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Abstract

Integrated energy systems (IES) describe a holistic ap-
proach to finding coordinated energy and economic so-
lutions. IES have the potential to mitigate inequities
which can arise from grid, space, or economic limita-
tions. This paper introduces a simulation environment to
model IES and provides a parametric analysis of battery
sizes through an optimal control strategy to assess the
potential of IES. The electricity cost savings for controls
integration through IES ranged up to 10.0 % on an an-
nual basis and up to 23.5 % for certain periods. Equitable
and economic access to green energy can be provided by
sharing resources through IES.

Introduction

Integrated Energy Systems (IES) broadly describes a
holistic approach to finding coordinated energy and eco-
nomic solutions from across a wide range of energy op-
tions. These energy systems can include (a) produc-
tion, e.g., solar, wind, hydro, biofuels, (b) conveyance,
e.g., electricity, thermal, hydrogen, (c) storage, e.g.,
daily, seasonal, and (d) customer-level use, e.g., build-
ings, transportation, industry. At present, these sys-
tems are linked, but they typically function separately
or respond individually depending on a wide range of
disparate system-operation goals. The inability to link
these systems may limit the ability to find economically
favourable zero-carbon energy solutions across sectors
(Shandiz, Rismanchi, and Foliente 2021).

Particularly the interactions between buildings and the
electric power grid are becoming increasingly complex
with the transition to a decarbonized future. Build-
ings, as the largest consumer of electricity, pose the
potential to actively control demand and trade energy
across sites, facilitating this transition by matching de-
mand to generation from intermittent renewable genera-
tion (Neukomm, Nubbe, and Fares 2019). The integra-
tion of multiple building sites and technologies through
IES pose potential benefits of carbon emission, cost, and
inequitatble energy reductions (Bakhtavar et al. 2020)
and (Vezzoli et al. 2018). Planning and operating an IES

without considering the social equity could result in in-
equitable access to clean energy (Baker, Goldstein, and
Azevedo 2021). However, interrogating such systems
is non-trivial, and requires timestep-to-timestep interac-
tions across multi-domain simulators which are hard to
solve (Mendes, Ioakimidis, and Ferrdo 2011). This effect
is especially apparent when equity is considered where
potentially large differences in available resources exist,
making individual control without knowledge of other
sites inefficient. Inequities can arise from (a) grid limi-
tations, e.g., power flow or voltage constraints, (b) space
limitations, e.g., high and narrow buildings have less roof
space for photovoltaics, or (c) economic factors, e.g.,
disadvantaged communities. On the other hand, includ-
ing knowledge of inequity allows the adjustment of adja-
cent resources which may result in greater benefit for the
whole community.

In this paper we introduce our latest development of a
simulation environment containing IES to explore the
potential of economic, reliability, and operational in-
teractions. The environment is demonstrated through
parametric optimal sizing of distributed battery storage
for an IES. In particular, the building-to-building and
building-to-grid interactions are interrogated to resolve
inequities in access of economic carbon-reducing tech-
nologies. The goal of this study is to estimate the tech-
nical potential of IES. With the development of this plat-
form, we hope to consider how and what equity means
for energy integration and how to simulate such con-
cerns.

Methodology

An expandable simulation environment was devel-
oped using mostly publicly available simulation models
and coupled through the Functional Mock-up Interface
(FMI) (Modelica 2022), an industry standard for cou-
pling of simulation models. The simulation is built in a
modular fashion using the FMI which allows the export
and coupling of third-party simulators. This bears the ad-
vantage that existing, specialized simulation tools can be
leveraged to form a high-fidelity IES simulation environ-



ment. For instance, detailed building simulation mod-
els can be exported from EnergyPlus, electric vehicle
models from Modelica, and control models from Mat-
lab, and all coupled through the FMI development. To
date, the FMI supports over 150 simulation tools where
simulation models can be exported or imported. The de-
veloped simulation environment utilizes the Functional
Mock-up Interface - Machine Learning Center (FMI-
MLC) as a high-level wrapper of FMI to couple and pa-
rameterize the individual simulators (Gehbauer, Rippl,
and Lee 2021). The multiple simulators are tightly cou-
pled and require timestep-to-timestep interactions to ex-
change current inputs and states with each other. A cus-
tom simulation orchestrator was developed to couple the
individual simulators and integrated with the FMI-MLC.
This custom orchestrator was necessary to allow multi-
timestep interactions where simulation models commu-
nicated with each other on a five minute timestep to han-
dle transitory dynamics, while external communication
with the controller was set to an hourly timestep.

