Lawrence Berkeley National Laboratory

Recent Work

Title

COMPLEX CUBIC SPLINE APPROXIMATION OF CONJUGATE HARMONIC FUNCTIONS ON SIMPLE POLYGONAL DOMAINS

Permalink https://escholarship.org/uc/item/922802b1

Author

Young, Jonathan D.

Publication Date 1976

Submitted to Logistics and Transportation Review

BCHELS COLOR BALLSHORY

ALC: NO BEE

 $\frac{1}{N} \left(\frac{1}{N} \left(\frac{1}{N} \right) + \frac{1}{N} \left(\frac{1}{N} \left(\frac{1}{N} \right) + \frac{1}{N} \left(\frac{1}{N} \right) + \frac{1}{N} \left(\frac{1}{N} \left(\frac{1}{N} \left(\frac{1}{N} \right) + \frac{1}{N} \left(\frac{1}{N} \left(\frac{1}{N} \left(\frac{1}{N}$

COMPLEX CUBIC SPLINE APPROXIMATION OF CONJUGATE HARMONIC FUNCTIONS ON SIMPLE POLYGONAL DOMAINS

Jonathan D. Young

January 13, 1976

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference Not to be taken from this room

2

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-4625

COMPLEX CUBIC SPLINE APPROXIMATION

OF

CONJUGATE HARMONIC FUNCTIONS

ON

SIMPLE POLYGONAL DOMAINS

by

Jonathan D. Young Lawrence Berkeley Laboratory University of California Berkeley, California

ABSTRACT

We present a method for approximating a harmonic function on and within a simple polygonal domain when values of the function are specified at seven or more points on the boundary. Function values must be specified at all the vertices of the polygon. Further, for any simple domain, the boundary may be approximated by a simple polygon and the above process applied. Thus, we are able to approximate the solution to Laplace's equation with Dirichlet conditions on rather general simple domains. We are also able to approximate the harmonic conjugate of the original function to within an arbitrary constant. This constant may be determined if the value of the harmonic conjugate is specified at one point.

The original function and its harmonic conjugate are treated as, respectively, the real and imaginary parts of a complex function. The approximation of this latter function is by means of a complex cubic spline (see Reference 1).

.

SECTION 1. INTRODUCTION

We consider a real function, u, of real variables, x and y. With

z = x + i y

we have u(z), a real function of the complex variable z.

We shall be concerned with K, $(K \ge 7)$, points z_n , distinct and not collinear. The points, z_n , can then be ordered so that they define a simple closed counterclockwise path

P:
$$z_1 - z_2 - z_3 - z_3 - z_k - z_1$$
.

We shall assume this ordering for the z_n . For convenience in indicing, in view of the cyclic ordering, we define

 $n + 1 \equiv 1$ for n = K $n - 1 \equiv K$ for n = 1.

We shall require that u satisfies Laplace's equation,

$$u_{xx} + u_{yy} = 0$$

on and within P. Thus, u may be regarded as the real part of an analytic complex function, w(z), on the domain of P and its interior. Then, there exists a real function, v(z) such that

$$v = u + i v$$

with the Cauchy conditions

$$v_y = u_x$$

satisfied. Such a function, v, is called a harmonic conjugate of u.

Next we note that any other harmonic conjugate of u is obtainable from

v + C, C, an arbitrary real constant.

This means that if v is unknown, we can arbitrarily assign it a value at one point, or conversely if v is specified at one point it is uniquely determined

0.0.0.0.4.5.0.0.0.6.4

-3-

by u.

We shall, initially, treat v as unknown and assign it the value

LBL-4625

 $v_1 = 0$ at z_1 .

We now wish to approximate w as a complex cubic spline in z. From 1, we know that a unique cubic spline is determined only if both u and v are known at all the points, z_k . Even with v_1 specified as zero, values for v_n for n equal 2 to K are arbitrary insofar as constructing a complex cubic spline is concerned. We, therefore, consider finding values for v_n , n equal 2 to K in some optimal manner.

