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What is a neural network?  Many of us start with a vague image of a mesh of cells in the brain 

somehow doing something that is analogous to the World Wide Web of which our various digital 

devices are a part and that a neural network, thus, operates essentially like a linked collection of 

microprocessors.  I want to examine, however, how this image of a network of connected 

neurons in our head is at best a starting point and how understanding the actual dynamics of 

neural networks leads us far away from the computer model and into processes for the 

construction of embodied meaning that humanists will recognize as the poststructuralist world of 

our varied disciplines.   

 Biological neural networks work by rules different from those of serial computers (i.e. 

computers that function by following programs written as a sequence of rules for calculations 

and the logical branching conditions based on the results of those calculations). The complexities 

of human experience that arise within the neural networks of the brain work not through the 

decision logic of computers but according to massively parallel, widely distributed probabilistic 

procedures for pattern recognition that are expressible in the language of matrix mathematics. I 

seek here to illustrate the process by which, beginning in infancy, we develop deep structures of 

memory in the brain that are shaped by emotional systems that represent to the brain the needs 

and desires of the body.  The mathematics of neural networks requires that these affectively 

shaped memory structures at the heart of our adult understanding of the nature of the self and the 

world are self-organized maps, and the “objects” of our experience arise as mutually 

differentiated regions within those maps rather than as discrete entities.  This poststructuralist 

world of constructed maps within us is shaped by the developmental logic and basic mathematics 

of the brain.  There is much here to which we, as humanists, can contribute—and much that we 

can learn—through joining the conversation about this embodied organization of meaning.   But 



  Fuller 3 

Proceedings of A Body of Knowledge - Embodied Cognition and the Arts conference CTSA UCI 8-10 Dec 2016 

to join this conversation we must learn something of the shared language of mathematics and 

neurobiology at the heart of the neural network model. 

 

I. Modeling Neurons and Neural Networks 

 Let us begin at the most basic level of neuronal functioning: the working of synapses.  Synapses 

are chemically mediated connections between an axon (output) terminal of one neuron and an 

(input) dendrite of another.  When a neuron “spikes,” it sends a wave of electrical depolarization 

down its axon, and chemicals are released at its terminals.  The dendrite of the receiving neuron 

has receptors that bind to the neurotransmitter released by the axon terminal at the synaptic 

junction.  If enough dendrites for a neuron simultaneously bind in-coming neurotransmitters, this 

action produces a new spike of depolarization that the neuron sends down its axon.1 

 

  In the adult cortex there are 12-20 billion neurons. For each neuron there are about 7,000 

synaptic junctions.2 The average response time (between receiving the activation input at the 

dendrites and transmitting a pattern of activation to the axonal terminals) is about 5 milliseconds, 

                                            
1 While this description introduces the basic features of synapses, the reality is far more complicated.  For 
example, there is a host of neurotransmitters—some excitatory, some inhibitory—and there are different 
types of receptors with different properties.  There are many sources from which to learn more, including 
the contemporary standby, Wikipedia (https://en.wikipedia.org/wiki/Synapse ) 
2 B. Pakkenberg et al., “Aging and the Human Neocortex,” Experimental Gerontology 38 (2003) 95–99. 

https://en.wikipedia.org/wiki/Synapse


  Fuller 4 

Proceedings of A Body of Knowledge - Embodied Cognition and the Arts conference CTSA UCI 8-10 Dec 2016 

while the average observable conscious response to a stimulus takes about 500 milliseconds.3   

Thus the brain typically produces a response via about 100 steps of neuronal activation.  This 

“one hundred step” process shows the inadequacy of the conventional computer analogy. While 

one can say that “computation” is occurring, it is at a vastly more complex level.  Researchers 

have long understood that since one hundred instructions in assembly language—the base level 

of computation in a serial computer—does not get one very far, whatever the brain is doing to 

integrate external and internal conditions in its responses must be using approaches to 

computation made possible by the almost inconceivably massive parallelism of its neuronal 

networks, and that the brain’s mode of computation profoundly differs from the step-by-step 

logic of a serial computer program. 

