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RISK AND TRADEOFFS
Lara Buchak, UC Berkeldy
1. Introduction

Decision theories are theories of instrumentabretiity: they formalize constraints of
consistency between rational agents’ ends and gansithey take to arrive at these ends. We caelmod
the possible actions an agent might take eaclgasale whose outcomes depend on the state of the
world: for example, the action of not bringing anhrella is a gamble that results in getting wétrdins
and staying dry if it doesn’t. Decision theoryqea constraints on the structure of rational agents
preferences among the actions available to themaana result, can represent the beliefs and desdire
any agent who meets these constraints by precisenial values.

The prevailing view is thaubjective expected utility theory, which dictates that agents prefer the
gamble with the highest expected utility, is therect theory of instrumental rationality. Subjgeti
expected utility theory (hereafter, EU theory)hisught to characterize the preferences of allmatio
decision makers. And yet, there are some prefegetiat violate EU theory that seem both intuitivel
appealing and prima facie consistent. An importgoup of these preferences stem from how ordinary
decision makers take risk into account: ordinarmgisien makers seem to care about “global” propertie
of gambles, but EU theory rules out their doing so.

If one is sympathetic to the general aim of deaisfeeory, there are three potential lines of
response to the fact that EU theory does not caphigr way that many people take risk into accaunt i
their preferences among gambles. The first idaioncthat contrary to initial appearances, expected
utility theory can represent agents who care aphmltal properties, by re-describing the outcomes th
these agents face. The second response is tottlafrwhile many people care about global propertie
(and that these patterns of preferences cann@pvesented by the theory), these people are singply
rational in doing so. | think that neither of theesponses can succeed. | advocate a third espon
modifying our normative theory to broaden the raofjetionally permissible preferences. In patacu
| advocate broadening the set of attitudes towastithat count as rationally permissible. Althbug
won't directly argue against the first two respankere, formulating an alternative will be impottam
evaluating them. We need to know what it is thyggtrais are doing when they systematically violate EU
theory in order to discover whether doing what theydoing constitutes taking the means to thels ém
a rationally permissible way. In this paper, Il\iplain the alternative to EU theory that | favand |
will in particular explain how it does a better jabexplicating the components of instrumentabratlity

than does EU theory.

! Penultimate version. Forthcomingnkenntnis (FEW 2012 special issue): please cite that version. This article is
excerpted in large part from Lara Buchak (20133kRind Rationality, Oxford University Press.




2. Risk, EU Theory, and Instrumental Rationality

| begin by briefly explaining subjective expectadity theory; explaining how it must analyze
the phenomenon of risk aversion; and showing that @esult, EU theory cannot capture certain
preferences that many people have. | will themi@athat this problem arises for EU theory because i
neglects an important component of instrumentamatity.

EU theory says that rational agents maximize exgkatility: they prefer the act with the highest
mathematical expectation of utility, relative teithutility and credence (subjective probabilityp€tions.
So, if we think of an act as a gamble that yielgasdicular outcome in each state of the world—for
example, g = {E X¢; B, %o ...; En, o} iS the act that yields; if E; obtains, for each—then the value of
this act is:

EU(9) = ) p(E)u(x)
i=1

According to EU theory, a rational agent strictigfersf to g if and only if EU(f) > EU(g), and if she
weakly preferd to g if and only if EU(f)> EU(g). So utility and credence are linked toaadil
preferences in the following way: if we know whatagent’s utility function and credence functiome,ar
we can say what her preferences ought to be. ateeglso linked in another way that will be of caht
interest in this paper: if we know an agent’s prefiees, and if these preferences conform to thavesi
of EU theory, then we can determine her credenaetifon uniquely and her utility function uniquelp u
to positive affine transformatiofwe can represent her as an expected utility maenelative to a
some particulap andu. It is crucial for the EU theorist that the pmefeces of all rational agents can be
represented in this way.

It is uncontroversial that many people’s prefeesndisplay risk aversion in the following sense:
an individual would rather have $50 than a fainefiip between $0 and $100, and, in general, would
prefer to receive #rather than to receive a gamble that will yieltbfi averagé. If such an agent is
representable as an EU maximizer and the prefefen&®0 rather than the coin-flip is strict, thien
must be that u($50) — u($0) > u($100) — u($50), ikat getting the first $50 makes more of aytili

2 To say that two utility functions u(x) and u’(xjeaequivalent up to positive affine transformatinaans that there
are some constangsandb wherea is positive and au(x) + b = u’(x).

% In all these examples, | will assume that proliisl are given, to simplify the discussion. Bug probabilities
involved should be assumed to be the agent’s stiNgegrobabilities. Moreover, | will use the tefnisk-averse”
neutrally: an agent is risk averse with respestaime good (say, money) iff she prefers a sure-thingunt of that
good to a gamble with an equivalent mathematicpéetation of that good. For a more general dédimiof risk
aversion that is compatible with what | say here tmat captures the idea that a risk-averse pgnefars a gamble
that is less spread out, see M. Rothschild antiglit (1970), “Increasing Risk: I. A Definition Journal of
Economic Theory.



difference than getting the second $50 does. Menerally, her utility function in money must dirsih
marginally:
Diminishing Marginal Utility
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Diagram 1: Diminishing Marginal Utility
Diagram 1: Diminishing Marginal Utility

The converse holds as well: when a utility functiseoncave, a gamble will always have an expected

utility that is no greater than the utility of éxpected dollar valu&.On EU theory, then, aversion to risk

is equivalent to diminishing marginal utility.

Intuitively, though, there are two different psgtbgical phenomena that could give rise to risk-
averse behavior. On the one hand, how much onesadditional amounts of money might diminish
the more money one has. As an extreme case ottmsider Alice, who needs exactly $50 for a bus
ticket, and doesn’'t have much to buy beyond tkat.the other hand, one might value small amounts of

money linearly, but care about other propertiethefgamble besides its average value: for exartipge,

*A real-valued functior is concave in some intenv@liff Ox,y(IC and allaJ[0, 1], f(ax + (1-w)y) > of(x) + (1-
a)f(y). A continuous function is concave in someemal C iff Ox,yOC, f((x + y)/2)> (f(x) + f(y))/2. Concavity is
strict if the inequality is strict for ¥ y anda[J(0, 1). Definitions of convexity and strict convigxare given by
reversing the inequalities. Throughout this papeii]l continue to use “concave” to refer to thefishition that uses
weak inequalities, so that linearity is a degereecasse of concavity. This are the standard usagesen’s
Inequality (Jenson 1906) tells us thatiis concave, then the expected utility of a randaniable (in this case,
amounts of money) is no greater than the utilititoExpected monetary valuefis a gamble, then EU®
u(E(f), where E(f) is the expected monetary vastie And if uis convex, EU(fp u(E(f)). Chateauneuf and
Cohen (1994: 82) note that a preference for a gueed E(f) rather thahitself implies a concave utility function.
But | do not know where this was originally showhL.W.V. Jensen (1906). “Sur les fonctions congexeles
inégalités entre les valeurs moyenndgfa Mathematica 30(1): 175-193. Alain Chateauneuf and Michéle &oh
(1994). “Risk-seeking with Diminishing Marginal Uty in a Non-Expected Utility Model.Journal of Risk and
Uncertainty 9: 77-91.



minimum value it might yield, the maximum, or th@ead of possible outcomes. In other words, one
might be sensitive tglobal properties. Consider Bob, who gets as much pleasure ottteofitst $50 as
the second, but would rather guarantee himselfti$&0 risk having nothing for the possibility of $10
Both Alice and Bob prefer $50 to the coin-flip, ahe EU theorist must interpret both agents asriggai
non-linear utility function, on the basis of thiseference.

What is the relationship between an agent’s psydyoand the utility function that is derived
from her preferences? There are two views abdsitdh therealistic picture, the utility function
represents some pre-existing value that the agentitrthermore, this value is independent from
preferences, so could in principle be known aparhfpreferences. For the realist, EU theory wald
misinterpreted Bob, since Bob’s strength of defsiranoney is linear. On theonstructivist picture,
which seems to have more widespread endorsememigacomtemporary philosophers, utility cannot be
determined independently of what the agent préféfke utility function is a construction from
preferences: it is the quantity whose mathemagixpéctation an agent maximizes. Utility may or may
not correspond to some psychological quantityeven if it does, it is not a quantity that we careg
content to apart from preferences. So the corstistowon’t necessarily care about the agent’s own
claims about how much she values various outcorfibsre is nothing yet in Alice’s and Bob’s
preferences to distinguish them from the pointiefwof constructivist EU theory. However, an agent
reasons for the preferences she has will turnoomtatter, because if the constructivist EU theorist
accidentally commits himself to something falseutlan agent's reasons, then although he will be &bl
explain an isolated preference (such as that fordder the $0/$100 coin-flip), his explanation will
commit the agent to having preferences that she dokin fact have and will therefore fail to regget
her.