The developed simulation environment consists of de-
tailed building physics models, distributed energy re-
sources, and predictive control system. For this study a
derivate of the IEEE13 prototypical test feeder was used
to represent the electrical distribution network for 13
electrical distribution nodes with 12 load-bearing nodes,
representing up to 135 individual customer sites in this
study. Each site includes either medium office or mid-
rise apartment Department of Energy (DOE) reference
buildings with co-located Photovoltaic (PV) generation
and stationary battery storage. The PV systems are con-
nected to the grid through state-of-the-art smart inverters
providing active and reactive power control. Figure 1 il-
lustrates the simulation environment.

The electric power grid, in orange, was inspired by
the IEEE13 prototypical feeder with similar total load-
ing and topology, but without transformers or switches.
It was exported from the Smart Control of Distributed
Energy Resources (SCooDER) package in Modelica
(Gehbauer et al. 2020). Each of the sites, in green, in-
clude (a) EnergyPlus building physics model with either
medium office or mid-rise apartment DOE prototypical
building exported through the EnergyPlusToFMU tool
(Nouidui, Lorenzetti, and Wetter 2013), (b) PV gener-
ation model exported from the Modelica Buildings Li-
brary (Wetter et al. 2014), (c) stationary behind-the-
meter battery storage exported from SCooDER, and (d)
smart inverter, with voltage-dependent active and reac-
tive power actuation to moderate grid voltage at point of
common coupling, exported from SCooDER. For a fully
populated IEEE13 feeder this results in at least 49 indi-
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Figure 1: Overview of Simulation Environment with Sim-
plified Information Flow.
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vidual simulators which are coupled through the FMI-
MLC shown as the blue outline. The exchange variables
are denoted in Figure 1. Most relevant for this study are
individual site’s battery setpoint, Pge¢ pae in W, thermo-
stat setpoint, T iy in C, battery state of charge, SOCpyy
in %, and building average temperature, Tj, in C. The
simulation environment allows the coupling of external
controllers, red outline, though OpenAI’s Gym wrapper
(Brockman et al. 2016) which defines action as input
vector, state as output vector, and reward as scalar ob-
jective. Utilizing this standardized interface for control
allows the connection of most machine learning devel-
opments to rapidly explore the high-dimensional inter-
dependencies of IES. Control actions were the battery
setpoint and building thermostat setpoint for each of the
12 sites. States were the battery state of charge, building
average temperature, and power flow of each site, as well
as time of day and weather data for temperature and so-
lar irradiation. In addition, 24 hour forecasts for weather,
PV generation, and building internal loads, i.e., equip-
ment and people, were passed to the controller through
the states object. The reward was set to the time-of-use
(TOU) electricity cost of the whole community, includ-
ing grid losses. This study used Pacific Gas and Elec-
tric’s E-19 tariff. It includes three pricing periods, (I)
oft-peak from 22:00 to 8:00, (II) mid-peak from 8:00 to



12:00 and 18:00 to 22:00, and (IIT) on-peak from 12:00
to 18:00, in summer, May through October, and two pe-
riods, (I) off-peak from 22:00 to 8:00, and (II) mid-peak
from 8:00 to 22:00, in winter. The cost periods for en-
ergy are 0.09496, 0.12656, and 0.17427 $/kWh in sum-
mer and 0.10280 and 0.12002 $/kWh in winter. The de-
mand charges are 0, 6.10, and 21.10 $/kW in summer,
and 0 and 0.14 $/kW in winter.