Since, in general, complex cubic splines have discontinuities in the third derivative at the points, z_k , we shall consider choosing the v_n for n equal 2 K in such a way that this discontinuity is minimized (see Section 3). Now we note that for K = 7, the specification of u_n for n equal 1, to K and of v_1 determines a unique complex cubic, that is a function with <u>no</u> third derivative discontinuities. However, if we are permitted K < 7, there would be an infinitude of such cubics satisfying the specifications, hence we require K \geq 7. With K > 7, (except in extremely fortuitous circumstances) there would be third derivative discontinuity. We consider now the space of all complex cubic splines which meet the specifications.

SECTION 2. LINEAR SPACE OF COMPLEX CUBIC SPLINES

As a basis for a linear space, S, of complex cubic splines, let us consider

$$S_j$$
 with $u_{jn} = u_n$ (specified) and $v_1 = 0$ (specified)
and $v_m = S_m$ for m equal 2 to K.

We note first that the \boldsymbol{S}_{j} are linearly independent and that any linear combination

$$S = \Sigma$$
 a S with all a, real $j=1$ j j

is a complex cubic spline. Now we note that although any one of the basic splines by itself satisfies the specifications, the linear combination, S, will satisfy them if and only if

$$\sum_{j=1}^{K} a_{j} = 1.$$

From the above, we must have

$$a_1 = 1 - \sum_{j=2}^{K} a_j$$

and

$$S = \begin{bmatrix} 1 - \Sigma & a_j \end{bmatrix} S_1 + \sum_{j=2}^{K} a_j S_j$$

$$S = S_1 + \sum_{j=2}^{K} a_j (S_j - S_1)$$

Hence

Any such S will satisfy the specifications and we need only to determine the a for j equal 2 to K in some optimal manner. We consider an optimization process in the next section.

-5-

LBL-4625

SECTION 3. OPTIMIZATION - MINIMIZATION OF THIRD DERIVATIVE DISCONTINUITY For each basic spline, S_j , the discontinuity of S_j at any point, z_n , is the complex quantity

$$d_{jn} = S_{jn} - S_{j,n-1}.$$

Let

$$d_{jn} = r_{jn} + i t_{jn}$$

where r and t are respectively the real and imaginary parts of d, then

$$r_{jn}$$
 = Real (S_{jn}) - Real (S_{jn})
 t_{jn} = Imaginary (S_{jn}) - Imaginary (S_{n,n-1}).

For the linear combination spline, S, last defined in the previous section, we have

$$S^{*} = S_{1}^{*} + \sum_{j=2}^{k} a_{j} (S_{j}^{*} - S_{1}^{*}).$$

For the discontinuity d_n of S^{***} at z_n , we have

$$d_{n} = S_{1n} - S_{1,n-1} + \sum_{j=2}^{K} a_{j} \left[(S_{j,n} - S_{j,n-1}) - (S_{1,n} - S_{1,n-1}) \right]$$
$$= \left[r_{1,n} + \sum_{j=2}^{K} a_{j} (r_{j,n} - r_{1,n}) \right] + i \left[t_{1,n} + \sum_{j=2}^{K} a_{j} (t_{j,n} - t_{1,n}) \right]$$

Let

$$\begin{array}{c} p_{j,n} \equiv r_{j,n} - r_{1,n} \\ q_{j,n} \equiv t_{j,n} - t_{1,n} \end{array} \right\} \quad \text{for } j \text{ equal } 2 \text{ to } K \end{array}$$

 $|d_n|^2 = [r_{1,n} + \sum_{j=2}^{K} a_j p_{j,n}]^2 + [t_{1,n} + \sum_{j=2}^{K} a_j q_{j,n}]^2$

we have

We shall "minimize" the third derivative discontinuities by defining

 $\sigma = \sum_{n=1}^{K} |d_n|^2$

and finding those $a_{\underline{i}}$ for \underline{j} equal 2 to K for which σ is a minimum.

$$\sigma = \sum_{n=1}^{K} \left\{ \begin{bmatrix} r_{1,n} + \sum_{j=2}^{K} a_j p_{j,n} \end{bmatrix}^2 + \begin{bmatrix} t_{1,n} + \sum_{j=2}^{K} a_j q_{j,n} \end{bmatrix}^2 \right\}$$

