
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Data-driven Techniques for Improving Data Collection in Low-resource Environments

Permalink
https://escholarship.org/uc/item/91w1q283

Author
Chen, Kuang

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91w1q283
https://escholarship.org
http://www.cdlib.org/

Data-driven Techniques for Improving Data Collection in Low-resource

Environments

by

Kuang Chen

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Joseph M. Hellerstein, Chair
Professor Tapan S. Parikh

Professor Eric Brewer

Fall 2011

Data-driven Techniques for Improving Data Collection in Low-resource Environments

Copyright c© 2011

by

Kuang Chen

Abstract

Data-driven Techniques for Improving Data Collection in Low-resource Environments

by

Kuang Chen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

Low-resource organizations worldwide work to improve health, education, infrastruc-
ture, and economic opportunity in disadvantaged communities. These organizations must
collect data in order to inform service delivery and performance monitoring. In such set-
tings, data collection can be laborious and expensive due to challenges in the physical and
digital infrastructure, in capacity and retention of technical staff, and in poor performance
incentives. Governments, donors, and non-governmental organizations (NGOs) large and
small are demanding more accountability and transparency, resulting in increased data col-
lection workloads. Despite continued emphasis and investment, countless data collection
efforts continue to experience delayed and low-quality results. Existing tools and capabili-
ties for data collection have not kept pace with increased reporting requirements.

This dissertation addresses data collection in low-resource settings by algorithmically
shepherding human attention at three different scales: (1) by redirecting workers’ attention
at the moment of entry, (2) by reformulating the data collection instrument in its design
and use, and (3) by reorganizing the flow and composition of data entry tasks within and
between organizations. These three different granularities of intervention map to the three
major parts of this dissertation.

First, the USHER system learns probabilistic models from previous form responses,
supplementing the lack of expertise and quality control. The models are a principled
foundation for data in forms, and are applied at every step of the data collection process:
form design, form filling, and answer verification. Simulated experiments demonstrate that
USHER can improve data quality and reduce quality-control effort considerably.

Next, a number of dynamic user-interface mechanisms improve accuracy and efficiency
during the act of data entry, powered by USHER. Based on a cognitive model, these inter-
face adaptations can be applied as interventions before, during, and after input. An evalua-
tion with professional data entry clerks in rural Uganda reduced error by up to 78%.

Finally, the SHREDDR system transforms paper form images into structured data on-
demand. SHREDDR reformulates data entry work-flows with pipeline and batching op-
timizations at the organizational level. It combines emergent techniques from computer
vision, database systems, and machine learning, with newly-available infrastructure —

1

on-line workers and mobile connectivity — into a hosted data entry web-service. It is a
framework for data digitization that can deliver USHER and other optimizations at scale.
SHREDDR’s impact on digitization efficiency and quality is illustrated in a one-million-
value case study in Mali.

The main contributions of this dissertation are (1) a probabilistic foundation for data
collection, which effectively guides form design, form filling, and value verification; (2)
dynamic data entry interface adaptations, which significantly improve data entry accuracy
and efficiency; and (3) the design and large-scale evaluation of a hosted-service architecture
for data entry.

2

For Sophie and children who are not counted.