Matthew Rabin presents a “calibration theorem”tovg that in order to describe the preferences
of decision makers that display risk aversion irdesi-stakes gambles, EU theory is committed tordbsu
conclusions about preferences between gambles thkestakes are higher (absurd in the sense that no
one actually has these preferences). As mentiareHU theory, modest stakes risk-aversion ergails
concave utility function. Rabin’s results assuroghing about the utility function except that itntimues
to be concave in higher stakes, and so doesn’example, have an inflection point above which it
increases marginally. Here are some examplesedfdtts of conclusions EU theory is committefl 6.

® Particularly clear expositions of this view appizethe following: (1) Patrick Maher (1993), Betiion Theories,
Cambridge: Cambridge University Press; (2) JohroBre (1999), “Utility,” in_Ethics out of EconomicBprt
Chester, NY, USA: Cambridge University Press; @hés Dreier (2004), “Decision Theory and Moralitgfiapter
9 of Oxford Handbook of Rationality, eds. Alfred Rele and Piers Rawling, Oxford University Press.

® Matthew Rabin (2000), “Risk Aversion and Expect#ility Theory: A Calibration Theorem Econometrica
68(5): 1281-1292. Results on p. 1282.




an agent prefers not to take a fair coin-flip betwénsing $100 and gaining $110 (that is, if shefegs a
sure-thing $0 to the -$100/$110 coin-flip), regasdl of her initial wealth level, then she must alsder
not to take a coin-flip between losing $1,000 aahigpg any amount of money. Similarly, if an agent
prefers not to take a coin-flip between losing $0,8nd gaining $1050 for any initial wealth levbken
she will also prefer not to take a coin-flip betwaesing $20,000 and gaining any amount of money.
Furthermore, if an agent prefers not to take a-figirbetween losing $100 and gaining $105 as lasg
her lifetime wealth is less than $350,000, themfiam initial wealth level of $340,000, she willur
down a coin-flip between losing $4,000 and gair$685,670. In other words, she will prefer a sure-
thing $340,000 to the gamble {$339,600, 0.5; $978,8.5}’

Rabin’s results are problematic for both the st@&ind constructivist EU theorist: if most people
have the modest-stakes preferences but lack thesiadres preferences that ‘follow’ from them, tienh
theory with a diminishing marginal utility functiomill fail to represent most people.

In case the reader is worried that Rabin’s resalison knowing a lot of the agent's preferences,
there are also examples of preferences that EU\tlfender either interpretation) cannot accounttffiat
involve very few preferences. One example is Alafamous paradox. Consider Maurice, who is
presented with two hypothetical choices, each betvieo gamble8. He is first asked whether he would
rather have Lor Ly:

L,: 10% chance of $5,000,000, 90% chance of $0.

L,: 11% chance of $1,000,000, 89% chance of $0.

He reasons that the minimum he stands to walk avittyis the same either way, and there’'s not much
difference in his chances of winnisgme money. So, sincejlyields much higher winnings at only
slightly lower odds, he decides he would ratherehav He is then asked whether he would rather have
Lsor L

L3 89% chance of $1,000,000, 10% chance of $5,000 3% chance of $0.

L, 100% chance of $1,000,000.

He reasons that the minimum amount that he standitin L, is a great deal higher than the minimum
amount he stands to win in,Lland that althoughslcomes with the possibility of much higher winnings
this fact is not enough to offset the possibilitxcboosing Iz and ending up with nothing. So he decides
he would rather have,L. Most people, like Maurice, prefei to L, and L, to Ls. However, there is no

’ Rabin states his results in terms of changes fnitial wealth levels because he hypothesizesphetof the
correct explanation for people’s risk aversion iod®st stakes i®ss aversion of the kind discussed in Kahneman,
Daniel and Amos Tversky (1979), “Prospect Theory:Analysis of Decision under RiskZconometrica 47: 263-
291.

8 Example due to Maurice Allais (1953), “Criticismisthe postulates and axioms of the American Sghool
reprinted in_Rationality in Action: Contemporary gieaches, Paul K. Moser, ed., Cambridge UniveRigss,
1990. Amounts of money used in the presentatichisfparadox vary.




way to assign utility values to $0, $1m, and $5chstihhat Ly has a higher expected utility thapdnd Ly
has a higher expected utility thag therefore these preferences cannot be represast@@dximizing
expected utility. Allais’s example does not require any assumpti@it an agent’s psychology — it
relies only on the agent having the two preferemsestioned — and so again presents a problem for bo
the realist and the constructivist EU theorist.

Most people have preferences like those that #\laid Rabin show cannot be captured by EU
theory; and there are many other examples of meées that EU theory cannot capture. The reason EU
theory fails to capture the preferences in the Rahd Allais examples is that it fails to separaie
different sorts of reasons for risk averse prefegsnlocal considerations about outcomes, likeetlloat
Alice advanced in order to determine that she pse$80 (“this particular amount of money is more
valuable...”) and global considerations about gamatea whole, like those that Bob advanced in order
to determine that he prefers $50 (“I would rathegharanteed $50 than risk getting less for the
possibility of getting more”).

Why would an agent find this second kind of coasation relevant to decision making? Let us
examine the idea that decision theory formalizes@ecisifies means-ends rationality. We are presk
with an agent who wants some particular end andachieve that end through a particular means. Or,
more precisely, with an agent who is faced witlh@i@e among means that lead to different ends,twhic
he values to different degrees. To figure out vibato, the agent must make a judgment about which
ends he cares about, and how much: this is whattilitg function captures’ In typical cases, none of
the means available to the agent will lead withaiety some particular end, so he must also make a
judgment about the likely result of each of hisgible actions. This judgment is captured by the
subjective probability function. Expected utilttyeory makes precise these two components of means-
ends reasoning: how much one values various endsyhich courses of action are likely to realizesth
ends.

But this can’t be the whole story: what we've ssidfar is not enough for an agent to reason to a
unique decision, and so we can't have captureithatls relevant to decision making. An agent migt

® For if Ly is preferred to §, then we have 0.1(u($5m)) + 0.9(u($0)) > 0.11(ufHl+ 0.89(u($0)). Equivalently,
0.1(u($5m)) + 0.01(u($0)) > 0.11(u($1m)). And ifi preferred to , then we have u($1m) > 0.89(u($1m)) +
0.1(u($5m)) + 0.01(u($0)). Equivalently, 0.11(u¢®) > 0.1(u($5m)) + 0.01(u($0)). These two conirgdo there
is no utility assignment that allows for the comn#dhais preferences.

9 This talk may faze a certain kind of constructivi$ve could recast it in terms that are acceptabthe
constructivist as follows. If risk-preferences besed only on local considerations so that thataggeys the
axioms of EU theory, then the utility function astekrmined by EU theory will reflect these evert ddesn’t
correspond to anything ‘real.’ If risk-preferen@gs based on both kinds of considerations sahiesagent doesn’t
obey the axioms of EU theory, then constructivisttBeory will read the agent as not having a wtflitnction.
However, if we can define the utility function frosnitable preference axioms that these preferathmedbey, then
the utility function will again reflect the locabaosiderations, as we will see in section 5.



faced with a choice between one action that gueearthat he will get something he desires somewhat
and another action that might lead to somethingtimngly desires, but which is by no means guaeshte
to do s Knowing how much he values the various ends ireais not enough to determine what the
agent should do in these cases: the agent mustajakigment not only about how much he cares about
particular ends, and how likely his actions are to readiaeh of these ends, but about wistiategy to

take towards realizing his endsawhole. The agent must determine how to structure therpal
realization of the various aims he has. This imesldeciding whether to prioritize definitely englinp
with something of some value or instead to pripeifpotentially ending up with something of veryhig
value, and by how much: specifically, he must detiek extent to which he is generally willing taejgt

a risk of something worse in exchange for a chafis®mething better. This judgment corresponds to
considering global or structural properties of gkeab

How should an agent trade off the fact that onengltbring about some outcome for sure
against the fact that another act has some snwddbpility of bringing about some different outcothat
he cares about more? This question won't be amslgy consulting the probabilities of states or the
utilities of outcomes. Two agents could attachvibiy same values to particular outcomes (varionsss
of money, say), and they could have the same beliabut how likely various acts are to result esth
outcomes. And yet, one agent might hold that hé$gpred strategy for achieving his general goal of
getting as much money as he can involves takingnabte that has a small chance of a very high payoff
whereas the other might hold that he can more tafidg achievethis same general goal by taking a
gamble with a high chance of a moderate payoffowing they can only achieve some of their aims,
these agents have two different ways to struchegubtential realization of them.