Note that σ is a real number greater than or equal to zero, hence does have a minimum. This minimum can only occur for the choice of the a's such that

 $\frac{\partial \sigma}{\partial a_i} = 0$ for i equal 2 to K

hence

$$\sum_{n=1}^{K} \left\{ 2 \left[\mathbf{r}_{1,n} + \frac{K}{j=2} \mathbf{a}_{j} \mathbf{p}_{j,n} \right] \mathbf{p}_{i,n} + 2 \left[\mathbf{t}_{1,n} + \frac{K}{j=2} \mathbf{a}_{j} \mathbf{q}_{j,n} \right] \mathbf{q}_{i,n} \right\} = 0$$

for i equal 2 to K.

Consequently,

$$\begin{array}{cccc} K & K & K \\ \Sigma & \Sigma & (p_{i,n} & p_{j,n} + q_{i,n} & q_{j,n}) a_{j} = - & \sum & (r_{1,n} & p_{i,n} + t_{1,n} & q_{i,n}) \\ p_{i=2} & p_{i=1} & p_{i,n} & p_{i,n} + p_{i,n} & p_{i,n} + p_{i,n} & p_{i,n} \end{array}$$

giving us K - 1 equations in the K - 1 unknowns, a_j , for j equal 2 to K and provided this linear system is determinate we can find the a_j for j equal 2 to K which minimize σ .

We now note that at any point, z_n , for n equal 2 to K

$$v_n = \sum_{j=2}^{K} a_j$$
 Imaginary $(S_j(z_n))$ for n equal 2 to K

but for $j \neq n$, $S_j(z_n) = 0$ and for j = n, $S_j(z_n) = 1$, hence

$$v_n = a_n$$
 for n equal 2 to K.

Thus, we have found optimum values for v_n for n equal to to K with $v_1 = 0$.

-7-

LBL-4625

Now suppose that some point, $z_{\ell}^{},$ the value of $v(z_{\ell}^{})$ is specified, then with the $v_{\ell}^{}$ obtained above we find

$$C = v(z_{q}) - v_{q}$$

and set

$$v_1 = C$$

and add C to all the v_n for n equal 2 to K obtained above. We then have values for v pertinent to this specification.

SECTION 4. INTERPOLATION

Now that values of u_n and v_n are known (whether by the arbitrary assumption $v_1 = 0$ or by specification of $v(z_g)$), we have

-8-

$$w_n = u_n + i v_n$$
 for n equal 1 to K

and can compute derivatives, w_n^{\prime} , $w_n^{\prime\prime}$, and $w_n^{\prime\prime\prime}$ as described in 1.

Then for any z on P, we have some n such that

$$z \in [z_n, z_{n+1}]$$

then with

$$h = z - z_n$$

we have

$$w(z) = w_n + hw_n + h^2 w_n^2 / 2 + h^3 w_n^2 / 6$$

and

$$u(z) - Real (w(z))$$

 $v(z) = Imaginary (w(z)).$

Now for any ξ within P, we can approximate w by

$$w(\xi) = \frac{1}{2\pi i} \int_{p} \frac{w(z)}{z-\xi} dz$$

or

$$w(\xi) = \frac{1}{2 T} \sum_{n=1}^{K} \int_{z_n}^{z_{n+1}} \frac{w(z)}{z-\xi} dz$$
.

The integration on each segment $z_n - z_{n \neq 1}$ can be performed functionally or numerically as shown in 1. Then we have

$$u(\xi) = Real (w(\xi))$$

 $v(\xi) = Imaginary (w(\xi))$

and we have an approximation for u and v at any point interior to P.