i

Contents

Contents ii

List of Figures vi

List of Tables viii

Acknowledgements ix

1 Introduction 1

1.1 Data in the First Mile . 1

1.2 Challenges . 3

1.2.1 Expertise, Training and Turnover 3

1.2.2 Telling Stories vs. Encoding Data 3

1.2.3 The Burden of Monitoring and Evaluation 4

1.2.4 Lack of Local Usage . 4

1.3 Approach . 5

1.4 Contributions . 8

2 Usher 9

2.1 Introduction . 9

2.2 Related Work . 10

2.2.1 Data Cleaning . 11

2.2.2 Data Entry Efficiency . 11

2.2.3 Clinical Trials . 11

2.2.4 Survey Design . 12

2.3 System . 12

ii

2.3.1 Examples . 13

2.3.2 Implementation . 16

2.4 Learning a Model for Data Entry . 17

2.5 Question Ordering . 19

2.5.1 Reordering Questions during Data Entry 21

2.6 Question Re-asking . 22

2.6.1 Error Model . 23

2.6.2 Error Model Inference . 25

2.6.3 Deciding when to Re-ask . 25

2.7 Question Reformulation . 26

2.7.1 Static Reformulation . 27

2.7.2 Dynamic Reformulation . 28

2.7.3 Reformulation for Re-asking . 28

2.8 Evaluation . 29

2.8.1 Data Sets and Experimental Setup 29

2.8.2 Ordering . 30

2.9 Conclusion and Future Work . 34

3 Adaptive Feedback 36

3.1 Introduction . 36

3.2 Related Work . 37

3.2.1 Managing Data Quality During Entry 37

3.2.2 Improving Data Entry Efficiency 37

3.2.3 Adaptive User Interfaces . 38

3.3 A Data-driven Foundation For Adaptive Forms 38

3.4 Opportunities For Adaptation During Entry 38

3.5 Adaptive Feedback For Data Entry . 41

3.5.1 Design Process . 41

3.5.2 Feedback Mechanisms . 43

3.5.3 Feedback Parameterization . 44

3.6 User Study . 46

3.6.1 Context and Participants . 46

iii

3.6.2 Forms and Data . 46

3.6.3 An USHER Model for Patient Visits 47

3.6.4 System . 47

3.6.5 Task . 48

3.6.6 Procedure . 48

3.7 Results . 49

3.7.1 Accuracy . 49

3.7.2 Correct vs. Incorrect feedback . 50

3.7.3 Effort . 52

3.8 Discussion . 52

3.8.1 Every Error Counts . 52

3.8.2 Room for improvement . 53

3.8.3 Generalizability . 53

3.8.4 Studying Rare Events . 53

3.9 Conclusion and Future Work . 54

4 Shreddr 55

4.1 Introduction . 55

4.2 Related Work . 56

4.2.1 Automatic document processing 56

4.2.2 Improving data entry . 56

4.3 Existing Solutions . 57

4.3.1 Replacing paper with direct-entry 57

4.3.2 Traditional double data entry . 58

4.4 SHREDDR . 58

4.5 Why “shred”? . 60

4.5.1 Capture and encode separately . 61

4.5.2 Paper independence . 61

4.5.3 Create economies of scale . 63

4.6 Case Study . 63

4.6.1 Imaging and uploading . 64

4.6.2 Alignment and shredding . 64

iv

4.6.3 Document definition . 64

4.6.4 Digitization effort . 65

4.6.5 Workers and errors . 66

4.7 Data Quality . 66

4.7.1 Double entry quality . 67

4.7.2 Quality control . 67

4.7.3 SHREDDR results . 69

4.7.4 Quality comparison . 71

4.7.5 Error independence . 73

4.8 Efficiency . 74

4.8.1 Shredded interfaces . 74

4.9 Discussion . 77

4.10 Conclusion and Future Work . 78

5 Conclusion 79

5.1 Discussion and Future Work . 80

5.1.1 Maximizing bits-per-decision . 80

5.1.2 Bottom-up bootstrapping . 80

5.1.3 Getting Started . 80

Bibliography 82

v

List of Figures

1.1 Photo of a hospital file room in Uganda, 2008 5

2.1 Learned structure for patient data. 14

2.2 Learned structure for survey data . 15

2.3 Optimized question ordering. 16

2.4 USHER system diagram. 17

2.5 USHER error model. 22

2.6 Question reformulation example. 26

2.7 Ordering experiment results. 30

2.8 Re-asking experiment results. 32

2.9 Reformulation experiment results. 33

3.1 USHER system overview. 39

3.2 Data entry cognitive task model. 40

3.3 Study participants. 41

3.4 Alternative data entry widgets . 42

3.5 Adaptive data entry widgets. 43

3.6 How many values to show? . 45

3.7 Model predictiveness. 47

4.1 Document definition interface. 58

4.2 Makeshift copy stand. 59

4.3 Form image registration outcome. 60

4.4 Shredding. 61