For this study, Model Predictive Control (MPC) was uti-
lized to control each building’s thermostat setpoint and
battery power. Thermostat control setpoints were imple-
mented in a fail-safe fashion, i.e., only changes within
a range of setpoints were permitted, to restrict any oc-
cupant comfort violations. MPC was chosen because
of its ability to provide optimality, when MPC-internal
model matches the simulation model, and its raising in-
terest in smart building control. In particular, an MPC
system based on the Distributed Optimal and Predictive
Energy Resources (DOPER) (Gehbauer et al. 2020) plat-
form was utilized. The optimization horizon was set to
24 hours with hourly re-optimization to track optimal
control setpoints. In order to evaluate the technical po-
tential of IES, weather and load forecast uncertainty was
set to zero. The model mismatch between the complex
building simulation model and MPC-internal model was
resolved by the introduction of a reduced-order resistor-
capacitor (RC) model derived from EnergyPlus. Re-
sulting root mean square errors for the RC model with
June 1% as training day were 0.07 K for medium office
and 0.005 K for mid-rise apartment. This reduced-order
model was used for MPC and replaced EnergyPlus in
the simulation environment which lead to a matched-
model setup between simulation and control. Without
forecast uncertainty and matched models between IES
simulation environment and MPC, the only remaining
mismatch was the lack of a grid model in the MPC. This
shortcoming is only apparent during situations of high
smart inverter actuation, e.g., when large amounts of re-
active power are injected in the grid. The primary opti-
mization objective was defined as TOU energy and de-
mand cost with grid emissions as secondary objective.
Control strategies included individual, i.e., each site op-
timizes for its local objective, and integrated, i.e., sites
work together as a community and exchange energy, to
assess the benefit of integration.

The base scenario chosen for this paper was derived us-
ing stochastic load and resource allocations to represent
similar total loading as defined by the original IEEE13
network. Two scenarios of PV generation were explored:
peak sizing which used a PV system sized to cover the
daytime peak load during a sunny day in summer, and

net-zero sizing which used a PV system sized to net-
zero energy demand on a sunny day in summer. The
climate was set to the DOE reference climate zone 3B-C
which is a coastal climate in Los Angeles, CA. In order
to evaluate optimal battery sizes, the Typical Meteoro-
logical Year (TMY) historic weather data was analyzed
to identify most unique weather patterns. The k-means
machine learning technique was applied to determine hy-
per cube clusters based on season, weekday or weekend,
outdoor air temperature, and global horizontal irradia-
tion. An optimal number of 16 clusters were identified
and historic days closest to centroids were selected for
the simulation study. Optimality was defined where in-
cremental decline in error, i.e., sum of squared distances
to centroids, converged towards a threshold of 0.5. Each
cluster’s weight was determined by the respective num-
ber of days and used to scale cluster results to annual
projections. The number of days per cluster ranged from
12 to 44.
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Figure 2: Electric Power Grid with Net-Zero PV Sizing
Scenario.

Figure 2 illustrates the PV and loading allocations for the
net-zero scenario. Node 1 represents the interconnection
with the larger power grid feeding the radial distribution
of customers. The inner color of each node represents its
demand through multitude of office or apartment build-
ings. The darker the color, the higher its demand. PV
size is indicated by the outer color. The scenario’s load
allocation represents 135 individual buildings across the
13 nodes, with 36 medium office buildings and 99 mid-
rise apartments. Buildings were aggregated per node,
which resulted one unique building simulation model per
node. It can be seen that nodes 4, 5, 7, and 10 were most
heavily loaded with up to nine medium office buildings
or 27 apartment complexes per node. However, the PV



generation for those nodes was moderate, ranging from
300 to 800 % of peak load in the net-zero PV sizing sce-
nario. On the other hand, nodes 3, 6, 11, 12, and 13 were
lightly loaded with only three medium office buildings
or nine apartment complexes. Most of the light-loaded
nodes constituted moderate amounts of distributed gen-
eration, except node 12 that showed high distributed gen-
eration up to 1,000 % of peak load in the net-zero PV
sizing scenario. Smart inverter actuation range, defined
as reactive power output in var, was scaled with a typi-
cal 30 % maximal output of the PV inverter. The smart
inverters used allowed the maximization of DER installa-
tions while keeping power grid parameters, e.g., voltage
and loading, within acceptable range. However, note that
the MPC controller explored in this study did not include
a power system model nor smart inverter actuation, and
therefore a mismatch between integrated MPC and the
simulation environment is present. Line types were allo-
cated in a uniform fashion where transport lines, shown
as bold, were 120 mm? Aluminium (Al) conductor and
all others were 25 mm? Al. Lengths were taken from the
original IEEE13 network and are marked as overlay in
Figure 2, in meter. It can be seen that nodes 9, 11, 12,
and 13 have the longest distances to the grid intercon-
nection, i.e., node 1, and therefore the weakest electric
interconnections.

