
Lawrence Berkeley National Laboratory
LBL Publications

Title
Assessing the Potential to Reduce U.S. Building CO2 Emissions 80% by 2050

Permalink
https://escholarship.org/uc/item/91w8d9c0

Journal
Joule, 3(10)

ISSN
2542-4785

Authors
Langevin, Jared
Harris, Chioke B
Reyna, Janet L

Publication Date
2019-10-01

DOI
10.1016/j.joule.2019.07.013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91w8d9c0
https://escholarship.org
http://www.cdlib.org/


Article
Assessing the Potential to Reduce U.S.
Building CO2 Emissions 80% by 2050
Jared Langevin, Chioke B.

Harris, Janet L. Reyna

jared.langevin@lbl.gov

HIGHLIGHTS

U.S. building CO2 emissions could

be reduced up to 78% by 2050

Efficiency and low-carbon

electrification are required to

achieve this impact

Reductions are driven by heating

energy use in existing residential

buildings

Envelope, controls, and fuel

switching measures drive cost-

effective reductions
Buildings are responsible for 36% of CO2 emissions in the U.S. and will thus be

integral to climate change mitigation. We use Scout, a reproducible model of U.S.

building energy use, to assess whether buildings can reduce CO2 emissions 80%

by 2050, finding that aggressive efficiencymeasures and low-carbon electrification

can reduce emissions 72%–78%. The analysis establishes a basis for periodic

reassessment of building technology development pathways that can drive long-

term reductions in U.S. CO2 emissions.
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Article

Assessing the Potential to Reduce
U.S. Building CO2 Emissions 80% by 2050
Jared Langevin,1,3,* Chioke B. Harris,2 and Janet L. Reyna2

SUMMARY

Buildings are responsible for 36% of CO2 emissions in the United States and will

thus be integral to climate change mitigation; yet, no studies have comprehen-

sively assessed the potential long-term CO2 emissions reductions from the U.S.

buildings sector against national goals in a way that can be regularly updated in

the future. We use Scout, a reproducible and granular model of U.S. building en-

ergy use, to investigate the potential for the U.S. buildings sector to reduce CO2

emissions 80% by 2050, consistent with the U.S. Mid-Century Strategy. We find

that a combination of aggressive efficiency measures, electrification, and high

renewable energy penetration can reduce CO2 emissions by 72%–78% relative

to 2005 levels, just short of the target. Results are sufficiently disaggregated by

technology and end use to inform targeted building energy policy approaches

and establish a foundation for continual reassessment of technology develop-

ment pathways that drive significant long-term emissions reductions.

INTRODUCTION

The United States (U.S.) remains the second-largest contributor to global green-

house gas (GHG) emissions,1 and substantial reductions are necessary to reduce

the risk of catastrophic climate change.2 The U.S. Mid-Century Strategy (MCS) out-

lines a pathway to reduce GHGs by 80% below 2005 levels by 2050, examining GHG

reductions by sector.3 In 2018, the U.S. buildings sector was responsible for 36% of

national energy-related CO2 emissions,4 making it a critical component of the MCS

reduction strategy. Most GHG emissions from the buildings sector are from energy

use in buildings, with the bulk of emissions being CO2. Energy use in the buildings

sector serves many important economic, comfort, and quality of life functions. There

are over 325million people in the U.S.,5 the vast majority of whom use energy in mul-

tiple buildings every day; moreover, U.S. population and total building energy use

continues to grow.6 The heterogeneity of occupant needs and behaviors combined

with the diversity of building energy end uses increases the complexity of modeling

buildings, but this diversity also provides a plethora of opportunities for reducing

emissions.

In the U.S., diverse stakeholders are interested in identifying cost-effective strate-

gies for reducing CO2 emissions over both short- and long-term time horizons. A

tool that offers a transparent framework for identifying these reduction strategies

in the buildings sector can help governments deploy their limited resources for

optimal impact. Emission reductions in the buildings sector can generally come

from either electrification or energy efficiency improvements in building equipment,

materials, or operations. Electrification of building technologies could be an attrac-

tive option because fossil fuel-based equipment can typically be swapped for elec-

tric equivalents without significant modifications to the building, though key barriers

Context & Scale

The U.S. remains the second-

largest contributor to global

greenhouse gas emissions, and

substantial reductions are

necessary to reduce the risk of

catastrophic climate change. The

U.S. Mid Century Strategy (MCS)

sets a goal of reducing total

emissions 80% by 2050 relative to

2005 levels; as the buildings

sector comprises 36% of energy-

related CO2 emissions in the U.S.,

it is a critical piece of the MCS

reduction strategy. We assess the

feasibility of reducing U.S.

building CO2 emissions 80% by

2050 using a reproducible and

granular model of U.S. building

energy use. Our results can inform

energy and climate policy-making

at the regional, national, and

global levels and provide a

benchmark for assessing

emissions reductions in other

sectors of the economy.

Joule 3, 1–22, October 16, 2019 ª 2019 Elsevier Inc. 1

Please cite this article in press as: Langevin et al., Assessing the Potential to Reduce U.S. Building CO2 Emissions 80% by 2050, Joule (2019),
https://doi.org/10.1016/j.joule.2019.07.013



to electrification exist.7 Many device-based efficiency upgrades similarly involve

minimal disruption, however, effectively reaching the MCS targets will likely require

advancement in more complex systems such as the building envelope or control sys-

tems.3 In addition to providing CO2 reductions, increasing building energy effi-

ciency also has multiple co-benefits such as improving occupant comfort and worker

productivity,8,9 while accelerating economic growth10 and job creation.11 Addition-

ally, previous work shows that demand-side changes in energy efficiency can more

cost-effectively reduce CO2 than supply-side improvements in the carbon intensity

of electricity generation—even after accounting for the dramatic cost reductions

in renewable generation in recent years.12–14 Furthermore, lacking large-scale,

cost-effective reserve capacity or electricity storage alternatives, demand-side en-

ergy flexibility is needed to accommodate the variability inherent in renewable gen-

eration at high penetration levels.15–17 For all of these reasons, robust analyses are

necessary to identify specific efficiency and electrification measures for achieving

CO2 emissions reductions in the buildings sector and to understand the costs asso-

ciated with these measures.

Several existing studies have examined the potential contribution of building energy ef-

ficiency to national climate goals, including notable models developed for China,18 the

United Kingdom,19 Norway,20 Belgium,21 Japan,22 and Sweden.23 For the U.S., such

studies employ models with one or more key shortcomings that limit their applicability

to developing climate change mitigation strategies for the buildings sector. Primarily,

none of the models identified are developed to support continuous updating, with

the majority of studies being a single-time snapshot of scenarios.24–30 Climate change

mitigation will be a decades-long effort, and developing effective mitigation strategies

will require models that are regularly updated with the best available data on a range of

exogenous factors—technology R&D investment and technology commercialization,

changes in the electricity generation mix, and evolving consumer behavior and prefer-

ences. Secondly, many of the studies identified use a top-down approach, which aggre-

gates the total savings available from the buildings sector and focuses on macroeco-

nomic trends rather than specific policy- or technology-driven savings.6,24,28,29,31,32

Without a breakdown of energy end uses under transparent supply-side assumptions,

this type of modeling is highly impractical for targeted climate change mitigation strat-

egy development in the buildings sector. Few of the identified models are openly avail-

able,30 and much of the data underlying building stock models are proprietary or

outdated,25,30,33–35 which makes reproduction and validation by the scientific commu-

nity extremely difficult. Additionally, even openly available models are technically com-

plex and require significant technical expertise to generate results.36 Finally,many of the

models are limited in geographical and temporal scope; few existing model time hori-

zons extendbeyond 2035,25–27,33 masking the difficulties of achieving necessary longer-

term reductions in CO2, and many models focus only on a portion of the country or

building stock.28–30,35,37–39 Given these limitations of previous work, there is a strong

need for a transparent and reproducible model of technology change and CO2 reduc-

tion pathways to meet the MCS goals in the buildings sector that leverages the best

available data and is subject to annual review and updates.

Modeling the U.S. Buildings Sector with Scout

To address the limitations of previous work, we develop Scout, an openly-available

model for estimating the short- and long-term impact of building energy efficiency

on U.S. national primary energy use, CO2 emissions, and operating costs.

Scout analyses are organized around detailed energy conservation measure (ECM)

definitions that can be reviewed by users via a web app (scout.energy.gov); users
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may also create custom ECMs to incorporate into analyses using a standard web

form. Scout ECM definitions reflect current knowledge of technology cost and en-

ergy performance and support bottom-up modeling of end use and technology-

level impacts. Scout estimates future changes in primary energy use, CO2 emissions,

and associated costs in a three-stage approach: (1) ECMs are defined by their unit-

level energy performance, installed cost, and lifetime; by the segments of baseline

building energy use that they affect; and by their market entry year. Operation-

phase site energy use baselines are drawn from the U.S. Energy Information Admin-

istration’s (EIA) 2018 Annual Energy Outlook (AEO) projections4 and converted to

primary energy use using fuel-specific factors that are described further in the Sup-

plemental Information, (2) ECM penetration rates in the affected segments of base-

line building energy use are estimated, and the effects of competition between tech-

nologies on ECMpenetration are calculated, and (3) the impact of each ECM and the

total ECM portfolio on total national primary energy use, CO2 emissions, and oper-

ating costs is estimated, along with the cost effectiveness of individual ECMs.

Additional details on the data and calculation procedures used in Scout analyses are

provided in the Experimental Procedures and Supplemental Information.

For this study, we use Scout (v0.4.3) to project reductions in building operation-

phase CO2 emissions and primary energy use through 2050 and compare these re-

ductions against targets in the MCS, assessing the following research questions:

� Can building energy-related CO2 emissions be reduced 80% by 2050 relative

to 2005 levels under plausible scenarios of efficient technology deployment,

electrification, and renewable electricity penetration?

� Which energy end uses and building types most influence reductions in overall

building CO2 emissions?

� Which specific building technologies achieve the largest cost-effective CO2

emissions reductions?

We assess these questions using multiple scenarios that explore uncertainty in the pro-

gression of both demand- and supply-side conditions that affect building energy use

and CO2 emissions. For electric power supply, we consider two levels: one correspond-

ing to the AEO reference case (‘‘RB’’), and another corresponding to the AEO $25 car-

bon allowance fee side case (‘‘HR’’), which achieves a high level of renewable electricity

penetration—approximately 45% of total power generation by 2050.4 Three different

sets of ECMs are considered across the scenarios. The performance guidelines ECM

set (‘‘1T’’) includes currently available technologies that meet existing codes and/or

voluntary recognition programs (e.g., ENERGY STAR). The best available ECM package

(‘‘2T’’) includes the most efficient commercially-available technologies. The prospective

ECM package (‘‘3T’’) includes research-grade technologies that could be released over

the next decade as outlined by the U.S. Department of Energy’s Building Technologies

OfficeMulti-Year Program Plan.40 Finally, we explore two levels of technology switching

from on-site fossil fuels to electricity: the basic level (‘‘FS0’’) introduces fuel switching

without any capital cost incentives; and the incentivized level (‘‘FS20’’) applies a capital

cost "incentive" to reduce the installed cost of fuel switching measures by 20%.

Table 1 summarizes the combination of these electricity supplies, ECM sets, and fuel

switching assumptions into 10 scenarios. We calculate each scenario’s impact on

CO2 emissions and primary energy use, track the drivers of these impacts, and assess

the degree to which emissions reductions are achieved cost-effectively. In scenarios

9 and 10, it is assumed that only the highest-performing prospective ECMs (‘‘3T’’) are
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available on the market. While in practice it is unlikely that consumers would accept

this restricted set of technology choices, we include these scenarios to demonstrate

the importance of technology mix assumptions to estimated CO2 emissions and en-

ergy use reductions, and to highlight the effects of technology lock-in, which is ad-

dressed further in the Discussion section. Additional detail on scenario assumptions,

results assessment criteria, and emissions reduction targets is available in the Exper-

imental Procedures section.

RESULTS

By 2050, Aggressive Building Efficiency, Incentivized Electrification, and High

Renewable Penetration Can Reduce CO2 Emissions Up to 78% Relative to

2005

Figure 1 plots the magnitude of each scenario’s total impact on U.S. building CO2

emissions and primary energy use from 2015–2050 relative to 2005 levels. Emissions

impacts are compared against the U.S. CO2 reduction targets for 2020 (announced

at COP15), 2025 (announced at COP21), and the MCS target of an 80% reduction

compared to 2005 emissions levels by 2050.