This dimension of instrumental reasoning is theatision of evaluation that standard decision
theory has ignored. To be precise, it hasn't igdat but rather supposed that there is a singiecb
answer for all rational agents: one ought to takt@as that have higher utility on average, regessllof
the spread of possibilities. There may or maytaogjood arguments for this, but we are not in &ipas
to address them before we get clear on what exagénts are doing when they answer the question
differently, and how this relates to instrumeng&dsoning. The aim of this paper is to make tlgarcl

3. An Alternative Theory
To explain the alternative theory of instrumengdlanality | endorse, | will start with the case of
gambles with only two outcomes: gambles of the ffEmx,; E, %}. As mentioned, the EU of such a

gamble is p(FI(x) + p(E)u(x). We can state this equivalently as; i@ p(E)[u(x%) — u(x)]. Taking %

™ For the skeptical constructivist of the previoasthote: local considerations might point in theediion of one
act, and considerations about the likelihood ofizery various ends might point in the directionasfother.



to be weakly preferred tg xthis is equivalent to taking the minimum utilitglue the gamble might
yield, and adding to it the potential gain abowe thinimum — the difference between the high vahg a
the low value — weighted by the probability of #heent in which that gain is realized. For examitie,
value of the $0/$100 coin-flip will be u($0) + (YBH$100) — u($0)].

The value of a gamble is itisstrumental value, a measure of how the agent rates it in terms of
satisfying her aims: we might say, a measure d@ffecctiveness as a means to her various ends. To
review, on EU theory, while it is up to agents tlsetaes how valuable each outcome is and how likely
they believe each event is to obtain, these twtuatians are of set significance to the instrumlevaiue
of a gamble. If two decision makers agree abat/tues of various outcomes and on the probagsiliti
involved, they must evaluate gambles in exactlysdme way: they must have identical preference
orderings® They must agree about how the gambles rank instef satisfying their aims.

However, it is plausible to think that some peapie more concerned with the worst-case
scenario than others, again, for purely instrumentsons: because they think thaaranteeing
themselves something of moderate value is a betgito satisfy their general aim of getting soméhef
things that they value than is making somethingeo§ high value merely possible. More realistigall
the minimum value won't always trump the maximuntheir considerations, but it will weigh more
heavily. Alternatively, an agent might be more @@nmed with the best-case scenario: the maximum
weighs more heavily in the estimation of a gamblelsie than the minimum does, even if these two
outcomes are equally likely. So, it is plausithlatttwo agents who attach the same values as éaah o
to $100 and $0 will not both attach the same vadue coin-flip between $0 and $100. One agent will
take the fact that he has a 50% chance of wintiadpetter prize to be a weaker consideration thian i
for the other. Thus, in addition to having differattitudes towards outcomes and different evialnat
of likelihoods, two agents might have differenttattes towards some way of potentially attainingpneo
of these outcomes.

A natural way to interpret these different attitsidieto postulate that different decision makers
take the fact that they might improve over the mimin to be a more or less important consideration in
evaluating a gamble. Formally, they weight theeptiill gain above the minimum differently from each
other. In EU theory, the instrumental value ofangle is at least its minimum utility value, and th
potential utility gain above the minimum is weigitay the probability of attaining the higher valugut
this latter feature is too restrictive: a potengjaln over the minimurmight increase a gamble’s
instrumental value over the minimum value by tlze sif the gain multiplied by the probability of

realizing that gain, but it might instead improtey more or by less, depending on what the aggnisc

12 For the constructivist: if two decision-makersrghthe same local considerations and agree orrtiabilities
involved, they must have identical preference omgg.



about. Of course, the probability and the sizéhefimprovement will be relevant: the higher the
probability of some particular gain or the larges size of a gain with some particular probability
better. Therefore, | propose that the possibdftg potential utility gain over the minimum impes/the
gamble above its minimum utility value by the sigehe gain multiplied by &unction of the probability
of realizing that gain, instead of by the bare phility. This function represents the agent'stadte
towards risk in the “global properties” sense. futally, we might calculate thesk-weighted
expected utility (REU) of a gamble {Ex;; E, %}, where u(%) < u(x), to be u(x) + r(p(E))[u(xz) —
u(xy)], wherer is the agent’s “risk function,” adhering to thenstraints G r(p) < 1 for all p; r(0) = O;
r(1) = 1; and is non-decreasing. The equation says that theumsntal value of a two-outcome gamble
will be its low value plus the interval between the value and the high value, weighted by the otigs
the risk function when the input is the probabitifygetting the high value.

The equation is equivalent to r(p(E))&)Ct (1 — r(p(E))u(¥). So we can think of r(p) either as
the weight a particular improvement-possibilitygyethen this possibility has probabilipy or as the
weight that the better outcome gets when this an¢cbas probabilitp. If the risk function has a high
value for some valup, then the value of the better outcome will coantd lot in the agent’s evaluation
of the gamble, and if it has a low value for sorakugp, then the value of the worse outcome will count
for a lot. This formulation also makes it cleamhan agent’s evaluation of gambles rests on fathats
are irreducibly global: the amount by which eactcome gets weighted will depend on which outcome
is the minimumt?

For example, for an agent who values money ligeartl has a risk function of r(p) 2, phe
coin-flip will be worth $25: u({HEADS, $0; TAILS, $00}) = u($0) + (0.5§u($100) — u($0)] = u($25).

131f contra our supposition, WK< u(x), then the value of the gamble would be Tjp(E;) + (1 — r(p(B)u(xy), i.e.
r(1 — p(E))u(x) + (1L —r(1 — p(E))u®, which need not be equivalent to r(p(E)x (1 — r(p(E))u(x).
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Diagram 4: Sample Risk Function: r(p) = p2
Diagram 2: Sample Risk Function: r(p) = p?

And here we come to the crux of the difference lkeetwhow EU theory represents risk aversion
and what | think instead merits the ter@n EU theory, to be risk averse isto have a concave utility
function. On atheory like mine, to be risk averse is to have a convex risk function.** The intuition behind
the diminishing marginal utility analysis of riskexsion was that adding money to an outcome iegxf |
value the more money the outcome already contdihs. intuition behind the present analysis of risk
aversion is that addingrobability to an outcome is of more value the more likelyt thacome already is
to obtain. Risk averters prefer to “get to cetiginso to speak. Of course, theories like mirevaltthat
the utility function is concave (or, indeed, anggd). But | claim that this feature, which desesilhow
an agent evaluates outcomes, pulls apart fromttitiscge towards risk properly called. So | clainat
what we might appropriately describe as an agaiiside towards risk is captured by the shapd<f h
risk function.

There is a natural way to extend this theory tolgamwith more than two possible outcomes.
The way I've set up the risk-weighted expectedtytdquation emphasizes that an agent considers his
possible gain above the minimum (the interval betwtiae low outcome and the high outcome), and
weights that gain by a factor which is a functidrihe probability of obtaining it, a function thdépends
on how he regards risk. Now consider a situatiowhich a gamble might result in onerodre than two
possible outcomes. It seems natural that the adpentid consider the possible gain between each

14 For further discussion of this point, see LaralBalc(2013), Risk and Rationality, Oxford Universityess.
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neighboring pair of outcomes and his chance ofraitigi the higher outcome or better, and, again,
subjectively determine how much that chance ofrattg this adds to the instrumental value of the
gamble.

One way to state the value of a gamble with maae tivo outcomes for a standard EU
maximizer is as follows. Start with the minimumu&a Next, add the interval difference between this
value and the next highest value, weighted by thbability of getting at least that higher valughen
add the interval difference between this valuethechext highest value, weighted by the probabilfty
getting at leadthat value. And so forth. Just as we replaced subgrobabilities by subjective
weights of subjective probabilities in the two-cutte case, we can do so in this case. So the ghhue
gamble for the REU maximizer will be determinedfbjowing this same procedure but instead
weighting by a function of the probability at egahcture.

For example, consider the gamble that yields $i pibbability ¥2, $2 with probability ¥, and $4
with probability 4. The agent will get at leastfdt certain, and he has a %2 probability of malanteast
$1 more. Furthermore, he has a % probability dfintpat least $2 beyorttiat. So the EU of the
gamble is u($1) + Y2[u($2) — u($1)] + Ya[u($4) — yi$and the REU of the gamble is u($1) #2)[u($2)
— U($1)] +r (Va)[u($4) — u($2)].

So the gamblg = {E1 X;; Bz X5; ... ; By, X}, Where u(X) < ... < u(x,), is valued under expected
utility theory aszn: p(E;)u(x;) » which is equivalent to:

i=1

EU(9) =
u(x,) + (Z P(E(u(x,) —u(x,)) + (Z P(EN)(U(Xs) —u(xz)) + ...+ p(E, )(u(x,) = u(x,4))

And that same gamble will be valued under risk-Wwidd expected utility theory as follows:
REU(g) =

(%) + 1Y PCEDU(K) = UX)) + 1Y PCEDU(G) = UK + .+ F(PEENU(X,) = U(X, )

We can now see how the standard Allais prefereameesaptured by REU theory: they maximize risk-
weighted expected utility only ifis convex®®

This functional form is an instance of the “rankpdadent” approach in non-expected utility
theory, discovered by economists around the 198@ghich the agent maximizes a sum of utility vaue
of outcomes, weighted by a factor that is relatethé probability of that outcome but that depeoiishe

B> L @ r(D)[u($5m) — u($0)] > r(.11)[u($1m) — u($0)].
Ly> L3 < (1 —r(.99)[u($1m) — u($0)] > r(.1)[u($5m) — ud).
These inequalities hold jointly only if r(0.11) (0rl) < 1 —r(0.99).
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outcome’s rank among possible outcomes. In pdatictwo of these theories are formally equivakent
REU theory when we abstract away from what thegiihting factor” is a function of. The first is
Choquet expected utility (CEU), due to David Schifeziand Itzhak Gilbo& and the second is
anticipated utility (AU), due to John Quiggih.However, CEU employs a weighting function of etat
not of probabilitiesof states: it does not include an agent’s judgmabtait probabilities at all. Indeed, it
is meant to apply to decision making under unaetgain which agents do not always have sharp
probability judgment$® AU does attach decision weights to probabilities, it uses an “objective”
probability function: it takes the probabilities gisen.

