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Kinetic Analysis of Lipid Metabolism in Breast Cancer Cells via 
Nonlinear Optical Microscopy 

Jue Hou,1 Nellone E. Reid,2 Bruce J. Tromberg,1 and Eric O. Potma1,* 

1Beckman Laser Institute and Medical Center, University of California, Irvine, Irvine, California 
and 2Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 
Newark, New Jersey 

 

ABSTRACT Investigating the behavior of breast cancer cells via reaction kinetics may help 
unravel the mechanisms that underlie metabolic changes in tumors. However, obtaining human 
in vivo kinetic data is challenging because of difficulties associated with measuring these 
parameters. Nondestructive methods of measuring lipid content in live cells provide a novel 
approach to quantitatively model lipid synthesis and consumption. In this study, coherent Raman 
scattering microscopy was used to probe de novo intracellular lipid content. Combining 
nonlinear optical microscopy and Michaelis-Menten kinetics-based simulations, we isolated fatty 
acid synthesis/consumption rates and elucidated effects of altered lipid metabolism in T47D 
breast cancer cells. When treated with 17b-estradiol, the lipid utilization in cancer cells jumped 
by twofold. Meanwhile, the rate of de novo lipid synthesis in cancer cells treated with 17b-
estradiol was increased by 42%. To test the model in extreme metabolic conditions, we treated 
T47D cells with etomoxir. Our kinetic analysis demonstrated that the rate of key enzymatic 
reactions dropped by 75%. These results underline the capability to probe lipid alterations in live 
cells with minimum interruption and to characterize lipid metabolism in breast cancer cells via 
quantitative kinetic models and parameters. 

 

SIGNIFICANCE Combining coherent Raman scattering microscopy and deuterium labeling 
provides insight into lipid metabolism in live cancer cells during cancer development and 
progression. The dynamic metabolic data are modeled with Michaelis-Menten kinetics to 
independently quantify the lipid synthesis and utilization in cancer cells. Changes in lipid levels 
are found to originate from de novo lipid synthesis using glucose as a source, lipid consumption 
from b-oxidation, and lipid consumption from cell proliferation, processes that can be separately 
analyzed with the Michaelis-Menten model. In this work, we isolate fatty acid synthesis and 
consumption rates and elucidated effects of altered lipid metabolism in T47D breast cancer cells 
in response to 17 b-estradiol stimulation and etomoxir treatment, dynamic processes that cannot 
be easily observed without the application of appropriate models. 

 

INTRODUCTION 

The abnormal production of metabolites for the synthesis of cellular building blocks and 
signaling molecules is an emerging hallmark of cancer (1). Cancer cells utilize the intermediate 
products of glycolysis to fuel the biosynthesis of amino acids, nucleotides, and fatty acids to 



support fast cell proliferation. Different cancer cell lines exhibit varied glucose, and lipid 
metabolic signatures correlated with their metastatic potential and cell proliferation rate both in 
vitro and in vivo (2–4). Moreover, tumor metabolism has been shown to predict cancer cell 
response to chemotherapy in early stages (5). Thus, quantitative analysis of cancer cell metabolic 
kinetics is of great importance in characterizing cancer cell behavior and unraveling the role of 
cell metabolism in cancer progression and transformation. 

Biochemically, cell metabolism is achieved through a series of reactions of varying 
complexities, catalyzed by proteins or catalytic RNAs. The Michaelis-Menten equation is often 
used to quantify enzyme-related metabolic behavior in normal and mutated cells: 

 

where Vmax  is the maximum rate  achieved by the  reaction, [S] is the substrate concentration, 
and KM is the Michaelis-Menten constant or substrate concentration at  which  the reaction rate is 
half of Vmax. By combining fluorescence, isotope, and radio labeling with Michaelis-Menten 
kinetics, cell metabolic rates can be investigated quantitatively. In a clinical study, [3H]-labeled 
androstenedione and Michaelis-Menten kinetics were utilized to evaluate the effect of CYP191A 
gene mutation on aromatase metabolism (6). Similarly, Michalis-Menten parameters were 
employed to study intracellular hydrolysis for the detection of breast cancer by measuring 
intracellular fluorescein intensity changes (7). However, most of these traditional labeling 
methods relied on exogenous chemicals that may compromise the living biological system in 
unknown ways. Moreover, the requirement for complicated sample preparation and time-
consuming data acquisition impede the possibility of dynamic studies with high spatial and 
temporal resolution. 