The top row of Figure 1 shows that while nearer-term CO2 emissions reduction targets

(through 2025) are achievable under the modeled scenarios, the 2050 target is only

approached by scenarios with high renewable energy penetration on the energy sup-

ply-side and aggressive penetration of high-performance building technologies

coupled with switching of fuel-fired equipment to electricity. Even so, the best-case sce-

narios do not quite achieve the 2050 CO2 reduction goal: scenario 10 (HR 3T FS20),

which assumes high renewable supply, penetration of only the highest performing

building technologies, and incentivized fuel switching, reduces CO2.emissions by 78%

compared to 2005 levels (98%of the 2050 target). Scenario 8 (HR 1T-2T-3T FS20), which

assumes a more realistic mix of available building technologies and incentivized fuel

switching, reduces CO2 emissions by 74% compared to 2005 levels (93% of the 2050

target), while scenario 7 (HR 1T-2T-3T FS0), which removes fuel switching incentives, re-

duces CO2 emissions by 72% compared to 2005 levels (90% of the 2050 target).

Table 1. Summary of U.S. Building Energy Use Scenarios Examined

Scenario Power Supply ECM Set(s) Fuel Switching

No. Label

1 RB 1T reference (RB) performance guidelines (1T) no

2 RB 1T-2T reference guidelines, best available (2T) no

3 RB 1T-2T-3T reference guidelines, best available,
prospective (3T)

no

4 RB 1T-2T-3T FS0 reference guidelines, best available,
prospective

yes (FS0)

5 RB 1T-2T-3T FS20 reference guidelines, best available,
prospective

yes + 20% cost
credit (FS20)

6 HR 1T-2T-3T high renewables (HR) guidelines, best available,
prospective

no

7 HR 1T-2T-3T FS0 high renewables guidelines, best available,
prospective

yes

8 HR 1T-2T-3T FS20 high renewables guidelines, best available,
prospective

yes, +20%

9 HR 3T FS0 high renewables prospective yes

10 HR 3T FS20 high renewables prospective yes, +20%
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To realize these emissions reductions, the bottom right panel of Figure 1 shows that

at least 35% of buildings’ 2005 primary energy use must be eliminated. Roughly 20%

of these energy savings are attributable to an increase in renewable energy supply,

given baseline-case efficiency that holds 2050 energy demand to just above 2005

Figure 1. By 2050, Aggressive Building Efficiency, Incentivized Electrification, and High

Renewable Penetration Can Reduce CO2 Emissions Up to 78% Relative to 2005

Total annual avoided CO2 emissions are plotted relative to 2005 baseline emissions (top row) and annual

primary energy savings are plotted relative to 2005 baseline energy use (bottom row), for scenarios 1–5 (left

column),whichassumea ‘‘ReferenceBaseline’’ (‘‘RB’’) energy supplyconsistentwith the2018AEOreference

case (31% renewable electricity by 2050), and scenarios 6–10 (right column), which assume a ‘‘High

Renewables’’ (‘‘HR’’) energy supply consistent with the highest 2018 AEO side case estimates of renewable

electricity penetration (45% by 2050). Annual emissions and energy use savings already embedded in the

baselinecase throughsupply-side renewablepenetrationandefficiency are shownashatched regions,with

themore densely hatched region denoting savings in the portion of baseline emissions and energy use not

affected by the chosen ECM sets and the less densely hatched region denoting additional savings in the

portion of baseline emissions and energy use affected by the chosen ECM sets. By 2050, CO2 emissions

reductions range between 26–36% of 2005 levels for scenarios that assume a reference energy supply

(scenarios 1–5), and between 70%–78% for scenarios that assume a high renewable energy supply

(scenarios 6–10).
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levels.41,42 The remaining 15% of energy savings are attributable to additional build-

ing efficiency and electrification beyond the baseline case. In all scenarios that as-

sume a comprehensive mix of competing measures (scenarios 3–8), total primary en-

ergy savings impacts peak between 2035–2040 and decline thereafter due to a trend

in the baseline in which less-efficient nuclear generation increases to 22% of elec-

tricity supply by 2050 while more efficient combined-cycle natural gas supply de-

creases.41,43 Examining the results for these scenarios against those of scenarios

where only the best performing prospective technologies are represented on the

market (scenarios 9 and 10), it is evident that competition with lower-performing

technology options substantially reduces the impact potential for these prospective

measures, shaving 8% off of the total energy savings potential by 2050. The adop-

tion of lower-performing technologies in the early years of the analysis constrains

the size of the baseline market that can be captured by later-arriving prospective

technologies, a lock-in effect that is addressed further in the Discussion section.

Most of the emissions impacts in Figure 1 are attributable to supply-side integration

of renewable power sources. Indeed, without considering any additional building ef-

ficiency improvements or fuel switching, scenarios that assume a high renewable en-

ergy supply (6–10) already achieve a 62% reduction compared to 2005 emissions

levels (78% of the of the 2050 target) and comfortably surpass the 2020 and 2025

CO2 reduction goals.

CO2 Emissions Reductions Are Driven by the Heating, Water Heating, and

Envelope End Uses in Existing Residential Buildings

The avoided CO2 emissions and primary energy savings from the scenarios shown in

Figure 1 can be split up, as in Figure 2, to show the contribution of individual building

end uses toward these emissions reductions and energy savings. Figure 2 shows total

annual avoidedCO2 emissions and primary energy savings derived solely from themea-

sures. The heating, water heating, and envelope end uses yield the largest CO2 emis-

sions reductions in both the short- and long-term across all of the scenarios analyzed.

Lighting is also a major contributor to avoided CO2 emissions in most scenarios in

2030, but by 2050, as a result of emissions already averted through prior efficiency im-

provements in the lighting stock, further improvements yield limited additional savings

for scenarios 2–8 and negative savings for scenarios 1 and 2.

Comparing scenarios 3 (RB 1T-2T-3T) and 4 (RB 1T-2T-3T FS0) reveals that switching

from fossil fuels to electricity further reduces total CO2 emissions—11% by 2030

and 8% by 2050. Fuel switching that occurs in conjunction with reductions in the

CO2 intensity of electricity generation can deliver substantially greater CO2 reduc-

tions—35% by 2030 and, with a continuing transition toward zero-carbon genera-

tion, 39% by 2050—as indicated by a comparison between scenarios 6 (HR

1T-2T-3T) and 7 (HR 1T-2T-3T FS0). Moreover, adding incentives for fuel switching,

as in scenario 8 (HR 1T-2T-3T FS20), is particularly valuable under these conditions,

yielding an additional 19% and 26% reduction in CO2 emissions in 2030 and 2050,

respectively, compared to scenario 7 (HR 1T-2T-3T FS0). In 2050, scenarios 9 (HR

3T FS0) and 10 (HR 3T FS20) show greater CO2 reductions than the other scenarios,

with a substantially increased contribution from the building envelope, principally

as a result of the removal of lower-performance, lower-cost technologies from the

available ECMs, thus maximizing the impact of novel, next-generation technologies.

Comparing the avoided CO2 emissions results for scenario 10 (HR 3T FS20) in both

2030 and 2050 further shows that the emissions reductions from end uses that are

all-electric (e.g., cooling, lighting, and refrigeration) are diminished substantially
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by supply-side decarbonization; further efficiency improvements for these end uses

are less important from a CO2 emissions perspective since the energy they use is far

less carbon-intensive in scenario 10 (HR 3T FS20). Conversely, for end uses that have

a substantial share of fossil fuel-fired equipment (heating, water heating, and

Figure 2. CO2 Emissions Reductions Are Driven by the Heating, Water Heating, and Envelope

End Uses

Total annual avoided CO2 emissions (top row) and primary energy savings (bottom row) are shown

split up by major building end uses for each of the scenarios in the years 2030 (left column) and 2050

(right column). Scenarios 1–5 assume a ‘‘Reference Baseline’’ (‘‘RB’’) energy supply consistent with

the 2018 AEO reference case (31% renewable electricity by 2050), while scenarios 6–10 assume a

‘‘High Renewables’’ (‘‘HR’’) energy supply consistent with the highest 2018 AEO side case estimates

of renewable electricity penetration (45% by 2050). These results are relative to the baselines in

2030 or 2050 and include only changes arising from the measures themselves. In these results, the

scenarios that use the HR case as the baseline show the additional CO2 emissions reductions and

energy savings that come from a more rapid transition to renewable generation sources in that

baseline as gray bars atop the savings from demand-side improvements shown by end use. Taken

together, these bars show the total avoided CO2 emissions and energy savings from both supply-

side and demand-side changes in the HR-based scenarios. Emissions reductions and energy

savings are largely attributable to end uses associated with on-site fossil fuel use—heating, water

heating, and the building envelope; this result is particularly evident in 2050 under the ‘‘High

Renewables’’ baseline.
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heating associated with the building envelope), both efficiency improvements and

fuel switching yield clear reductions in CO2 emissions in that scenario.

Examining the contributions of different building types and vintages to avoided CO2

emissions reveals that the majority of savings will come from the existing building

stock. In particular, retrofitting existing residential buildings and upgrading their

equipment presents the single largest opportunity for avoiding CO2 emissions,

comprising the majority of reductions in all scenarios in 2030 and many scenarios

in 2050. These results are elaborated in Section S1.

Prospective Envelope, Controls, and Fuel Switching Heating and Water

Heating Technologies Achieve the Largest Cost-Effective CO2 Emissions

Reductions

Given Scout’s detailed representation of ECM installation and operating costs, energy

performance, and lifetime characteristics, financial metrics can be calculated for individ-

ual ECMs in order to assess the overall cost effectiveness of each scenario’s CO2 emis-

sions reductions, as in Figures 3 and 4. In Figure 3, the percentage of each scenario’s

emissions reductions that is contributed by ECMs with an internal rate of return (IRR)

R0 is shown, where IRR is used as a consumer-focused cost-effectiveness threshold.

Overall, the percentage of cost-effective emissions reductions shown in Figure 3:

� is lower for the scenarios that include only currently available technologies

(scenarios 1 [RB 1T] and 2 [RB 1T-2T]) than for those that allow greater

Figure 3. Scenarios That Deploy Prospective Technologies with Aggressive Cost and

Performance Targets and Incentivize Fuel Switching Achieve Highly Cost-Effective Emissions

Reductions

The cost-effective percentage of each scenario’s avoided CO2 emissions from building efficiency

and end-use electrification is plotted for the years 2030 (left) and 2050 (right), using internal rate of

return (IRR) R 0 as a cost-effectiveness threshold. For reference, an alternate IRR threshold of 3% is

shown that approximates the 10-year U.S. Treasury note yield across 2018,44 considered a ‘‘risk-

free’’ interest rate for investment decisions.45 By 2050, scenarios that assume market penetration of

prospective, high-performance building technologies consistently achieve 70% or more of their

emissions reductions cost-effectively. Introducing fuel switching with incentives achieves up to a

66% increase in avoided CO2 emissions at an equal or superior cost-effectiveness level.
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penetration of target ECMs with more favorable capital cost characteristics

(scenarios 3–10),

� decreases when fuel switching is introduced without incentives, relative to

cases with no fuel switching (scenario 4 [RB 1T-2T-3T FS0] compared to sce-

nario 3 [RB 1T-2T-3T], scenario 7 [HR 1T-2T-3T FS0] compared to scenario 6

[HR 1T-2T-3T]), and

� is at its highest when fuel switching is added with a 20% capital cost credit, rela-

tive to cases with no fuel switching or with fuel switching but no incentives (sce-

nario 5 [RB 1T-2T-3T FS20] compared to scenarios 3 [RB 1T-2T-3T] and 4 [RB

1T-2T-3T FS0], scenario 8 [HR 1T-2T-3T FS20] compared to scenarios 6 [HR

Figure 4. Prospective Envelope, Controls, and Fuel Switching Heating and Water Heating

Technologies Achieve the Largest Cost-Effective CO2 Emissions Reductions

Avoided CO2 emissions are plotted from scenario 6 (HR 1T-2T-3T, at left) and scenario 8 (HR 1T-2T-

3T FS20, at right), separately showing the building efficiency measures (ECMs) that yield the 10

largest emissions reductions with IRR R0 every 5 years across the model time horizon. ECM types

(envelope, controls, water heating, HVAC, etc.) are grouped by bar color. Prospective envelope

and controls ECMs yield the largest cost-effective emissions reductions in the absence of fuel

switching (scenario 6), while heat pump technologies that replace fuel-fired water heating and

heating technologies yield the largest cost-effective emissions reductions when they are

introduced with a 20% capital cost credit (scenario 8).
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1T-2T-3T] and 7 [HR 1T-2T-3T FS0], and scenario 10 [HR 3T FS20] compared to

scenario 9 [HR 3T FS0]).

Incentivized fuel switching is particularly cost-effective in Figure 3 under a high

renewable energy supply: moving from scenario 6 (HR 1T-2T-3T) to scenario 8 (HR

1T-2T-3T FS20), for example, a 112 Mt (or 66%) decrease in emissions is observed

with a slight increase in the percentage of cost-effective emissions reductions

(from 81% in scenario 6 to 82% in scenario 8).