 To explore how neuronal computation works, researchers began by building a simple 

model of a neuron: 

 
 
 
That is, each neuron has a set of input synaptic connections, and each connection has a specific 

weight—a measure of the strength of the connection to the neurons to which it is attached.  The 

fundamental calculation a neuron makes is whether to fire, to produce an activation to pass along 

to the next set of neurons in the network.  To make this calculation, the neuron simply sums the 

activation state of the input neuron (either 0 or 1 in the simplest model) times the weight of the 

                                            
3 Drawing of Neuron courtesy of Brett Szymik. “A Nervous Journey.” http://askabiologist.asu.edu/neuron-anatomy. 
© Arizona Board of Regents / ASU Ask A Biologist. Published under Creative Commons BY-SA 3.0 

w
i  

is the weight (the strength) of the synaptic 

connection between the input connection input 
i(i) and the neuron 
 
output = 1, if ∑ input(i) × w

i 
> t 

   0, otherwise 

http://askabiologist.asu.edu/neuron-anatomy
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connection to the input neuron.  If this weighted sum is higher than some threshold value t, the 

neuron fires.4  The individual neurons are part of layers of neurons.  As illustrated in the 

following figure, in this model the behavior of any neuron in Layer B depends not an any single 

neuron in Layer A but on contributions from some or all the neurons in Layer A.5  Each 

connection between the neurons in the first layer and the neurons in the next layer has a 

connection weight wi,j.   

 

The set of these weights defines a weighting matrix of dimension (m,n) (columns for Layer A, 

rows for Layer B) 

 

 

                                            
4 More recently, more biologically informed models have used a so-called “leaky integrate and fire” design, in which 
cells leak (lose activation strength) and rely not on a simple, static activation value but on changes in the spiking rate 
of the input neurons (the rate at which the neurons send spikes of depolarization down the axon to the axonal 
terminals and release waves of neuronal transmitters across the synaptic junction).  The neurons  sum the change in 
spiking rate times the weight of the connection and, if the value is high enough, in turn increase their own rate of 
spiking transmitted to their axonal terminals.  I have found Thomas P. Trappenberg, Fundamentals of Computational 
Neuroscience Second Edition (Oxford:  Oxford University Press, 2010) to be an excellent account of the more 
contemporary mathematical models for neural network computation. 
5 I have drawn a layer of fully connected neurons, but in most cases, neurons are sparsely connected, with 
not all the neurons in Layer A connected to all the neurons in Layer B 

�
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This weighting matrix is where the action is:  changing the weights is where learning happens. 

 In 1949 Donald Hebb proposed a simple learning rule for training neural networks to 

develop stable responses to sets of patterns.6  The idea was that if the activation of a synaptic 

connection from a neuron in the layer below contributes to a neuron’s firing, then one increases 

the strength of that connection.  In mathematical terms: 

∆wij = ηaibj 

where 

ai and bj = the output values for the ith unit in Layer A 

                   and the jth unit in Layer B 

∆wij           = the change in the connection weight between the units 

η             = a learning parameter 

Note that if either ai or bj is 0 (i.e., the neuron did not fire), then the connection weight does not 

change.  The popular shorthand explanation of Hebb’s rule has thus become “Neurons that fire 

together wire together.” 

 

II. Neuronal Structuralism 

What can such neural networks do?  We begin with a simple pattern detection system that easily 

extends to help us think about how the visual system—which is the neural system that has been 

the best studied and has provided an important model for thinking about neural networks in 

general—works.  Consider a pair of layers of neurons: 

 

 

                                            
6 Donald O. Hebb, The Organization of Behavior. (New York: Wiley & Sons, 1949). 
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In this system, only two neurons in the first layer fire at a time, and they must be next to each 

other either horizontally or vertically.  In the second layer, only one of the two neurons can fire at 

a time (they inhibit each other:  the one that fires keeps the other from firing).7  The system 

begins with the weights of the connections between the neurons in the first layer and those in the 

second given random values and then is trained through many rounds of activation of pairs of 

neurons in the first layer.  In different trials, the results were: 

 

 

 

                        Trial 1                               Trial 2                                   Trial 3 

Filled circle:    Output Neuron 1 gave the input from that unit a higher weight,  
Empty circle:  Output Neuron 2 gave the input from that unit a higher weight.   
Heavy line:      When the two input units were active, Output Neuron 1 won 
Thin line:         Output Neuron 2 won the competition. 
 