Multimodal, nonlinear optical microscopy enables minimally interrupted evaluation of 
cell metabolism with high spatial and temporal resolution. Previously, two-photon excited 
fluorescent microscopy was used to monitor cell glucose metabolism over a range of oxygen 
consumption conditions relevant for cancer imaging (8). By studying  the intracellular lipid 
droplets with both coherent Raman scattering (CRS) microscopy and spontaneous Raman 
spectroscopy, Yue et al. (9) reported increased cholesterol accumulation in prostate cancer cells 
that correlated with cancer aggressiveness. Recently, CRS was utilized with deuterium labeling 
to quantify lipid metabolism. Zhang et al. (10) studied cancer anabolism after epithelial-
mesenchymal transition by tracking the deuterium and alkyne vibrational signal with CRS. These 
research findings underline the potential of utilizing nonlinear optical microscopy to quantify 
live-cell metabolism with high spatial and temporal resolution. 

In this study, quantitative models were derived and used to describe alterations of the 
glucose metabolic pathways in the context of lipid production and consumption in breast cancer 
cells. We used CRS microscopy to determine metabolically driven changes to the cell’s lipid 
content. For this purpose, deuterium labeling was utilized to investigate de novo lipid synthesis 
in cancer cells. We monitored fatty acid synthesis from deuterated glucose and subsequent 



consumption by tracking the carbon-deuterium signal in a pulse-chase experiment. Recently, 
Zhang et al. (11) observed changes of glucose-supplied lipid renewal in sebaceous glands by 
combining CRS with deuterium labeling. However, the study was still based on observations of 
changes in the total lipid con-tent and was thus unable to quantify lipid synthesis and 
consumption/degradation independently. Here, we combined CRS, deuterium labeling, and 
Michaelis-Menten kinetics modeling to isolate fatty acid synthesis and consumption rates. We 
revealed the effects of altered lipid metabolism in the estrogen-receptor-positive (ERþ) T47D 
breast cancer cells when treated with 17b-estradiol (E2). We also found that the T47D breast 
cancer cells exhibited elevated levels of lipid synthesis and utilization rates when activated by 
E2. Finally, we treated T47D breast cancer cells with etomoxir (ETO) to investigate the 
modeling efficiency in extreme b-oxidation inhibition conditions. 

MATERIALS AND METHODS 

Model development 

Intracellular lipid homeostasis is a balance between lipid synthesis and 
consumption/degradation. Lipid synthesis is regulated by acetyl-CoA carboxylase, which is 
activated by citrate and inhibited by fatty acid palmitate (12). On the other hand, one of the most 
important pathways of lipid degradation (fatty acid oxidation) is regulated by mitochondria 
trifunctional protein. Both pathways have been observed to be dysregulated in many cancer cell 
lines to fuel the cancer proliferation and progression (13). 

We first focus on lipid degradation. Assuming that the main enzymatic lipid degradation 
mechanism is b-oxidation, an enzymatically controlled process, we may start with the general 
form of substrate-enzyme interactions as described by Michaelis-Menten kinetics: 

 

where [E] is the enzyme concentration, [L] is the lipid concentration, [EL] is the enzyme-lipid 
complex, and [P] is the oxidized lipid concentration. The change in lipid concentration is directly 
related to the formation of product: 

 

Next, we make the Michaelis-Menten approximation that the lipid is in chemical equilibrium 
with the complex, which means that 

 



where Ka = ka/k-a is the equilibrium constant for the formation of the lipid-enzyme complex. 
Applying the condition of conservation of the total enzyme concentration [E0], 

 

we find that the enzyme concentration can be written as follows: 

 

Using Eqs. 4 and 6 and substituting them in Eq. 3, we obtain the following: 

 

 

where α = kcKa[E0]. In the experiment, the change in lipid is measured through the change in the 
fraction of deuterated lipids. Hence, the normalized lipid concentration measured in the 
experiment is [L] [dLD]/[LD], where [dLD] denotes the concentration of deuterated lipid in the 
lipid droplets of the breast cancer cells, and [LD] is the concentration of nondeuterated lipids in 
the lipid droplets. Eq. 7 forms the starting point for our lipid degradation analysis. If needed, the 
model can be expanded to include uncompetitive substrate inhibition, in which the enzyme-lipid 
complex is inhibited through the adsorption of a second lipid substrate. In this case, the rate of 
change can be modeled as follows (14): 

 

where δ = 1/Ka and KL1 is the equilibrium constant of the formation of the enzyme-lipid complex 
with a second lipid adsorbed. 