Figure 4 breaks down the cost-effective CO2 emissions reductions of scenarios 6 (HR 1T-

2T-3T) and 8 (HR 1T-2T-3T FS20) by contributing ECMs, highlighting the 10 ECMs that

contribute the largest cost-effective emissions reductions for every five years in the

modeling time horizon. Cost-effective emissions reductions are derived from a mix of

ECM types that tends to grow more diverse over time. For example, in scenario 6 the

top10 cost-effectiveECMs contribute two-thirdsof total cost-effectiveCO2emissions re-

ductions in2020, but by2050 this contributiondrops to just over half asmoreECMsenter

thecost-effectivemix.Total cost-effectiveemissions reductionsalso tendto increaseover

time, as a share of total emissions reductions, as more prospective ECMs with favorable

capital cost and energy performance characteristics penetrate the ECMmix.

In the absence of any assumed fuel switching (scenario 6), prospective controls

ECMs that optimally tune building operations to occupant needs and diagnose

operational faults lead the cost-effective CO2 reductions, owing to the large size

of the applicable baseline energy use segments for these ECMs and their aggressive

cost and performance characteristics. Envelope ECMs contribute somewhat smaller

but consistent cost-effective emissions reductions across the full model time hori-

zon—particularly air sealing and highly-insulating windows and walls.

Given the addition of incentivized fuel switching (scenario 8), heat pump ECMs that

replace fuel-fired water heating and heating technologies show much larger contri-

butions to cost-effective CO2 emissions reductions. The impact of these technolo-

gies is particularly apparent in the residential sector, where by 2050, prospective

heat pump water heaters are the single greatest cost-effective contributor to

avoided CO2 emissions, and cold-climate heat pumps also yield substantial cost-

effective emissions reductions. Indeed, cold-climate heat pumps drive marked in-

creases in the total cost-effective avoided CO2 emissions of northern climates under

fuel switching incentives; this result is elaborated in Section S1.

DISCUSSION

Leveraging the capabilities of Scout, awidely-accessiblemodelingprogramdesigned to

facilitate explorations of building energy use and emissions savings at the national scale,

we yield new insights about the potential contribution of building energy efficiency and

electrification to achieving U.S. MCS goals. We simulate a range of possible building ef-

ficiency, electrification, and energy supply scenarios that draw from hundreds of

detailed, publicly-available representations of efficiency measures, each of which is

either currently on the market or targeted for near-term market entry by current policy

programs. Scenario impacts are assessed relative to highly granular, annually updated

projections of baseline energy use and emissions that are made publicly available by

theU.S. EIA. Realistic dynamics inbaseline andefficient stock turnover andefficientmea-

surecompetitionareaccounted for, andarebasedonendogenousbuildingand technol-

ogy stock characteristics—in contrast with the exogenous technology penetration as-

sumptions of many previous studies.33,34,46,47
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Our analysis finds that under a reference-case energy supply scenario, continued

market penetration of building efficiency measures that correspond to current en-

ergy performance guidelines would be sufficient to meet the near-term (2020 and

2025) MCS CO2 emissions reductions targets. By 2050, however, none of the consid-

ered efficiency measure sets—including those that assume the market introduction

of aggressive efficiency measures currently in the research stage and incentivized

fuel switching to electricity—is able to achievemore than a 36% reduction compared

to 2005 emissions levels, less than half of the 80% emissions reduction target in

the MCS.

This finding highlights the significance of assessing national building efficiency po-

tential over a longer time horizon (R30 years), as this horizon reveals important limits

to sustained growth in the CO2 emissions reductions and energy savings potential of

buildings sector interventions. By the year 2050, the energy performance of base-

line-case building technologies has improved substantially, reducing, eliminating,

or reversing the relative performance advantages of many of the lower-performing

ECMs in our analysis. The effects of this baseline improvement are evident in Fig-

ure 1, where the CO2 emissions reductions and primary energy savings of scenarios

1 and 2, which include only currently available ECMs, converge toward the baseline

level after the year 2030; in Figure 2, where the lighting end use contribution to emis-

sions reductions and primary energy savings is reduced by more than half between

2030 and 2050 across scenarios 2–8, and is negative for scenarios 1 and 2; and in Fig-

ure 3, where the percentage of cost-effective emissions reductions is about 10%

lower for scenarios 1 and 2 than many of the more aggressive efficiency scenarios

in 2030, with the disparity increasing to about 20% by 2050. These trends could

be counteracted by policies that significantly improve best available technology

cost and performance beyond what is currently available on the market.

Furthermore, the adoption of existing cost-effective technologies locks in higher CO2

emissions and energy use48,49 while dampening the long-term energy andCO2 savings

from emerging technologies that will enter themarket over the next decade. This effect

is best seen by comparing the primary energy savings trends of scenarios 9 and 10 in

Figure 1, which idealistically assume only high performing, emerging technologies

enter themarket, with the primary energy savings trends of scenarios 6–8, which include

lower performing technologies in the available measures. By 2050, primary energy sav-

ings relative to 2005 are diminished by about 8% between the former and latter set of

scenarios, as the lower performing technologies of scenarios 6–8 capture substantial

portions of the available baselinemarkets in early years and ‘‘lock-out’’ the later-arriving

emerging technology sets from these capturedmarket segments, dragging down long-

term CO2 emissions reduction potential. These lock-in effects are also relevant to fuel

switching measure deployment strategies. For example, deferring the market entry of

fuel switchingmeasures to later years withmore renewable electricity generation would

be unlikely to yield emissions reductions benefits because this approach allows the

lock-in of earlier arriving, fuel-fired technologies with comparatively higher emissions

profiles. Lock-in of low-performing building technologies is counteracted by policies

that ensure the progressive removal of these technologies from the market while push-

ing for earlier introduction of high-performing alternatives that take full advantage of

renewable electricity supply.

While aggressive U.S. building efficiency alone fails to satisfy the 80% emissions

reduction target by 2050, coupling efficiency with a low-carbon electricity supply

and end use electrification (scenarios 7–10) gets close, ultimately achieving a

72%–78% reduction compared to 2005 CO2 emissions levels. In the scenarios with
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these three conditions and a realistic technologymix (scenarios 7 and 8), themajority

of CO2 emissions reductions are attributable to a dramatic reduction in the CO2 in-

tensity of the electricity supply from greater renewable energy penetration. Supply-

side advancements should not, however, be taken as a silver bullet for emissions re-

ductions. This study’s most aggressive supply-side CO2 reductions assume EIA’s

highest projections of renewable energy growth, which are driven by a sustained

$25/t CO2 price that seems unlikely to materialize soon in the U.S. Moreover, high

levels of variable renewable energy integration will require increased demand-

side energy flexibility to ensure grid reliability,15–17 suggesting that the buildings

sector, which is responsible for 75% of U.S. electricity use,50 has a significant role

to play in enabling renewable energy growth.

Most important, high renewable energy growth alone achieves only a 62% reduction

compared to 2005 emissions levels by 2050, falling well short of the 80% MCS target.

To reach within 10% of this target, additional building efficiency and electrification

beyond the baseline case that eliminates at least 15% of 2005 primary energy use is

also needed, and efficiency and electrification are shown to be cost-effective pathways

for emissions reductions. In Figure 3, for example, roughly 80% of 2050 CO2 emissions

reductions are achieved cost-effectively for scenarios that include aggressive efficiency

measures without fuel switching (scenarios 3 and 6), and greater than 80% of 2050 CO2

emissions reductions are achieved cost-effectively for scenarios that add incentivized

fuel switching to electricity (scenarios 5, 8, and 10). Incentivized fuel switching has

much larger effects on emissions under a high renewable energy supply, driving a

66% increase in demand-side emissions reductions from scenario 6 to 8 (high renew-

able supply) compared to a 14% increase from scenario 3 to 5 (reference-case supply),

for example. Achieving these synergistic impacts across supply- and demand-side en-

ergy will require coordinated policies that encourage robust renewable energy pene-

tration while pushing for aggressive building efficiency improvements, increased build-

ing electric load flexibility, and strong incentives for end use electrification. The design

of electrification incentives must incorporate strategies for addressing non-economic

barriers to fuel switching, such as lack of required infrastructure, lack of local installers

with appropriate technical expertise to install electric equipment, and concerns about

the reliability of electric equipment versus fuel-fired alternatives.

Given the disaggregated manner in which Scout represents U.S. building energy

use, CO2 emissions, and the measures that influence energy and CO2 trajectories,

our results highlight specific opportunities for advancing building efficiency and

end use electrification. End uses associated with on-site fossil fuel use offer the

largest CO2 emissions reduction opportunities—heating, water heating, and the

building envelope. The emissions reduction potential of end uses that rely exclu-

sively on electricity, such as cooling, refrigeration, and lighting, are limited by im-

provements in supply-side CO2 intensity; further improvements in the efficiency of

these end uses are somewhat less important in a high renewable penetration future,

rather, technology R&D to enable or enhance flexibility in the timing of demand from

these end uses will be critical to enabling high renewable penetration levels.15–17

Emissions reductions come largely from existing residential buildings; thus, cost-

effective solutions for accelerated replacement of the existing residential technol-

ogy stock with more efficient alternatives are critical to achieving the avoided CO2

emissions potential suggested by these results. Large-scale retrofits of existing

buildings have historically been challenging to implement, even when cost-effec-

tive,51 underscoring the need to better understand the drivers of building retrofit de-

cisions such that new mechanisms for accelerating these decisions can be

developed.
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At the level of individual efficiency measures, building envelope and controls ECMs

tend to make the largest cost-effective contributions to CO2 emissions reductions

when fuel switching is excluded, while substantial contributions from heat pump wa-

ter heaters and cold-climate heat pumps also emerge in scenarios that introduce

incentivized fuel switching. The large, cost-effective emissions reductions from con-

trols measures in our results is notable because such measures have not previously

been included in national-scale analyses of building efficiency impact potential.45

This omission has persisted despite the potential for such measures to affect large

segments of national energy use across multiple end uses, often through easily

updated software that can be implemented at low cost in both new and existing

buildings.52,53 Accordingly, building controls measures warrant stronger consider-

ation in future analyses of national building efficiency potential and the program

planning efforts that such analyses inform.

Our analysis does not cover all avenues for building efficiency, as 44% of baseline CO2

emissions remain unaffected by the chosen ECM sets. Unlocking these portions of en-

ergy use and CO2 emissions, which largely relate to miscellaneous energy loads (in

particular, plug loads such as computers, TVs, and other small appliances), represents

an opportunity to deliver additional emissions reductions from the buildings sector.

This study establishes a snapshot of buildings’ CO2 emissions reduction potential in the

U.S. that will be frequently updated to reflect the latest developments in energy effi-

ciency, renewable energy, and associated policy approaches. Going forward, the

default set of ECMs and scenarios published online and reported in this paper will

continue to be refined, and Scout’s baseline data will be revised annually to reflect

the latest version of the EIA AEO. These planned updates reflect the intention to main-

tain Scout as an accessible, flexible, and current resource for estimating the impacts of

building technology developments on U.S. energy use and emissions. Regularly assess-

ing these impacts will be essential to developing mitigation strategies for the environ-

mental, economic, and social risks caused by a rapidly warming climate.

EXPERIMENTAL PROCEDURES

Overview of Scout Analysis Approach

This analysis of U.S. building energy use andCO2 emissions uses Scout, an open-source

software program developed by Lawrence Berkeley National Laboratory and the Na-

tional Renewable Energy Laboratory for the U.S. Department of Energy. Scout esti-

mates the national energy use, CO2 emissions, and operating cost savings potential

of emerging building technologies or operational approaches across a long time hori-

zon; savings can be explored under multiple technology adoption cases nationally or

for a subset of climate zones. Figure 5 provides an overview of the Scout analysis

approach; key elements of this approach are described in greater detail below.

Scout analyses begin with individual ECMs, where an ECM improves upon the unit-

level energy performance and/or operation of a comparable baseline technology or

operational approach. ECM definitions are implemented in JSON-formatted

files with a standardized key-value structure and are defined primarily by five attri-

butes: applicable baseline market, year of market entry/exit, energy performance,

installed cost, and lifetime.

An ECM’s applicable baseline market represents a specific subset of total opera-

tion-phase energy use, CO2 emissions, and costs associated with residential and

commercial buildings in the U.S. Markets are non-overlapping; the sum of energy
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use in all markets is equal to the total energy use in residential and commercial

buildings. Each market is defined by a climate zone, building type, fuel type,

end use, and, if applicable, technology type. For example, a market might corre-

spond to cooling with electric air-source heat pumps in single family homes in a

southern climate zone. By default, baseline data are drawn from the EIA AEO refer-

ence case for the buildings sector.4 Primary energy use baselines from EIA are

adjusted to reflect a captured energy approach to renewable energy generation

accounting, consistent with the recommendation in Donohoo-Vallett54 and

described further in the Supplemental Information section. An ECM’s year of mar-

ket entry represents the first year that the ECM is commercially available, while an

optional year of market exit can reflect a future efficiency standard that renders the

measure obsolete. Where no legislation precludes the future adoption of a mea-

sure, the measure may still be displaced through competition with other measures

as described below and in Section S2.3. An ECM’s energy performance is defined

at the unit level and may be specified in absolute terms (e.g., U-value and solar

heat gain coefficient for a window, or COP for a heat pump) or as a percentage

relative savings. In the case of a relative energy performance input, percentage

savings can remain constant over the modeling horizon or can be recalculated

annually to account for performance improvements in the comparable baseline

technology. An ECM’s installed cost is also defined at the unit level and is speci-

fied in terms that vary by sector and applicable end use. Finally, the expected life-

time of an ECM is specified in years.