At the end of each trial, when the system of weights and the pattern of activation have become 

                                            
7 This example comes from D. E. Rumelhart and D. Zipser, “Feature Discovery by Competitive Learning,” in David 
E. Rumelhart and James L. McClelland, and PDP Research Group, Parallel Distributed Processing:  Explorations in 
the Microstructure of Cognition, Volume 1: Foundations (Cambridge, MA: MIT Press, 1986), pp. 170-177. 
Reprinted courtesy of The MIT Press. 
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relatively stable, the neural network has discovered a way to divide the input layer into two 

halves (i.e., it has discovered a topographic map), but in different trials, the system finds 

different solutions based on the initial weights.  This is a very simple example, but it resembles 

the way in which the “simple cells” of the primary visual cortex (V1) learn to respond to the 

input from the “On” and “Off” neurons of the lateral geniculate nucleus (LGN) of the thalamus:8 

 

 

 

 

 

 

The cells in the LGN respond to whether, in a cluster of neurons in the retina, the central neuron 

is firing while those surrounding it are off (“On” cell) or if the central neuron is off and the 

surrounding are firing (“Off” cell).  The “simple cells” in V1 in turn aggregate the input from 

LGN neurons and, through Hebbian learning, learn to respond to short line segments at different 

angles.9  The higher-order network aggregates the data from groups of neurons in the lower-level 

network.  The neurons in the higher-order network collectively develop weighting values that 

produce patterns of activation to mutually differentiate features (like angles) in the lower level 

data.  This construction of mutually differentiated feature detectors continues all the way up the 

visual cortex.  The LGN starts with “on” and “off” cells; V1 detects angled line segments; V2 

                                            
8 This model comes from Steven J. Olson and Stephen Grossberg, “A neural network model for the development of 
simple and complex receptive fields within cortical maps of orientation and ocular dominance,” Neural Networks 11 
(1998):189-208. 
9 The “complex” cells in V1 learn to detect additional features like movement. 
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detects clusters of segments that form mutually differentiated shapes, and on and on:10 

 

However, while the initial training of the visual system in early infancy follows simple Hebbian 

rules, the story is actually more complex because the patterns of activation in processing the data 

from the retinas not only flow upward (retina → LGN → V1 → V2 ….) but also downward in 

ways that create more complex training rules as increasingly higher level cortical regions mature.  

Even before activations from higher cortical regions begin to inform the structuring of the visual 

neural networks, the top-down activation serves a very important function in the visual cortex’s 

role in identifying the “objects” differentiated in V5:  when the patterns transmitted from the 

retinas are incomplete (because of lighting conditions or because the “objects” are blocked) the 

top-down activations from layer to layer all the way back to the LGN represent the best guess of 

what the received pattern is and can greatly speed up the ability of the visual system as a whole 

in settling on a pattern it identifies.11 

 Within this system of recurrent connections, researchers call the sets of mutually 

                                            
10 See Bernard J. Baars and Nicole M. Gage, Cognition, Brain, and Consciousness: Introduction to Cognitive 
Neuroscience, Second edition (Academic Press, 2010), p. 166. 
11 See, for example, the discussion of recurrent connectivity in Randall C. O’Reilly, et al., “Recurrent processing 
during object recognition,” Frontiers in Psychology 4 (April 2013), pp. 1-14. 
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differentiated patterns stored in the weighting matrices “attractor basins.”  That is, if an input 

activation is similar to one of the learned patterns, the network will return that learned pattern to 

the layer below it, which then will adjust its firing to look yet more like the expected pattern, 

and, in a few cycles, the input pattern will come to match the expected one.  Thus the learned 

pattern “attracts” input activations initially close to it to settle into its “basin:”12 

 

Recent work on neural networks has developed the sophisticated learning algorithms of “deep 

belief networks” that are distant cousins of the simple Hebbian routines.  These are “belief” 

networks because each layer of the network models the structure of the input “world” of the layer 

below it.  The mathematics of these systems here becomes more complex and draws on the well-

developed field of physics called statistical mechanics.  Based on this analogy with physics, 

researchers think in terms of the “energy” of the neural network system—as in the drawing 

above—and have found the idea of attractor “basins” as low-energy states to be a very powerful 

way of thinking through network dynamics. 