4.5 Entry interface. 62

4.6 Quality control work-flow. 68

vi

4.7 Accuracy results. 69

4.8 Difficult shred images . 70

4.9 Entry of Ugandan last names . 71

4.10 Verification interface: list-style. 74

4.11 Value-ordered verification interface: grid-style. 75

4.12 Duration by data type and question difficulty 76

vii

List of Tables

3.1 Answer domain—feedback positions map. 45

3.2 “Adult Outpatient” form and dataset questions. 46

3.3 Error rates. 50

3.4 Error rates by type. 50

3.5 Error rate by feedback correctness. 51

3.6 Mean time per question. 52

4.1 Mali run statistics . 65

4.2 Worker demographics . 65

4.3 Constituting ideal double entry. 73

4.4 Error independence. 73

viii

Acknowledgements

First and foremost, I am grateful for my wonderful advisors Joe and Tapan – they are
kind, forgiving, but with high standards. I could not have imagined better mentors. Thank
you to Maneesh Agrawala and Eric Brewer – my qualifying examination committee, who
have been always available and generous with their thoughts.

Thank you to Harr Chen – I could not have done it without you.

Jamie Lockwood has been my cheerleader and champion – having faith in me when I
was doubtful, and finding support for me to take the first steps in this research agenda. I
am grateful for her kindness and encouragement.

Thank you to Neal Lesh for packing me off to Tanzania, and being there when I landed.
I am grateful to the staff at the MDH project, and Sanjay Unni for showing me around Dar
es Salaam. Thanks to Kurtis Heimerl, Yaw Anokwa, Brian DeRenzi and the rest of the
Young Reseachers in ICTD crew.

I am in debt to Christine Robson for her ample advice and patience, and extraordinary
editorial ability.

Thank you to my prelim buddy Beth Trushkowsky, my break-time buddy Tyson Condie,
and the rest of the guys in the Berkeley databases group – Peter Alvaro and Neil Conway.

Thanks to Phil Garland and Dave Goldberg at SurveyMonkey for supporting Usher and
providing an example of a developing-world solution being fruitful at home.

Thank you to Melissa Ho Densmore for showing me the ropes in Mbarara, Uganda. She
and Jessica Gottleib entrusted me with their PhD dissertation data, and were my patient and
understanding test subjects. Your thoughtful feedback was invaluable.

I have warm memories and heartfelt gratitude for the staff and interns at the United
Nations Development Programme and the Millennium Villages Project, Uganda; in par-
ticular: Assar Rwakaizi, Benson Tusingwire, Christine Nakachwa, Dieuwertje Heil, Elly
Nankunda, Emmanuel Atuhairwe, Grace Duhimbazimana, Jessica Rijpstra, Jonathan Dick,
Naomi Handa-Williams, Oliver Namatovu and Solomon Echel. Big thanks to Prabhjot
Singh and Andrew Kanter for their support and advice.

Thank you to everyone who helped Shreddr take shape, especially Akshay Kannan and
Andrea Spillmann.

To everyone at Captricity: Jeff Lin, Nick Jalbert, Lee Butterman, Trevor Smith, Jake
Abernathy, Yori Yano, Logan Bowers, Nadja Haldermann, Jon Barron, and Rob Carroll –
thank you for sharing this vision.

To my parents, Mingfei and Guang and Jiamin and Tetsu – thank you for everything.

To Alice, I joyfully have the rest of my life to thank you. To Sophie, your impending
arrival helped push me over the finish line.

ix

x

Chapter 1

Introduction

“To make people count, we first need to be able to count people.”

Dr. Jong-wook Lee, Director-General, World Health Organization

(2004-2006)

1.1 Data in the First Mile

Digital information is becoming “a form of infrastructure; no less important to modern
life than roads, electrical grid or water systems” [10]. The potential for data to improve the
efficacy and accountability of organizations is evident from the existence of billion-dollar
industries serving business intelligence and data management needs.