Inequities in the system were considered bi-fold. First,
the loading scenario chosen for this study inherently con-
tains inequity by its stochastic allocation of load, gener-
ation, and battery storage. This limitation of generation
or battery storage per node can be interpreted as limited
roof space for PV or less available capital in disadvan-
taged communities. Second, each node of the electric
distribution network is connected through a multitude of
power lines which limits how many DERs can be in-
stalled. This results in inequity to grid reserves based on
geographic location. Inequities are proposed to be mit-
igated by sharing community resources which leads to
greater benefit for the whole community. For example,
integrated control may share one site’s large battery with
another site where the total cost is reduced further than
each site’s individual cost, while maximizing resource
utilization.

Simulations were carried out at Lawrence Berkeley Na-
tional Laboratory’s Lawrencium high performance com-
puting facility using four LR6 nodes with Intel Xeon
Gold 6130 processor with 16 cores, 2.1 GHz each, and
128 GB of memory.

Results

The following section shows highlighted results from
the 3,200 simulations conducted, which included the
two control strategies of integrated and individual con-
trol, two PV sizing scenarios of peak and net-zero,
each with and without smart inverters, 16 weather clus-
ters, and parametric grid of 25 battery sizes. Three-
dimensional response surface plots were generated by
grouping commercial and residential customers across
the feeder. While this method partially obstructs in-
equities between same customer types, it helps visualize
optimal battery patterns across the distinct commercial
and residential customer types. Figure 3 shows the op-
timal response surfaces for two of the sixteen significant
days.

The four columns correspond to the scenarios of PV siz-
ing with or without smart inverters being present. The x-
axis shows the aggregated commercial battery capacity
and the y-axis shows the aggregated residential battery
capacity. The battery capacity is defined as discharge
duration for the peak building demand, in hours. For
example, if two customers would have peak demands of
200 and 300 kW and the battery capacity is set to 2 hours,
then the combined batteries from both sites would be ca-
pable of 500 kW discharge for 2 hours which is | MWh
capacity. The z-axis shows the benefit of integration, in
%, defined by the time-of-use electricity cost savings be-
tween individual and integrated control. The first sub-
plot in the upper row shows the response surface for peak
PV sizing scenario without smart inverters for April 26.
The benefit of integration varies between 0.3 and 7.1 %.
Greater benefit tends to be achieved when lager differ-
ences between commercial and residential battery sizes
exist, e.g., when commercial battery size is close to 0
and residential battery size is 4 hours. The same results
are apparent for the next subplot in the first row, show-
ing peak PV sizing scenario with smart inverters. The
lack of differences indicates that even though smart in-
verters are present, the sizing of PV for peak demand
does not cause large stress on the power grid and limited
actuation of smart inverters. When analyzing the third
subplot in the first row showing the net-zero PV sizing
scenario without smart inverters, the response surface for
benefit of integration changes and largest benefit is now
given when both residential and commercial batteries are
at their maximum size, and lowest benefits are apparent
when differences between the batteries are largest. While
optimally sized batteries can provide benefits of up to
28.3 %, the benefits can also drastically decline down to
-16.0 % when poorly sized. The addition of smart in-
verters shows minor differences when battery capacities
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Figure 3: Example Response Surfaces for Benefit of Integration through Parametric Battery Sizes of Aggregated
Commercial and Residential Sites for Four Scenarios (columns) and Two Days (rows).

are in the 2 hours range. The results for another day,
September 10, in the second row of Figure 3 for the peak
PV sizing scenarios show similar trends as the April 26
ones, but with higher potential savings between 1.9 to
17.5 %. This can likely be attributed to the TOU tariff
which has steeper price differences between the demand
periods in the summer season. The net-zero PV sizing
scenarios on the other hand show optimal regions only
when residential batteries are small. The scenario with-
out smart inverters shows savings between -10.3 to 6.4
%. The scenario with smart inverters shows large differ-
ences in the region when both commercial and residen-
tial batteries are large, but otherwise matches the trends
of the scenario without smart inverters. Savings range
from -13.6 t0 6.7 %.