What is missing from each of these theories, ferghrposes of philosophers interested in
instrumental rationality, is a way to separatkefs from decision weights. each theory contains only one
subjective parameter that goes into fixing the Wwean outcome gets in the “expectation” equation.
Therefore, neither theory can formalize what tbikiave a belief separately from what it is to have
decision weight. But as | argued in my discussibimstrumental rationality, the question of which
strategy to employ is entirely separate from thestjon of what one believes. The REU formulation
allows that an agent attaches subjective probasilib states and then employs a weighting funaifon
these probabilities. Furthermore, the theoremgmtesl later in the paper will allow us to deriveleaf
these uniquely from an agent’s preferences, soamesee exactly how each contributes to the evaluati
of a gamble. Nonetheless, it might be helpfuheiteader to think of REU theory as a generalinatifo
AU theory to decision making with subjective protiiéibs: i.e., as “subjective” anticipated utilitizeory.
Alternatively, one could think of REU theory asestriction of CEU to the case in which agents are
probabilistically sophisticated and whose decisigights are a function of their subjective probitibs:
i.e., as “CEU with probabilistic sophisticatioR."This accurately represents the formalism, ifthet
philosophical commitments.

If we set r(p) = p, we get the standard subjeatiygected utility equation. And again, for agents
who care more about the worst-case scenario —agétht convex -functions — the possibility of getting
more than the minimum will contribute to the vabfdhe gamble less than it will for the expecteitityt

18 David Schmeidler (1989), “Subjective ProbabilitydeExpected Utility without Additivity,'Econometrica 57:
571-587. ltzhak Gilboa (1987), “Expected UtilitytivPurely Subjective Non-Additive Probabilitiesldurnal of
Mathematical Economics 16: 65-88.

7 John Quiggin (1982), “A Theory of Anticipated ltyi” Journal of Economic Behavior and Organization 3: 323-
343.

18 Schmeidler’s (1989) version includes some objegtikobabilities to derive the decision weights.

19 For further discussion of the relationship of REfigory to these theories and of other non-expadiéty
theories present in the economics and psycholognature, see Buchak (2013). For other surveymofexpected
utility theories, see Robert Sugden (2004), “Altgives to Expected Utility: Foundations,” Chaptédrdf Handbook
of Utility Theory, eds. Salvador Barbera, Petdddmmond, and Christian Seidl. Boston: Kluwer Acaie
Publishers, 685-755; and Chris Starmer (2000), @myments in Non-Expected Utility Theory: The Hémta
Descriptive Theory of Choice under RisKkgurnal of Economic Literature 38: 332-382.
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maximizer. The most extreme case of this is theimmiaimizer, who simply takes the gamble with the
highest minimum. He can be represented using={p)if p # 1, 1 if p = 1}. And for agents who care
more about the best-case scenario — agents wittagenfunctions — the possibility of getting higher
than the minimum will contribute to the value oéthamble more. The maximaximizer, who takes the
gamble with the highest maximum, can be represargied) r(p) ={0if p =0, 1 if ® 0}. The REU
equation also ensures that the value of a gamblevisys at least its minimum and at most its maxmu
and, since is non-decreasing, that increasing the probalolityetting a good outcome will never make a
gamble worse (preferences respect weak stochastimence). If we require in addition thas
increasing, then increasing the probability of iggt good outcome will always make a gamble better
(preferences respect strict stochastic dominance).

What ingredient of instrumental rationality does tisk function represent? The utility function
is traditionally supposed to represent desire,thagrobability function belief — both familiar
propositional attitudes. We try to make beliefs tie world,” and we try to make the world fit our
desires. But the risk function is neither of thésags: it does not quantify how we see the werld
does not, for example, measure the strength ofjanta belief that things will go well or poorlyrfaim
—and it does not describe how we would like theldvio be. It is not a belief about how much risie
should tolerate, nor is it a desire for more os lesk. The risk function corresponds to neithalidfs nor
desires. Instead, it measures how an agent stesctie realization of his aims. We will see ie th
remainder of this paper exactly how it does this.

On REU theory, the agent subjectively determihese things: which outcomes he prefers, how
likely various acts are to result in various outesmand the extent to which he is generally willimg
accept the risk of something worse in exchangéh®ipossibility of something better. First, likel E
theory, REU theory allows agents to attach subjectalues to outcomes. It is up to agents therasdty
choose their ends, and hence, REU theory includejactive utility function, which is not neceskar
linear in money (or any other good). Second, BlksoEU theory, REU theory allows agents to seirthe
credences, and hence, REU theory includes a sivgigubbability function. Thirdunlike EU theory,
REU theory allows agents to decide how to structiuegootential realization of the outcomes thegcar
about. It allows them to judge which gamble igdrefrom the point of view of their general aim of
getting more money (which includes their particaens of, say, getting $50 or of getting $100, whic
they may value twice as much). It is up to thenetlibr they will better fulfill their general aim by
prioritizing a high minimum or by prioritizing adifh maximum. And it is up to them exactly how these
two features of gambles trade off, e.g., how mumssiply doing better than the minimum is worth, or
how much weight to put on what happens in theptpprtion of outcomes. Hence, REU theory includes

a subjective risk function, which is not necesydiilear in probability.
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Every agent has beliefs and desires, and deterrfindésmself a norm for translating these two
things into preferences. EU theory claims tha) #(p is the correct norm: that we ought to be gliyb
neutral. But just as rationality does not dicatgngle utility function or credence function &t agents,
| claim that it also does not dictate a unique norm

4. From Preferencesto Beliefs and Desires

I have so far been focusing on the question of anwagent might aggregate her beliefs (credence
function) and desires (utility function) to arriséa single value for an act. I've claimed thatrgg need
not aggregate according to expected utility, bstdad might weight utility intervals by a functiohtheir
probabilities. Thus we can model decision makengsing a more general decision rule, which indude
a utility function, a credence function, and a miskction. However, the question that has recethed
most attention in philosophy is not how an agerghnarrive at preferences given her beliefs andags
but rather how we might determine an agent’s tekefd desires from her preferences. Specifically,
decision theorists are interested in what restiistion preferences will allow us to fix unique efdiand
desires. So the question that arises for REU yhisarhat restrictions are needed in order to ektra
beliefs, desires, and attitudes towards risk.

As mentioned, a utility and probability functiogpresent an agent under EU theory just in case
for all actsf andg, the agent weakly prefefso g iff EU(g) < EU(f), where expected utility is calculated
relative to the agent’s subjective probability ftioo of states. Aepresentation theorem for EU theory
spells out a set of axioms such that if an agemmegerences obey these axioms, then she will be
representable under EU theory by a unique prolpaliinction and a utility function that is uniqup to
positive affine transformation: she will be an Eldximizer relative to these functioffs.

Representation theorems are important in dectbieory, but their upshot depends on the use to
which decision theory is put. There are at leastvery different ways in which decision theory thegn
used, which | refer to as tipeescriptive use and théenterpretive use?*

When the theory is taken prescriptively, an agsesitit to identify the choice he should make or
the preferences he should have; or the decisiarigteises the theory to assess whether the agent’s

20 See Leonard Savage (original 1954, second edi8di2), The Foundations of Statistics, New York: Boov
Publications, Inc. See also Frank P. Ramsey (1928)th and Probability,” in Ramsey, 1931, The Rdations of
Mathematics and other Logical Essays, Ch. VII, pf-198, edited by R.B. Braithwaite, London: Kegaaul,
Trench, Trubner & Co., New York: Harcourt, Bracel@@ompany. For a survey of representation theofemsU
theory, see Peter Fishburn (1981), “Subjective EtgubUtility: A Review of Normative TheoriesTheory and
Decision 13. A different sort of representation theorerdug to Richard Jeffrey (1965), The Logic of Demisi
McGraw Hill. For Jeffrey, the state space anddbiome space are the same, and each outcomaistdegover
other outcomes, i.e., there are no “final outcoinds a result, his uniqueness result for the tytilinction is
weaker.