Meeting the challenge of global development requires improving the economic op-
portunities, health, education, and infrastructure available to billions of people living in
sub-standard and isolated conditions worldwide. Practitioners of global development are
becoming increasingly data-driven, basing policies and actions on context-specific knowl-
edge about local needs and conditions. Leading development organizations—with the help
of research specialists like the Poverty Action Lab—undertake rigorous impact evaluations
of development interventions, driven by the “belief in the power of scientific evidence to
understand what really helps the poor.”1

Unfortunately, the most under-developed communities are still beyond the reach of
modern data infrastructure, constrained by limitations in physical and digital infrastruc-
ture, in capacity and retention of technical staff, and in performance incentives. As well,

1http://www.povertyactionlab.org

1

funders’ increasing emphasis on monitoring and evaluation (M&E) increases data collec-
tion workloads. Despite continued investment, data collection efforts struggle to keep up
with demand.

Part of this problem has been the lack of Internet connectivity into under-served com-
munities. Computer networking researchers and telecommunications policy experts often
refer to it as “bridging the last mile.” However, much progress has been made connecting
the last mile: mobile adoption has rapidly expanded network coverage; all but the most
remote locations seem poised to be connected. Yet, connectivity alone does not ensure data
availability. Even basic vital statistics are still largely unavailable—for example, only 24%
of children born in East and Southern Africa are registered [78], rendering the remaining
children invisible to decisions regarding resources and policy. For data scientists, this last
mile is our “first mile”—where essential local data is being created, and the hard work of
building modern data infrastructure is just beginning.

Without proper data infrastructure, practitioners, policy-makers, and researchers must
rely on incomplete, inaccurate, and delayed information for making critical decisions. For
example, the public health community warns of the “innovation pile-up” [23]: scientific
advances such as new vaccines can sit idle, awaiting data about how to efficiently deliver
new solutions and encourage adoption. Advances in database systems research suffer from
a similar innovation pile-up. For want of data and knowledge about first-mile problems,
some of our best ideas—including those that can be applied to solve those very first-mile
data collection challenges—have been sidelined.

The tools designed for the developed-world usage cases tend to be inappropriate for
low-resource work-flows. For example, data quality is a critical consideration in any data
collection efforts, but techniques for automatic data cleaning tend to focus on data after it
has been collected into a database [20, 12]. As well, automated methods of extracting data
from paper forms [48] can be immensely beneficial to first-mile work-flows, but none of
these methods have been widely adopted in the developing world due to cost and technical
complexity.

The increasing availability of phones, computers, and Internet connectivity has the po-
tential for streamlining data collection and management in first-mile environments. Several
researchers have developed mobile-phone-based frameworks for data collection [7, 34, 60].
Mobile devices enable remote agents to directly enter information at the point of service,
replacing data entry clerks and providing quick response times.

However, mobile direct entry tools often replace existing paper-based work-flows, and
going “paperless” is not an option for many first-mile organizations [60]. Paper remains the
time-tested and preferred data capture medium, usually for a combination of the following
reasons:

• Resource limitations: lack of capital, stable electricity, IT-savvy workers, and system
administrators

• Inertia: fear that even small changes to deeply ingrained paper-based work-flows can
cause large ripple effects

2

• Regulation: compliance with paper record-keeping rules from the myriad oversight
agencies

• Backup: need to safeguard against power or electronic system failure, and for having
a primary-source reference [62])

The vast majority of first-mile organizations hire on-site data entry workers to transcribe
their stacks of paper. To address the end-to-end challenge of building data infrastructure in
first-mile communities, we must address the paper-to-structured-data digitization problem.

1.2 Challenges

My experiences volunteering and doing research in East Africa with public health and
international development organizations provided the following perspectives about the na-
ture of data digitizing bottlenecks in low-resource organizations. I saw that existing meth-
ods fail to meet a host of nuanced contextual challenges. This dissertation begins by orga-
nizing and analyzing the challenges beyond the lack of resources.

