t-test for Target Detection show that changes in naïve Target 

Detection and changes in expert Target Detection do not differ significantly (Table 6, 

paired t-test μmNaiveT DP&ExpertT DP, p=0.171, n=6 mice). Additionally, the results 

of the paired t-test for Distractor Detection show that changes in naïve Distractor 

Detection and changes in expert Distractor Detection do not differ significantly (Table 6, 

paired t-test μmNaiveD DP&ExpertD DP, p=0.458, n=6 mice). Lastly, the results of the 

paired t-test for Pretrial Spontaneous Rate show that changes in naïve Pretrial 

Spontaneous Rate and changes in expert Pretrial Spontaneous Rate do not differ 

significantly (Table 6, paired t-test μmNaivePSR&ExpertPSR, p=0.273, n=6 mice). 

 

Differences in Correlations Between Hit Rate & Target Detection, Hit Rate & Pretrial 

Spontaneous Rate, False Alarm Rate & Distractor Detection, & False Alarm Rate & 

Pretrial Spontaneous Rate Across Naïve and Expert Days 

We then investigated whether the correlations between response rates (Hit Rate and False 

Alarm Rate) and behavioral mechanisms (Target Detection, Distractor Detection, and 

Pretrial Spontaneous Rate) significantly fluctuate or remain similar across the naïve and 

expert periods. A paired t-test was used to compare the mean naïve HR&T DP correlation 

coefficient and the mean expert HR&T DP correlation coefficient (Table 7). A further 

paired t-test was used to compare the mean naïve HR&PSR correlation coefficient with 
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the mean expert HR&PSR correlation coefficient (Table 7). An additional paired t-test 

was used to compare the mean naïve FAR&D DP correlation coefficient with the mean 

expert FAR&D DP correlation coefficient (Table 7). A final paired t-test was used to 

compare the mean naïve FAR&PSR correlation coefficient with the mean expert 

FAR&PSR correlation coefficient (Table 7). 

 

The results of the paired t-test comparing the correlation between naïve Target Detection 

and naïve Hit Rate to the correlation between expert Target Detection and expert Hit Rate 

show that the pair of mean correlation values do not differ significantly (Figure 8A, Table 

7, paired t-test μmNaiveHR&T DPCorr v.s. μmExpertHR&T DPCorr, p=0.447, n=6 

mice). The results of the paired t-test comparing the correlation between naïve Pretrial 

Spontaneous Rate and Naïve Hit Rate to the correlation between expert Pretrial 

Spontaneous Rate and expert Hit Rate show that the pair of mean correlation values do 

not differ significantly (Figure 8A, Table 7, paired t-test μmNaiveHR&PSRCorr v.s. 

μmExpertHR&PSRCorr, p=0.409, n=6 mice). The results of the paired t-test comparing 

the correlation between naïve Distractor Detection and Naïve False Alarm Rate to the 

correlation between expert Distractor Detection and expert False Alarm Rate show that 

the pair of mean correlation values do not differ significantly (Figure 8B, Table 7, paired 

t-test μmNaiveFAR&D DPCorr v.s. μmExpertFAR&D DPCorr, p=0.938, n=6 mice). The 

results of the paired t-test comparing the correlation between naïve Pretrial Spontaneous 

rate and Naïve False Alarm Rate to the correlation between expert Pretrial Spontaneous 

rate and expert False Alarm Rate show that the pair of mean correlation values do not 
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differ significantly (Figure 8B, Table 7, paired t-test μmNaiveFAR&PSRCorr v.s. 

μmExpertFAR&PSRCorr, p=0.565, n=6 mice). 

 

Discussion 

Linear regression analysis allowed us to calculate the mean rate of change for Target 

Detection, Distractor Detection, and Pretrial Spontaneous Rates during the naïve session 

days and expert session days in mice. Naïve Target Detection significantly increased 

across naïve session days (Table 6). Naïve Distractor Detection and Naïve Pretrial 

Spontaneous Rate did not significantly increase across the naïve periods (Table 6). Expert 

Target Detection, expert Distractor Detection, and expert Pretrial Spontaneous Rate did 

not significantly increase across the expert periods (Table 6). These initial findings 

suggest the ability of the mice to detect target stimuli is improving during learning 

(during the naïve periods). It is important to address how these findings regarding 

changes of behavioral mechanisms impact changes in response rates during the naïve and 

expert periods.  