The mechanisms that contribute to enzymatically controlled loss of lipids related to b-
oxidation, captured by Eqs. 7 and 8, can be denoted by the rate De([L]). Besides the De([L]) 
mechanisms, the lipid pool can also be affected by nonenzymatic oxidation reactions (15). 
Accounting for first- and zero-order nonenzymatic degradation mechanisms, the change in lipid 
concentration can be written as follows: 



 

where k0 is the zero-order rate, and k1 is the first-order nonenzymatic rate of lipid degradation. 
The total rate of lipid loss is summarized by D(L). The different versions of the lipid degradation 
mechanism examined in this work are summarized in Table 1. 

In this study, we considered lipid synthesis from deuterated glucose. Because δ-glucose is 
in excess, we may model the change in deuterated lipid concentration as a zero-order kinetic 
contribution as follows: 

 

where ks is the zero-order reaction rate for lipid synthesis. Here, the change in deuterated lipid 
concentration is thus a balance between lipid synthesis and lipid consumption/degradation. To 
describe the situation of lipid accumulation, Eq. 10 was used in conjunction with the lipid 
degradation models discussed in Table 1. 



TABLE 1  Different Lipid Degradation Mechanisms Examined in This Work

 

Fitting procedure 

Data from lipid synthesis and pulse-chase experiments were fitted to the models listed in 
Table 1, using a MATLAB (The MathWorks, Natick, MA) minimization routine. Using a 
numerical ordinary differential equation solver (ode45), the code fits the data by minimizing the 
sum of the square of the differences between the predicted and experiment data. The fminsearch 
function in MATLAB is used, and the iterative process continues until the algorithm has found 
the fitted parameters that minimize this difference. Accuracy of fitting was measured using the 
square of Pearson’s correlation coefficient (r2). The correlation coefficient indicates how well the 
calculated curve fits the original data, with a value ranging from zero to one. The closer the 
correlation coefficient is to 1.0, the better the fit. Models were eliminated if r2-values were low 
(r2 < 0.90) or fitted parameters resulted in a negative value (not physically possible). In addition, 
confidence intervals were measured graphically to determine the significance of each parameter 
against experimental data using a 95% confidence interval. The code used for fitting is provided 
as Data S1. 



To find the best description of the data, the simplest Michaelis-Menten model was 
examined first (i.e., model I, for the case of the pulse-chase experiments (lipid degradation)). If 
the fitting criteria were not met, the model was subsequently expanded with more parameters, as 
listed in Table 1. If further expansion did not improve the fit (r2 > 0.90) any further over a 
simpler model with fewer fitting parameters, then the simpler model was retained. 

Stimulated Raman scattering measurements 

A 76-MHz Nd:Vanadate laser at 1064 nm (picoTrain; High Q, Rankweil, Austria) was 
used, producing a 7-ps pulsed laser beam (Stokes beam). The second harmonic of the same laser 
(532 nm) was used to pump an optical parametric oscillator (Levante Emerald; Applied Physics 
& Electronics, Freemont, CA) to provide the corresponding pump beam for imaging either the C-
H lipid distribution (817 nm for a Raman shift of 2845 cm-1) or C-D lipid signal (864 nm for a 
Raman shift of 2175 cm-1). The Stokes beam was modulated with an acousto-optic modulator 
(12465; Crystal Technology, Westchester, PA) at 10 MHz. Both the Stokes beam and pump 
beam were spatially and temporally overlapped and delivered to a laser-scanning microscope 
(IX71; Olympus, Center Val-ley, PA). The maximum average power at the sample was 15 mW 
per beam. The CRS signal was detected in the forward direction. For this purpose, the pump 
beam was focused onto a photodiode (FDS1010; Thorlabs, Newton, NJ) with a high optical 
density (O.D.) bandpass filter for blocking the Stokes beam. The output of the photodiode was 
filtered with an electronic bandpass filter (BBP-10.7+; Mini-Circuits, Brooklyn, NY) and 
demodulated by a homemade lock-in amplifier to detect the Raman loss signal. The cells were 
imaged by a 60x water objective (1.2 NA, UPLANSAPO; Olympus), and the CRS signal was 
collected in the forward direction by a condenser (NA = 1.05). An olive oil sample was measured 
before each experiment for calibration purposes. Images were acquired as 512 x 512 pixel maps. 
The pixel dwell time was 4 μs for a total frame rate of 1 Hz. 10 frames were averaged to improve 
the signal/noise ratio. 