1.2.1 Expertise, Training and Turnover

In low-resource organizations, even office-based administrative staff lack expertise in
critical areas like database and computer systems administration, form design and data
entry, and usability and process engineering. This is especially true for small grassroots
groups and the local field offices of international organizations, which are assigned the
most critical and challenging task of actual service delivery. It is very expensive to provide
IT training and expertise in remote and unappealing locations. For the same reason, it is
difficult to recruit and retain high-quality talent. The best staff almost always leave to climb
the career ladder, eventually ending up with a job in a major city, or even abroad. Turnover
is very high, especially among young, English-speaking, computer-literate workers. As
such, even organizations that invest heavily in training see limited returns.

1.2.2 Telling Stories vs. Encoding Data

Data entry is an encoding task, and doing it well requires domain knowledge, and suffi-
cient literacy and numeracy. The field staff of low-resource organizations often have limited
formal education. Previous empirical work has shown that uneducated users have difficulty
organizing and accessing information as abstract concepts [72]. These characteristics have
in turn been associated with the concept of “orality” [59]. According to this theory, oral

3

cultures are characterized by situational rather than abstract logic, preferring nuanced, qual-
itative narratives to quantitative data. Oral knowledge processes are also aggregative rather
than analytic, favoring the assembly of complex and potentially-conflicting “stories,” rather
than the documentation of experiences as individual “correct” measurements.

1.2.3 The Burden of Monitoring and Evaluation

Like enterprises in the developed world, monitoring organizations are becoming in-
creasingly data-driven. As the World Bank reports, “Prioritizing for M&E has become a
mantra that is widely accepted by governments and donors alike” [38]. On-the-ground or-
ganizations face, on one hand, growing data collection requirements, and on the other the
mandate to minimize “administration” overhead—the budget that sustains data collection.
Some international funders assume that if an on-the-ground organization is effective and
worthy of aid, then their reporting requirements can be met with data already being col-
lected [30]. This is wishful thinking and far from reality. Organizations active in local
communities are often several rungs down on the sub-contracting or delegation ladder, and
hence are disconnected from the rationale behind reporting requirements.

Specifically, generating the aggregated long-term data (months to years) that is useful
for top-down evaluation and policy is very different from generating the fine-grain short-
term data useful for making decisions at the local level. For example, a funder may be
interested in a quarterly count of patients with malaria, while a health clinic wants to know
which malaria patients from yesterday require follow-up. The latter information for im-
proving service delivery is often skipped due to priority of reporting requirements.

Worse, because digitization workloads are uneven—for example, an immunization
drive can cause a weeks-long data entry backlog in a rural health clinic—organizations
need to over-provision worker capacity in order to have reliably fast turn-around times.
Due to resource constraints, this is rarely possible. Instead, when reports are due, staff are
pulled from other vital duties to work as expensive data entry clerks. I witnessed that doc-
tors and nurses in many rural health clinics must stop providing medical services in order
to spend days each month tabulating reports.

1.2.4 Lack of Local Usage

In an urban Tanzanian health clinic, I observed that patient visit data was recorded by
hand twice, then digitally entered three times. A nurse first wrote in a paper register used
for the clinic’s day-to-day operations, and next copied the information onto carbon-copy
paper forms. The first copy, for the local ministry of health, was digitally entered on-site;
the second copy, for medical research was shipped to a central office and separately entered
twice-over into a different database.

A paradoxical challenge in paper data digitization is the ease of establishing “good-

4

enough” solutions, without regard to existing work-flows. The above clinic, like the many
organizations worldwide, began digital data collection with simple tools—ad hoc spread-
sheets or Microsoft Access databases. Such practices can be quite effective when there
is the organizational will and resources to maintain these solutions and evolve them to
accommodate changing requirements.

Figure 1.1. Photo of a hospital file room in Uganda, 2008

The Tanzanian clinic did not have such resources—they could not adapt the existing
paper-only system, and thus had to duplicate transcription efforts into a tailored “point
solution,” which minimally met the requirements of a single report. As a result, staff had
no access their own digital data despite on-site data entry. Instead, staff relied on searching
through paper forms on file-room shelves (Figure 1.1).