 

In this chapter, we have shown the correlational relationships between detection, 

behavioral mechanisms and impulsive/sampling behavioral mechanisms with response 

rates. Correlational analysis shows that during the naïve periods, Hit Rate is positively 

and significantly correlated with target detection, and pretrial spontaneous rate. 

Correlational analysis also reveals that during the naïve periods, False Alarm Rate is 

positively and significantly correlated with distractor detection and pretrial spontaneous 
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Rate. These findings offer an insight into the mechanisms that drive the learning of 

response selection. We can conclude that detection of stimuli as well as impulsive 

behaviors are significant with respect to influencing observed changes in response rates 

and control changes in Discrimination (Table 6,7). One possible explanation for these 

observed correlations could be that the mice initially learn to respond to both target and 

distractor stimuli (which could explain the significant correlations between response rates 

and detection behavioral mechanisms) while also combining a strategy of licking 

indiscriminately (which could explain the significant correlations between response rates 

and the impulsive behavioral mechanism).  

 

The correlation analysis shows that during the expert periods, the correlations between 

the response rates and the behavioral mechanisms change significantly. During the expert 

periods, we see that hit rate is positively and significantly correlated with target detection; 

hit rate during the expert period is not significantly correlated with pretrial spontaneous 

rate. We also see that during the expert period, False Alarm Rate is positively and 

significantly correlated with pretrial spontaneous rate; False Alarm Rate during the expert 

period is not significantly correlated with Distractor Detection.  

 

Paired t-test analysis shows that correlations between response rates and behavioral 

mechanisms do not significantly differ between the naïve and expert periods. Considering 

these findings, combined with information regarding significance of specific correlations 
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during the naïve and expert periods, we make summarize and make the following 

conclusions: 

1. During the naïve periods, both detection and impulsivity behavioral 

mechanisms are significant contributors in driving increases in 

Discrimination. 

2. During the expert periods, target detection specifically and significantly 

drives changes in expert Hit Rate while Pretrial Spontaneous Rate 

specifically and significantly drives expert changes in False Alarm Rate.  

3. Looking at the correlations between naïve and expert periods, we see that 

in the case of the correlation between Hit Rate and target detection and the 

correlation between False Alarm Rate and Pretrial Spontaneous Rate, their 

correlation strength decreases but not enough to a value that is 

insignificant.  

4. In the case of the correlational differences between Hit Rate and Pretrial 

Spontaneous Rate and the correlation between False Alarm Rate and 

Distractor Detection across the naïve and expert periods, the correlations 

weaken going from the naïve to the expert period, so much so that they 

lose their significance. 
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Figures 

Table 6: Comparison of Naïve and Expert Detection and Spontaneous Behavioral 

Mechanisms 

 

 Target Detection  Distractor Detection Pretrial Spontaneous Rate 

Naïve 

Mean 

0.117 0.0188 0.0119 

One 

Sample 

T-Test P-

Value for 

Naïve 

Mean 

0.0264 0.253 0.101 

Expert 

Mean 

-0.0592 0.136 -0.0202 

One 

Sample 

T-Test P-

Value for 

Expert 

Mean 

0.688 0.398 0.452 

Paired 

Sample 

T-Test 

(Naïve & 

Expert) 

0.171 0.458 0.273 

 

Table 6: Comparison of Naïve and Expert Detection and Spontaneous Behavioral 

Mechanisms 
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Table 7: Comparison of Naïve and Expert Performance Correlations for Selective 

Detection Whisker Task 

 

 HR & T DP HR & PSR FAR & D DP FAR & PSR 

Naïve Mean 

Correlation 

Value 

0.835 0.734 0.244 0.892 

One Sample T-

Test P-Value for 

Naïve Mean 

Correlation 

Value 

0.000002 0.00006 0.049 0.0000004 

Expert Mean 

Correlation 

Value 

0.716 0.480 0.213 0.830 

One Sample T-

Test P-Value for 

Expert Mean 

Correlation 

Value 

0.004 0.178 0.608 0.0003 

Paired T-Test P 

Value (Naïve & 

Expert) 

0.445 0.409 0.938 0.565 

 

Table 7: Comparisons of Naïve and Expert Response Rates and Behavioral 

Mechanism Correlations. 
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Figure 8: A. Correlations Between Hit Rates and Behavioral Mechanisms. The y-

axis is the mean Pearson correlation coefficient value for naïve Hit Rate vs naïve 

Target Detection, expert Hit Rate vs expert Target Detection, naïve Hit Rate vs naïve 