Given one or more ECM definitions, Scout calculates the total impact of each ECM’s

adoption by consumers or organizations onmetricM in year y under adoption case s,

My,s:

My;s =
XZ
z

XB
b

XFb
f

XUb;f

u

XTb;f ;u
t

XV
v

Mz;b;f ;u;t;v;y;s az;b;f ;u;t;v;y;s (Equation 1)

Mz;b;f ;u;t;v;y;s = Mbase
z;b;f ;u;t;v;y;s �Mecm

z;b;f ;u;t;v;y;s (Equation 2)

Figure 5. Overview of Scout Analysis Approach

The Scout analysis approach moves from the definition of efficient measures and the segments of baseline energy use that they affect to the estimation

of measure market penetration and competition dynamics and finally to the calculation of measure impacts on energy use, CO2 emissions, and

operating costs, as well as measure cost effectiveness.
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whereMbase
z;b;f ;u;t;v;y;s is the baseline quantity of impact metricM attributable to climate

zone z, building type b, fuel type f, end use u, technology t, building vintage v, pro-

jection year y, and adoption case s,Mecm
z;b;f ;u;t;v;y;s is the same quantity after ECM adop-

tion, Z is the set of all climate zones affected by the ECM, B is the set of building types

affected by the ECM, Fb is the set of fuel types for building type b that are affected by

the ECM,Ub,f is the set of end uses for building type b and end use u that are affected

by the ECM, Tb,f,u is the set of technologies for building type b, fuel type f, and end

use u that are affected by the ECM and az,b,f,u,t,v,y is a competition adjustment factor

that removes overlaps between the applicable baseline market of the ECM and

competing ECMs in a portfolio.

Scout baseline data are broken out by the 5 AIA climate zones,55 requiring a trans-

lation from the census division breakout of AEO data; square-footage-based

mapping factors derived from RECS 200956 and CBECS 200357 are used to

make the translation. Baseline building types reflect the 3 residential and 11 com-

mercial building types modeled in AEO,45,58 and new and existing building vin-

tages are defined. Baseline fuel types include electricity, natural gas, distillate,

and other fuels. Baseline end uses reflect the 14 residential and 10 commercial

end uses modeled in the AEO45,58 with small modifications to the organization

of residential end uses and addition of an envelope end use, where the latter

comprises reductions in required heating and cooling energy use as a result of

improvements to the building envelope—windows, air sealing, and insulation.

Technology types reflect those associated with each end use in AEO with the

exception of heating and cooling, where an additional distinction between equip-

ment and ’’thermal load component’’ (envelope) technologies is made. More de-

tails on the definition of thermal load component technologies are available in

Section S2.5.

ECM impact metrics include primary energy use (Ey;s, Ebase
y;s , Eecm

y;s ), CO2 emissions

(Cy;s, Cbase
y;s , Cecm

y;s ), and operating costs (jy;s, j
base
y;s , jecm

y;s ). Each impact is calculated

under two distinct technology adoption cases. Under a technical potential (TP)

adoption case, it is assumed that as soon as an ECM is introduced, all baseline mar-

kets that the ECM applies to instantaneously and completely switch to the new ECM,

and the ECM retains a complete sales monopoly in subsequent years. Results from

the TP case represent the maximum impact an ECM could have, limited only by

baseline market size. In a maximum adoption potential (MAP) adoption case, it is

assumed that an ECM is only able to capture the portions of applicable baseline

markets that are associated with new construction and retrofit or replacement of

existing technologies in a given year. Results from the MAP represent an ECM’s

maximum impact considering realistic building and equipment turnover and gener-

ally show a gradual accumulation of ECM savings over time.

Technology adoption assumptions are further distinguished by whether they ac-

count for competition across ECMs that apply to the same baseline stock segments

(a ‘‘competed’’ case) or consider each ECM in isolation (an ‘‘uncompeted’’ case). In

the competed case, ECM market shares are apportioned based on each measure’s

incremental capital and operating costs, where a measure with lower incremental

capital costs and higher operating cost savings will capture a greater share of the

baseline market (see Section S2.3 for details).

To assess building contributions to climate goals under realistic stock turnover and

technology competition dynamics, in this paper we focus exclusively on competed

MAP adoption case results.
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In addition to CO2 emissions, primary energy use, and operating cost impacts, Scout

assesses each ECM’s cost effectiveness, CE:

CE = f

 
My;s

sbase
y

; lecm; lbase; CE�; d

!
(Equation 3)

where My;s =s
base
y is an ECM’s stock-normalized impact on metric M in year y under

adoption case s, lecm and lbase are the ECM and baseline technology lifetimes,

respectively, CE* is a cost effectiveness threshold (e.g., internal rate of return R0,

simple payback %5, etc.), and d is a nominal discount rate.

The calculation methods for ECM impact estimates and cost-effectiveness assess-

ments are further detailed in the Supplemental Information.

Simulated Building Efficiency and Electrification Scenarios

Scout’s analysis capabilities are demonstrated in this paper through simulations

of ten different scenarios of building efficiency, electrification, and electricity supply

(Table 1). ECMs in each of the simulated scenarios apply to the following major end

uses across all climate zones, building types, and fuel types: heating and cooling (as

affected by both envelope and HVAC equipment ECMs), water heating, lighting,

and refrigeration. Additionally, residential-sector ECMs apply to clothes washing

and drying, and commercial-sector ECMs apply to ventilation. Controls ECMs apply

across multiple end uses (heating, cooling, ventilation, and lighting).

The cost, performance, and lifetime inputs for each ECM included in this analysis are

considered fixed across time. This reflects a deliberate choice to base our impact

assessment solely on published ECM information (e.g., from performance guide-

lines, market data, or future targets in energy policy program documents) while

avoiding the assumption that ECM characteristics incrementally improve after

market introduction, which we do not have broad evidence for across our diverse

set of ECMs. This assumption may be particularly inappropriate for prospective

ECMs, which in many cases feature aggressive ECM performance and cost

characteristics that leave little room for additional improvement.

The MAP of each scenario is simulated across the full model time horizon (2015–

2050), accounting for realistic dynamics in stock turnover and ECM competition. Re-

sults are assessed in terms of each scenario’s annual impact on national CO2 emis-

sions and primary energy use and in terms of ECM cost effectiveness. Specifically,

results are viewed in the context of the following questions:

� What is the magnitude of each scenario’s total impact on CO2 emissions and

primary energy use?

� Which end uses and ECMs contribute themost to each scenario’s total CO2 and

energy impacts?

� To what degree are ECM impacts in each scenario achieved cost- effectively?

Total CO2 emissions reductions are benchmarked against the GHG reduction goals

laid out in the United States MCS for Deep Decarbonization.3 In the MCS, CO2 emis-

sions reductions drive total GHG emissions reductions, therefore we apply targeted

GHG reduction percentages to buildings sector CO2 emissions for the appropriate

reference year, 2005:

� 17% reduction from 2005 CO2 emissions by 2020 (396 Mt CO2 of 2330 Mt CO2

emissions from the buildings sector in 200559), a goal announced as part of the
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Copenhagen Accord reached at the 2009 United Nations Climate Change

Conference (COP15),

� 26%–28% reduction from 2005 CO2 emissions by 2025 (here we choose the low

end, 26%, corresponding to 606 Mt CO2), a goal announced as part of the Paris

Agreement reached at the 2015 United Nations Climate Change Conference

(COP21), and

� 80% reduction from 2005 CO2 emissions by 2050 (or 1864 Mt CO2), a goal that

was introduced in the MCS document.

The particulars of each scenario are summarized here, with scenario acronyms used

throughout shown in parentheses. The full set of ECM definitions and raw results for

each scenario is also publicly available.60

� Scenario 1: reference energy supply, energy performance guidelines ECMs

(RB 1T). This scenario includes technologies that meet the minimum perfor-

mance requirement for ENERGY STAR (most recent version), IECC 2018, or

ASHRAE Standard 90.1-2016. For each building type, fuel type, and end use

of interest, a relevant ENERGY STAR specification was sought first; if one did

not exist, relevant performance criteria in the IECC standard were used; if no

relevant IECC criteria existed, criteria from the ASHRAE standard were used.

In the simulation of this portfolio, ECM performance is locked in future years

at the currently available level, and no fuel switching is assumed (electric

ECMs can only replace electric baseline technologies).

� Scenario 2: scenario 1 + best available ECMs (RB 1T-2T). This scenario adds

ECMs that represent the most efficient technologies currently available on

the market. Most ECM definitions for this portfolio are based on data from

the EIA document titled ‘‘Updated Buildings Sector Appliance and Equipment

Costs and Efficiency,’’61 specifically using the ‘‘High’’ technology cost and per-

formance values reported for the year 2017. These data do not cover enve-

lope ECMs (highly-insulating windows, air sealing, etc.); accordingly, best

available envelope ECMs were based on the National Renewable Energy Lab-

oratory’s Residential Efficiency Measures database62 in the residential sector

and on the ASHRAE Advanced Energy Design Guidelines63 in the commercial

sector. As in scenario 1, the simulation of this portfolio locks ECM perfor-

mance in future years at the currently available level, and no fuel switching

is assumed.

� Scenario 3: scenario 2 + target ECMs (RB 1T-2T-3T). This scenario adds ECMs

that represent prospective technologies with cost and performance targets

that are more aggressive than those assumed for the most efficient technolo-

gies under the ‘‘business-as-usual’’ conditions. Most ECM definitions added

in this scenario are based on cost and performance targets data from the

U.S. Department of Energy’s Building Technologies Office (BTO) Multi-Year

Program Plan (MYPP).40 The scenario also reflects updates to and expansions

of the BTO MYPP technology set following its publication, particularly the

development of new windows and envelope and sensors and controls

targets,52 both of which are to be published in forthcoming BTO technology

development roadmaps. As in scenarios 1 and 2, no fuel switching was

assumed when simulating this portfolio.

� Scenario 4: scenario 3 + fuel switching (RB 1T-2T-3T FS0). This scenario adds

fossil fuels to the applicable baseline markets of electric ECMs, opening the

potential for fuel switching from fossil fuels to electricity. Fuel switching is

only represented in the ECM definitions through an expansion of the ECM’s

applicable baseline market and the replacement of the baseline fuel type’s
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energy costs and emissions intensities with that of the ECM’s fuel type; no addi-

tional fuel switching costs (e.g., increased capital costs for new supporting

infrastructure) are represented.

� Scenario 5: scenario 4 + 20% fuel switching incentive (RB 1T-2T-3T FS20). This

scenario is identical to scenario 4, but with a 20% reduction in the installed cost

of fuel switching measures.

� Scenarios 6–8: scenarios 3–5 + high renewable energy supply (HR 1T-2T-3T,

HR 1T-2T-3T FS0, HR 1T-2T-3T FS20). These scenarios assume a higher de-

gree of renewable penetration than all previous scenarios, reducing the

CO2 emissions intensity of electricity. Specifically, default Scout site-source

energy conversion factors and CO2 emissions intensities are updated to

reflect data from the EIA’s ‘‘25 dollar carbon allowance fee’’ side case, which

yields approximately 32% renewable electricity generation by 2025 and 45%

renewable electricity by 205041 (compared to approximately 22% renewable

electricity by 2025 and 31% renewable electricity by 2050 in the reference

case that underpins the default Scout site-source conversion and CO2 emis-

sions intensities data).

� Scenario 9: target ECMs only + fuel switching + high renewable energy pene-

tration (HR 3T FS0). This scenario maintains the high renewable energy

penetration assumption of scenarios 6–8 but restricts the ECM set to pro-

spective technologies only, such that these technologies do not face any

competition from ECMs in the performance guidelines and best available cat-

egories.

� Scenario 10: scenario 9 + 20% fuel switching incentive (HR 3T FS20). This sce-

nario is identical to scenario 9, but with a 20% reduction in the installed cost of

fuel switching measures.

These ten scenarios are not exhaustive; they aim to explore reductions in building

CO2 emissions and energy use across a full spectrum of demand-side technology

deployment and renewable electricity supply conditions. These range from

business-as-usual renewable electricity penetration with only lower-performing

building technologies on the market (scenario 1) to high renewable electricity

penetration with only high-performing building technologies on the market (sce-

nario 10). Intermediate scenarios reveal how incremental changes in scenario as-

sumptions between these two extremes yield associated changes in emissions

and energy use.

Analysis Limitations

The current analysis omits a few potentially important avenues for increasing build-

ings’ contributions to energy and CO2 emissions reductions, which could be added

in future updates using the Scout platform. First, the ECM set examined in this

study leaves nearly half (44%) of baseline building energy use unaffected. Much

of this energy use comes from a diverse array of electronic devices and other

miscellaneous plug loads.64 Technologies that enable supervisory control across

several of these miscellaneous loads and more efficient versions of components

or architectures that are common to several of these devices could offer further op-

portunities for efficiency and therefore warrant consideration in future analyses.

