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Introduction

For an agent to find and repair the faults that underly
a planning failure, it must be able to reason about the
intended behavior of its planning and decision-making
mechanisms. Representations of intended decision-
making behaviors, which we refer to as inientions,
provide a basis for generating testable hypotheses about
the source of a failure in the absence of complete
information about its cause. Moreover, intentions
provide measures by which beneficial modifications to
cognitive machinery can be differentiated from harmful
or useless ones. This paper presents several examples of
these intentions and discusses how they may be used to
extend the range of circumstances in which agents can
learn.

Since our claim concerns the representations needed to
learn from failure, we describe in section 2 a situation in
which an agent should be able to learn, and discuss some
of the obstacles to doing so. In section 3, we present
the idea of intentions and show, using the example
from the previous section, how they may be used to
extend the range of circumstances in which machines
can learn. Section 4 presents an implementation of our
theory of failure-driven learning and discusses the role
of intentions in several stages of the learning process.
Finally, in section 5, we relate our claim to the work of
other researchers and summarize the argument that the
intended behaviors of decision-making mechanisms must
be represented explicitly in order to learn from failure.

An every-day example

Consider the situation of a novice driver attempting to
traverse a crowded and confusing road feature such as
the rotary shown in figure 1. Lacking experience, the
novice may end up waiting longer than more experienced
drivers before entering the flow of traffic. It is not
unreasonable to suppose that the novice notices the
undesirably long wait, perhaps with the assistance
of impatient drivers waiting behind. The situation
implicates some shortcoming in the novice’s driving skill,
and so warrants an attempt to learn some improvement.

What should be learned?

Drivers can identify collision-threats such as road
obstacles and moving vehicles, and must take them into
account in deciding how and when to enter traffic. For
instance, if at some moment traffic is heavy and moving
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quickly, a driver may notice many collision threats and
choose not to enter. Alternately, s/he may employ some
plan that avoids or neutralizes all of these threats, and
proceed to enter traffic.

For the task of entering the flow of traffic, the category
collision-threat is useful for constraining the set of plans
which may be safely employed. However, the novice
in our example may have been employing an overbroad
definition of collision-threat. As a result, the set of
seemingly safe plans will be overconstrained, thereby
increasing the average amount of time before some plan
seems safe. It 1s reasonable to blame the category
definition for overconstraining the set of plans which can
be used to enter traffic safely, thereby preventing timely
action. Learning from the failure thus means narrowing
the faulty definition of collision-threat.

There may of course be many ways in which the
definition of collision-threat could be usefully narrowed.
For instance, a novice may learn that other drivers
tend to stay in their own lanes between exits; thus,
the possibility that a vehicle will make a sudden and
inexplicable lane change should not be considered a
collision-threat.

Tracing the delay to its underlying cause

In our example, the novice’s failure to expeditiously
enter the flow of traffic stems from a failure to generate
a safe plan for entry. This failure stems, in turn,

Figure 1: Flow of traffic on a rotary
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from having noticed more threats than the novice
could plan to counter or avoid. The novice can get
better at entering traffic by learning to more accurately
differentiate between threats and non-threats.

One way that this diagnosis could proceed is as
follows: Suppose the novice receives feedback indicating
that a particular perceived threat was not in fact a
threat over some time interval. The circumstances
during this interval could then be reviewed to show
that a safe plan to enter the rotary would have been
discovered had the misperceived threat (a “near miss”
been ignored. Finally, the misperceived threat could be
used to narrow the collision-threat category definition.

The preceding process is unrealistic for several
reasons. First, it assumes that the agent can receive
specific feedback regarding a decision that was made
incorrectly, as opposed to an action that was incorrectly
taken. Moreover, since the novice had no way to know
a priort which of its decisions should be monitored,
it would require that the novice receive continuous
feedback on each of its decisions. Finally, it is highly
implausible that the novice will be able to receive
detailed feedback about particular perceived threats,
since novices typically lack the knowledge necessary to
evaluate such situations post-hoc [Fitts, 1964; Starkes
and Deakin, 1985].