-9-

LBL-4625

SECTION 5. COMPUTER CODE

A computer code, HYRMYC, has been written in FORTRAN for the CDC 7600 to perform all the above described computation. The integration for interior interpolation is performed numerically. A flow chart for this code follows:

		· · ·
100	READ HD,K,L,NB,NIN	HD is a header of 30 characters
	PRINT HD,K,L,NB,NIN	K is the number of points (\geq 7)
		L is the point at which v is specified
		if $L = 0$ no v is specified.
	STO	NB is number of subintervals in
	6	each [z _n ,z _{n+1}] for boundary
	V	interpolation.
•	E C	NIN is number of interior points
	H	for interpolation
110	READ x _n ,y _n ,u _n	
120	for $n = 1$, K	
· "		
130	Subroutine CMPQ	
	Constructs Basic Splines	
	Computes and stores	
	r _{1,n} , t _{1,n} , p _{j,n} , q _{j,n}	
	for $n = 1$, K $j = 2$, K.	
140	Subroutine CMPV	
	Computes optimum	
	v_j for $j = 2$, K	
	with $v_1 = \sigma$.	
		•

IF(L=0) GO TO 160 . 150 Read v, Compute C Compute new v_n for n equal 1 to K. With $w_n = u_n + i v_n$ h = 1, K160 Construct cubic spline, w Obtaining w_n , w_n , w_n Print w_n , w_n , w_n^{-1} , w_n^{-1} . IF (NB \leq 1) GO TO 100 Interpolate for NB - 1 200 equally spaced points z in each segment $[z_n, z_{n+1}]$ for n = 1, K. Print x_n, y_n, u_n, v_n and x,y,u,v for the points of interpolation. If (NIN \neq 0) store values for integration. IF(NIN=0) GO TO 100 For NIN interior ξ Read x, y for ξ Compute w Print x, y, u, v ŤO 100

-11-

LBL-4625

SECTION 6. NUMERICAL EXAMPLES.

In all the following examples, the boundary values specified for u were those for

$$1 = l^{x} \cos y$$

and the value specified for v at z_1 was for

$v = \ell^{X} \sin y$

It will be noted that this function u is a potential function and the function v is a harmonic conjugate of u. By using values pertinent to these known functions we were able to compare computed values with actual values of the functions u and v.

Example	1.	Circle,	Nine	Equally	Spaced	Points	(K = 9).
-	•		19 g. 1				
Commoni		~£ £			0.0mm+ 0.	1 .	

r			T		and the second	· · · · · · · · · · · · · · · · · · ·
n	x	y	$u = $ $ t^{x} \cos y $	v = $\ell^{x} \sin y$	v computed	Error v
1	0.00000	0.00000	1.00000	0.00000	0.00000	-
2	0.32139	0.11698	1,36962	0.16095*	0.16028**	00067
3	0.49240	0.41318	1.49856	0.65699*	0.65691**	00008
4	0.43301	0.75000	1.12819	1.05101*	1.05057**	00044
5	0.17101	0.96985	0.67088	0.97863*	0.97830**	00043
6	17101	0.96985	0.47655	0.69515*	0.69492**	00023
7	43301	0.75000	0.47454	0.44208*	0.44161**	00047
8	49240	0.41318	0.55973	0.24539*	0.24528**	00011
9	32139	0.11698	0.72018	0.08463*	0.08403**	00060

* Functional values of v not specified

** Computed values of v

n		u _x Computed	Error ^u x	$-\ell^{x} \sin^{y} =$	u Computed	Error u y
1	1.00000	0.99721	00279	0.00000	0.00071	0.00071
2	1.36962	1.37255	0.00293	16095	15983	0.00112
3	1.36962	1.49692	00164	65699	65907 -	.000208
4	1.12819	1.12865	0.00046	-1.05101	-1.04935	0.00166
5	0.67088	0.67074	00014	97863	97957	00094
6	0.47655	0.47682	0.00017	69515	69447	0.00068
7	0.47454	0.47421	00033	44208	44305	00097
8	0.55973	0.55956	00018	24539	24383	0.00156
9	0.72018	0.72164	0.00146	08463	08635	00162

-12-

Comparison of first derivatives functional and computed

Comparison of midpoint functional and computed values

n/ n+1	$n = $ $t^{x} \cos y$	u computed	Error	v L ^x sin y	v Computed	Error
1 2	1.17232	1.17208	00024	· 0.06865	0.06820	00045
23	1.44968	1.44992	0.00024	0.39354	0.39332	00032
3	1.32722	1.32707	00017	0.87257	0.87215	00032
4 5	0.88255	0.88262	0.00007	1.02497	1.02473	00024
6	0.56542	0.56542	0.00000	0.82480	0.82442	00038
8 7	0.48241	0.48237	00004	0.56026	0.55996	00030
8	0.52607	0.52616	0.00009	0.84586	0.34556	00030
89	0.64246	0.64232	00014	0.17441	0.17402	00039
9	0.85010	0.85029	0.00019	0.04978	0.04954	00024