                                            
12 See the discussion in Rafael Yuste, “From the neuron doctrine to neural networks,” Nature Reviews:  
Neuroscience 16 (August 2015), p. 492.  Yuste adapted the figure from Chris Eliasmith, “Attractor Networks” in 
Scholarpedia 2(10):1380. (http://www.scholarpedia.org/article/Attractor_network copyright Creative Commons 
Attribution-NonCommercial-ShareAlike 3.0 Unported License) Yuste provides an excellent overview of the 
relation of computational modeling and neuroscientific research. Also see Patricia S. Churchland and Terrence J. 
Sejnowski, “Blending computational and experimental neuroscience,” Nature Reviews:  Neuroscience 17 
(November 2016), pp. 667-68. 

http://www.scholarpedia.org/article/Attractor_network
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
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 However, whether the learning follows Hebb’s rule or draws on Deep Learning 

algorithms, the basic logic of the neural networks that emerge is the same:  what the training 

defines is a set of mutually differentiated regions in a high-dimensionality space.  Moreover, 

memory accrues at every synapse in the system.  The representations—built layer by layer—are 

distributed among all the synaptic junctions of all the layers in the network:  each layer abstracts 

features and builds a model of the system of “objects” structured in the layers that feed into it.  

The “objects” and their meanings as represented in our brains are not atomic in nature but 

mutually defining spaces in a field.  This model of constructing objects within an encompassing 

structured field is the same as the old structuralist world of “meaning by difference” with which 

humanists have long been familiar. 

 

III. Neuronal Poststructuralism, or You Know what You Want 

By Poststructuralism, I mean a major revision within structuralism.  In structuralism, the 

categories of differentiation that bring structure to the system are arbitrary.  In poststructuralism, 

in contrast, the categories of differentiation are not random and instead draw on pre-existing 

hierarchies of power, desire, and need to generate the system of mutual differentiation.  I argue 

here that the brain, because of its architecture and developmental dynamics, builds the higher 

order representational structures—and semantic memory in particular—through such a logic of 

power, desire, and need. 

 A.  Supervised Learning—Defining the System of Needs 

To clarify the structural role of desire in the brain, I return to the model of deep belief networks.  

Although such networks can be trained to extract the features of their input domain through 

bottom-up learning—called “unsupervised learning”—in most cases, those who are building the 
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network know the patterns they want the system to capture and correct the synaptic weights in 

the system to assure the desired results.  When researchers at Google trained AlphaGo to play 

Go, for instance, they trained it to win, not just to play.  This is “supervised learning.” 

 Learning in the human brain—especially in infancy— crucially relies on supervised 

learning. While the basic layers of the sensory cortices in the brain are trained to extract the 

features of their sensory domain when the child is a neonate, the higher cortical structures that 

record autobiographical and semantic memory develop later, and the neural networks that 

underlie these memory systems are shaped through forms of supervised learning.  This 

supervision comes in two forms.  The first, which should never be forgotten, is external:  an 

unsupervised infant dies.  Thus, a caretaker keeps a child fed, warm (since internal temperature 

regulation matures after birth), removed from danger, and comforted when in distress.  All of 

these nurturing activities profoundly shape the nature and timing of the sensory input and 

internal visceral states the infant encounters and from which it extracts its model of itself and the 

world. 

 B. Affect as Supervisor:  the Neurological Affective System 

The second system for supervising the structuring of memory networks is internal.  The body has 

its requirements for survival, or in the language of biology, for maintaining homeostasis, a 

constant internal environment with acceptable levels of blood sugar, salt, and warmth as well as 

an absence of pain.  All of these bodily parameters must be converted into neuronal inputs 

accessible for cortical processing.  The mechanism for this conversion is the complex of 

subcortical structures in the brain stem and midbrain.13 

                                            
13 Drawing courtesy of Brett Szymik. "A Nervous Journey." ASU - Ask A Biologist. 5 May 2011. 
http://askabiologist.asu.edu/parts-of-the-brain. © Arizona Board of Regents / ASU Ask A Biologist. Published under 
Creative Commons BY-SA 3.0. 

http://askabiologist.asu.edu/parts-of-the-brain
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 To draw on the language of Jaak Panksepp, these subcortical structures produce affect, 

the brain’s primary responses to bodily information.  Panksepp divides affect into three types: 