Pretrial Spontaneous Rate, expert Hit Rate vs expert Pretrial Spontaneous Rate. The 

x-axis categorically lists out the correlations of behavioral measures being analyzed 

(naïve Hit Rate vs naïve Target Detection, expert Hit Rate vs expert Target Detection, 

naïve Hit Rate vs naïve Pretrial Spontaneous Rate, expert Hit Rate vs expert Pretrial 

Spontaneous Rate). Asterisks above any column representing the mean Pearson 

correlation coefficient between two behavioral measures indicates significance (one 

sample t-test). B. Correlations Between False Alarm Rates and Behavioral 

Mechanisms. The y-axis is the mean Pearson correlation coefficient value for naïve 

False Alarm Rate vs naïve Distractor Detection, expert False Alarm Rate vs expert 

Distractor Detection, naïve False Alarm Rate vs naïve Pretrial Spontaneous Rate, 

expert False Alarm Rate vs expert Pretrial Spontaneous Rate. The x-axis 

categorically lists out the correlations of behavioral measures being analyzed (naïve 

Hit Rate vs naïve Target Detection, expert Hit Rate vs expert Target Detection, naïve 

Hit Rate vs naïve Pretrial Spontaneous Rate, expert Hit Rate vs expert Pretrial 

Spontaneous Rate). Asterisks above any column representing the mean Pearson 

correlation coefficient between two behavioral measures indicates significance (one 

sample t-test). 
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Chapter 6: Target Reaction Times During All Session Days, Naïve Days, and Expert 

Days  

 

Introduction  

As mentioned in chapter 1, one traditional way of measuring strength of response 

selection is through analysis of reaction times. Shorter reaction times are associated with 

mastery of response selection as a cognitive strategy. Previous research has yet to study 

whether reaction times improve simultaneously or separately with the learning of 

response selection. In this chapter, we will look at target reaction times during three 

periods of time: across all session days, during the naïve periods, and during the expert 

periods. We also analyze the correlations between target reaction time and discrimination 

during the three periods of time mentioned in the previous sentence. The null hypothesis 

we establish and test is that as Discrimination changes with learning of the task (the 

learning of response selection), target reaction time will not improve simultaneously and 

subsequently not reflect a response selection cognitive approach. An alternative 

hypothesis predicts that as Discrimination changes with learning of the task (the learning 

of response selection), changes in target reaction time will improve simultaneously and 

reflect a response selection cognitive approach. Additionally, for analyses comparing 

correlations between target reaction time and discrimination during the naïve and expert 

periods, we establish and test the null hypothesis that target reaction time and their 

correlations with Discrimination during the naïve and expert periods will not significantly 

differ. An alternative hypothesis is that changes in target reaction times and their 
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correlations with Discrimination during the naïve periods will reveal that improvements 

in target reaction time coincide with the learning of response selection during the naïve 

days (learning days). An alternative hypothesis is that changes in target reaction times 

and their correlations with Discrimination during the expert periods will reveal that 

improvements in target reaction time do not coincide with the learning of response 

selection during the expert days (mastery days). Generally, if target reaction time 

improves with the learning response selection simultaneously, we expect to see target 

reaction time be negatively and significantly correlated with Discrimination. 

 

Methods 

In this chapter, we used the following tests to analyze changes in target reaction time and 

Discrimination across all session days, during the naïve periods, and during the expert 

periods: Linear Regression, Pearson Correlation Coefficient, One Sample t-tests, and 

Paired t-tests. Linear regression analyses were used to determine slopes of target reaction 

time and Discrimination across sessions per mouse; the slopes of individual linear 

regressions for each response rate type were averaged to determine mean linear slopes for 

the target reaction times. If the mean linear slope for a target reaction time or 

Discrimination across mice was significantly positive, the trend of the behavioral variable 

was identified as ‘increasing’. In contrast, if the mean linear slope for a target reaction 

time or Discrimination across mice was significantly negative, the behavioral variable 

was identified as ‘decreasing’. Pearson correlation coefficient tests were used to 

determine levels of association between target reaction times and Discrimination across 
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all session periods analyzed. Paired t-tests were used to determine whether the mean 

naïve and expert target reaction times differed significantly from each other. Paired t-tests 

were also used to determine whether the mean naïve and expert target reaction time 

correlations with Discrimination differed significantly from each other. Reported 

correlations are calculated from the mean correlation using the individual correlations 

from each mouse. All mean values reported as the mean ± standard error of the mean 

(SEM). 