Comparison of some interior points (NB=6)

(With trapezoidal integration over 6 subintervals in each interval)

x	t Y	£ ^x cos y	u Computed	Error u	ℓ ^x sin y	v Computed	Error v
0.00000	0.25000	0.96891	0.96693	00198	0.24740	0.24659	00081
25000	0.50000	0 .6<u>8</u>46	0.68208	00138	0.37338	0.37234	00104
0.00000	0.50000	0.87758	0.87583	00175	0.47943	0.47814	00129
0.25000	0.50000	1.12684	1.12461	00223	0.61559	0.61400	00159
0.00000	0.75000	0.73169	0.73026	00143	0.68164	0.67998	00166

-13-

Example 2 Rectangle, Twelve points (K=12)

Comparison of v functional with v computed

			u =	V =	v	Error
n	X	У (l cos y	l [*] sin y	computed	v
1	0.0	0.0	1.00000	0.00000	0.00000	
2	0.5	0.0	1.64872	0.00000	01084	01084
3	1.0	0.0	2.71829	0.00000	01708	01708
4	1.0	0.5	2.38552	1.30321	1.27477	02523
5	1.0	1.0	1.46869	2.28736	2.26000	02736
6	0.5	1.0	0.89081	1.38735	1.34720	04015
7	0.0	1.0	0.54030	0.84147	0.80640	03507
8	5	1.0	0.32771	0.51038	0.49059	01979
.9	-1.0	1.0	0.19877	_0.30956	0.29844	01112
10	-1.0	0.5	0.32284	0.17637	0.16899	00738
11	-1.0	0.0	0.36788	0.00000	00272	00272
12	5	0.0	0.60653	0.00000	0.00008	0.00008
Compar:	ison of first	derivatives	functional	and computed	, , , , , , , , , , , , , , , , , , ,	·
	u, =	u,	Error	u =	u.	Error
n	l ^X cos y	Computed	ux	-l^ sin y	Completed	^U y
		1				

	n	$u_x = x^x$	u _x Computed	Error ^U x	-l ^x sin y	u Completed	Lrror Uy
-	1	1.00000	0.99962	00038	0.00000	0.01129	0.01129
1	2	1.64872	1.64781	00091	0.00000	0.02744	0.02744
	3	2.71829	2.71882	0.00053	0.00000	01853	01853
2	4 .	2.38552	2.36058	01494	-1.30321	-1.29144	0.01177
	5	1.46869	1.50136	0.03267	-2.28736	31323	02587
,	6	0.89081	0.88155	00926	-1.38735	-1.39840	01105
	7	0.54030	0.54277	0.00247	84147	81479	0.02668
	8 ·	0.32771	0.32594	00177	51038	48210	0.02828
İ	9	0.19877	0.20269	0.00392	30956	30458	0.00498
ļ	10	0.32284	0,30963	01321	17637	17765	00128
	11	0.36788	0.36574	00204	0.00000	0.00052	0.00051
	12	0.60653	0.60684	0.00031	0.00000	00703	00703
- 1						and the rest of the local division of the lo	

LBL-4625

n/n+1	u =	u Computed	Error	v =	v	Error
<u> </u>	~ cos y	Computed			l	
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	1.28403	1.28385	00018	0.00000	00441	00441
2 3	2.11700	2.11656	00044	0.00000	01684	01684
3 4	2.63378	2.63146	00232	0.67251	0.65123	02128
4 5	1.98894	1.99097	0.00203	1.85289	1.82109	03180
5 6	1.14382	1.14101	00281	1.78139	1.74642	03497
6 ₇	0.69376	0.69438	0.00062	1.08047	1.04032	04015
78	0.42079	0.42045	00034	0.65534	0.62770	02764
89	0.25522	0.25553	0.00031	0.39748	0.38342	01406
⁹ 10	0.26917	0.26874	00043	0.25076	0.24040	01036
10 ₁₁	0.35644	0.35650	0.00006	0.09101	0.08664	00437
¹¹ 12	0.47237	0.47214	00023	0.00000	00179	00179
12 1	0.77880	0.77872	00008	0.00000	0.00119	0.00119