 1.  Sensory affect (sensory input assessed as either pleasurable or unpleasant) 

 2.  Homeostatic affect (hunger, thirst, etc.) 

 3.  Emotional affect (the “emotion actions systems” produced subcortically)14 

Panksepp lists seven basic systems of “emotional” response produced in the brain stem and mid-

brain regions:  SEEKING, RAGE, FEAR, LUST, CARE, PANIC, and PLAY.  He uses capital 

letters to attempt to clarify that the subcortical systems do not produce what we consciously 

know as these emotions but instead produce the neurochemical substrates and neural activations 

transmitted into the thalamus, amygdala, hippocampus and some cortical regions that underlie 

the development of the complex network of responses that we come to know as emotions.15  One 

crucially important aspect of this list of affects is how many of them support the development of 

specifically social emotions:  humans have evolved as complexly social animals in ways that 

                                            
14 See, for example, Jaak Panksepp, “Cross-Species Affective Neuroscience Decoding of the Primal Affective 
Experiences of Humans and Related Animals,” PLOS, September 7, 2011, p. 3. 
15 Jaak Panksepp, “Cross-Species Affective Neuroscience Decoding,” p. 9 
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have helped the survival of the group, but the shaping of the subcortical systems inherited from 

our early primate ancestors work here by very indirect, emergent developmental processes that 

begin prenatally and take years to complete. 

 The clusters of nuclei in the brainstem and midbrain that produce primary affective 

responses initially have no data from the nervous system, no knowledge of the body.  Indeed, the 

crucial connectivity between the brain stem, the midbrain structures and the rest of the body 

develop in stages during gestation and the early neonatal period.16  As these connections mature 

both prenatally and after birth, however, the brain stem and midbrain neural networks build maps 

of the significant features of the input from the body.17  In Antonio Damasio’s terms, these are 

the interoceptive and proprioceptive maps that are the basis of emotional responses.18  Both 

Panksepp and Damasio tell essentially the same story—with different terminology and focus—of 

the centrality of the brainstem and midbrain nuclei in the generation of affect.  Both stress the 

midbrain’s mapping of the body very early in development and the subsequent mapping of these 

subcortical systems into the neocortex as the next stage in developing from primary to secondary 

                                            
16 “By the 7th gestational month the medulla and pons have nearly completed their cycle of myelination and most of 
the various descending spinal–motor fiber tracts have reached target tissues and established their synaptic 
interconnections (Gilles et al., 1983; Langworthy, 1937; Yakovlev & Lecours, 1967). However, because the fetal 
brainstem matures in a caudal to rostral arc, and as different nuclei mature and myelinate at different rates, fetal 
brainstem reflexes are initially triggered infrequently or in isolation and thus emerge gradually and in an irregular 
fashion (Debakan, 1970)….  Nevertheless, the brainstem continues to mature well after birth, and, correspondingly, 
brainstem reflexes emerge and disappear at different time periods over the course of the first 3 to 6 months of 
postnatal life (Debakan, 1970; see also Capute, Palmer, Accardo, Wachtel, Ross, & Palmer, 1984; Piper & Darrah, 
1994). For example, initially, vital functions such as heart rate and respiration are irregular, body temperatures 
fluctuate, and swallowing is precarious.” R. Joseph, “Fetal Brain Behavior and Cognitive Development,” 
Developmental Review 20, (2000), p. 85. 
17 Panksepp rightly stresses the crucial point that the mappings of the body in the very earliest stages of the affective 
system are learned, as in the FEAR system: “FEAR, like every other emotional system, is born essentially 
‘objectless’ and, like all other emotional systems of the BrainMind, it becomes connected to the real world through 
learning.” Panksepp and Biven The Archaeology of the Mind:  Neuroevolutionary Origins of Human Emotions (New 
York:  Norton, 2012), p. 176. 
18 Damasio describes the interoceptive maps as based on “the functional condition of the body tissues such as the 
degree of contraction / distension of smooth musculature [and] parameter of internal milieu state,” while the 
proprioceptive use “images of specific body components such as joints, striated musculature, [and] some viscera.”  
See Antonio Damasio, Self Comes to Mind (New York:  Vintage, 2012), p. 80. 
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affect.  These primary and secondary affective systems then play a central role in our manner of 

engaging the world. 