2L A third use is thelescriptive use, which | won't discuss here.
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choices and preferences are rational. The agersehi can use decision theory prescriptively ileast
two ways. First, if he has already formed prefeesrmover enough items, he can look to decisiorryheo
to tell him the preferences he should have ovegrdatems: to tell him how to attain his ends oftiget,
on balance, things that he (already) more stropgdfers. (Under realist decision theory, knowiingy h
utility and probability values will also be enoufgit decision theory to tell him the preferencesheuld
have.) Second, if an agent realizes that his mrrées are not in accord with decision theory, tienan
conclude that he has done something wrong andiginas he is rational, that he should alter his
preferences so that they do so accord. In additi@iheorist using decision theory prescriptively
ascertains whether the agent’s choices in factrdaogith the theory, and it is by this criterion tishe
judges whether the agent’s preferences are rational

Representation theorems state the conditions wwmtieh an agent can count as an EU
maximizer, and thus the conditions under whichganés preferences are rational (according to the
standard theory). Therefore, they are useful fesgriptive decision theory because they provide a
criterion for determining when an agent has irrsiqreferences that doesn’t require knowing hégise
numerical values. Furthermore, this criterion baremployed if we think there are no precise nuraéri
values to know aside from those that result froenttleorem, so they are especially useful to the
constructivist. For the constructivist, rationglitist is conformity to the axioms of decision theand it
is a convenience that this also guarantees repedskly as an expected utility maximizer. Thus,
representation theorems are useful because ttory ad to refocus the debate about rationalityemdt
of arguing that a rational agent ought to maxineizpected utility because, say, he ought to carg onl
about average utility value, the EU theorist cgjuarthat a rational agent ought to conform to ttieras.

In contrast to prescriptive decision theory, aiparof the modern philosophical literature treats
decision theorynterpretively: not as a useful guide to an agent’s own decisioutsrather as a
framework to interpret an agent’s desires, hisdfgliand perhaps even the options that he takeseHim
to be deciding among. The interpretive use ofglegitheory arises in response to a worry about toow
discover what an agent believes and desires, ghatrwe have no direct access to these mentasstate
and, if constructivism (or a version of realismwanich one’s desires are opaque) is true, neithé¢heo
agents themselves, since these states cannotdoeelisd by introspection. However, it seems thiat i
relatively easy to discover agents’ preferencesfepences do manifest themselves directly, if not
perfectly, in behavior, and are ordinarily operntoospection.

It should be clear how representation theoremsise@ul to interpretive theorists. If an agent’s
preferences obey the axioms of EU theory, therniteepretive theorist can start with the agent’s
(observable) preferences and derive the probalfilitgtion and utility function that represent héir.

should also be clear why it is important that theorems result ionique probability and utility
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functions. If there were multiple <p, u> pairsttbach could represent the agent as an expectitg uti
maximizer, we wouldn’'t know which way of represagtihe agent accurately captures “her” beliefs and
desires?

We can see that representation theorems are ctaaakision theory, so any alternative to EU
theory needs a representation theorem if it cae bogerve the purposes EU theory is traditiorauity
to. Furthermore, comparing the axioms of an EUeasgntation theorem to those of an alternative will
allow us to see the difference between what eaatrytrequires of rational agents. In the remairder
this paper, | explain the representation theorenRfeU theory. This theorem presents a set of agxiom
such that if a decision maker’s preferences obegelaxioms, we can determine a unique probability
function, a unique risk function, and a utility fition that is unique up to positive affine transfiation
such that the agent maximizes REU relative to thiese functions. One thing this will illumina i
what attitude the risk function corresponds tchatlevel of preferences, and exactly how it diffieosn a
credence function. My main aim here is to show IRE\J theory captures what it is to be risk-avebse,
contrasting the axioms of the REU representatieoréim and the stronger axioms of the analogous
representation theorem for EU theory. This wilyade a way to frame the debate about whether REU
maximizers are rational around the question of tiedgents ought to obey the axioms of EU theory or

only the weaker axioms of REU theory.

5. The Axiomatic Dispute

What is crucial to the present paper is presertiagaxiomatic difference between REU theory
and EU theory in a way that explains how the déffexe between the axioms of REU theory and the
stronger axioms of EU theory amounts to the diffeesbetween allowing agents to care about global
properties — or to determine for themselves the tomponent of instrumental rationality — and
prohibiting them from doing so. Thus, | will leatree technical presentation of the axioms and #maor
as well as a more formal discussion of them, tcaghgendix. | will here concentrate on explaining t
crucial differences between the theofiés.

First, though, let me briefly say something abbettelationship of the theorem here to other
related theorems. The theorem here draws on ther ogsults, one by Veronika Kébberling and Peter

%2 Recall that the utility function is only unique tgppositive affine transformation. Therefore,ottle facts that
are common to all of the utility functions, e.dnetrelative size of the utility intervals betweananmes, are rightly
called facts about the agent’s utilities.

% The proof of the theorem is found in Buchak (2013)
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Wakker and the other by Mark Machina and David Seildter?* Kébberling and Wakker prove a
representation theorem for another rank-depententy, CEU theory. CEU, like REU theory, applies
to preferences over acts, in which outcomes atetdi@vents whose probabilities are not given.
However, as mentioned, CEU does not representgdet @as having a function that assigdditive
probabilities to events, and thus the representation theore@idt does not provide us with a way of
extracting a rational agent’s degrees of beliefiftis preferences. Machina and Schmeidler give
conditions under which an agent can be represestg@dobabilistically sophisticated — as having igue
probability function relative to which his prefecas respect stochastic dominance — and as maxgnizin
some value function, but their result does not allowtasletermine the values of outcomes aside from the
gambles they are embedded in. Combining theiltegdwgive conditions under which we can represent
an agent as a probabilistically sophisticated d@tisaker maximizing the specific function thatsthi
paper is concerned with: conditions under whiclcase extract from an agent’s preferences a prolabili
function, a utility function, and function that represents how he structurestherealization of hisaimsin
theface of risk. Thus the set of axioms in the REU representdtienrem are a combination of
Kdbberling and Wakker’'s and Machina and Schmeidlarioms, strictly stronger than either set of
axioms.

The crux of the disagreement between REU theadyEuhtheory concerns the status of an axiom
known as Unrestricted Tradeoff Consistency. Acttwydo the EU theorist, rational preferences must
satisfy this condition. But according to the RHElddrist, rational preferences must only satisfy two
jointly weaker conditions, Comonotonic Tradeoff Gmtency (from Kébberling’s and Wakker's
axiomatization) and Strong Comparative Probabffitym Machina’s and Schmeider’s axiomatizatiéh).

We can see the difference between these commigrbgrabserving the pattern of preferences
that Unrestricted Tradeoff Consistency (UTC) ridesbut that REU theory allows. The basic idea
behind UTC is that which tradeoffs you are willimgaccept — tradeoffs about what happens in various
states — reveals your values. For example, sfutarth it to you to make one state worse by $16rder
to make another state better by $20, that showshbautility difference $10 makes to the firsttstes
equivalent to the utility difference $20 makestte second state, as long as the two states arlyequa
likely. But things are slightly more complicatedthe formal theory: since we are trying to extiza

utilities and probabilities from preferences, werat use the terms “equally likely” or “utility

4 Veronika Kobberling and Peter Wakker (2003), “Brefice Foundations for Non-expected Utility: A Gailized
and Simplified Technique Mathematics of Operations Research 28, 395-423. Mark J. Machina and David
Schmeidler (1992), “A More Robust Definition of $ettive Probability,"Econometrica 60(4): 745-780.

% comonotonic Tradeoff Consistency follows diredtym Unrestricted Tradeoff Consistency. In theserece of
the other axioms of EU or REU theory, UTC is slyistronger than the combination of CTC and Strong
Comparative Probability.



18

difference” in our axioms themselves. So EU thasrhave to capture the spirit of this idea jusigis
preferences.

To capture this idea, the EU theorist definesegipe notion oéqual tradeoffs. Let us say that
rather thary in E is an appropriate tradeoff fbrather tharg in E if an agent is indifferent between the
gamble that yields if event E obtains ankif event Eobtains and the gamble that yieldi§ event E
obtains andj if event Eobtains?® For example, if the agent is indifferent betwésese two gambles:

{$10, HEADS; $150, TAILS}

{$0, HEADS; $170, TAILS}
Then $10 rather than $0 in HEADS is an approptiatgeoff for $150 rather than $170 in TAILS. The
idea is: the improvement in the HEADS state ($1Bemthan $0) exactly compensates for the
devaluation in the TAILS state ($150 rather tha(1 Now let us assume that the agent is also
indifferent between these two gambles:

{$110, HEADS; $150, TAILS}

{$100, HEADS; $170, TAILS}
Then $110 rather than $100 in HEADS is an approptiadeoff for $150 rather than $170 in TAILS. If
$10 rather than $0 in HEADS and $110 rather th00$4 HEADS are both appropriate tradeoffs in the
same event for the same pair ($150 and $170 in $Althen theylay the same compensatory role. We
can say that $10 rather than $0 is “tradeoff equea$110 rather than $100 because there is some
situation in which they play the same compensatolg. The EU theorist wants tradeoff equality to
imply that the value difference between the outc®imehe same: u($10) — u($0) = u($110) — u($100).
And the way to capture this thought axiomaticalljmentioning only preferences, rather than utilibes
probabilities — is to dictate that whenever $10eathan $0 is an appropriate tradeoff in some tefeen
some pair, so too is $110 rather than $100 an appte tradeoff in that event for that pair. IfCbhther
than $0 plays the same compensatory role in somat @vsome pair of gambles as $110 rather than
$100, they play the same compensatory role in exegnt in every pair of gambles. This is essdptial
what the Unrestricted Tradeoff Consistency Axioryssa

% n this discussions andy stand for outcomes aricindg for gambles (including the degenerate gamble which
yields the same outcome in every state), but tfierdhce won’t matter for understanding the dismrsbere.