A more realistic diagnostic process begins as the driver
of another car honks his horn and thereby leads the
novice to question why no safe traffic entry plans have
been generated. Hypotheses are developed as to why
this might be the case, including for example that either
the planning mechanism is inadequate, or its set of
collision-threats 1s faulty. These hypotheses enable the
novice to seek specific feedback through experimentation
or advice.

Reasoning about agent intentions

As previously argued in [Collins et al., 1991), it is
i1s useful to divide a planner into components, each
responsible for a task-independent function such as
detecting threats or selecting among competing plans.
The effectiveness of a component depends on whether
it performs its function quickly, how reliably it attends
to relevant input items, whether it avoids pathological
interactions with other components, and so on. We call
these measures of component effectiveness intentions.
When an agent implemented as a component
architecture learns, one or more modifications are made
to its constituent components. Component intentions
(see figure 2 for examples) are a measure of the
value of a modification. For instance, a modification
is valuable if it helps avoid pathological interactions
between components and harmful to the extent that
it aggravates such interactions or introduces new ones.
Because the choice of what to learn depends on factors
measured by intentions, intentions should be explicitly
represented so that learning processes can reason about
them. To understand this point, consider again the

[[ Within components || Inter-component Il
No false positives

No false negatives

| Efficient computation
Output values within
acceptable ranges

Don’t flood other components
Don’t monopolize resources
‘Don’t reproduce computation
Don’t focus on areas of
ultimate irrelevance

Don’t be a bottleneck

Figure 2: Sample planner component intentions

rotary example of section .

Recall that the principal difficulty in speeding traffic-
entry performance lay in locating a sample misperceived
threat (a near miss) on which to base a refinement of
the collision threat classification. The most effective
solution was apparently to hypothesize that the category
is overbroad and to seek out specific feedback on future
threat-detection performance through experimentation
or advice. In the absence of an instance of a
misclassification, this solution requires some other basis
for formulating the fault hypothesis. Intentions provide
this alternate basis.

Consider the component intention: avoid flooding
another component with oulput. The negation of this
intention represents a situation in which a component is
producing too much output; this in turn indicates that
some output-definer (category) may be too broad and
that fixing the problem requires locating a false positive
with which to narrow the category.

A second role of intentions is to evaluate candidate
component modification for preventing failure recur-
rence. In our example, drastically narrowing the
collision threat category (so that no collision threats
are generated) would solve the problem of flooding the
traffic-entry planner with output, but would lead to
catastrophically faulty plans. The basis for rejecting this
candidate modification is the intention that the threat-
detection component’s output be free of false-positives.

Implementation and second example

In this section, we describe a system, casTLE!, which
implements important aspects of our theory. The
system, which operates in the domain of chess, detects
situations that are contrary to its expectations, and
responds to these expectation failures by repairing the
faulty planner components which were responsible for
the failure. We view this learning as a knowledge-based
process, in which the system uses knowledge of its own
planning components to learn from events which led to
expectation failures. More specifically, the system must
reason along different dimensions of intentionality to
determine what repairs should be made to its planning

'CasTLE stands for Concocting Abstract Strategies
Through Learning from Expectation-failures.
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Figure 3: Incremental threat detection

rules,

The knowledge necessary for this repair process is
expressed in the form of a planner self-model, which
is used to diagnose and repair expectation failures
[Davis, 1984; deKleer and Williams, 1987; Simmons,
1988]. More specifically, when the expectation fails, the
system first examines an explicit justification structure
which encodes the the reasoning which let to its belief
in the incorrect expectation |deKleer et al., 1977,
Doyle, 1979]. This justification is used to isolate the
faulty components of its architecture, each of which
implements a particular sub-task in the decision-making
process [Collins et al., 1991; Krulwich, 1991). It then
uses a specification of the faulty components to guide the
learning of new rules in response to the failure [Krulwich,
1992]. Each of these information sources must explicitly
reference the planner’s intentions.