Second, our analysis did not explore the potential effect of higher retrofit rates

on energy and CO2, conservatively assuming based on previous studies65,66 that

1% of the baseline technology stock is subject to retrofit in each year of the analysis.

Programs designed to accelerate retrofit rates can counteract the technology lock-

in effects that limit penetration of higher-performing prospective efficiency mea-

sures, increasing the long-term energy and CO2 impacts of these prospective
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measures.67,68 Finally, while we do include ECMs with synergistic effects across

multiple end uses in our analysis (e.g., controls and envelope ECMs), the energy

and CO2 impacts of whole building integrative design approaches have been

suggested to exceed that of technology- or end use-focused improvements by vir-

tue of targeting system-level efficiencies that yield greater energy savings while

reducing equipment capacity requirements.69 To date, the impacts of whole build-

ing design approaches are not well-quantified in a broadly representative way for

buildings.25

Counteracting these additional avenues for impact is the possibility that Scout’s

ECM competition method inflates estimated energy use and CO2 emissions reduc-

tions; indeed, the magnitude of this paper’s estimated reductions are somewhat

larger than those of a recent DOE study that explores a similar range of technology

deployment scenarios in the buildings sector.70 Specifically, while Scout accounts for

competition across all ECMs included in a given analysis, the approach does not ac-

count for any direct competition between ECMs and comparable baseline technol-

ogies on the market in each year, essentially excluding the latter from the impact es-

timations. To the extent that these typical baseline technologies are lower

performing than the lowest performing ECMs in our analysis,61 their exclusion re-

moves another source of drag on the market penetration and impacts of the

ECMs that are included in our analysis, potentially leading to the overstatement of

ECM impacts.

This study also excludes potential impacts from energy efficiency rebound beyond

that embedded in the AEO baseline, which assumes a 15% ‘‘take-back’’ of an

efficiency measure’s savings due to rebound.45,58,71 Here, ‘‘rebound’’ refers to

the phenomenon where a lower marginal cost of building services drives increased

use of those services.72 Estimates of the the rebound effect’s magnitude vary

substantially and the true value of this effect is especially difficult to know across

long-term time horizons; however, a review of the literature for buildings gives a

likely range of 5%–10%.73,74 Previous studies suggest that the very low to moder-

ate magnitude of rebound effects is not substantial enough to mitigate the impacts

of efficiency on CO2 emissions.71 In the current study, any additional rebound ef-

fects would apply to all scenarios, thus we expect that introducing such effects

would not meaningfully change the principal conclusions of our comparisons across

scenarios and associated technologies. Nevertheless, we acknowledge that in the

absence of parallel market-based instruments that improve the robustness of

efficiency impacts to such behavioral responses,71 rebound effects could reduce

the magnitude of energy and emissions impacts reported in this analysis–at

least over the short-run time horizons for which this effect has been previously

studied.

Finally, the use of the EIA AEO baseline in Scout introduces an additional limitation:

AEO estimates of future building energy use reflect a temperature forecast that ex-

trapolates historically observed trends in heating and cooling degree days. These

historical trends might not hold under future climate change scenarios,75 thus previ-

ous studies have explored the effects of adjustments to the NEMS temperature fore-

cast.76 In the current analysis, an underestimation of changing temperature trends

will, on average, overstate the impact potential of heating ECMs while understating

the impact potential of cooling ECMs. Consequently, the results will underestimate

total CO2 emissions reductions under high renewable electricity penetration, since

substantial portions of building heating are fossil-fueled while virtually all building

cooling is electric.
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E.C., Unruh, G., and Ürge-Vorsatz, D. (2016).
Carbon Lock-In: Types, Causes, and Policy
Implications. Annu. Rev. Environ. Resour. 41,
425–452.

50. U.S. Energy Information Administration (2019).
Annual Energy Outlook 2019, Table: Energy
Consumption by Sector and Source. https://
www.eia.gov/outlooks/aeo/data/browser//?
id=2-AEO2019cases=ref2019sourcekey=0.
Accessed 06-10-2019.

51. Bardhan, A., Jaffee, D., Kroll, C., and Wallace,
N. (2014). Energy efficiency retrofits for U.S.
housing: Removing the Bottlenecks. Reg. Sci.
Urban Econ 47, 45–60.

52. Sofos, M., and Langevin, J. (2018).
Advancements in Smart Building
Technologies R&D Focus Areas. In ACEEE
Summer Study on Energy Efficiency in
Buildings, pp. 1–12.

53. Brambley, M.R., Haves, P., Torcellini, P.,
and Hansen, D. (2005). Advanced
Sensors and Controls for Building
Applications: Market Assessment and
Potential R&D Pathways (Pacific Northwest
National Laboratory).

54. Donohoo-Vallett, P. (2016) Accounting
Methodology for Source Energy of Non-
Combustible Renewable Electricity
Generation.

55. U.S. Energy Information Administration (2019).
AIA climate zones - RECS 1978–2005. https://
www.eia.gov/consumption/residential/maps.
php.

56. U.S. Energy Information Administration (2009).
Residential Energy Consumption Survey Public
Use Microdata. https://www.eia.gov/
consumption/residential/data/2009/csv/
recs2009_public.csv.

57. U.S. Energy Information Administration
(2003). Commercial Buildings Energy
Consumption Survey Public Use Microdata,
File 1: General Building Information and
Energy End Uses. https://www.eia.gov/
consumption/commercial/data/2003/csv/
FILE01.csv.

58. U.S. Energy Information Administration (2018).
Residential Demand Module of the National
Energy Modeling System: Model
Documentation (Energy Information
Administration).

59. U.S. Energy Information Administration (2011).
Emissions of Greenhouse Gases in the U.S.,
Tables 8–9. https://www.eia.gov/environment/
emissions/ghg_report/.

60. Harris, C.B. and Reyna, J.L. https://doi.org/10.
5281/zenodo.3158930.

61. U.S. Energy Information Administration (2018).
Updated Buildings Sector Appliance and
Equipment Costs and Efficiencies.

62. National Renewable Energy Laboratory (2018).
National residential efficiency measures
database home page. https://remdb.nrel.gov/.
Accessed 12-18-2018.

Joule 3, 1–22, October 16, 2019 21

Please cite this article in press as: Langevin et al., Assessing the Potential to Reduce U.S. Building CO2 Emissions 80% by 2050, Joule (2019),
https://doi.org/10.1016/j.joule.2019.07.013

http://refhub.elsevier.com/S2542-4351(19)30357-5/sref20
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref20
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref20
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref20
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref21
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref21
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref21
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref21
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref21
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref21
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref22
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref22
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref22
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref22
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref22
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref23
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref23
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref23
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref23
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref24
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref24
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref24
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref24
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref25
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref25
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref25
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref25
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref25
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref26
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref26
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref26
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref26
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref26
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref26
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref27
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref27
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref27
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref27
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref28
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref28
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref28
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref28
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref28
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref28
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref29
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref29
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref29
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref29
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref29
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref29
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref30
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref30
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref30
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref30
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref31
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref31
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref31
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref31
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref31
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref32
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref32
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref32
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref32
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref33
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref33
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref33
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref34
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref34
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref34
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref34
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref35
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref35
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref35
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref35
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref35
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref35
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref36
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref36
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref36
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref36
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref36
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref37
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref37
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref37
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref37
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref37
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref37
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref38
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref38
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref38
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref38
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref38
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref39
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref39
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref39
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref39
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref39
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref40
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref40
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref40
https://www.eia.gov/outlooks/archive/aeo18/tables_side.php
https://www.eia.gov/outlooks/archive/aeo18/tables_side.php
https://www.eia.gov/outlooks/archive/aeo08/aeoref_tab.html
https://www.eia.gov/outlooks/archive/aeo08/aeoref_tab.html
https://www.eia.gov/electricity/annual/html/epa_08_01.html
https://www.eia.gov/electricity/annual/html/epa_08_01.html
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldYear&amp;year=2018
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldYear&amp;year=2018
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldYear&amp;year=2018
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldYear&amp;year=2018
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref46
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref46
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref46
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref46
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref48
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref49
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref49
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref49
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref49
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref49
https://www.eia.gov/outlooks/aeo/data/browser//?id=2-AEO2019cases=ref2019sourcekey=0
https://www.eia.gov/outlooks/aeo/data/browser//?id=2-AEO2019cases=ref2019sourcekey=0
https://www.eia.gov/outlooks/aeo/data/browser//?id=2-AEO2019cases=ref2019sourcekey=0
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref51
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref51
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref51
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref51
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref52
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref52
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref52
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref52
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref52
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref53
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref53
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref53
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref53
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref53
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref53
https://www.eia.gov/consumption/residential/maps.php
https://www.eia.gov/consumption/residential/maps.php
https://www.eia.gov/consumption/residential/maps.php
https://www.eia.gov/consumption/residential/data/2009/csv/recs2009_public.csv
https://www.eia.gov/consumption/residential/data/2009/csv/recs2009_public.csv
https://www.eia.gov/consumption/residential/data/2009/csv/recs2009_public.csv
https://www.eia.gov/consumption/commercial/data/2003/csv/FILE01.csv
https://www.eia.gov/consumption/commercial/data/2003/csv/FILE01.csv
https://www.eia.gov/consumption/commercial/data/2003/csv/FILE01.csv
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref58
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref58
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref58
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref58
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref58
https://www.eia.gov/environment/emissions/ghg_report/
https://www.eia.gov/environment/emissions/ghg_report/
https://doi.org/10.5281/zenodo.3158930
https://doi.org/10.5281/zenodo.3158930
https://remdb.nrel.gov/


63. ASHRAE (2014). Advanced Energy Design
Guide for Small to Medium Office
Buildings: Achieving 50% Energy Savings
Toward a Net Zero Energy Building (ASHRAE).

64. Fares, R., Sofos, M., Langevin, J., Hosbach, R.,
Meier, A., and Butzbaugh, J. (2018). Improving
Characterization of Miscellaneous Energy
Loads in Energy Demand Models. In ACEEE
Summer Study on Energy Efficiency in
Buildings, pp. 1–12.

65. Zhai, J., Leclaire, N., and Bendewald, M. (2011).
Deep energy retrofit of commercial buildings:
A key pathway toward low-carbon cities.
Carbon Manag 2, 425–430.

66. Neme, C., Gottstein, M., and Hamilton, B.
(2011). Residential Efficiency Retrofits: A
Roadmap for the Future (Regulatory Assistance
Project Eds).

67. Sebi, C., Nadel, S., Schlomann, B., and
Steinbach, J. (2019). Policy strategies for
achieving large long-term savings from

retrofitting existing buildings. Energy Effic. 12,
89–105.

68. Nadel, S. (2016). Pathway to Cutting Energy
Use and Carbon Emissions in Half (American
Council for An Energy Efficient Economy).

69. Lovins, A.B. (2018). How big is the energy
efficiency resource? Environ. Res. Lett. 13,
09041.

70. U.S. Department of Energy. (2017) Energy CO2

Emissions Impacts of Clean Energy Technology
Innovation and Policy.

71. Greening, L.A., Greene, D.L., and Difiglio, C.
(2000). Energy efficiency and consumption –
the rebound effect – a survey. Energy Policy 28,
389–401.

72. Wiesmann, D., Lima Azevedo, I., Ferrão, P., and
Fernández, J.E. (2011). Residential electricity
consumption in Portugal: Findings from top-
down and bottom-up models. Energy Policy
39, 2772–2779.

73. Gillingham, K., Kotchen, M.J., Rapson, D.S.,
and Wagner, G. (2013). Energy policy: the
rebound effect is overplayed. Nature 493,
475–476.

74. Gillingham, K., Rapson, D., and Wagner, G.
(2016). The Rebound Effect and Energy
Efficiency Policy. Rev. Environ. Econ. Policy 10,
68–88.

75. Vose, R.S., Easterling, D.R., Kunkel, K.E.,
LeGrande, A.N., and Wehner, M.F. (2017).
Temperature Changes in the United States.
In Climate Science Special Report: Fourth
National Climate Assessment. In U.S. Global
Change Research Program, I. Volume, D.J.
Wuebbles, D.W. Fahey, K.A. Hibbard, D.J.
Dokken, B.C. Stewart, and T.K. Maycock,
eds., pp. 185–206.

76. Hadley, S.W., Erickson, D.J., Hernandez, J.L.,
Broniak, C.T., and Blasing, T.J. (2006).
Responses of energy use to climate change: A
climate modeling study. Geophys. Res. Lett.
33, 2–5.