 

Results 

In this final chapter, we study how target reaction time improves across learning, during 

the naïve periods, and during the expert periods. We expect that across learning, Target 

Reaction Time will show improvements as the mice learn to lick closer to the earlier 

portion of the lick period (time range of licking is 200 ms to 1200 ms). We also expect 

that Target Reaction Time will significantly decrease during the naïve periods and the 

expert periods. Lastly, we study to see how the correlation between Discrimination and 

Target Reaction Time changes across the naïve and expert periods. 

 

Characterization of Target Reaction Time During all Session days, Naïve days, and 

Expert days 

We then investigated whether Target Reaction Time significantly changed across all 

session days, during the naïve days, and during the expert days. We found that target 

reaction time significantly decreased across all session days (Figure 9A, 9D, one sample 
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t-test μmT RT =-0.0272±0.00480, p<0.005, n=6 mice). We also found that Target 

Reaction Time significantly decreased during the naïve session days (Figure 9B, 9D, one 

sample t-test μmNaiveT RT =-0.0278±0.00906, p<0.05, n=6 mice). We also found that 

Target Reaction Time did not significantly decrease across expert session days (Figure 

9C, 9D, one sample t-test μmExpertT RT =-0.0378±0.0202, p=0.121, n=6 mice). 

 

Correlations Between Target Reaction Time and Discrimination During all Session days, 

Naïve days, and Expert days 

We also looked at correlations between reaction times and Discrimination across all 

session days, across naïve days, and across their first three expert days. We found that 

Target Reaction Time and Discrimination were significantly and negatively correlated 

across all session days (Figure 9E, one sample t-test μmDiscrimination&TRT corr =-

0.728±0.0588, p<0.0001, n=6 mice). We also found that Target Reaction Time and 

Discrimination were significantly and negatively correlated during the naïve session days 

(Figure 9E, Table 8, one sample t-test μmnaiveDiscrimination&TRT corr =-0.546±0.120, 

p<0.05, n=6 mice). We also found that Target Reaction Time and Discrimination were 

not significantly correlated during the expert session days (Figure 9E, Table 8, one 

sample t-test μmexpertDiscrimination&TRT corr =-0.0144±0.345, p=0.968 n=6 mice).  

 

We lastly studied how the correlation between Discrimination and Target Reaction Time 

differed and changed between the naïve session days and the expert session days. Using a 

paired t-test, we compared the mean naïve Discrimination and Target Reaction Time 
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correlation coefficient with the mean expert Discrimination and Target Reaction Time. 

The results of the paired t-test show that the mean naïve Discrimination and Target 

Reaction Time correlation coefficient and the mean expert Discrimination and Target 

Reaction Time are not significantly different from each other (Table 8, paired t-test 

μmNaiveDiscrimination&T RTCorr v.s. μmExpertDiscrimination&T RTCorr, p=0.938, 

n=6 mice). 

 

Discussion 

Observed Target Reaction Times and their significant changes across all session days and 

during the naïve session days/periods suggests that improvements in reaction times can 

coincide with improvements in Discrimination; target reaction times significantly 

decrease across all session days and during the naïve session days/periods. During the 

expert session days/periods, target reaction time decreases but not significantly. This 

approach and analyses are an upgrade to traditional analyses using reaction times as a 

means to measure response selection specifically. To test whether improvements in target 

reaction time actually is dependent on learning of response selection as a cognitive 

strategy, we carried our Pearson correlation coefficient tests between Discrimination and 

Target Reaction Times during naïve periods, expert periods, and across all session days.  

 

Target Reaction Time and Discrimination were negatively and significantly correlated 

across all session days and during the naïve session days/periods (Table 8). Target 

Reaction Time and Discrimination were not significantly correlated during the expert 
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session days/periods. These changes in target reaction time are consistent with previous 

studies looking into order of learning during Go/No-go tasks. Previous research has 

found that improvements in reaction times generally precede improvements in 

Discrimination (Marrero et al., 2023). This localization of significant decreases in target 

reaction time during the naïve period provides new direction with regards to how current 

research studying response selection is carried out. Most research utilizing reaction times 

as a means to measure response selection (where shorter reaction times equates to 

significant usage of response selection), averages the reaction times recorded for all trials 

presented during any task. This fails to account for how reaction times change across 

learning and more generally leaves out any information regarding trends in reaction time 

that can exist during specific time frames. 
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Figures 
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Figure 9: A. Average Rate of Change of Target Reaction Time for Six Mice. The 

y-axis is the recorded target reaction times. The x-axis is session days. Each set of 