Data that local staff must collect but cannot use can be a strong disincentive to generate
high-quality results: staff take lackadaisical attitudes towards data collection when the im-
pact is unseen, and become resentful when they feel efforts are unnecessarily duplicated.
As well, as the number of reports increase, so do the number of point solutions.

Local disuse can also lead to field staff emphasizing successes, and minimizing failures.
After all, if digital data has no local impact, then reports can be biased towards what distant
overseers want to see. Biases aggregate over time and geography, potentially obscuring
serious local problems. Ironically, the typical reaction of the distant overseers to poor data
quality is to increase the intensity of M&E—adding work to already-stretched local work-
flows and reinforcing a vicious cycle.

1.3 Approach

Broadly speaking, meeting the above challenges requires improving three key factors—
data accuracy, cost, and turn-around time—in under-staffed organizations with little do-
main or IT expertise, and poorly-trained workers who do not see the benefits of the in-
creasing data collection workload (Section 1.2.4). However, each organization is subject

5

to its own combination of constraints, and places different relative priority on these fac-
tors. Technology interventions must carefully consider the specific requirements of each
application domain and organization. The CAM system is an exemplary intervention in
the domain of micro-finance. In his dissertation, Parikh described using mobile phones as
digital imaging and data entry devices to aid in existing paper-based work-flows [60].

This dissertation extends the idea that solutions based on existing practices and nuanced
understanding of local problems work well, and takes a data-driven and thus, adaptive,
approach to augment existing paper-based work-flows. We focus our interventions on im-
proving data quality and operational cost, trading off the immediate responsiveness that is
possible with direct-entry on mobile-devices. Our systems and algorithms learn from data
being collected to make custom augmentations to the modality, interaction, location and
even choice of participants involved in local data collection processes. These augmenta-
tions are design to address some of the specific challenges in Section 1.2.

Our data-driven interventions algorithmically usher human attention at three scales: (1)
during the moment of entry, we redirect workers’ attention towards important data ele-
ments and likely errors; (2) spanning the design and usage of a data collection instrument,
we reformulate the instrument’s design and transcription process in terms of form layout,
question wording, and answer verification logic; (3) at the organization level, we reorganize
the flow and composition of data collection work.

First, we focus on data quality. The field of survey methodology has long been shep-
herding form designers with heuristics for crafting data collection instruments, and data
managers with best practices for data quality [32]. As mentioned in Section 1.2.1, sur-
vey design expertise and sufficient resources for quality assurance are rare in resource-
challenged settings. Often, poor quality data intensifies the mandate for more data collec-
tion (Section 1.2.3), To guide the design and usage of a data collection instrument, we take
a machine-learning-based approach to supplement the lack of expertise and quality assur-
ance. The foundation of this approach is a probabilistic representation of data collection
forms induced from existing form values and their relationships between questions. The
model represents data collection as an entropy-reduction process.

The USHER system trains and applies these probabilistic models in order to automati-
cally derive process improvements in question flow, question wording, and re-confirmation.

• Since form layout and question selection is often ad hoc, USHER optimizes question
ordering according to a probabilistic objective function that aims to maximize the
information content of form answers as early as possible. Applied before entry, the
model generates a static but entropy-optimal ordering, which focuses on important
questions first.

• Applying its probabilistic model during data entry, USHER can evaluate the condi-
tional distribution of answers to a form question. For difficult-to-answer questions,
such as those with many extraneous choices, USHER can opportunistically reformu-

late them to be easier and more congruous with the available information.

• The model is consulted to predict which responses may be erroneous, so as to re-ask

6

those questions in order to verify their correctness. Intelligent re-asking approxi-
mates the benefits of double entry at a fraction of the cost.

Simulated experiments confirm that USHER can significantly improve input efficiency and
accuracy.