22 Joule 3, 1–22, October 16, 2019

Please cite this article in press as: Langevin et al., Assessing the Potential to Reduce U.S. Building CO2 Emissions 80% by 2050, Joule (2019),
https://doi.org/10.1016/j.joule.2019.07.013

http://refhub.elsevier.com/S2542-4351(19)30357-5/sref63
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref63
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref63
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref63
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref64
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref64
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref64
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref64
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref64
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref64
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref65
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref65
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref65
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref65
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref66
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref66
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref66
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref66
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref67
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref67
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref67
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref67
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref67
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref68
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref68
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref68
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref69
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref69
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref69
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref71
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref71
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref71
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref71
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref72
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref72
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref72
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref72
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref72
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref73
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref73
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref73
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref73
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref74
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref74
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref74
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref74
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref75
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref76
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref76
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref76
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref76
http://refhub.elsevier.com/S2542-4351(19)30357-5/sref76


JOUL, Volume 3

Supplemental Information

Assessing the Potential to Reduce

U.S. Building CO2 Emissions 80% by 2050

Jared Langevin, Chioke B. Harris, and Janet L. Reyna
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1 Supplemental Data

Figure S1 shows the contributions to avoided CO2 emissions and primary en-
ergy savings from new and existing residential and commercial buildings. In
Scout, “new” buildings comprise all buildings built starting in the first year
of the modeled time horizon (2015), while “existing” buildings are all of the
buildings that existed prior to that year. In 2030, CO2 emissions reductions
are dominated by existing buildings in both the residential and commercial
sectors. By 2050, more of the total avoided CO2 emissions from commer-
cial buildings come from new construction than from existing buildings, but
existing residential buildings continue to yield a plurality of total emissions re-
ductions. The change in the relative contribution from new and existing com-
mercial buildings is a result of the faster turnover in commercial buildings com-
pared to residential buildings; the majority of commercial buildings in 2050 are
“new.” This turnover reduces the CO2 emissions reductions available from the
existing commercial building stock, even in Scenarios 9 (HR 3T FS0) and 10 (HR
3T FS20), where only aggressive measures are included. When only currently
available technologies are considered, as in Scenarios 1 (RB 1T) and 2 (RB 1T-
2T), net emissions reductions from commercial buildings are negative by 2050;
this result underscores the importance of continual investments in building en-
ergy efficiency R&D. Regardless of the year investigated, residential buildings
contribute a substantially greater share of emissions reductions compared to
commercial buildings. This result reflects the greater baseline CO2 emissions
from residential buildings combined with the measures included in this analysis
impacting a greater share of total residential building energy use. The primary
energy savings results in Figure S1 parallel the findings from the CO2 emissions
results.

Figure S2 breaks down avoided CO2 emissions and primary energy savings
by AIA climate zone [1]. Although energy and emissions reductions are similar
across the three southern climate zones (3–5), reductions in northern-most cli-
mate zone 1 are comparatively lower and reductions in northern climate zone 2
are comparatively higher than those in the southern climates. In the case of cli-
mate zone 1, a smaller amount of floorspace in this region explains the muted
energy and emissions reductions [2, 3]. In climate zone 2, higher efficiency
heating equipment drives large overall energy and emissions reductions—
particularly in the scenarios where fuel switching is assumed, which produces
a notable increase in the emissions reductions of this climate zone. This result
is further illustrated in Figure S3.

Figure S3 breaks down the cost-effective CO2 emissions reductions of Sce-
narios 6 (HR 1T-2T-3T) and 8 (HR 1T-2T-3T FS20) in the year 2050 by contributing
energy conservation measures (ECMs) and AIA climate zone [1], highlighting
the 10 ECMs that contribute the largest cost-effective emissions reductions in
each climate zone. In the absence of fuel switching (Scenario 6), prospective
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Figure S1: CO2 emissions reductions are driven by existing residential buildings. Avoided CO2 emissions
(top row) and energy savings (bottom row) corresponding to the years 2030 (left column) and 2050 (right
column) are shown for the scenarios considered in this study, with the totals divided by the contributions
from new and existing residential and commercial buildings. The results in this figure are equivalent to the
results in Figure 2, but with different divisions. As in Figure 2, additional supply-side energy savings and
avoided CO2 emissions are shown with gray bars for each of the “High Renewables” scenarios.



envelope and controls ECMs yield the largest cost-effective emissions reduc-
tions across all climate zones, and total cost-effective emissions reductions are
relatively similar across climate zones 2–5. Given the introduction of a 20%
capital cost credit for fuel switching (Scenario 8), heat pump technologies that
replace fuel-fired water heating and heating technologies drive cost-effective
emissions reductions. In the northern climate zones (1 and 2), cold climate heat
pumps bring the cost-effective emissions reductions of AIA climate zone 1 into
near parity with those of the southern climate zones (3–5) and raise the total
cost-effective emissions reductions of AIA climate zone 2 to almost double the
level of the southern climate zones. This result reflects the large magnitude of
fuel-fired heating energy use in the northern climates, which the Annual Energy
Outlook (AEO) estimates will be responsible for 1.6 quads of primary energy
use and 89 Mt of CO2 emissions by 2050 [4]. Reducing this large segment of
energy use and emissions by switching fuel-fired heating equipment to more
efficient alternatives that leverage renewable electricity supply presents a sig-
nificant opportunity for emissions reductions in residential buildings.

2 Supplemental Experimental Procedures

Sections 2.1 to 2.5 detail the calculation steps that are required to conduct a full
Scout analysis. For brevity, the equations in these sections use the symbol X
to denote the climate zone (z), building type (b), fuel type (f ), end use (u), and
technology type (t) subscripts first introduced in equation 1.

2.1 Determining baseline energy use, CO2 emissions, and
operating cost segments

To calculate an ECM’s impact potential and cost-effectiveness, the size of the
baseline energy use, CO2 emissions, and operating cost segments that the
ECM applies to must first be determined.

Baseline segment sizes are initially determined by total number of technol-
ogy stock units that are representative of the segment and the total primary
energy use of those units. The total number of technology stock units, σbase

X,v,y,
is broken out by building vintage v and year y:

σbase
X,v,y = σref

X,y ξ
vint
b,v,y ξ

scale
X,v (1)

ξvintb,v,y =



∑y
i=0B

new
z,b,i

Btotal
z,b,y

if v = new

1−
∑y

i=0B
new
z,b,i

Btotal
z,b,y

otherwise

(2)

where σref
X,y is the total number of comparable baseline technology stock units
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Figure S2: CO2 emissions reductions are largest in the northern AIA climate zone 2, particularly when
fuel switching is assumed. AIA climate zones are numbered sequentially from 1 (northern-most) to 5
(southern-most). Avoided CO2 emissions (top row) and energy savings (bottom row) corresponding to the
years 2030 (left column) and 2050 (right column) are shown for the scenarios considered in this study, with
the totals divided by the contributions from each AIA climate zone. The results in this figure are equivalent
to the results in Figure 2, but with different divisions. As in Figure 2, additional supply-side energy savings
and avoided CO2 emissions are shown with gray bars for each of the “High Renewables” scenarios.



Figure S3: Heat pump technologies that replace fuel-fired water heating and heating technologies drive
cost-effective emissions reductions given fuel switching incentives. Avoided CO2 emissions in the year
2050 are plotted from Scenario 6 (HR 1T-2T-3T, at left) and Scenario 8 (HR 1T-2T-3T FS20, at right), separately
showing the building efficiency measures (ECMs) that yield the 10 largest emissions reductions with IRR≥ 0 in
each AIA climate zone. AIA climate zones are numbered sequentially from 1 (northern-most) to 5 (southern-
most). The results in this figure are similar to the results in Figure 4, but with a focus on the year 2050 and
divisions by AIA climate zone. As in Figure 4, ECM types (envelope, controls, water heating, HVAC, etc.) are
grouped by bar color.



in the AEO reference case,1 ξvintb,v,y is the fraction of total technology stock as-
sociated with building vintage v, ξscaleX,v is a user-specified fraction for scaling
down the AEO reference case stock segment,

∑y
i=0B

new
z,b,i is the total number

or floorspace of building type b newly constructed in climate zone z from the
beginning of the model time horizon through year y of the AEO reference case,
and Btotal

z,b,y is the total number or floorspace of building b in climate zone z and
year y of the AEO reference case.

The total primary energy use attributable to σbase
X,v,y, E

base
X,v,y, is defined as

follows:

Ebase
X,v,y = Eref

X,y SSf,y ξ
vint
b,v,y ξ

scale
X,v (3)

where Eref
X,y is the total delivered (or “site”) baseline energy use for a given

stock segment in the AEO reference case2 and SSf,y is the site-to-source en-
ergy conversion factor for baseline fuel type f and year y.

Site-to-source conversion factors SSf,y for all nonelectric fuels are assumed
to be unity given the consumption of these fuels on-site. For electricity, the
site-to-source factor SSf=elec,y is calculated as:

SSf=elec,y =

(
Ωsite

y +Ωloss
y

) (
1− τy +

3412
9510τy

)
Ωsite

y

(4)

where Ωsite
y is total delivered electricity for residential and commercial build-

ings in year y, Ωloss
y is total electricity-related generation, transmission, and

distribution losses in year y,3 τy is the fraction of total power generated from
noncombustible renewable sources (wind, solar, geothermal, hydroelectric),4

and the constant 3412/9510 is the inverse of the energy conversion efficiency
assumed by EIA for noncombustible renewable generators. The latter two
terms reflect Scout’s use of a captured energy approach to renewable energy
generation accounting, which is different from EIA’s fossil fuel equivalency ap-
proach [5]. Specifically, where AEO assigns renewable generators the con-
version efficiency of an average fossil generator (3,412 Btu output divided by
9,510 Btu input, or 35%), the captured energy approach assumes no conver-
sion losses for noncombustible renewable generation sources (3,412 Btu input
and output or 100% efficiency).

Given a baseline segment’s total primary energy use Ebase
X,v,y, the CO2 emis-

sions associated with that energy use, Cbase
X,v,y, are calculated:

1Drawn from the “RESDBOUT.txt” file for the residential sector; AEO does not model number
of technology units for the commercial sector, thus floorspace by building type from file “KD-
BOUT.txt” is used as a proxy for technology stock.

2Drawn from “RESDBOUT.txt” for the residential sector and “KSDOUT.txt” for the commercial
sector.

3Total delivered electricity and electricity-related losses data for the residential and commercial
sector are drawn from AEO Summary Table A2.

4Calculated by summing electric power from conventional hydroelectricity, geothermal, solar
thermal, solar photovoltaic, and wind for year y from AEO Summary Table A17 and dividing by
total electric power for year y from AEO Summary Table A2.



Cbase
X,v,y = Eref

X,y SSf,y CIf,y ξ
vint
b,v,y ξ

scale
X,v (5)

where CIf,y is the CO2 emissions intensity for primary energy of baseline fuel
type f in year y, calculated as:

CIf,y =
C ref

f,y

Ebase
f,y

(6)

where C ref
f,y is the total CO2 emissions reported for residential and commercial

buildings, fuel type f , and year y in the AEO reference case,5 and Ebase
f,y is the

total primary energy use in residential and commercial buildings for the same
fuel type f and year y.

Similarly, the energy costs associated with Ebase
X,v,y, ψ

base
X,v,y, are calculated as:

ψbase
X,v,y = Eref

X,y SSf,y FCb,f,y ξ
vint
b,v,y ξ

scale
X,v (7)

where FCb,f,y is the primary energy cost6 for building type b and baseline fuel f
in year y.

Section 2.2 describes how ECM impacts are calculated relative to these
baseline segments of primary energy use, CO2 emissions, and energy costs.

2.2 Calculating ECM impacts on baseline energy use, CO2

emissions, and operating costs

ECM impacts on baseline segments of energy, CO2, and cost can be calculated
on an ECM-by-ECM basis, yielding results denoted as “uncompeted,” or ac-
counting for interactions between each ECM and other competing ECMs that
are included in a portfolio, referred to as “competed” results. The equations in
this section describe the calculation of “uncompeted” results; in Section 2.3,
these equations are modified to account for competition between ECMs.