The Table 1 shows the corresponding smart inverter ac-
tuation for a subset of the April 26 battery parameters
shown in Figure 3. The columns include the PV siz-
ing scenario, commercial and residential battery size, in
hours, the active power curtailment statistics, in %, and
reactive power injection statistics, in %. The first five
samples show peak PV sizing. It can be seen that no ac-
tive power curtailment is applied and reactive power con-
trol ranges between 0 to 64 %. All of the 12 load-bearing
nodes provide some degree of reactive power control. On
the other hand, the net-zero PV sizing scenario shows

Table 1: Samples of Inverter Actuation on April 26.

Com/Res  Curtail [%] Reactive [%]

Size [h] min mean max min mean max
peak  4/4 0 0 0 0 31 o4
peak 1/1 0 0 0 0 28 58
peak  2/1 0 0 0 0 29 60
peak  3/1 0 0 0O 1 29 60
peak  4/1 0 0 0 2 30 o6l
net-z  4/4 0 0 4 0 7 98
net-z  1/3 0 0 22 0 15 100
net-z  4/1 0 0 23 0 13 100
net-z  0/3 0 0 30 0 17 100
net-z 072 0 0 32 0 20 100

significant amount of active power curtailment for most
cases, except when both, commercial and residential bat-
teries are maximally sized. Four of the 12 load-bearing
nodes saturate the reactive power control and need to
switch to active power curtailment with up to 32 % ac-
tuation. Figure 4 illustrates this scenario by providing
spatial smart inverter actuation to highlight the associ-
ated inequity due to electric power grid constraints.

The Figure 4 shows a snapshot of the IEEE13 electric
grid model at high PV generation time and 0/2 battery
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Figure 4: Example Smart Inverter Reactive Power (Q)
and Active Power Curtailment (Cur) Actuation for 0 h
Commercial and 2 h Residential Batteries on April 26.

ratio between commercial and residential, introduced in
the last row of Table 1. The first node, in black, pro-
vides the interconnection with the larger power grid and
feeds the radial distribution of customers. The color of
the remaining nodes illustrates the total actuation of the
respective smart inverter. Nodes in blue show moder-
ate actuation whereas nodes in red show heavy actuation
with active power curtailment. The large generation of
PV and associated power exchange between nodes and
the larger power grid leads voltages to raise. Customers
at grid edges, e.g., nodes 9, 11, and 12, experience in-
equity since they are limited in the amount of power they
can feed-in and must curtail active power by 17.4, 24.2,
and 32.0 % respectively.

The Figure 5 shows the combination of the 16 weather
clusters, weighted by the number of days within each
cluster, to project annual cost savings for the peak PV
sizing scenario. It shows an optimum when residential
batteries are small and commercial batteries are moder-
ate to large. The benefit of integration through electricity
cost savings ranges from 1.5 to 10.0 % for the peak PV
scenario, with seasonal minimum of -10.9 % and maxi-
mum of 23.5 %. The results for the net-zero PV scenario
range from -10.1 to 0.9 % annually, with seasonal mini-
mum of -42.8 % and maximum of 28.3 %.