Cell culture 

The T47D breast cancer cell line was acquired from American Type Culture Collection 
(ATCC; Manassas, VA). The normal cell culture medium is made from Advance Dulbecco’s 
Modified Eagle’s Medium (DMEM)/F-12 culture medium (A2494301; Thermo Fisher Scientific, 
Waltham, MA) supplemented with 5% fetal bovine serum (12676011; Corning, Corning, NY), 
1% GlutaMAX (35050-061; Life Technologies, Carlsbad, CA), 147.5 mg/L L-arginine (A5006; 
Sigma-Aldrich, St. Louis, MO), 91.25 mg/L L-lysine (L5501; Sigma-Aldrich), and 3151 mg/L 
normal glucose (G7021; Sigma-Aldrich). The deuterated medium was prepared by replacing the 
normal glucose with deuterated glucose (552003; Sigma-Aldrich) of the same concentration. The 
cells were cultured at 37�C and 5% CO2. The cells were monitored daily, and the culture 
medium was changed every 2–3 days. For all the experiments, the cells were detached and 
collected at around 60% confluence with TrypLE (12604013; Life Technologies). 

For lipid synthesis experiments, the cells were harvested and plated onto coverslips at 
50,000 cells per well in 24-well plates. The cells were incubated in normal culture medium for 
24 h to allow the cells to recover. The cells were then switched to serum-free culture medium 



overnight for cell cycle synchronization. Subsequently, the cells were exposed to deuterated 
culture medium (considered T = 0). One plate of the cells was treated with 10-8 M E2 (E8875; 
Sigma-Aldrich), and the other plate of the cells was treated with dimethyl sulfoxide (DMSO) at 
the same concentration. We fixed two wells (two replicates) for each plate at T = 0, 2, 3, 4, 5, 6, 
and 9 h in 4% formaldehyde. 

For pulse-chase experiments, the cells were harvested and plated onto coverslips at 
50,000 cells per well in 24-well plates. The cells were incubated in normal culture medium for 
24 h to allow the cells to recover and switched to deuterated glucose medium for 24 h. To test the 
effect of E2, one plate of the cells was treated with 10-8 M E2 and the other plate of cells was 
treated with 10-8 M DMSO. To test the effect of ETO, one plate of the cells was treated with 4 x 
10-5 M ETO, and the other plate of the cells was treated with 4 x 10-5 M vehicle control. The 
cells were then switched to normal glucose medium (considered T = 0), and two wells 
(replicates) of the control group and experimental group were fixed at times T = 0, 2, 4, 6, 9, and 
12 h. 

Lipid quantification 

The CRS images were imported into ImageJ. The image intensities were first calibrated 
by the olive oil reference sample as 

 

where Ical is the calibrated signal, I is the direct measured signal intensity, Imin is the minimum 
intensity in the image, Iref is the mean intensity of the olive oil sample measured before the 
experiment, and Iref1 is the mean in-tensity of the olive oil reference sample measured 
repeatedly during the day. The purpose of the Iref1=Iref term is to correct for system performance 
variations during imaging sessions. The calibration was done only on 2845 cm-1. The experiment 
was halted for system inspection if the difference between Iref and Iref1 exceeded 10%. 