colored dots represents the daily target reaction times for a single mouse. The 

slope of each line represents the rate of change for the target reaction times of a 

single mouse. B. Average Rate of Change of naïve Target Reaction Time for Six 

Mice. The y-axis is the recorded naïve target reaction times. The x-axis is naïve 

session days. Each set of colored dots represents the daily naïve target reaction 

times for a single mouse. The slope of each line represents the rate of change for 

the naïve target reaction times of a single mouse. C. Average Rate of Change of 

expert Target Reaction Time for Six Mice. The y-axis is the recorded expert target 

reaction times. The x-axis is expert session days. Each set of colored dots 

represents the daily expert target reaction times for a single mouse. The slope of 

each line represents the rate of change for the expert target reaction times of a 

single mouse. D. Mean Target Reaction Time. The y-axis is the mean rate of 

change for Target Reaction Time across all session days, Target Reaction Time 

during the naïve periods, and Target Reaction Time during the expert periods. The 

x-axis categorically lists out the behavioral measures being analyzed (Target 

Reaction Time across all session days, Target Reaction Time during the naïve 

periods, and Target Reaction Time during the expert periods). Asterisks above any 

column representing the mean rate of change value for a behavioral measure 

indicates significance (one sample t-test). E. Correlation Between Discrimination 

d’ and Target Reaction Time. The y-axis is the mean Pearson correlation 

coefficient value for Discrimination d’ vs Target Reaction Time across all session 

days, naïve Discrimination d’ vs naïve Target Reaction Time, and expert 

Discrimination d’ vs expert Target Reaction Time. The x-axis categorically lists 

out the correlations of behavioral measures being analyzed (Discrimination d’ vs 

Target Reaction Time across all session days, naïve Discrimination d’ vs naïve 

Target Reaction Time, and expert Discrimination d’ vs expert Target Reaction 

Time). Asterisks above any column representing the mean Pearson correlation 

coefficient between two behavioral measures indicates significance (one sample t-

test). 
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Table 8: Comparison of Naïve and Expert Correlations Between Discrimination and 

Target Reaction Time 

 Disc & T RT 

Naïve Mean Correlation Value  -0.546 

One Sample t-test P-Value for 

Naïve Mean Correlation Value 

 0.006 

Expert Mean Correlation Value -0.0144 

One Sample t-test P-Value for 

Expert Mean Correlation Value 

 0.968 

Paired t-test (between Naïve and 

Expert Mean Correlations) 

 0.239 

 

Table 8: Comparison of Naïve and Expert Correlations Between Discrimination and 

Target Reaction Time. The right column, going from top to bottom, has the 

following information: correlation (Discrimination & Target Reaction Time), mean 

naïve Disc & T RT correlation value, p-value originating from one sample t test for 

mean naïve Disc & T RT correlation value, mean expert Disc & T RT correlation 

value, p-value originating from one sample t test for mean expert Disc & T RT 

correlation value, and p-value originating from paired t test comparing mean naïve 

Disc & T RT correlation value and mean expert Disc & T RT correlation value.  
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Chapter 7: Conclusions and Future Direction  

Throughout the previous chapters, we have studied and reviewed response selection with 

respect to how it is presented in the behavior of our mice. We have been able to identify 

response selection as being the cognitive strategy used by our mice. We have been able to 

show that response selection is characterized by observed increases in Hit Rates. We have 

also shown that response inhibition is not the strategy being utilized as evidenced by 

observed increases in False Alarm Rates. We have been able to determine which 

behavioral mechanisms drive these observed increases in response rates with Hit Rate 

being driven by changes in target-detection and impulsivity and False Alarm Rate being 

driven by changes in impulsivity. Furthermore, we have been able to show that response 

selection is learned early before the mice become masters at the task. We have been able 

to show that response selection behaviors are driven by both stimulus detection and 

impulsivity during the naïve periods. Subsequently, we have been able to show that 

during the expert periods, Hit Rate is only driven by detection and False Alarm Rate is 

driven by only impulsivity. Lastly, we have been able to show that target reaction times 

improve simultaneously with the learning of response selection. These findings relating 

to response selection were determined using only behavioral data. However, it is 

important for us to remember that all behaviors exhibited by our mice are generated 

because of neuronal activity in various different regions of the brain.  
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Cortical Regions and Neural Activity Studies 

The brain is divided up into various different regions and each region generally is 

associated with some type of process. The regions control functions such as movement, 

thought, learning, cognition, memory, senses, and many other body-related functions 

(Batista-García-Ramó & Fernández-Verdecia, 2018). Previous studies had studied how 

neural activity fluctuates in subjects concurrently executing behaviors (Aruljothi et al., 

2020). As a means to further better understand response selection and how it is executed 

in subjects completing behavioral tasks, we suggest and recommend that neural studies 

be conducted on mice completing our task with particular focus on the area of the brain 

called the cerebral cortex. 