Discussion

This work demonstrated how inequities can arise and
the resulting non-linearity in benefit of integration for
parametric battery sizes. Space and economic inequities
were incorporated with the stochastic allocation of PV
sizes across customers of the IEEE13 electric power grid

15 10.0

o

.~ Annual
Benefit of Integration [%]

N w
PO G

Figure 5: Annual Benefit of Integration for Peak PV Siz-
ing.

model. The resulting imbalance in generation along cus-
tomers lead to time-of-use electricity cost savings when
systems are integrated. However, the inclusion of the
electric power grid and its constraints lead to additional
inequities based on the spatial distribution of customers.
Those located at the end of the distribution system where
electrical interconnections are typically the weakest ex-
perienced more smart inverter actuation including PV
active power curtailment. This is exemplified for the
net-zero PV penetration scenario, illustrated in Figure 4,
where nodes 9, 11, and 12 experienced heavy smart in-
verter actuation, including active power curtailment up
to 32 %. The response surfaces shown in Figure 3 sup-
port this finding: significant changes are observed be-
tween moderate PV generation scenario, i.e., peak PV
sizing, and high PV generation scenario, i.e., net-zero
PV sizing. Future asset allocation and control systems
will need to provide flexibility to adjust to such changing
circumstances to provide sustainable benefits through in-
tegrated energy systems. As illustrated in Figure 5, the
electricity cost savings for the peak PV sizing scenario
range up to 10.0 % on an annual basis and up to 23.5 %
for seasonal periods. Greater annual benefit of integra-
tion tends to be achieved when residential batteries are
small and commercial batteries are moderate to large.
This indicates that it is more beneficial for commercial
sites to support residential sites than vice versa. For the
net-zero PV sizing scenario, the benefits of integration
are generally lower which can be attributed to the MPC
controller’s lack of power grid and smart inverter mod-



els. Future versions might capture those dynamics and
could lead to greater savings.

This study seeks to identify the technical potential of
integrated energy systems and used MPC as exemplary
controller. Here, the MPC-internal model and the un-
derlying models of the simulation environment were ar-
tificially matched, with exclusion of the electric power
grid in the MPC controller. Further research will be nec-
essary to explore economic and market potentials. Key
challenges for any controller will be the accurate fore-
casting of demand and renewable generation, as well as
identifying system-internal dynamics, including battery
efficiency and thermal mass in a building. Therefore,
achievable cost savings in real installations will likely
be less than shown in this study. Another simplification
in this study was the application of TOU electricity cost
as proxy for grid greenhouse gas emissions. While TOU
electricity price schedules are loosely coupled to emis-
sions, by the fact that conventional power plant’s major
operational cost is fuel which is converted to emissions,
real-time grid emissions vary, e.g., due to the availability
of renewable generation. Further work is needed to in-
clude bulk power system models to accurately account
for generation dispatch and associated real-time emis-
sions.

Another challenge concerns the mathematical and com-
putational tools needed to discover economically feasi-
ble, zero-carbon, grid-level energy solutions from across
the wide range of energy systems. For instance, the
relatively confined simulations for only 12 individually-
computed sites in this study took about 5 minutes each
for a single battery size over a 24 hour period. Current
methods do not allow for more than a few hundred in-
dividual customers, which limits the benefit IES could
provide. The slow simulation time is also problematic
as many applications of IES require annual or multi-year
horizons to build and operate IES. Changing the horizon
to one year would increase the simulation time of a sin-
gle run to about 30 hours. In contrast, state of the art
machine learning methods, such as reinforcement learn-
ing, require thousands of sequential iterations to discover
optimal solutions. Therefore, scientific advancements
in computational methods and dimension reduction are
needed that can provide a clear analytical foundation to
link functions of the electrical grid to near-real-time con-
sumer use, and the vast opportunities provided by energy
storage. This also includes advancements to optimize
and ensure the security and reliability of this growing
ecosystem. Those advancements are needed in the next
few years to enable the transformation of infrastructure
to realize the full potential of real-time energy controls

that balance risk-aversion and risk-taking decisions for a
future integrated energy infrastructure.

Conclusion

Integrated control of community energy systems poses
a tremendous potential to lead the way to an econom-
ically feasible decarbonized future. The illustrated re-
sponse surfaces for battery sizing highlight the nonlin-
ear solution space and challenges when energy is ex-
changed across the community. Adequate sizing is cru-
cial to maximize monetary and non-monetary benefits.
This is especially true when including equity, distributed
energy resources, building demand response control, and
the electric power system. Further development of com-
putational tools, regulatory guidelines, and customer ac-
ceptance will be necessary to successfully roll out com-
munity energy systems.
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