In this work, we focus on lipid quantification by determining the changes in lipid content 
contained by intracellular lipid droplets. Lipid droplets are reservoirs for neutral lipids that can 
be easily identified in the cell. Because the droplets contain predominantly lipids and only 
limited amounts of protein, they form an ideal target for lipid quantification measurements. In 
each field of view, both the normal lipid distribution and deuterated lipid distribution were taken 
sequentially by tuning the wavelength of pump beam. All the images were first imported into 
MATLAB to calibrate their intensities and remove the background by five-component Otsu 
thresholding. The first component was considered background, and the average pixel intensity of 
the background pixels was calculated as Imin. Then, the processed images were analyzed in 
ImageJ, where 25 lipid droplets were randomly selected and manually outlined. The average C-H 
signal ([LD]) and deuterated signal ([dLD]) intensities within each lipid droplet were measured, 
and the lipid content was defined as the intensity ratios [dLD]/[LD] for the same droplet. Because 
the deuterated fraction of lipids is small (i.e.,[dLD] << [LD]), the C-H signal serves as a measure 



of the total lipid con-tent. This implies that the ratio [dLD]/[LD] can be understood as the 
fraction of deuterated lipids relative to the total amount of lipid in the droplet. 

RESULTS AND DISCUSSION 

To validate the modeling approach, we measured the changes of the deuterated lipid 
signal in T47D breast cancer cells treated with either E2 or DMSO. We first cultured the cells in 
deuterated glucose medium for 24 h to label all intracellular lipid content with deuterium. Then, 
we switched all the cells to normal glucose culture medium and started to monitor the intensity 
changes of the coherent Raman signal that originated from the carbon-deuterium vibrational 
mode. The pulse-chase experiment lasted for 24 h, and the decay of deuterated lipid signal in 
T47D cells treated with either DMSO or E2 was recorded. T47D is an ER+ breast cancer cell 
line. As expected, ER+ breast cancer cells were sensitive to E2 treatment and responded with 
altered cell metabolism and proliferation. We used this experiment to test the sensitivity and 
accuracy of our simulation to clinically related cell metabolic changes. The raw data for fitting 
are summarized in Table S1. 

Evaluating the efficiency of using different Michaelis-Menten model to simulate cancer 
metabolism 

The data we collected during the pulse-chase experiment were fitted with all the kinetic 
models presented in Table 1. Note that the pulse-chase measurements represent the case of 
(deuterated) lipid degradation without synthesis, permitting a focus on degradation alone. The 
kinetic rate constants were obtained from nonlinear regression of the rate equations. The r2-
values, kinetic rate constants, and concentrations were compared between all the models. All 
measurements were under at the same temperature to ensure the equilibrium constant Ka, which 
represents the affinity for the lipid and enzyme to form a complex, stays unchanged. In this 
context, we have assumed that Ka is a characteristic of lipid-enzyme association and that it 
remains unaltered under the conditions examined. The Ka was first determined with the E2 
control experiment and kept constant within each model. 

The simplest model that reproduces the experimental data with r2 > 0.90 includes 
enzymatic lipid degradation in addition to first-order nonenzymatic degradation, as presented by 
model III. Note that without nonenzymatic degradation, the fitting criteria were not met, 
indicating that nonenzymatic lipid utilization mechanisms play a significant role. Including 
uncompetitive substrate inhibition or zero-order terms does not significantly improve the fit. In 
analyzing the following experiments, we used the simplest model (model III) to extract 
meaningful kinetic parameters from the data, the results of which are summarized in Table 2. 
Note that similar Michaelis-Menten parameter values were found for metabolite formation in 
other breast cancer studies (16). 

 

 

 



TABLE 2 Kinetic Parameters of Lipid Synthesis and Enzymatic and Nonenzymatic Lipid 
Degradation 

 
The indicated margins refer to the 95% confidence interval. 
 

Kinetic model reveals the effect of E2 on an ER+ breast cancer cell line 

Previously, an increased cell proliferation rate and cancer invasiveness were observed in 
T47D cancer cells upon treatment with E2 (17). The change of cancer cell phenotype has been 
known to alter cancer cell lipid consumption and lipid synthesis. To uncouple lipid synthesis 
from consumption, it is required to monitor both the deuterated lipid decay and deuterated lipid 
accumulation. Hence, we studied 1) the increase of the deuterated signal in normal T47D cells 
cultured in deuterated glucose medium and 2) the decrease of the deuterated signal in deuterated 
T47D cells cultured in normal glucose medium. The deuterated lipid signal decay was first fitted 
with model III to extract a and the nonenzymatic (k1) lipid utilization rate. In addition, the 
equilibrium constant within model III was found as Ka = 72.72. The fitting procedure yields a 
and k1. Because α = kcKa[E0], relative changes in kc[E0] between experiments can thus be 
determined, which is a direct measure for the efficiency of enzymatic lipid degradation. For the 
fitting of lipid synthesis, the additional lipid synthesis rate ks was determined using model III and 
Eq. 10. 