 

The cerebral cortex is a region in mammalian brains containing many different 

subregions such as the neocortex and dorsolateral striatum areas. These areas are known 

to control specific bodily functions and cognitive processes such as decision making 

(Zareian et al., 2023). Within the neocortex, there are neocortical areas called the primary 

motor cortex and somatosensory cortex. Primary motor cortex controls motor behaviors 

by sending signals to muscles that are needed to execute a specific behavior or behaviors 

(Teka et al., 2017). Somatosensory cortex is responsible for processing sensory inputs 

and then relay those inputs as sensorimotor signals to other parts of the brain such as the 

motor cortex and the dorsolateral striatum. When the somatosensory cortex sends sensory 

input information to the motor cortex, the motor cortex can then send signals to various 

muscles and other anatomical structures that control movement (Borich et al., 2015, Teka 
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et al., 2017). Previous studies have shown that whisker stimulus responses can be 

directed from the somatosensory cortex and into the dorsolateral striatum. Furthermore, 

some studies have found that suppressing the activity of the dorsolateral striatum in mice 

completing a two paddle whisker detection task impedes the ability of mice to respond to 

task-relevant stimuli (Zareian et al., 2023). New and previous knowledge regarding how 

all these areas work together to control sensorimotor transformations has led researchers 

to highlight the importance of studying neural activity occurring in these areas when mice 

are completing Go/No-Go tasks (Aruljothi et al., 2020; Marrero et al., 2022). Recent 

studies have utilized neural activity recording techniques such as widefield calcium 

imaging to study neural activity occurring in these areas (primary motor cortex, primary 

somatosensory cortex, dorsolateral striatum) when mice are completing our two paddle 

whisker detection task (Aruljothi et al., 2020). 

 

Widefield calcium imaging is a relatively new but effective tool in studying how different 

brain regions become active or suppressed when subjects are experiencing sensation, 

carrying out motor movements, and/or other brain-dependent functions (Aruljothi et al., 

2022; Nietz et al., 2022). Widefield calcium imaging utilizes specialized emission-

fluorescence detecting cameras that can detect changes in calcium levels in the organs of 

subjects that have genetically encoded calcium indicators (Nietz et al., 2022). In the 

context of studying neural activity, mice that have their skulls exposed and are 

genetically modified to express genetically encoded calcium indicators can use the 

previously mentioned specialized cameras to study changes in calcium levels in the brain 
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(Aruljothi et al., 2022; Nietz et al., 2022). Fluctuations in calcium levels in the brain are 

interpreted to determine which brain areas become activated or suppressed during the 

detection of stimuli and the execution of motor functions. 

 

Neural and Behavioral Correlates 

Considering the technology we have access to that can study neural activity (e.g. 

widefield calcium imaging), the final step that can be taken to thoroughly describe and 

characterize response selection and response inhibition as cognitive strategies is to 

correlate neural data with behavioral data. For example, if widefield calcium imaging is 

used on mice completing our task, assuming that the behaviors of the mice are also being 

recorded, we can determine which brain regions (e.g. primary motor cortex, primary 

somatosensory cortex, dorsolateral striatum) are active or suppressed when the mice are 

detecting the paddles and when they are executing licking behaviors (Aruljothi et al., 

2020; Nienborg & Cumming, 2010). We can also determine if different brain regions 

work together in processes such as signal propagation (e.g. when a mouse detects a 

paddle, do we see the detection of paddle get encoded in primary somatosensory cortex 

and then relayed to dorsolateral striatum or primary motor cortex to induce licking). With 

the support of neural data from neural detecting techniques combined with behavioral 

data, we can then begin to ask new questions that relate response selection and response 

inhibition (e.g. how does neural activity in specific brain regions change with the learning 

and mastery of response selection and response inhibition). Furthermore, studying 

correlations between behavior and neural activity can serve as a means to better 
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understand response selection and response inhibition in populations with behavioral 

disorders such as ADHD (Wilens & Spencer, 2010). Overall, we suggest and recommend 

that the combination of studying neural activity with behaviors can provide additional 

insights regarding the learning of response selection and response inhibition as cognitive 

strategies.  
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