Comparison of midpoint values

Comparison at some interior points.

x	у	l ^x cos y	u Computed	Error u	l ^x sin y	v Computed	Error v
0.00	0.25	0.96891	0.96697	00194	0.24740	0.23254	01486
25	0.50	0.68346	0.68603	0.00257	0.37338	0.35794	01544
0.00	0.50	0.87758	0.87774	0.00016	0.47943	0.46176	01767
0.25	0.50	1.12684	1.12409	00275	0.61559	0.59562	01997
0.00	0.75	0.73169	0.73447	0.00278	0.68146	0.66128	02036

(Integration as in Example 1)

-15-

LBL-4625

Example 3. Keyhole 20	Points
-----------------------	--------

Comparison	of	v-function	with	v-computed

			xu =	v =	v	Error
n	x	y	l cos y	l sin y	Computed	<u>v</u>
1	1.00000	0.00000	2.71828	0.00000	0.00000	0.00000
2	1.00000	0.33333	2.56866	0.88940	0.88801	00139
3	0.75000	0.33333	2,00048	0.69266	0.68993	00273
4	0.50000	0.33333	1.55797	0.53945	0.53553	00392
5	0.35355	0.68688	1.10117	0.90307	0.90111	00196
6	0.00000	0.83333	0.67241	0:74017	0.73933	00084
7	35355	0.68688	0.54295	0.44528	0.44711	0.00183
8	50000	0.33333	0.57315	0.19845	0.20059	0.00214
9	75000	0.33333	0.44637	0.15455	0.15568	0.00113
10	-1.00000	0.33333	0.34763	0.12037	0.12100	0.00063
11	-1.00000	0.00000	0.36788	0.00000	0.00000	0.00000
12	-1.00000	33333	0.34763	12037	12100	00063
13	75000	33333	0.44637	15455	15568	00113
14	50000	33333	0.57315	19845	20059	00214
15	35355	68688	0.54295	44528	44711	00183
16	0.00000	83333	0.67241	74017	73933	0.00084
17	0.35355	68688	1.10117	90307	90111	0.00196
18	0.50000	33333	1.55797	53945	53553	0.00392
19	0.75000	33333	2.00048	69266	68993	0.00273
20	1.00000	33333	2.56866	88940	88801	0.00139
Í	1			L		

۲		U _X	Error	u = y	u _y Computed	Error
n	l cos y	computed	^u x	-2 511 y		y
1	2.71828	2.70986	00842	0.00000	0.00000	0.00000
2	2.56866	2.57245	0.00379	88940	-/89029	00089
3	2.00048	1.99884	00164	69266	69943	00677
4	1.55797	1.56046	0.00249	53945	54167	30222
5	1.10117	1.10772	0.00655	90307	90027	0.00280
6	0.67241	0.66810	00431	74017	73654	0.00363
7	0.54295	0.54270	00025	44528	43928	0.00600
8	0.57315	0.57262	00053	19845	20257	00412
9	0.44637	0.44656	0.00019	15455	15808	00353
10	0.34763	0.34732	00031	12037	12021	0.00016
11	0.36788	0.37086	0.00298	0.00000	0.00000	0.00000
12	0.34763	0.34732	00031	0.12037	0.12021	00016
13	0.44637	0,44656	0.00019	0.15455	0.15808	0.00353
14.	0.57315	0.57262	00053	0.19845	0.20257	0.00412
15	0.54295	0.54270	00025	0.44528	0.43928	00600
16	0.67241	0.66810	00431	0.74017	0.73654	00363
17	1.10117	1.10772	0.00655	0.90307	0.90027	00280
18	1.55797	1.56046	0.00249	0.53945	0.54167	0.00222
19	2.00048	1.99884	00164	0.69266	0.69943	0.00677
20	2.56866	2.57245	0.00379	0.88940	0.89029	0.00089
1						