The CRS images taken at 2175 cm-1 showed significant deuterated lipid deposition in 
cancer cells cultured with deuterated glucose after 24 h of culturing in deuterated medium (Fig. 
1, a and b). After switching to the normal glucose culture medium, the deuterated lipid droplets 
signal intensity dropped to background levels within 12 h in cancer cells treated with E2 (Fig. 1 
c). At T = 9 h, the signal intensity was six times higher in the cancer cells treated with DMSO. In 
the lipid synthesis study, the deuterated lipids became visible as early as 2 h in both conditions. 
Both cancer cells in the DMSO and E2-treated groups demonstrated a rapid increase in 
deuterated signal from 2 to 6 h (Fig. 1 d). After 9 h of culturing, the growth of the deuterated 
signal levels off for both conditions. However, the cells treated with E2 demonstrated 1.6 times 



higher signal intensity over the control group after 9 h. Overall, the model reproduces both the 
lipid degradation and the lipid synthesis profiles with a consistent set of fitting parameters. Yet, 
the last data point at T = 9 is less well reproduced, and longer-term studies are required to verify 
the accuracy of the model at later times. 

From the CRS images, the signal intensities in cancer cells treated with E2 demonstrated 
a higher decay rate, indicating increased lipid consumption/degradation. By fitting the data to the 
model, we found that the cells treated with E2 showed a 94% relative increase in a (Table 2), 
indicating an increase of lipid utilization. However, the nonenzymatic activities in both 
experimental conditions remained at a similar level. The latter implies that E2 treatment 
primarily affects the enzymatic degradation of lipid, such as β-oxidation, whereas the 
nonenzymatic lipid consumption is not directly affected by the treatment. In addition, analysis of 
lipid synthesis revealed that the cancer cells treated with E2 display increased de novo lipid 
synthesis along with enhanced lipid consumption. The E2-treated cancer cells had 42% higher ks-
values compared with the cells treated with DMSO. It is known that the E2 treatment can 
increase cancer cell proliferation. To meet the high demand for lipid during organelle and 
membrane replication, the cancer cells respond by increasing lipid synthesis, as confirmed by our 
simple kinetic analysis. 

 



FIGURE 1 Deuterated lipid pulse-chase experiments of lipid synthesis and lipid consumption. 
Representative (a) normal lipid distribution (817 nm pump laser) and (b) corresponding 
deuterated lipid distribution (869 nm pump laser) in T47D cancer cells at T = 0h.(c) Measured 
decay of normalized lipid content in T47D cells (control) and 17b-estradiol (E2)-treated T47D 
cells fitted to model III. (d) Measured transient of lipid syn-thesis in T47D cells (control) and 17 
E2-treated T47D cells fitted to model III with zero-order lipid synthesis. Error bars represent the 
SD from 25 randomly picked lipid droplets. Scale bars, 20 μm. To see this figure in color, go 
online. 

 

These observations retrieved from CRS imaging and kinetic modeling corroborate 
previous work. It has been re-ported that ER activation in ER+ cell lines can increase the cellular 
uptake of multiple types of fatty acid (18). In other independent studies, the activation of ER by 
estradiol has also been reported to upregulate the expression of trifunctional protein b-subunit 
(HADHB) and fatty acid elongation of very long-chain fatty acids 2 (ELOVL2) to in-crease β-
oxidation (19,20). Thus, an increase of reaction substrate (fatty acid) and elevated enzyme 
activity contributed in concert to the rise of lipid utilization. The altered lipid metabolism 
provides energy and biomass support of cancer progression and proliferation. Rather than a 
qualitative description, our kinetic analysis provided a quantitative view of the intracellular 
bioreactions in living cells without labeling. 