 Damasio’s abstraction of the secondary affective system (the systems by which the 

neocortex internally maps the brainstem and midbrain sources of affective response) as a 

dispositional space offers an elegant way of thinking about the constant, pervasive effect of 

emotion on our experience: 

[I]n addition to the logic imposed by the unfolding logic of events in the reality 

external to the brain—a logical arrangement that the naturally selected circuitry of 

our brains foreshadows from the very early stages of development—the images in 

our minds are given more or less saliency in the mental stream according to the 

value for the individual.  And where does that value come from?  It comes from 

the original set of dispositions that orients our life regulation, as well as from the 

valuations that all the images we have gradually acquired in our experience have 

been accorded, based on the original set of value disposition during our past 

history.19 

Damasio presents a system in which the brain learns by mapping between the early-developing 

sensory cortices and the “dispositional devices” that are the equally early-developing network of 

brainstem and midbrain nuclei and their cortical representations (Panksepp’s primary and 

secondary emotional affects).  As the association cortices mature, they serve as convergence 

zones that develop the experiential connections between the affective systems—represented as 

dispositions—and the sensory data from the environment.20 Our memories, created through 

                                            
19 Damasio, Self Comes to Mind, p. 76. 
20 “The cortical dispositional space included all the higher-order association cortices in temporal, parietal, and 
frontal regions; in addition, an old set of dispositional devices remained beneath the cerebral cortex in the basal 
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identifying patterns binding dispositional and sensory data, therefore are of inherently 

“dispositional objects:” 

Our memories of things, of properties of things, of people and places, of events 

and relationships, of skills, of life management processes—in short all of our 

memories, inherited from evolution and available at birth or acquired through 

learning thereafter—exist in our brains in dispositional form, waiting to become 

explicit images or actions.21 

Damasio writes about our memories for objects.  But it remains important to recall that in the 

brain the neural networks that encode higher-order memories for objects and events remain 

based on matrix mathematics:  the complex “objects” of our experience are arrays of attractor 

basins in a high dimensional “dispositional space,” and it is a constructed space. 

 C. Developmental Structuring of Supervised Memory 

In supervised learning, the “desired” patterns of activations are passed from higher to lower 

networks and serve as inputs to revise the pattern of synaptic weights in the lower networks.  The 

desired outcome in the brain is to “seek the good; avoid the bad,” and the affective system 

provides this feedback for the perceptual input (which includes the assessment of action 

scenarios implemented by the sensorimotor networks of the brain).  In early infancy the higher-

order dispositional space of the association areas in the temporal, parietal, and frontal cortices are 

weakly functional at best.  However, with the progressive myelination of the neural networks as 

                                                                                                                                             
forebrain, basal ganglia, thalamus, hypothalamus, and brain stem.” (Damasio, Self Comes to Mind, p. 151.) 
21 Damasio, Self Comes to Mind, pp. 153-54.  Panksepp reaches a similar conclusion: 

For this reason we prefer to envision emotional systems as ‘attractor landscapes’ (in the lingo of nonlinear 
dynamic systems theory) that help us make particular connections with our environments both in thought 
and deed.  Thus we envision primary-process emotional systems to be in the ‘cat-bird seat’—having the 
upper hand—when it comes to how learning controls the formation of memories in our brains 

Panksepp and Biven The Archaeology of the Mind, p. 237. 
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the infant matures (proceeding from the rear to the front of the brain), the connections to the 

affective and sensory systems strengthen, and increasingly complex multimodal assessments 

mediated by the “working memory” and “attention” systems of the frontal and parietal lobes 

become possible.22 

 

 While all changes in synaptic weights throughout all the cortical pathways that are 

maturing are forms of memory formation, what we typically think of as memory—that for 

objects and events—becomes increasingly possible and stable through the maturation of the 

hippocampus in particular.   Although there are many important categories of memory, I focus 

here in particular on the episodic, autobiographical, and semantic memory system developed via 

the hippocampus because these are the forms of memory most important for humanists. The 

hippocampus is the great integrator of the many modalities of memory that comprise the memory 

of events.23  The hippocampus makes possible the encoding of the many types of information 

                                            
22 Baars and Gage, Cognition, Brain, and Consciousness, p. 479, modified from R.A. Thompson and C. A. Nelson, 
“Developmental science and the media. Early brain development,” American Psychologist 56 (2001), 5–15. Source:  
B. J. Casey et al., “Imaging the developing brain:  What have we learned about cognitive development,” Trends in 
Cognitive Science 9.3 (2005), pp. 104-110. 
23 Randall C. O’Reilly, Rajan Bhattacharyya, Michael D. Howard, Nicholas Ketz, “Complementary Learning 
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that comprise the meaning of an event.  In this process of synthesizing memory, many 

researchers over the years have noted the effect of affective arousal in enhancing hippocampal 

functioning.24  The role of affect in shaping the neural networks structured by the hippocampus 

has three components.  The first is the immediate influence of neuromodulators produced by the 

affective midbrain nuclei and the role of the amygdala in strengthening the synaptic changes 

during the initial moment of the event being remembered.  Next, affective recall during the 

consolidation of the memory through the replaying of the memory enhances those aspects of the 

episodic memory that have stronger affective valences.  The final aspect is the most general, but 

it remains crucial:  the very information being provided to the hippocampus for encoding already 

is structured by the role of the dispositional space in which the raw sensory and proprioceptive 

data are synthesized into higher-order structures. 