Comparison of first derivatives, functional and computed

-16-

0 0 -) 5 Û 0 7 1

-17-

LBL-4625

Comparison of midpoint values, functional and computed

n/		u Computod	Error	v =	V	Error
		Computed	<u> </u>		Computed	V
1 2	2,68062	2.68057	00005	0.45095	0.44973	00122
23	2.26684	2.26664	00020	0.78489	0.78300	00189
34	1.76541	1.76552	0.00011	0.61127	0.60780	00347
45	1.33723	1.22713	00010	0.74818	0.74490	00328
56	0.86491	0.86436	00055	0.82222	0.82104	00118
67	0.60733	0.60758	0.00025	0.57736	0.57779	0.00043
78	0.56953	0.56906	00047	0.31865	0.32084	0.00219
⁸ 9	0.50580	0.50582	0.00002	0.17513	0.17675	0.00162
⁹ 110	0.39392	0.39390	00002	0.13639	0.13716	0.00077
1011	0.36278	0.36276	00002	0.06103	0.06148	0.00045
1112	0.36278	0.36276	00002	06103	06148	00045
¹² 13	0.39392	0.39390	00002	13639	13716	00077
1314	0.50508	0.50582	0.00002	17513	17675	00162
¹⁴ 15	0.56953	0.56906	00047	31865	32084	00219
¹⁵ 16	0.60733	0.60758	0.00025	57736	57779	00043
¹⁶ 17	0.86491	0.86436	00055	82222	82104	0.00118
1718	1.33723	1.33713	00010	74818	74490	0.00328
¹⁸ 19	1.76541	1.76552	0.00011	61127	60780	0.00347
¹⁹ 20	2.26684	2.26664	00020	78489	78300	0.00189
20 1	2.68062	2.68057	00005	45095	44973	0.00122

Comparison of some interior points

x	у	l ^x cos y	u Computed	Error u	ℓ ^x sin y	v Computed	Error v
0.00	0.25	0.96891	0.96835	00056	0.24740	0.24714	00026
25	0.50	0.68346	0.68275	00071	0.37338	0.37202	00136
0.00	0.50	0.87758	0.87649	00109	0.47943	0.47841	00102
0.25	0.50	1.12684	1.12379	00305	0.61559	0.61496	00063
0.00	0.75	0.73169	0.72337	00832	0.68164	0.67257	00907

			•			
n	x	y	l ^x cos y	v l ^x sin y	V Computed	Error v
1	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000
2	0.15451	0.12447	1.15806	0.14489	0.14490	0.00001
3	0.29389	0.19549	1.31608	0.26061	0.26068	0.00007
4	0.40451	0.30611	1.42890	0.45159	0.45172	0.00013
5	0.47553	0.44549	1.45184	0.69326	0.69341	0.00015
. 6	0.50000	0.60000	1.36075	0.93094	0.93107	0.00013
7	0.47553	0.75451	1.17223	1.10196	1.10206	0.00010
8	0.40451	0.89389	0.93868	1,16816	1.16821	0.00005
9	0.29389	1.00451	0.71979	1.13221	1.13219	、 .00002
10	0.15451	1.07553	0.55468	1.02685	1.02676	00009
11 ·	0.00000	1.10000	0.45360	0.89121	0.89103	00018
12	15451	1.07553	0.40723	0.75388	0.75362	00026
13	29389	1.00451	0.39989	0.62901	0.62869	00032
14	40451	0.89389	0.41799	0.52017	0.51980	00037
15	47553	0.75451	0.45287	0.42572	0.42532	00040
16	50000	0.60000	0.50059	0.34247	0.34207	00040
17 '	47553	0.44549	0.56089	0.26783	0.26746	00037
18	40451	0.30611	0.63628	0.20109	0.20079	00030
19	29389	0.19549	0.73116	0.14478	0.14459	00019
20	15451	0.12447	0.85021	0.10638	0.10630	00008