" The axiom is actually framed as: if $110 rathemt8100 is tradeoff equal to $10 rather than $€réfis some
event and some gamble pair in which they are bpghapriate tradeoffs), and we have some outcontleay’is
preferred to $110, then $y’ rather than $100atstradeoff equal to $10 rather than $0 (there igvent and no
gamble pair in which they are both appropriatedodf$). But the difference is not important to aformal
discussion.
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For example, let us assume the agent has the abbefezences, and let us also assume the agent

is indifferent between these gambles:

{$10, HEADS; $50, TAILS}

{$0, HEADS; $70, TAILS}
Again, $10 rather than $0 in HEADS is an approprieadeoff for $50 rather than $70 in TAILS. UTC
implies that the agent must also be indifferentveen the following two gambles, since we know from
the agent’s other preferences that $10 rather$das an appropriate tradeoff for the same evetiten
same pair as $110 rather than $100:

{$110, HEADS; $50, TAILS}

{$100, HEADS, $70, TAILS}

Violating UTC is supposed to amount to not evahgabutcomes consistently: to allowing the
value difference between a pair of outcomes to dapending on the circumstances. But what UTC
neglects is that an agent might evaluate outcomesistently, but allow that an outcome makes a
different contribution to the value of a gamble wlikat outcome occurs in a different structurat pér
that gamble. An agent might care about whereérsthucture of the gamble a tradeoff occurs. For
example, we can give a rationale for an agent’sngathe following four preferences, which I've just
said UTC rules out®

{$10, HEADS; $150, TAILS} ~ {$0, HEADS; $170, TAILS

{$110, HEADS; $150, TAILS} ~ {$100, HEADS; $170, TS}

{$10, HEADS; $50, TAILS} ~ {$0, HEADS; $70, TAILS}

{$110, HEADS; $50, TAILS} < {$100, HEADS; $70, TAIE}
Here is the rationale. Making the HEADS statedydtly $10 might exactly compensate for making the
TAILS state worse by $26nly when the HEADS state isthe worst state. When the TAILS state is the
worst state, making the HEADS state better by $ightmot compensate for making the TAILS state
worse by $20. As an analogy: we might think theaing $10 to one person and taking $20 from another
preserves the overall value of a social distributialy if we are taking $20 from the best-off persmd
giving the $10 to the worst-off person, since wghmihink it's okay to take more from the top irder
to give something to the bottom, but not vice versa

If which tradeoffs an agent is willing to accepsensitive tavhere in the structure of the gamble
these tradeoffs occur (in the worst state or the best state, for exajnthen facts about which tradeoffs an
agent considers appropriate will only reveal wtititfferencesvhen we are dealing with gambl es that put

the eventsin the same order. By putting the events in the same order | méaventE is at least as good

%1t rules them out, in the presence of the Ordefinipm, because if the agent is indifferent in fhst three pairs
of gambles, UTC implies that she is indifferenttie fourth pair, but she in fact has a prefereratevéen them.
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as evenf for one gamble, then evelitis at least as good as evérfor another gamble. For example,
the gambles in the first three pairs above arsuah that the TAILS state is at least as goodeat th
HEADS state, but this is not so in the gamblesi@last pair. The technical term for gambles t¢indéer
the events in the same wayc@monotonic gambles, and a set of gambles that all orderhete in a
particular way is called eomoncone.

The Comonotonic Tradeoff Consistency Axiom, thenaxthat the REU theorist accepts, dictates
that tradeoffs reveal utility differences only whitle gambles order events in the same way. It thies
by restricting the Unrestricted Tradeoff ConsisteAgiom to hold only when we are dealing with
comonotonic gambles. In short: if two pairs ($ather than $0 and $110 rather than $100) are both
appropriate tradeoffs in the same event in somegbgiambles, then the utility value differencevibetn
them must be the samaless the tradeoffs occur in different structural parts of the gamble. If $10 rather
than $0 in HEADS and $110 rather than $100 in HEADSboth appropriate tradeoffs in the same event
for the same paignd they are tradeoffs in the same structural pathe@fgamble — if they are
“comonotonic tradeoff equal” — then the utility val difference between them is the same: u($10%6)u(
= u($110) — u($100). Again, we can put this imtgiof preferences without mentioning utility: ifG1
rather than $0 plays the same compensatory raenre event in some pair of gambles as $110 rather
than $100 plays in that event in that pair of gasland all four of these gambles order the evarttsei
same way as each other, then $10 rather than $8 thla same compensatory role as $110 rather than
$100 in any event and any gamble such that allébtime gambles order the events in the same way as
each other. This is essentially what Comonotonad&off Consistency says (with variables instead of
specific amounts of money, of cours®) So Comonotonic Tradeoff Consistency limits thaations in
which we can infer utility differences from whiatatlieoffs an agent is willing to accept.

In sum, Unrestricted Tradeoff Consistency saysiflane pair plays the same compensatory role
in some event in some gamble as another pair plags,the two pairs must play the same compensatory
role in every event in every gamble. Comonotonad€off Consistency says that this holds only when
the two compensating pairs occur in the same stralgpbart of the gamble as each other, for example,
when the tradeoffs both occur in the worst outcomigoth occur in the best outcome. Here is another
way to put this. Unrestricted Tradeoff Consisteaniails thathe utility contribution made by each
outcome is separable from what happensin other states. In other words, y-in-E rather than x-in-E makes

29 As above, the axiom is actually framed as: if $idtBer than $100 is comonotonic tradeoff equ&ilid rather
than $0 (there is some event and some gamblerpainich they are both appropriate tradeoffs, ahtbal gambles
are comonotonic), and we have some outcome yishaeferred to $110, then $y’ rather than $106bis
comonotonic tradeoff equal to $10 rather than B6ré is no event and no gamble pair in which threybath
appropriate tradeoffs and all four gambles are e¢wtanic). But, again, the difference is not impattto our
informal discussion.
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the same difference to the overall gamble (it dyacdmpensates for the same subgambles) reganafless
what happens ik. Furthermorey rather tharx makes the same value difference regardless ofwhic
event the substitution occurs in — not in termalzdolute value, but in terms of which other tratieivfis
equivalent t6° Comonotonic Tradeoff Consistency entails thetutility contribution made by each
outcome is separable from what happensin other statesif and only if we stay within a comoncone. In

other words, y-in-E rather than x-in-E makes thaesdifference to the overall gamble regardlesstagtw
happens ik, as long a& occupies the same position in the “event orderingdach relevant gamble.
But still, if we remain in the same comoncone, tidich eveng is will not matter, so the value
difference a tradeoff makes will be relativizedatgamble, but not to an event.

Why might it make a difference which structuraitpa the gamble a tradeoff occurs in? For
example, why does $10 rather than $0 in HEADS fileysame compensatory role as $110 rather than
$100 in HEADS when HEADS is the worst outcome ithbzases, but $10 rather than $0 in HEADS
when HEADS is the worst outcome doesn't play treesaompensatory role as $110 rather than $100
when HEADS is the best outcome? There are twoilgitiies. The first is that the agent considers
HEADS more likely when it has a worse outcome assed with it, and less likely when it has a better
outcome associated with it. He cares more aboat tappens in the worst possible state because the
worst possible state is more likely. In this cabe,agent would not have a fixed view of the likedd of
events but would instead pessimistic: he would consider an event less likely simplyshese its
obtaining would be good for him. But another axioffREU theory, the axiom of Strong Comparative
Probability, rules this interpretation out: in ghiesence of the other axioms, it entails that amelgas a
stable probability functiop of events. Aside from having the standard prégexf a probability
function, it is an important feature pthat it takes a higher value for one event thastteer just in case
the agent would always rather put a better outcomihe first event than the second, holding fixddhiv
happens in the rest of the gamble. This is retstake the functiop rather than the functionto reflect
an agent’s beliefs.