During the act of data entry, a number of USHER-powered dynamic user-interface
mechanisms can be used to improve accuracy and efficiency. The intuition is that the
amount of effort, or friction, in the input interface should be proportion to answer likeli-
hood. Based on a cognitive model that identifies the opportunity for applying friction, each
act of entry is adaptive and a customized experience. Before and during entry, adaptations
decrease the time and cognitive effort required for transferring an answer from paper, and
reduce the possibility that the answer is lost from short-term memory in the transfer process.
After entry, adaptations increase the time and cognitive effort spent to verify the answer’s
correctness, with particular focus on important and likely-erroneous values. An evaluation
with professional data entry clerks in rural Uganda showed the potential to reduce error by
up to 78%.

At the organizational scale, we focus on re-architecting local data work-flows to intro-
duce optimizations that can improve efficiency and lower cost. We created the SHREDDR

system, which transforms paper form images into structured data as a hosted data entry
web-service. SHREDDR leverages partitioning and batching optimizations by combining
emergent techniques from computer vision, database systems, and machine learning, with
newly-available infrastructure—on-line workers and mobile connectivity.

SHREDDR is a data entry assembly line, which first separates data capture and encod-
ing into distinct steps. Front-line field workers are the best suited to capture information
given their local contextual knowledge and familiarity with the community, whereas tasks
involving data encoding require more literacy, training and knowledge about increasingly-
specific data vocabularies and schemata (Section 1.2.2). The distinction makes it possible
to move tasks involving data encoding to where the incentives and capabilities are more
appropriate—away from the first-mile. By pooling the work from multiple organizations,
we benefit from the economy of scale. A constant flow of work allows SHREDDR to further
separate and reformulate data encoding tasks in additional assembly line steps. These steps
are opportunities for existing and novel techniques to add value; for example: computer
vision algorithms pre-process document images for legibility, and human workers on-line
perform data entry and verification.

SHREDDR’s human data entry interfaces leverage batch compression. The inspiration
came during USHER’s user study in an Ugandan health clinic. I noticed that a data entry
clerk was mouthing numbers while inputting “yes/no” values. When asked, he pointed to
the sequence of consecutive “yes” answers on the paper form, and explained that by mem-
orizing the number of “yes” answers in the span, he could enter that many without looking
back at the paper form. I recognized that he was performing on-the-fly data compression:
specifically, he was unknowingly applying the equivalent of run-length encoding2. Such a
batch operation over many values at once can be engineered to occur as often as possible by

2http://en.wikipedia.org/wiki/Run-length encoding

7

controlling information entropy. SHREDDR controls information entropy by decomposing
filled-in paper images into constituent values, and then grouping these by value. Batches
are then placed into batch operation interfaces for workers.

SHREDDR’s algorithms for partitioning and batching data entry work, when combined
with an elastic pool of on-line workers, can allow significant efficiency gains, as well as
fast turn-around times. We describe a large-scale deployment in Mali, which digitized one
million data values with higher quality, faster turn-around time, and lower cost compared
to current practices.

1.4 Contributions

The main contributions of this research are as follows:

• A probabilistic foundation for data collection, which functions in the USHER system
to improve form design, form filling, and value verification

• Design guidelines for dynamic data entry interface adaptations based on USHER’s’
probabilistic machinery, and evaluation in situ

• The architecture of the SHREDDR data entry web-service, and its evaluation with a
large-scale deployment

8

Chapter 2

Usher

2.1 Introduction

Current best practices for managing data quality during data entry come from the field
of survey methodology, which offers principles that include manual question orderings and
input constraints, and double entry of paper forms [32]. Although this has long been the de

facto quality assurance standard in data collection and transformation, we believe this area
merits reconsideration. For paper forms, we posit that a data-driven and more computation-
ally sophisticated approach can significantly outperform these decades-old static methods
in both accuracy and efficiency of data entry.

The problem of data quality is magnified in low-resource settings. First, many or-
ganizations lack expertise in form design: designers approach question and answer choice
selection with a defensive, catch-all mindset, adding answer choices and questions that may
not be necessary. Furthermore, they engage in ad hoc mapping of required data fields to
data entry widgets by intuition [16, 52], often ignoring or specifying ill-fitting constraints.