Example 4 Droplet 20 points

Comparison of v functional and computed

-19-

LBL-4625

n	$\begin{array}{c} u \\ {}^{x} cos y \end{array}$	Computed	Error u x	$-\ell^x \sin^y y$	u _y Computed	u y y		
1	1.00000	0.99984	00016	00000	00030	00030		
2	1.15806	1.15815	0.00009	14490	14519	00029		
3	1.31608	1.31636	0.00028	26061	26094	00033		
4	1.42890	1.42912	0.00022	45159	45179	00020		
5	1.45184	1.45181	00003	69326	69329	00003		
6	1.36075	1.36053	00022	93094	93091	0.00003		
7	1.17223	1.17201	00022	-1.10196	-1.10200	00004		
8	0.93868	0.93844	00024	-1.16816	-1.16835	00019		
9	0.71979	0.71953	00026 -	-1.13221	-1.13262	00041		
10	04-55468	0.55449	00019	-1.02685	102740	00055		
11	0.45360	0.45358	00002	89121	89173	00052		
12	0.40728	0.40735	0.00012	75388	75429	00041		
13	0.039989	0.40010	0.00021	67901	62929	00028		
14	0.41799	0,41821	0.00022	52017	52032	00015		
15	0.45287	0.45298	0.00011	42572	42576	00004		
16	0.50059	0.50051	00008	34247	34248	00001		
17	0.56089	0.56059	00030	26783	26794	00011		
18	0.63628	0.63582	0.00054	20109	20143	00034		
19	0.73116	0.73071	00045	14478	14541	00063		
20	0.85021	0.84995	00026	10638	10707	00069		
			ľ			1		

Comparison of first derivative values, functional and computed.

Comparison of midpoint values

n	/ _{n+1}	u = $l^{x} \cos y$	u Computed	Error	v = $l^{x} sin v$	v Computed	Error
1	2	1.07823	1.07823	0.00000	0.06719	0.06718	00001
2	3	1.23534	1.23534	0.00000	0.19933	0.19937	0.00004
3	4	1.37357	1.37357	0.00000	0.35190	0.35200	0.00010
4	5	1.44438	1.44438	0.00000	0.56988	0.57003	0.00015
5	6	1.41117	1.41116	00001	0.81313	0.81327	0.00014
6	7	1.26922	1.26922	0.00000	1.02062	1.02073	0.00011
7	8	1.105453	1.05454	0.00001	1.13972	1.13979	0.00007
8	9	0.82571	0.82571	0.00000	1.15271	1.15273	0.00002
9	10	0.63342	0.63342	0.00000	1.07916	1.07911	00005
10	11	0.50177	0.50177	0.00000	0.95672	0.95658	00014
11	12	0.42993	0.42994	0.00001	0.81975	0.81953	00022
12	13	0.40453	0.40454	0.00001	0.68920	0.68891	00029
13	14	0.41069	0.41069	0.00000	0.57333	0.57299	00034
14	15	0.43738	0.43739	0.00001	0.47272	0.47233	00039
15	16	0.47849	0.47848	00001	0.38477	0.38436	00041
16	17	0.53200	0.53200	0.00000	0.30654	0.30615	00039
17	18	0.59908	0.59908	0.00000	0.23637	0.23603	00034
18	19	0.68319	0.68318	00001	0.17503	0.17478	00025
19	20	0.78895	0.78895	0.00000	0.12730	0.12717	00013
20	1	0.92386	0.92388	0.00002	0.05757	0.05756	00001

LBL-4625

-21-

SECTION 7. CONCLUSIONS

No general conclusions are obtained as to the accuracy of the method presented. However, the results obtained in the Examples on a rather varied domains indicate that the complex cubic spline approximation with optimization as described does provide a practical and reasonably accurate numerical solution of Laplace's equation with Dirichlet conditions on a simple domain. In addition, fairly good values for the first derivates and for the harmonic conjugate are obtained.

Examples 1 and 4 indicate that error is less when all the points of specification are vertices as opposed to the case in Examples 2 and 3 when intermediate points on the sides are included. The abrupt "corners" (right angles) in Examples 2 and 3 also have an adverse effect. Other tests run on these examples indicate very little improvement in accuracy if more points are specified.

REFERENCES

 Young, J., Complex Cubic Splines, Lawrence Berkeley Laboratory Report, LBL-4202, 1975.

ACKNOWLEDGMENT

This work was done in part under the auspices of the U.S. Energy Research and Development Administration.

-LEGAL NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

**., ¥.