ECM impacts on baseline segments of energy, CO2, and cost first depend
upon the fractions of baseline stock that the ECM captures. These fractions are
used to track the total number of baseline stock units in building vintage v and
year y that have been captured by the ECM under adoption case s, σecm

X,v,y,s:

σecm
X,v,y,s = σbase

X,v,y (ϕ
cmp−cpt
X,v,y,s + ϕ

cpt
X,v,y,s) (8)

where ϕcmp−cpt
X,v,y,s is the fraction of a given baseline stock segment of vintage v

that an ECM competes for and captures in year y under adoption case s and
ϕ
cpt
X,v,y,s is the fraction (≤ 1) of a given baseline stock segment of vintage v that

an ECM has captured in all years before year y under adoption case s.
The primary energy use associated with a given stock segment after ECM

adoption, Eecm
X,v,y,s, is calculated by applying ECM relative energy performance

5From AEO Summary Table A18.
6From AEO Summary Table A3.



values to the competed and captured portions of baseline energy use, also
accounting for any differences in site-source conversion factors between the
ECM and baseline technology’s fuel type:

Eecm
X,v,y,s = Ebase

X,v,y

(
ϕ
cmp−cpt
X,v,y,s RPX,y

SSfecm,y

SSf,y
+ (ϕ

cmp
X,v,y,s − ϕ

cmp−cpt
X,v,y,s )

)
+

Ebase
X,v,y(1− ϕ

cmp
X,v,y,s)

(
ϕ
cpt
X,v,y−1,sRPX,y

SSfecm,y

SSf,y
+ (1− ϕ

cpt
X,v,y−1,s)

)
(9)

where ϕcmp
X,v,y,s is the fraction of a given baseline stock segment of vintage v

that an ECM competes for in year y under adoption case s,RPX,y is the overall
energy performance of the captured stock relative to the comparable baseline
technology energy performance in year y, and SSfecm,y is the site-to-source
energy conversion factor for ECM fuel type f .

Similarly, the CO2 emissions associated with the given stock segment after
ECM adoption, Cecm

X,v,y,s, are calculated as follows:

Cecm
X,v,y,s = Cbase

X,v,y

(
ϕ
cmp−cpt
X,v,y,s RPX,y

SSfecm,y

SSf,y

CIb,fecm,y

CIf,y
+ (ϕ

cmp
X,v,y,s − ϕ

cmp−cpt
X,v,y,s )

)
+

Cbase
X,v,y(1− ϕ

cmp
X,v,y,s)

(
ϕ
cpt
X,v,y−1,sRPX,y

SSfecm,y

SSf,y

CIb,fecm,y

CIf,y
+ (1− ϕ

cpt
X,v,y−1,s)

)
(10)

where CIb,fecm,y is the CO2 emissions intensity for primary energy of ECM fuel
type f used in building type b in year y.

Finally, the energy costs associated with the given stock segment after ECM
adoption, ψecm

X,v,y,s, are calculated as:

ψecm
X,v,y,s = ψbase

X,v,y

(
ϕ
cmp−cpt
X,v,y,s RPX,y

SSfecm,y

SSf,y

FCb,fecm,y

FCb,f,y
+ (ϕ

cmp
X,v,y,s − ϕ

cmp−cpt
X,v,y,s )

)
+

ψbase
X,v,y(1− ϕ

cmp
X,v,y,s)

(
ϕ
cpt
X,v,y−1,sRPX,y

SSfecm,y

SSf,y

FCb,fecm,y

FCb,f,y
+ (1− ϕ

cpt
X,v,y−1,s)

)
(11)

where FCb,fecm,y is the primary energy cost for ECM fuel type f used in building
type b in year y.



Each of the energy, CO2, and cost outcomes described previously depends
on competed and captured stock fractions (ϕcmp

X,v,y,s, ϕ
cmp−cpt
X,v,y,s , and ϕcptX,v,y,s) as

well as the relative energy performance of the captured stock RPX,y. The
following paragraphs provide further detail on the calculation of these four
common variables.

First, the fraction of a given stock segment for building vintage v in year y
that an ECM competes for under adoption case s, ϕcmp

X,v,y,s, is defined as:

ϕ
cmp
X,v,y,s = ϕ

cmp−cpt
X,v,y,s =


0, y < ye

1, s = TP and y = ye

λnewX,v,y + (1− λnewX,v,y)λ
repl
X,v,y, v = new

λ
repl
X,v,y, otherwise

(12)

where ye is the ECM’s market entry year, which must be greater than or equal to
the first year in the modeling time horizon, TP denotes the technical potential
adoption case, λnewX,v,y and λreplX,v,y are segment-specific rates of new technology
stock additions and replacements/retrofits in year y, respectively. Note that it
is assumed that no competed stock returns to the baseline technology, thus
ϕ
cmp
X,v,y,s = ϕ

cmp−cpt
X,v,y,s .

λnewX,v,y and λreplX,v,y are further defined as:

λnewX,v,y =


σbase
X,v,y − σbase

X,v,y−1

σbase
X,v,y

, y > y0 and v = new and σbase
X,v,y ̸= 0

1, y = y0,

0, otherwise

(13)

λ
repl
X,v,y =

{
wX ϕ

uncpt
X,v,y,s, v = new and ys ≤ y ≤ yf or v ̸= new

0, otherwise
(14)

where y0 denotes the first year in the modeling time horizon, wX is a baseline
stock turnover rate that captures both end-of-life replacement and elective
retrofit of the baseline technology, ϕuncptX,v,y,s is the fraction of baseline stock that
could possibly be replaced or retrofitted in year y and adoption case s, and ys
and yf are the years in which new stock previously captured by the comparable
baseline technology starts and finishes turning over as a result of replacement
and retrofit.7

The baseline stock turnover rate, wX , is defined as:
7Where the start year occurs one baseline technology lifetime after the first year in themodeling

horizon and the end year occurs two baseline technology lifetimes after the first year of ECMmarket
entry (one lifetime before the previously captured baseline stock begins turning over, another
lifetime beyond that before the previously captured baseline stock finishes turning over).



wX =
1

lbaseX

+ ρ (15)

where ρ is a constant global or ECM-specific retrofit rate that may be specified
by the user.8

The fraction of the baseline stock available for retrofit or replacement, ϕuncptX,v,y,s,
is further defined as:

ϕ
uncpt
X,v,y,s =



σbase
X,v,ye−1

σbase
X,v,y

, v = new and σbase
X,v,y ̸= 0 and ye ̸= y0

1, v ̸= new and 1− ϕ
cpt
X,v,y−1,s ≥ wX

1− ϕ
cpt
X,v,y−1,s

wX
, v ̸= new

0, otherwise

(16)

The fraction of a given stock segment for building vintage v in year y that
an ECM captures in all years through year y under adoption case s, ϕcptX,v,y,s

(≤ 1), is defined as:

ϕ
cpt
X,v,y,s =


0, y ≤ ye

1, s = TP
ϕ
cmp−cpt
X,v,y,s + ϕ

cpt
X,v,y−1,s, otherwise

(17)

Finally, the overall energy performance of the captured stock relative to
the comparable baseline technology energy performance in year y, RPX,y, is
defined as:

RPX,y =

{
RP ′

X,y, y = ye

RP ′
X,y wX,v +RPX,y−1(1− wX,v), y > ye

(18)

where RP ′
X,y is the energy performance of the competed and captured stock

relative to the comparable baseline technology energy performance in year y,
and w is the baseline technology stock turnover rate, as defined in equation
15. The energy performance of the competed and captured stock relative to
the comparable baseline technology energy performance in year y, RP ′

X,y, is
further defined as:

8The current default global retrofit rate is 0.01.



RP ′
X,y =



P base
X,y /P ecm

X,v , absolute units (inv.)

P ecm
X,v /P

base
X,y , absolute units(

1−
P base
X,y

P base
X,ya

)
P ecm
X,v , dynamic relative units (inv.)(

1−
P base
X,ya

P base
X,y

)
P ecm
X,v , dynamic relative units

1− P ecm
X,v , constant relative units

(19)

where P ecm
X,v is the user-specified ECM energy performance value, P base

X,y is the
comparable baseline technology energy performance value in year y from the
AEO reference case,9 and P base

X,ya
is the comparable baseline technology energy

performance value in a user-specified anchor year ya. The particular form of
RP ′

X,y is determined based on the performance units used for a given ECM.
“Absolute units” are performance units specific to various technologies, such
as COP for cooling systems, lumens per watt for lighting, or energy factor for
dishwashers. “Relative units” are defined as an improvement in performance
relative to the baseline, where “constant relative units” assume that the perfor-
mance improvement remains constant from the market entry year ye through
the final year Y and “dynamic relative units” assume that the performance im-
provement is reduced as the performance of the baseline technology improves
into the future. For technologies where lower numeric performance values in-
dicate higher energy performance (improved efficiency),10 the inverted form
of the equation should be used, denoted by “(inv.)”.

2.3 Adjusting ECM impacts for competition across an ECM
portfolio

The ECM impact calculations of the previous section do not account for inter-
actions between an ECM and other competing ECMs in a portfolio; resulting
ECM impacts are therefore deemed “uncompeted.” To assess an ECM’s “com-
peted” energy, CO2 emissions, and cost impacts as part of an ECM portfolio,
the ECM’s “uncompeted” impacts must be adjusted down to account for com-
petition with other ECMs in the portfolio that apply to the same segments of
baseline technology stock. A segment-specific competition adjustment factor
for building vintage v in year y under adoption case s, aX,v,y,s, is calculated:

9Drawn from “rsmeqp.txt,” “rsmlgt.txt,” and “rsclass.txt” in the residential sector and
“ktekx.xlsx” and “KSDOUT.txt” in the commercial sector. Baseline technology performance rep-
resents a typical level for comparable commercially available products in year y under the AEO
reference case.

10As would be the case for an envelope with a lower outdoor air infiltration, for example.



aX,v,y,s =


θmkt
K,X,v,y + θscaleK,X,v, s = TP or y = yE

(θmkt
K,X,v,y + θscaleK,X,v)Φ

cmp
K,X,v,y+

aX,v,y−1(1− Φ
cmp
K,X,v,y), otherwise

(20)

where θmkt
K,X,v,y is an ECM’s market share when competed in ECM set K in

year y, θscaleK,X,v is additional market share conferred on an ECM when one or
more competing ECMs apply to only part of the competed baseline stock seg-
ment,11 Φcmp

K,X,v,y is the fraction of a given baseline stock segment of vintage v
that the ECM setK competes for in year y under adoption case s, and yE is the
earliest market entry year across the ECM set K. Note that the market share
adjustment for the technical potential (TP) adoption case does not depend on
the technology stock-and-flow dynamics represented by Φ

cmp
K,X,v,y, yielding an

estimate of the technology’s “long run” competed market share in each year.
The competed market share θmkt

K,X,v,y is calculated differently depending
on which building type (residential or commercial) an ECM applies to, fol-
lowing the approach used in EIA’s simulations of technology adoption for the
AEO. Specifically, the EIA approach uses a logistic regression model and a cost
model to assign market shares in the residential and commercial sectors, re-
spectively, estimating market shares as a trade off between an ECM’s capital
and operating costs:

θmkt
K,X,v,y =

exp((β1)X,y I
ecm
X,v,y,d + (β2)X,y ψ

ecm
X,v,y,d)∑K

k=1 exp((β1)X,y Ik,X,v,y,d + (β2)X,y ψk,X,v,y,d)
, b ∈ residential

D∑
d=1

θu,d, b ∈ commercial

(21)

where IecmX,v,y,d, ψ
ecm
X,v,y,d, IK,X,v,y,d, and ψK,X,v,y.d, are the annual, unit-level cap-

ital and operating costs for an individual ECM and across the ECM set K, re-
spectively, (β1)X,y and (β2)X,y are choice coefficients from the AEO reference
case12 that weight the influence of capital and operating costs on market share
in the residential sector, D is a set of discount rates from the AEO reference
case13 that weight the influence of capital and operating costs on market share
in the commercial sector, and θu,d is the market share assigned to an ECM that

11Applicable when a user specifies a market scaling fraction, ξscaleX,v , for one or more of the
competing ECMs. In such cases, the portion of the baseline segment that the ECM(s) does (do)
not apply to is divided up evenly across all other competing ECMs.

12Drawn from “rsmeqp.txt” and “rsmlgt.txt” for major equipment and lighting technologies;
more details about these files are available in the EIA National Energy Modeling System docu-
mentation for the residential sector [6].

13Each discount rate represents a combination of a constant risk-free interest rate and a time-
preference premium rate that represents the degree to which a given decision maker accepts



applies to end use u when it has the lowest life cycle cost (capital plus op-
erating costs) of all competing ECMs in set K under discount rate d14; when
an ECM does not have the lowest life cycle cost of competing ECMs in set K
under discount rate d, θu,d is zero.