Detection focusing

A central cognitive task in which CASTLE engages is that
of noticing threats and opportunities as they become
available [Collins et al., 1991]. Rather than recomputing
these at each turn, CASTLE maintains a set of active
threats and opportunities that is updated over time. To
accomplish this incremental threat detection, the system
uses a detection focusing component, which consists
of focus rules that specify the areas in which new
threats may have been enabled. Then, a separate threat
detection component, consisting of rules for noticing
specific types of threats, detects the threats that have
in fact been enabled. This relationship between the two
components is shown pictorially in figure 3. A sample
focus rule is shown in figure 4. This rule embodies
the system’s knowledge that the most recently moved
piece, in its new location, may be a source of new
threats. Another focus rule, not shown, specifies that
the more recently moved piece can also be a target of
newly enabled attacks. Using focus rules such as these,
the actual threat detector rules will only be invoked on
areas of the board which can potentially contain new
threats.

Focusing intentions

What intentions does the system have regarding its
detection focusing component? The primary intention
that the system has is that there not be any newly
enabled threats that are not within the scope of

(def-brule focus-nev-source
(focus focus-moved-piece ?player
(move 7?player 7move-type 7piece 7locl 7loc2)
(world-at-time ?time))
{m
(move-to-make (move 7player ?prev-move-type
?piece 7old-loc 7locl)
7player 7goal (1- ?time)) )

Figure 4: Focusing on new moves by a moved piece

the bindings generated by the focusing component.
This condition is clearly necessary for the incremental
detection scheme to work. A more subtle intention is
that the focusing component not generate too many
bindings in which threats do not exist. If this intention
is not met, the detection component will be invoked
more than is necessary, and in the extreme case the
entire point of the detection focusing is lost. Clearly
the savings gained by only applying the threat detection
rules in constrained ways (and not over the entire board)
must be greater than the cost of applying the focusing
rules. This will not be the case if the constraints given
by the focusing component are too weak. It will also not
be the the case if the computational cost of applying the
focusing component is too high.

Another planner intention regarding the focusing
component is that the division of the tasks shown in
figure 3 be enforced. This means that the system should
not incorporate information about different types of
threats into the focusing rules.

Discovered attacks

To see how CASTLE uses representations of planner
intentions in learning, let’s first see an example of
CASTLE enforcing its simplest intention, that there be
no false negatives of its focusing component. Consider,
in particular, the example of discovered attacks in chess,
in which the movement of one piece opens a line of attack
for another piece. Novices often fall prey to such attacks,
not because they fail to understand the mechanism of
the threat (i.e., the way in which the piece can move to

Intention
No false negatives

Application to focusing
Don’t let a threat be enabled
without detectors being invoked
Detectors not over-applied
Incremental scheme shouldn’t
be less efficient than

brute-force

Don’t encode information about
specific threats in focus rules

No false positives
Efficiency

No redundancy

Figure 5: Planner intentions in detection focusing




Figure 6: Example: Opponent (white) to move

make the capture), but rather because they simply fail
to consider new threats arising from pieces other than
the one just moved. The same is true of CASTLE if it is
equipped only with the two focus rules described above.

The example in figure 6 shows the system falling prey
to a discovered attack due to its lack of a necessary
detection focusing rule. In the situation shown in
figure 6(a), the opponent advances its pawn and thereby
enables an attack by its bishop on the computer’s rook.
When the systemn updates its set of active threats and
opportunities, its threat focusing rules will enable it to
detect its own ability to attack the opponent’s pawn,
but it will not detect the threat to its rook. Because
of this, when faced with the situation in figure 6(b),
the computer will capture the opponent’s pawn instead
of rescuing its own rook, and it will expect that the
opponent’s response will be to execute the attack which
1t believes to the only one available, namely to capture
the computer’s pawn. Then, in the situation shown in
figure 6(c), when the opponent captures the computer’s
rook, the system has the task of diagnosing and learning
from its failure to detect the threat which the opponent
executed.