The second possibility is that what happens matters less to the agent wters higher in the
structural ordering not because she consilétself less likely, but because this feature &f diverall
gamble plays a smaller role in the agent’s conatitars. If an agent is more concerned with

guaranteeing himself a higher minimum, for examiien tradeoffs that raise the minimum are going to

%0 To clarify: substituting rather tharx into a gamble will make a different value diffecerdepending on the event
the substitution occurs in, merely because the rparbable the event, the bigger value differenedlitmake;
however, if substituting rather thanx for some event in some gamble makes the sameadtiffe as substituting
rather tharz for that same event in that same gamble, thearfpevent and any gamble, substitutingather tharx

in that event in that gamble makes the same vafterehces as substituting rather tharz in that event and that
gamble.
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matter more than tradeoffs that raise the maximusiressed that one thing an agent must deterimine
instrumental reasoning is the extent to which heiling to trade off a guarantee of realizing some
minimum value against the possibility of gettingrething of much higher value: that is, the extent t
which he is willing to trade raising the minimumaagst raising the maximum. And, again, this is
because agents must determine for themselves hstnuttiure their goals.

So we can now see that restricting Tradeoff Ctasty to gambles with the same structural
properties — gambles that order the events ingdheesvay — captures the idea that agents who &re ris
averse in the sense of caring about global ortstraicproperties are structuring their goals difety
than EU maximizers. Unrestricted Tradeoff Consisyesays that substituting one outcome for another
must make the same value difference to a gamb&dbgss of how these outcomes feature into the
structural properties of the gamble. But Comoniatdmadeoff Consistency says that the difference a
substitution makes depends not just on the diffexrén value between the outcomes in the particular
state, but on where in the structure of the garfti¢esubstitution occurs. If the agent cares ativege
structural properties then he will only obey thenomotonic version of the axiom. Furthermore, ithas
stable beliefs about the state of the world, belib&t don’t depend on how good various eventsoare
him, then he will obey the comonotonic versiontaf aixiom not because he is pessimistic but bedaise

structures his goals so as to place more importanaehat happens in the worst possible state.

6. Conclusion

| have proposed a theory on which agents subglgtiletermine the three elements of
instrumental rationality: their utilities, theiremtences, and the tradeoffs they are willing to niakbe
face of risk. In this paper | have explained hdiaveing agents to subjectively determine which sart
tradeoffs they are willing to make correspondsdopding a weaker set of axioms on preferences than
those endorsed by the EU theorist. On EU theonjglmtradeoffs an agent is willing to make must be
determined solely by the outcomes and events tinadeoffs involve. This means that lowering the
value of what happens in an event has the samgt effiethe value of a gamble regardless of what
happens in the rest of the gamble. However, on REQry, agents can care about where in the steictu
of the gamble the tradeoffs occur. Therefore gffiect on the value of the gamble can depend on
whether it is the value of the minimum or maximurattis lowered. Furthermore, even if the agent
assigns the same probability to two evdhendF, she needn’t think that lowering the valueeah
exchange for raising the value®f{by the same utility) is an acceptable tradebffparticular, if the
worst-case scenario is proportionately more imporia her than the best-case scenario, this malenot
an acceptable tradeoff when the priz&iis already worse than the prizeFin Whatr represents, then, is

the extent to which an agent privileges what hagpewarious structural parts of the gamble: whethe
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she is prudent in making sure the minimum valuggh, or venturesome in making sure the maximum
value is high.

Now that we've seen the difference between whathgdry requires of agents and what the
more permissive REU theory requires of them, wepraperly address the question of which theory
captures the requirements of instrumental ratipnatsince we can see what decision-makers who are
supposedly irrational are doing in terms of takimg means to their ends, the burden will be on the
defender of EU theory to show why individuals oughadopt a very particular strategy for attainiingir
goals: averaging the utility values without regtirdhe spread of possibilities, or ignoring global
considerations when deciding which tradeoffs to enakcontend that EU theory will not be able toetne
this burden, and that it is rational to be sensitivglobal properties of gambles in the way | esgdere.

But that is a discussion for another time.

APPENDIX: REPRESENTATION THEOREM AND TECHINAL DISCUSSION

The theorem here draws on two other results, onégognika Koébberling and Peter Wakker, and
the other by Mark Machina and David Schmeidlehe set of axioms | use in the REU representation
theorem are a combination of Kébberling and Wals&karid Machina and Schmeidler's axioms, strictly
stronger than either set of axioms.

| start by explaining the spaces and relationsmeedealing witif? Thestate spaceis a set of
states SS ={..., s, ...}, whose subsets are calledteveTheevent space, EE, is the set of all subsets of
SS. Since we want to represent agents who hater@nees over not just monetary outcomes but
discrete goods and, indeed, over outcomes desdaliadlude every feature of the world that therdage
cares about, it is important that the outcome spaogeneral. Thus, tleeitcome space is a set of
outcomes XX ={..., x, ...}. | follow Savage (1954/1®)7in defining the entities an agent has
preferences over as “acts” that yield a known auein each state. Tlaet space AA ={..., f(.), g(.),

...} is thus the set of all finite-valued function®fn SS to XX, where the inverse of each outconge) f
is the set of states that yields that outcomg&)fJEE. So for any actiAA, there is some partition of the

state space SS into {E.. E;} and some finite set of outcomes[YXX such thaf can be thought of as a

31 Kobberling and Wakker (2003). Machina and Schieeitl992). See Buchak (2013) for a discussiorelzfted
results. Particularly noteworthy is a similar thexa due to Nakamura in: Yutaka (1995). “Probaldasty
sophisticated rank dependent utilit{Eéonomic Letters 48: 441-447.

32 1n the denotation of the spaces, | follow Machama Schmeidler (1992).
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member of Y. And as long as f(s) is the same for alEs we can write f(g as shorthand for “f(s) such
that $1E,..”

For any fixed finite partition of events M = {E..., E}, all the acts on those events will form a
subset A, 0 AA. Thus, A, is defined to contain all the acts that yielddach event in the partition, the
same act for all states in that event; A{f JAA | (OEOM)(IXOXX)(OsOE)(f(s) = x)}. An upshot is
that for all acts in £, we can determine the outcome of the act by kngwihich event in M obtains: we
needn’t know the state of the world in a more fynained way.

Thepreferencerelation > is a two-place relation over the act space. ghiss rise to the
indifference relation and the strict preferencatieh: f ~ g iff f> g and g>f; and f > g if > g and ~(g>
f).

For all XJXX, x denotes the constant act {f(s) = x for all$S}. The relata of the preference
relation must be acts, but it will be useful tdktabout preferences between outcomes. Thus, Wwe wil
define an auxiliary preference relation over outeem

x>yiff x >y (for x, YIXX)
where indifference and strict preferences are ddfas above. It will be useful to talk about prefiees
between outcomes of particular acts, so, followiregabove definition, f(s} g(s) holds iff f(s® g(s), the
constant act that yields f(s) in every state isklyepreferred to the constant act that yields g{®very
state. Furthermoregikdenotes the act that agrees withn all states not containedBi and yields< on
any state contained B xgf(s) = {x if SLE; f(s) if £1E}. Likewise, for disjointE; andE; in EE, »1yef is
the act that agrees wifton all states not containedHa andE,, and yieldx onE; andy on E,: Xg1yeof(S)
= {x if sOEy, y if SOE,, f(s) if dE00 E5}. Similarly, gef is the act that agrees wighon all states
contained irE and agrees withon all states not containedtn g=f(s) = {g(s) if 41E; f(s) if LIE}. We
say that an event E mull on FJAA just in case the agent is indifferent betweenw jpair of acts which
differ only on E: gf ~ f for all g:f, fOF 3

The concepts in this paragraph and the next goertent in Kébberling and Wakker's result.
The first, comonotonicity, was introduced by Schuftezi (1989). Two acts f and g ar@monotonic if
there are no stategsl] SS such that f(3> f(s)) and g(g) < g($). This is equivalent to the claim that for
any partition Ay of acts such that figAy, there are no events,BE5,[0M such that f(E) > f(E,) and g(E)
< g(E). The acts f and g order the states (and, coesgiguthe events) in the same way:jifeads to a
strictly preferred outcome to that offer act f, then sleads to a weakly preferred outcome to thatof s
for act g. We say that a subset C of somasfacomoncone if all the acts in C order the events in the

same way: for example, the set of all acts on #gis-in which the heads outcome is as good astieb

3 Machina and Schmeidler (1992: 749).
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than the tails outcome forms a comoncone. Formadi\Koébberling and Wakker define it, take anydixe
partition of events M = {E, ..., E}. A permutatiornp from {1, ..., n}to {1, ..., n} is arank-ordering
permutation of f if f(Eq) > ... > f(Eyn). So a comoncone is a subsgib€Ay, that is rank-ordered by a
given permutation: C= {f O Aw | f(Eyw) > ... > f(E )} for somep. For each fixed partition of events of
size n, there are n! comoncoriés.