In a maximum adoption potential scenario, an ECM’s annual market shares
are weighted by the fractions of baseline and efficient stock that the ECM set
can realistically compete for in each year. The fraction of a given stock seg-
ment of vintage v that an ECM set K collectively competes for in year y under
adoption case s, Φcmp

K,X,v,y, is defined as:

Φ
cmp
K,X,v,y = Φ

cmp−cpt
K,X,v,y =

{
Λnew
X,v,y + (1− Λnew

X,v,y) Λ
repl
X,v,y, v = new

Λ
repl
X,v,y, otherwise

(22)

where Λnew
X,v,y and Λ

repl
X,v,y are segment-specific rates of new technology stock

additions and replacements/retrofits, respectively. Again, because no com-
peted stock is assumed to return to the baseline technology, Φcmp

K,X,v,y equals

Φ
cmp−cpt
K,X,v,y . Λ

new
X,v,y and Λ

repl
X,v,y are further defined as:

Λnew
X,v,y = λnewX,v,y (23)

Λ
repl
X,v,y = Λ

repl, base
X,v,y + Λ

repl, K
X,v,y (24)

where Λnew
X,v,y assumes the same stock turnover dynamics as in the uncompeted

ECM calculations (equation 13) because new stock additions are not affected
by the dynamics of ECM competition, Λrepl, base

X,v,y is the rate of previously cap-

tured baseline stock replacement and retrofit in year y, and Λ
repl, K
X,v,y is a general

rate of ECM replacement across ECM set K in year y.
Λ
repl, base
X,v,y is determined by the comparable baseline technology’s lifetime

lbase and user-defined retrofit rate ρ, encapsulated in the baseline turnover rate
wX defined by equation 15:

Λ
repl, base
X,v,y =

{
wX Φ

uncpt
X,v,y, v = new and ys ≤ y ≤ yf or v ̸= new

0, otherwise
(25)

As for the individual ECM calculations described in the previous section, ys
and yf are the years in which new stock previously captured by the comparable
baseline technology starts and finishes turning over through replacement and

investment risks. Rates are drawn from the AEO reference case file “kprem.txt” and are summa-
rized in Table E-1 of the EIA National Energy Modeling System documentation for the commercial
sector [7], p. 228.

14The market shares are summarized in Table E-1 of the EIA National Energy Modeling System
documentation for the commercial sector [7], p. 228.



retrofit, and Φ
uncpt
X,v,y represents the upper bound on the baseline replacement

and retrofit rate in year y:

Φ
uncpt
K,X,v,y =



σbase
X,v,yE−1

σbase
X,v,y

, v = new and σbase
X,v,y ̸= 0 and yE ̸= y0

1, v ̸= new and 1− Φ
cpt
K,X,v,y−1 ≥ wX

1− Φ
cpt
K,X,v,y−1

wX
, v ̸= new

0, otherwise

(26)

Similarly, the general ECM replacement rate Λ
repl, K
X,v,y is determined based on

average ECM lifetime lK and the user-defined retrofit rate ρ:

Λ
repl, K
X,v,y =


(

1

lKX
+ ρ

)
Φ

cpt
K,X,v,y−1, lK − y − yE ≤ 0

0, otherwise
(27)

In equations 26 and 27, Φcpt
K,X,v,y is the fraction (≤ 1) of an existing baseline

stock segment of vintage v that an ECM set K has collectively captured in all
years through year y:

Φ
cpt
K,X,v,y =

{
0, y ≤ yE

Λ
repl, base
X,v,y +Φ

cpt
K,X,v,y−1, otherwise

(28)

BecauseΦ
cpt
K,X,v,y tracks captured baseline stock, the ECM replacement/retrofit

rate Λ
repl, K
X,v,y is excluded from this calculation.

2.4 Calculating ECM cost-effectiveness

ECM cost-effectiveness is assessed alongside impact metrics through cost-
effectiveness thresholds that reflect both an individual consumer’s perspective
and the perspective of an organization investing in an ECM portfolio. The vari-
ables in these equations are summed across all vintages v and the indices inX,
thus the variables and cost-effectiveness metrics are generally only indexed by
year and, if applicable, scenario.

Consumer-level cost-effectiveness metrics. These metrics represent the
cost-effectiveness criteria that an individual consumermight use when deciding
whether to invest in one or more ECMs. Consumer-level metrics do not vary
with adoption case or ECM competition.

The first consumer-level cost-effectiveness metric used in Scout is the sim-
ple payback in year y, πy:



πy =
Iy/σ

base
y(∑lecm

i=1 ψi

)
/σbase

y

(29)

where Iy/σbase
y is the ECM’s maximum15 total incremental capital cost normal-

ized by the total applicable stock in year y, and (
∑lecm

i=1 ψi)/σ
base
y is the ECM’s

maximum total lifetime energy cost savings normalized by the total applicable
stock in year y.

The second consumer-level cost-effectiveness metric used in Scout is the
internal rate of return (IRR) in year y, IRRy. IRR is the discount rate that makes
the net present value (NPV) of all ECM cash flows equal to zero for the same
year. NPV is generically defined as:

NPV = R0 +

n∑
i=1

Ri

(1 + d)i
(30)

where R0 is the initial cost of a project, Ri is the net cash flow of a project
during a given time interval i, and d is the discount rate. To calculate an ECM’s
IRR from equation 30, NPV is set to zero, R0 is replaced by the ECM’s stock-
normalized incremental capital cost, Iy,0/σbase

y , Ri is replaced by the sum of
stock-normalized annual energy cost savings, ψy/σ

base
y , and any avoided cap-

ital costs in period i, Iy,i/σbase
y ,16 for an ECM deployed in year y, and IRRy

replaces the discount rate d:

NPV = 0 = Iy,0/σ
base
y +

lecm∑
i=1

ψy/σ
base
y + Iy,i/σ

base
y

(1 + IRRy)i
(31)

Portfolio-level cost-effectivenessmetrics. Thesemetrics represent the cost-
effectiveness criteria that an organizationmight use when decidingwhich ECMs
within a portfolio yield the largest energy savings or avoided CO2 emissions
impacts for a given level of investment.

The first portfolio-level cost-effectiveness metric used in Scout is the cost
of conserved energy in year y, CCEy:

CCEy,s =
Iy,0/σ

base
y +

∑lecm

i=1

Iy,i/σ
base
y

(1+d)i∑lecm

i=1

Ey,s/σbase
y

(1+d)i

(32)

where Ey,s/σ
base
y is the ECM’s stock-normalized energy savings in year y and

adoption case s. A nominal discount rate d of 7% is used in equations 32
and 33.

15Corresponding to the technical potential adoption case without any competition.
16Avoided capital costs are assessed for lighting ECMs that offer longer lifetimes than a compa-

rable baseline lighting technology, thereby avoiding future purchases of the baseline technology.



The second portfolio-level cost-effectiveness metric used in Scout is the
cost of conserved carbon in year y, CCCy, which is calculated in the same way
as the CCE:

CCCy,s =
Iy,0/σ

base
y +

∑lecm

i=1

Iy,i/σ
base
y

(1+d)i∑lecm

i=1

Cy,s/σbase
y

(1+d)i

(33)

where Cy,s/σ
base
y is the ECM’s stock-normalized avoided CO2 emissions in year

y and adoption case s.
The CCE and CCC can be compared to the cost of energy and a theoretical

carbon price, respectively, as a measure of cost-effectiveness. Note that results
for these metrics are dependent on both adoption case s and the inclusion or
exclusion of ECM competition from the calculations, as competition influences
the total amount of energy or carbon savings that an ECM can achieve relative
to a fixed baseline stock segment.

2.5 Special cases in the ECM impact calculations

Add-on ECMs. In some cases, an ECM does not replace the service of a com-
parable baseline technology, but rather enhances the performance of that
technology. Examples include a sensing and controls ECM that more effi-
ciently manages the operational schedule of an HVAC unit through a building
automation system or a window attachment that reduces solar heat gains and
thus reduces the cooling energy used to remove these heat gains from the
building.

In such “add-on” ECM cases, the ECM’s total installed cost is calculated as
the sum of the user-defined ECM cost and that of the baseline technology the
ECM is coupled with. Similarly, when the energy performance of such an ECM
is specified in absolute terms, its absolute performance value is added to that
of the baseline technology to arrive at the relative energy performance value
required in equation 18:

RP ′
X,y =


P base
X,y

P ecm
X,v + P base

X,y

, absolute units (inv.)

P ecm
X,v

P base
X,y + P ecm

X,v

, absolute units

(34)

Thermal load components. Heating and cooling ECMs may affect either
HVAC equipment (e.g., a more efficient heat pump) or a component of the
building envelope or internal gains that dictates heating and cooling demand
(e.g., a more efficient window). In the latter case, estimating ECM energy
savings requires understanding how much of a building’s total heating and
cooling energy use can be attributed to each of these components of ther-
mal load. Specifically, we determine the segment of baseline energy use
(and CO2 and cost) for climate zone z, building type b, fuel type f , end use



u ∈ (heating, cooling) and year y that is attributable to thermal load compo-
nent technology t, Ebase

z,b,f,u,t,v,y:

Ebase
z,b,f,u,t,v,y = Ebase

z,b,f,u,v,yϱz,b,u,t (35)

where Ebase
z,b,f,u,t,v,y is equivalent to the output of equation 3, Ebase

z,b,f,u,v,y is the
total primary energy use for a given heating or cooling stock segment across
all thermal load components affecting that segment, and ϱz,b,u,t is the fraction
of Ebase

z,b,f,u,v,y that is attributable to heat transfer through thermal load compo-
nent technology t. ϱz,b,u,t is based on earlier building simulation studies that
attribute residential [8] and commercial [9] heating and cooling loads to the
following components:

• Residential thermal load components: roof, wall, infiltration, ground,
windows solar gain, windows conduction, equipment gain, people gain.

• Commercial thermal load components: roof, wall, ground, floor, infiltra-
tion, ventilation, windows solar gain, windows conduction, lighting gain,
equipment gain, people gain, other heat gain.

In commercial buildings, the inclusion of lighting gains as a thermal load
component enables accounting for the secondary effects of lighting efficiency
measures on heating and cooling energy use, where a reduction in waste heat
from lights because of the ECM yields an associated increase in building heat-
ing energy use and decrease in cooling energy use. These secondary heating
and cooling effects are factored into all baseline energy use and energy savings
estimates for commercial lighting ECMs.

Interactions between envelope and HVAC equipment ECMs. Another
special case occurs when both building envelope ECMs (e.g., highly insulat-
ing windows, air sealing measures) and HVAC equipment ECMs (e.g., an air
source heat pump) are present in analysis, because they affect the same seg-
ment of baseline energy use (heating and cooling), but do so in different ways.
Namely, while envelope ECMs reduce heating and cooling energy demand,
HVAC equipment and controls ECMs reduce the energy that is required to
supply heating and cooling to the building.

Accordingly, ECMs affecting the building envelope and HVAC equipment
do not directly compete to replace the same baseline service, but they do have
overlapping impacts on heating and cooling energy use, as well as associated
CO2 emissions and operating costs. To remove these overlaps, adjustment fac-
tors are developed that scale down the baseline and efficient energy use, CO2
emissions, and operating costs calculated for envelope ECMs by the relative
savings impacts of overlapping HVAC ECMs, and vice versa:

ζbase, envz,b,f,u,v,y = (1− γz,b,f,u,v,y) + γz,b,f,u,v,y

(
∆env

z,b,f,u,v,y

∆hvac
z,b,f,u,v,y +∆env

z,b,f,u,v,y

)
(36)



ζbase, hvacz,b,f,u,v,y = (1− γz,b,f,u,v,y) + γz,b,f,u,v,y

(
∆hvac

z,b,f,u,v,y

∆hvac
z,b,f,u,v,y +∆env

z,b,f,u,v,y

)
(37)

ζecm, env
z,b,f,u,v,y = ζbase, envz,b,f,u,v,y(1−∆hvac

z,b,f,u,v,y) (38)

ζecm, hvac
z,b,f,u,v,y = ζbase, hvacz,b,f,u,v,y(1−∆env

z,b,f,u,v,y) (39)

where ζbase, envz,b,f,u,v,y, ζ
ecm, env
z,b,f,u,v,y, ζ

base, hvac
z,b,f,u,v,y, and ζecm, hvac

z,b,f,u,v,y are additional adjust-
ments applied to baseline and post-ECM segments of energy use, CO2 emis-
sions, or operating costs (Mbase

z,b,f,u,t,v,y,s and Mecm
z,b,f,u,t,v,y,s in equation 2 to re-

solve overlaps between envelope and HVAC ECMs, or vice versa, γz,b,f,u,v,y is
the fraction of total energy use in climate zone z, building type b, fuel type f ,
end use u (heating or cooling), building vintage v, and year y that is overlap-
ping across envelope and HVAC ECMs, ∆env

z,b,f,u,v,y is the total energy savings
of all envelope ECMs in the overlapping segment after competition divided by
the total energy use of the overlapping segment, and∆hvac

z,b,f,u,v,y is the total en-
ergy savings of all HVAC ECMs in the overlapping segment after competition
divided by the total energy use of the overlapping segment.

ECM package definitions. Finally, Scout allows the aggregation of individ-
ual ECM definitions into ECMpackages, representing a case where a consumer
or organization adopts multiple ECMs at the same time (though note that ECM
packages were not defined or assessed for the current analysis.) ECM pack-
ages sum together all of the stock, energy, carbon, and cost data calculated
as decribed above for each individual ECM in the package. In cases where
two ECMs to be packaged affect the same baseline energy use segment(s), a
simple average of the overlapping ECMs’ energy, carbon, and cost impacts is
taken and these averaged impacts are added to the package data.17

Users may assign additional cost and/or performance benefits from pack-
aging in the ECM package definition, where each benefit is represented as a
percentage improvement in the aggregate cost and performance level of the
package. As an example, this feature may be used to represent the effects
of a vendor discount that incentivizes installing several measures at once over
piecemeal installation of each measure separately.
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