Learning from the failure

To diagnose the failure, CASTLE examines an explicit
justification structure [deKleer et al., 1977; Doyle, 1979),
which record how the planner’s expectation was inferred
from the rules that constitute its decision-making
mechanisms, in conjunction with the policies and under-
lying assumptions which it has adopted. Diagnosing
the failure then involves “backing up” through the
Jjustification structure, recursively explaining the failure
in terms of faulty rule antecedents [Smith et al., 1985;
Simmons, 1988; Birnbaum et al., 1990; Collins et al.,
1991]. This diagnosis process will “bottom out” by
faulting either an incorrect planner rule or an incorrect
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(def-brule learned-focus-method25
(focus learned-focus-method25 7player
(move ?player (capture 7taken-piece)
7taking-piece (loc 7rowl 7coll)
(loc 7?row2 7col2)) (world-at-time 7time2))
<=
(and (move-to-make
(move ?other-player move ?interm-piece
(loc ?r-interm ?c-interm)
(loc 7r-other ?c-other))
7player 7goal 7timel)
(loc-on-line ?r-interm 7c-interm
?rowl 7coll 7row2 7col2)
(at-loc ?player ?taking-piece
(loc ?rowl ?coltl)
(- gen-time2.24 2)) ))

Figure 7: Learned focus rule for discovered attacks

assumption that underlies the planning mechanism. In
our example, the fault lies in an assumption that the
planner could enforce its first intention regarding its
focusing component, that it would generate bindings
for all enabled threats. CASTLE concludes from this
that its set of focusing rules is incomplete and must be
augmented.

To construct the new rule, CASTLE retrieves a com-
ponent performance specification for each component.
These performance specifications, a form of planner
self-knowledge, describe the correct behavior of each
component. The specification of the detection focusing
component says roughly that the focusing component
will generate bindings that include any capture thal 1s
enabled by a given move. This specification enables
CASTLE to focus on the details of the example that are
relevant to the component being repaired, by serving as
an explanation-based learning target concept [Krulwich,
1991; Krulwich, 1992]. After retrieving the specification,
CASTLE invokes its deductive inference engine to
construct an explanation of why the possible capture
of the rook should have been in the set of constraints
generated by the focusing component. This explanation
says roughly that the opponent’s move should have
been generated by the focusing component, because the
opponent’s previous move enabled the attack, because it
was on a square between the bishop and the rook, and
there were no other pieces along the line of attack, and
emptying the line of attack is an enabling condition for
the capture to be made. CASTLE then uses explanation-
based learning techniques [Mitchell et al., 1986; DeJong
and Mooney, 1986] to generalize this explanation and
to construct a new detection focusing rule shown in
figure 7.

Back to intentionality

In the example of learning discovered attacks, the
system is able to correct the failure of the detection



focusing component to generate bindings that included
the new attack. The learning process that we
described involves the construction of a new rule to
enforce the intention that the focus component not
generate any false negatives. Suppose, however, that
instead of adding the rule shown in figure 7, the
system’s learning component added a focusing rule
that returned completely unconstrained bindings. This
would cause the detection rules to be applied to all
board positions in computing the newly enabled threats.
This would, of course, enforce the system’s intention
to have no false negatives, and would also satisfy
the component specification, because all threats that
could possibly be enabled are by definition within the
unconstrained bindings. However, the whole purpose
of the incremental threat detection scheme (figure 3)
would be undermined, because not only will the system
apply the threat detection rules over the entire board,
but it will then proceed to integrate the threats that it
finds into the set of previously available threats, which
is clearly a waste of time. In short, this is a violation of
the system'’s no-false-positives intention.