Sensitivity of the model to changes of lipid metabolism 

To further test the utility of the kinetic model in extreme conditions, breast cancer cells 
were treated with ETO. ETO constrains cell b-oxidation by inhibiting carnitine pal-
mitoylytransferase-1 (CPT1) on the outer mitochondrial membrane. Similar to the experiments 
discussed above, T47D breast cancer cells were first cultured in deuterated glucose for 24 h 
before switching to normal culture medium. The deuterated signal decay from the lipid droplets 
was measured over 12 h. 

At time T = 0, the signal intensity was similar in both experimental groups. In the control 
group, the deuterium signal dropped to background levels after 9 h of culturing (Fig. 2, a and b). 
However, the deuterated lipid droplets were still visible in the T47D cells treated with ETO after 
12 h and remained at a constant level (Fig. 2, c–e). ETO inhibits the CPT1 protein, which 
catalyzes the transfer of the acyl group of a long-chain fatty acid in the cytosol to enable its 
internalization into the intermembrane space of mitochondria (21). The CPT1 protein is upstream 
from the b-oxidation process and limits the amount of substrate that is available for the final 
reaction. In our analysis, the a-value of the ETO control group is comparable with the E2 control 
group, showing the stability of the imaging system and the robustness of the model. However, 
the ETO-treated group demonstrated a 75% drop of a-value, indicating a lack of lipid available 
for b-oxidation and a much lower lipid utilization rate. It is known that ETO treatment adversely 
affects normal metabolic pathways and cell viability (22). Thus, we observed a significant 
increase of the nonenzymatic lipid utilization (k1) in the cells treated with ETO. The doubled 
nonenzymatic lipid utilization can be due to the loss of cell integrity during apoptosis. It further 
proved the necessity to include the first-order nonenzymatic lipid degradation term, which acts as 
an indicator of overall cell health. These kinetic findings generally confirm the altered lipid 
metabolism by ETO. 



FIGURE 2 Pulse-chase experiments of ETO-treated T47D cancer cells. CRS images of 
representative normal lipid distribution at T = 12 h for (a) DMSO-treated T47D cells and (c) 
ETO-treated T47D cells. CRS images of representative deuterated lipid distribution at T = 12 h 
for (b) DMSO-treated T47D cells and (d) ETO-treated T47D cells. (e) Measured decay of 
normalized lipid content in T47D cells treated with either DMSO or ETO, fitted to a modified 
single substrate lipid consumption with cell proliferation kinetic model. The error bars represent 
the SD from 25 randomly picked lipid droplets. Scale bars, 20 μm. To see this figure in color, go 
on-line. 

 

CONCLUSIONS 

We have combined CRS imaging with quantitative kinetic modeling to reveal the effect 
of E2 on ER+ breast cancer cells. We observed that when treated with E2, cancer cells show an 
increase in the lipid utilization rate as well as de novo lipid synthesis. With Michaelis-Menten 



modeling, we quantified the rate of substrate binding and the enzyme reaction rate in related 
pathways. We observed a synergetic increase of lipid supply and enzyme reaction rate to fuel the 
high lipid utilization rate of ER+ cancer cells activated by E2. At the same time, we observed 
increased lipid synthesis in E2-treated ER+ cancer cells. The cells utilize the intermediate 
product of glycolysis (citrate) for de novo lipid synthesis to fuel the high demand of biomass 
during cancer proliferation. Moreover, the binding of E2 to the estrogen receptor α (ERα) 
upregulates the expression of the glucose transporter and increases the influx of glucose 
molecules to support the biosynthesis. Our kinetic analysis also worked in otherwise extreme 
metabolic conditions. It predicted the effect of ETO on limiting the β-oxidation rate and 
decreasing lipid utilization. The nonenzymatic coefficient k1 showed limited variation in the 
control groups and cells treated with E2. However, nonenzymatic lipid utilization almost doubled 
in the cells treated with ETO as a result of reduced cell viability. Taken together, our 
observations match with previously published work and underline the utility of combining CRS 
and Michaelis-Menten modeling to quantify live-cell metabolism with minimum interruption. 

SUPPORTING MATERIAL 

Supporting Material can be found online at https://doi.org/10.1016/j.bpj. 2020.06.007. 
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