 D.  From Moving Events to Meaningful Objects 

Once the hippocampus and the neocortical regions associated with it have encoded an episodic 

memory informed by affective responses, the larger order patterns across the episodic encounters 

with objects and events are then extracted into semantic memory.25  I want to stress that in early 

infancy in particular, as the initial structure of semantic memory is just forming and the network 

of attractor basins that define the high-order “objects” is just emerging, the patterns arising in the 

dispositional space are essentially about the affective significance of sensory and proprioceptive 

                                                                                                                                             
Systems,” Cognitive Science (2011) p. 4. 
24 Most research has focused on the role of connections between the amygdala and the hippocampus. But the role of 
affect is more complex.  Todd and Thompson, for example, point to the norepinephrine system of the locus 
coeruleus in the brainstem. (Rebecca Todd and Evan Thompson, “Strengthening emotion-cognition integration,” 
Behavioral and Brain Sciences (2015), pp. 40-42) 
25 “[T]he nature of the memories that become consolidated in the neocortex is significantly different from those that 
were originally encoded by the hippocampus, by virtue of the complementary nature of these memory systems. 
Whereas the hippocampus encodes a crisp, contextualized, episodic memory, the neocortex extracts a highly 
semanticized, generalized ‘gist’ representation that integrates over many different episodes.”  O’Reilly et al., 
“Complementary Learning Systems,” p. 7. 
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data.  The fundamental structure of meaning as it initially forms is a cortical, early experiential 

articulation of the system of needs and desires provided by the affective system.  That is, the 

infant knows what it wants. 

 Crucially, this initial structure of meaning in infancy persists at the heart of the adult 

understanding of the nature of the self and the world.  As attachment theory, based on the model 

of the dyadic emergence of the infant self and the caregiver, becomes increasingly important in 

psychoanalytic understanding, it becomes ever clearer that the infantile “working model” of the 

self articulated in the neural networks of memory remains at the core of adult identity.26  These 

early networks are fundamentally poststructuralist, with their arrays of “objects” as attractor 

basins differentiated by affective criteria of want and need.  

 Meaning for both infants and adults is necessarily poststructuralist.  This conclusion 

should matter both to neuroscientists and to humanists.  The poststructuralist world is riven by 

conflict and contradiction, and this is the world that is within us.  It is neurobiological in nature, 

shaped by the developmental logic and basic mathematics of the brain.  What clarity 

neuroscience can bring to this complex, inevitably strifeful human experience will be to 

articulate this logic and—therapeutically—underscore the profound importance of early 

childhood.  Humanists in turn need to recognize in these results that neurobiological materialism 

is not reductionist (or at least should not be) and that we should put aside the idealism of our 

faith in the infinite regress of meaning and instead look to the richness of the neurobiological 

model.  In the biological model, meaning is individual, since embodied meaning is meaning as 

encountered through particular bodies and follows the particular trajectory of individual 

                                            
26 The intersection of developmental neuroscience and attachment theory in psychoanalysis—and the therapeutic 
implications of the neuroscience—are at the heart of such books as Louis Cozolino, The Neuroscience of 
Psychotherapy second edition (New York:  Norton, 2010) and Efrat Ginot, The Neuropsychology of the Unconscious 
(New York:  Norton, 2015) 
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experience.  Yet biological meaning also of necessity draws its patterns from individual 

engagement with an external world of structures, both human and natural.  In our explorations of 

the construction of meaning, we humanists must remember the body and the brain in their 

biological materiality.  We need a conversation with the neuroscientific community to deepen our 

sense of the dynamics of experience and the embodied structure of meaning.  And we humanists, 

for our part, can contribute our reflections on the complexity of living in a poststructuralist world 

of meaning. 
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