Unfortunately, while the violation of the no-false-
negatives intention could be easily noticed by observing
an enabled threat that was not in the focus bindings, it is
much more difficult to notice the failure of the no-false-
positives intention. In our example, after the opponent
moves his pawn in figure 6(b), three classes of bindings
constraints should be generated: threats by the moved
piece al ils new location, which are generated by the
rule in figure 4, threats against the moved piece al ils
new location, and threats through the square vacated by
the moved piece, generated by the learned discovered
attacks rule in figure 7. Two of these in fact reflect
new threats that have been enabled, but one of them,
threats by the moved piece, in fact do not reflect any
new threats.

We can see that this must be the case, because the
division of labor between the focusing and detection
components requires that no information about the
types of threats themselves be present in the focus rules.
Since the focusing component is only determining where
to look for new threats, it is clear that there will be
times when a correct place to look for new threats will
not in fact contain any.

This complicates the problem of detecting false
positives, since there is no direct test to determine
whether the focus component was generating false
positives. One approach would be for this intention to
only come into play when the system is learning new
focus rules. The no-false-positives intention could be
used to force the learning mechanism to generate the
most specific possible rule. Of course, this approach
does not allow the system to reason explicitly about this
intention.

Another approach would be to have the system
generate expectations about the performance of its
component that do not relate directly to false positives,
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but that are good indicators of the system’s false
positive rate. As we discussed above, the intention
not to have any false positives is in service of system
efficiency, because the design of the incremental threat
detection scheme is based on the focusing component’s
sufficiently narrowing down the scope of the detection
rule application. It follows from this that the system
could monitor the computational effort spent on the
detection focusing and compare it with the savings in
threat detector application. If this tradeoff turned out
not to be worthwhile, the system could examine its
false positive rate in more detail. This is similar to
the example in which the driver was unable to enter
the intersection, causing him to examine his detection
mechanism for sources of false threats. This requires
that the system be able to make utility judgements
about different tradeoffs between false positives, false
negatives, and efficiency.

A similar learning process could be invoked if the
system noticed that too much time was being spent
considering pointless opportunities. This could arise
if the system found that it was spending too much
time considering pawn captures that were always being
discarded by the plan selection component. If this
were the case, the system could infer that its focusing
component should be further constrained not to generate
bindings for captures of pawns.

Discussion

We have shown that reasoning about the faults under-
lying a planning failure requires that an agent explicitly
represent performance intentions which describe the
desired behavior of its components. When one of its
components is faulty, the agent must reason explicitly
about its intentions to diagnose the failure and make a
repair which is to its overall benefit.

This paper presents several examples of single-
component intentions, such as completeness, soundness,
and efficiency, as well as intercomponent intentions
such as avoiding flooding and competition for global
resources. We have discussed aspects of the learning
process which require explicit reasoning about these
intentions, thereby extending the range of concepts an
agent can learn, and allowing it to learn in circumstances
in which it could not otherwise learn. This work thus
builds on previous research in failure-driven acquisition
of new planning knowledge [Hammond, 1989; Birnbaum
et al., 1990; Collins et al., 1991].

Previous research has dealt with several of the issues
we have discussed. Minton [1988)] discussed the need
for learned planner rules to be sensitive to the global
efficiency of the system. Our work builds on this idea
by explicitly modeling and a variety of such intentions.
Hunter’s system [1989] reasoned about shortcomings
in its diagnostic knowledge and explicitly modeled the
intentions involved in that task to guide learning.
Similarly, Cox and Ram [1991] have modeled several
intentions of the case retrieval process for use in the task



of understanding. Our research extends these ideas to
model intentions for a more general problem solver, as
well as modeling the intercomponent intentions. Others
have used representations of the system’s intentions for
planning [Jones, 1991] and understanding [Ram, 1989).

Our previous research has involved extending our
model of planning and decision-making to include a
variety of tasks and components, all in the domain
of competitive games. To date we have developed
models of threat detection, counterplanning, schema
application, goal regression, lookahead search, and
execution scheduling. Future research will elucidate
the breadth of planner intentions, and will demonstrate
the benefits of explicitly representing them for use in
learning.
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