Here is an example to illustrate the idea of ammrone. Consider the following gambles:

f = {HEADS, $50; TAILS, $0} g = {HEADS, $100TAILS, $99}
h = {HEADS, $0; TAILS, $50} j = {HEADS or TAILS, %0}

The set [f, g, j] forms a comoncone, because fohgamble in the set, the heads outcome is weakly
preferred to the tails outcome. The set [h, jifera comoncone, because for each gamble in thinset,
tails outcome is weakly preferred to the headsamnt

We say that outcomeé,xxz, ... form astandard sequence on FJAA if there exist an actiF,
events # E; that are non-null on F, and outcomes y, z with—@) such that for all k, (%)Ei(y)a-f ~
(Me2)ef, with all acts (R)ei(y)efl, (Me(2)ef O F2 The intended interpretation is that the set of
outcomes % x4, X, ..., will be “equally spaced.” Since the ageriniifferent for each pair of gambles,
and since each pair of gambles differs only in that‘left-hand” gamble offers y rather than z jf E
obtains, and offers“} rather than if E; obtains, the latter tradeoff must exactly makdanphe former.
And since the possibility of* rather than %(if E;) makes up for y rather than z (ify Eor each k, the
difference between each'kand ¥ must be constant. Note that a standard sequanckeecincreasing or
decreasing, and will be increasing if z > y andrdasing if y > z. A standard sequence is bounfled i
there exist outcomes v and w such tHgt > X > w).

We are now in a position to define a relation teamportant for Kébberling and Wakker's result
and that also makes use of the idea that one fifagbectly makes up for another. For each partitit
we define the relation ~*(F) for B Ay and outcomes x, vy, z, W XX as follows:

xy ~*(F) zw
iff (f,g0F andCELEE that is non-null on F such thaf x yeg and zf ~ weg,

where all four acts are contained if®FKébberling and Wakker explain the relation ~*&8)follows:
“The interpretation is that receivingnstead ofy apparently does the same as receixiimgtead ofv;

34 Kobberling and Wakker (2003: 400). On p. 403, Kéting and Wakker (2003) point out that we cam asfine
a comoncone on an infinite state space, althoughigmot necessary for our purposes.

% Kobberling and Wakker (2003: 398). The concep efandard sequence, however, does not origiritiiehvem.
36 Kobberling and Wakker (2003: 396-7).
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i.e. it exactly offsets the receipt of the [fshtrad of the [g’s] contingent on][E*’ The idea here is that
if one gamble offer§if E obtains, whereas another gamble oftgifsE obtains, then this is a point in
favor of (let's say) the first gamble. So in ordi@ran agent to be indifferent between the two lgjas)
there has to be some compensating point in favtiteofecond gamble: it has to offer a better ouécihm
E obtains. And it has to offer an outcome thdteiger by the right amount to exactly offset thisnp.
Now let's assume that offeringrather tharx (on E), and offeringv rather tharz (on E) both have this
feature: they both exactly offset the fact thaaengle offerd rather tharg (on B. That is, if one gamble
offersf if E, and a second gamble offer#f E, then this positive feature of the first gambleudobe
exactly offset if the first offered if E and the second offergdf E — and it would be exactly offset if
instead the first offeredif E and the second offeradif E. If this is the case, then there is some
important relationship betweerandy on the one hand armhndw on the other: there is a situation in
which having the first member of each pair rathentthe second both pldye same compensatory

role. This relationship ~* is callettadeoff equality. We write xy ~*(C) zw if there exists a comoncone
F O Ay such that xy ~*(F) zw: that is, ¥andy play the same compensatory roleandw in some
gambled andg where all of the modified gambles after, z, andw have been substituted in are in the
same comoncone.

The relation ~*(F), and particularly ~*(C), feadgrcentrally in the representation theorem,
because one important axiom places restrictionst@n it can hold: on when pairs of outcomes can pla
the same compensatory role. This relation alsgs@ecrucial role in determining the cardinal tiili
difference between outcomes using ordinal prefer@ndVhat we are interested in is the utility
contribution each outcome makes to each gamtdepiiit of: this will help us determine the utilitglues
of outcomes. More precisely, since utiliifferences are what matter, we are interested in the utility
contribution thak rather thary makes to each gamble. And tradeoff equality givea way to begin to
determine this: if getting rather tharx in eventE and getting rather tharw in eventE both exactly
compensate for gettirfgather tharg in eventE, theny rather tharx andz rather thanw make the same
difference in utility contribution in evelfit in those gamble pairs. In order to get from thaifferences
in utility contributions to utility full stop, weeed to fix when it is that two pairs making the sam
difference in utility contribution means that thegve the same difference in utility. And to dcsthire
identify the conditions under which if two pairsvieahe same difference in utility (full stop), theyst

make the same difference in utility contributiongave constrain the rational agent to treat a pair

37 Kobberling and Wakker (2003: 397). Note the samiiy to the four-place relation “=" in Ramsey’s9¢6)
axiomatization of EU theory. In Ramsey’s axiomatian, “Xy = zw” holds when the agent is indiffetdretween
{E, x; E, w} and {E, y; E, z} for any “ethically neutral” proposition E believed to degree 0.5.
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consistently in these situations — to consistemidke tradeoffs. Tradeoff consistency axioms previd
such a constraint.

With the preliminaries out of the way, | can nokegent the axioms of REU theory, side-by-side
with those of the analogous representation thedoefEU theory that Kébberling and Wakker spell 8ut.

3 Mostly following Kébberling and Wakker (2003).alter their axioms slightly, to make the comparistear. See
Appendix B of Buchak (2013).



EXPECTED UTILITY THEORY

A1l Ordering: > is complete, reflexive, and
transitive.

A2. State-wise dominance: If f(s) > g(s) for all
SUSS, then & g. If f(s)> g(s) for all §1SS and
f(s) > g(s) for all SIEOISS, where E is non-null
on AA, thenf>g.

A3. Preference Richness:

() There exist outcomes x and y such that x > vy.
(ii) For any fixed partition of events,E..., E,,

and for all acts f(;, ..., &), 9(E&, ..., E) on

those events, outcomes x, y, and eventsith

Xef > g > &, there exists an “intermediate”
outcome z such thatz~ g.

A4. Small Event Continuity:

For all acts f > g and any outcome X, there exists
a finite partition of events {E ..., E;} such that

for all i, f> xgg and x%f > g

B5. Archimedean Axiom: Every bounded
standard sequence on AA is finite.

B6. Unrestricted Tradeoff Consistency: For

all Ay O AA, improving an outcome in any
~*(A ) relationship breaks that relationship. In
other words, xy ~*(A) zw and y' > y entails
(XY’ ~*(Aw) zw).

RISK-WEIGHTED EXPECTED UTILITY

Al Ordering: > is complete, reflexive, and
transitive.

A2. State-wise dominance: If f(s) > g(s) for all
sSS, then £ g. If f(s)> g(s) for all §£1SS and
f(s) > g(s) for all SIEOISS, where E is non-null
on AA, thenf>g.

A3. Preference Richness:

() There exist outcomes x and y such that x > y.
(i) For any fixed partition of events,E..., E,,

and for all acts (g, ..., &), 9(E&, ..., E) on

those events, outcomes x, y, and eventsith

Xef > g > &, there exists an “intermediate”
outcome z such thatiz~ g.

A4. Small Event Continuity:

For all acts f > g and any outcome X, there exists
a finite partition of events {E ..., E;} such that

for all i, f > xgg and x%f > g

Ab5. Comonotonic Archimedean Axiom:
For each comonconelFAy [ AA, every
bounded standard sequence on F is finite.

A6. Comonotonic Tradeoff Consistency:
Improving an outcome in any ~*(C) relationship
breaks that relationship. In other words, xy
~*(C) zw and y' >y entails —(xy' ~*(C) zw).

A7. Strong Comparative Probability: For all
pairs of disjoint events;e@nd E, all outcomes
X' >xandy >y, and all acts g,IAA,

XeXe20 > XeX 2 => YeYedD > YeY'e2



29

Any agent whose preferences obey the axioms itefitband column maximizes expected utility relativ
to a unique probability function and a utility fuimn unique up to positive affine transformation.
Furthermore, in the presence of (A3), any agent mhgimizes expected utility will satisfy the remaip
axioms.
Analogously, if a preference relatioron AA satisfies (A1) through (A7), then there ¢Xisa
unique finitely additive, non-atomic probabilityrfation p: EE-> [0, 1]; (ii) a unique risk function r: [0,
1] = [0, 1]; and (iii) a utility function unique up faositive affine transformation such that REU
represents the preference relationlf there are three such functions so that REté(fyesents the
preference relation, we say that REU holds. Thussatisfies (A1) through (A7), then REU holds.
Furthermore, in the presence of (A3), if REU holdth a continuous r-function, then the remaining
axioms are satisfied.
Therefore, if we assume preference richness (A8have:
(Al), (A2), (A4), (A5), (A6), (A7) are sufficientanditions for REU.
(Al), (A2), (A4), (AD), (A6), (A7) are necessaryrahtions for REU with continuous r-function.
The proof of this theorem, with references to det@und in Kébberling and Wakker and in Machina an
Schmeidler, can be found in Buchak (2013).