Second, double data entry (DDE) is too costly. In some cases this means it is sim-
ply not performed, resulting in poor data quality. In other cases, particularly when DDE
is mandated by an oversight agency, it results in delays and other unintended negative
consequences. When DDE is imposed upon a busy field office, the effort can delay data
availability for months—data is most often not used until both entry passes are finished
and conflicts reconciled. Although the data eventually percolates up to national and in-
ternational agencies, the clinic remains unable to benefit from the data they themselves
digitized.

To address this spectrum of data quality challenges, we have developed USHER, an
end-to-end system that can improve data quality and efficiency at the point of entry by
learning probabilistic models from existing data, which stochastically relate the questions

9

of a data entry form. These models form a principled foundation on which we develop
information-theoretic algorithms for form design, dynamic form adaptation during entry,
and answer verification:

• When forms are designed or revised, USHER can optimize question ordering accord-
ing to a probabilistic objective function that aims to maximize the information con-
tent of form answers as early as possible—we call this the greedy information gain

principle. Applied before entry, the model generates a static but entropy-optimal or-
dering, which focuses on important questions first. During entry, it can be used to
dynamically pick the next best question, based on answers so-far—this is appropriate
in scenarios where question ordering can be flexible between instances.

• Applying its probabilistic model during data entry, USHER can evaluate the condi-
tional distribution of answers to a form question, and make it easier for likely answers
to be entered—we call this the appropriate entry friction principle. For difficult-to-
answer questions, such as those with many extraneous choices, USHER can oppor-
tunistically reformulate them to be easier. In this way, USHER effectively allows for
a principled, controlled tradeoff between data quality and form filling effort and time.

• Finally, the stochastic model is consulted to predict which responses may be erro-
neous, so as to re-ask those questions in order to verify their correctness—we call
this the contextualized error likelihood principle. We consider re-asking questions
both during the data entry process (integrated re-asking) and after data entry has
been finished (post-hoc re-asking). In both cases, intelligent question re-asking ap-
proximates the benefits of double entry at a fraction of the cost.

The contributions of this chapter are three-fold:

1. We describe the design of USHER’s core: probabilistic models for arbitrary data entry
forms.

2. We describe USHER’s application of these models to provide guidance along each
step of the data entry lifecycle: reordering questions for greedy information gain, re-
formulating answers for appropriate entry friction, and re-asking questions according
to contextualized error likelihood.

3. We present experiments showing that USHER has the potential to improve data qual-
ity at reduced cost. We study two representative data sets: direct electronic entry of
survey results about political opinion, and transcription of paper-based patient intake
forms from an HIV/AIDS clinic in Tanzania.

2.2 Related Work

Our work builds upon several areas of related work. We provide an overview in this
section.

10

2.2.1 Data Cleaning

In the database literature, data quality has typically been addressed under the rubric of
data cleaning [12, 20]. Our work connects most directly to data cleaning via multivariate
outlier detection; it is based in part on interface ideas first proposed by Hellerstein [36].
By the time such retrospective data cleaning is done, the physical source of the data is
typically unavailable—thus, errors often become too difficult or time-consuming to be rec-
tified. USHER addresses this issue by applying statistical data quality insights at the time
of data entry. Thus, it can catch errors when they are made and when ground-truth values
may still be available for verification.

2.2.2 Data Entry Efficiency

Past research on improving data entry is mostly focused on adapting the data entry
interface for user efficiency improvements. Several such projects have used learning tech-
niques to automatically fill or predict a top-k set of likely values. For example, Ali and
Meek [11] predicted values for combo-boxes in web forms and measured improvements
in the speed of entry, Ecopod [83] generated type-ahead suggestions that were improved
by geographic information, and Hermens et al. [37] automatically filled leave-of-absence
forms using decision trees and measured predictive accuracy and time savings. In these
approaches, learning techniques are used to predict form values based on past data, and
each measures the time savings of particular data entry mechanisms and/or the proportion
of values their model was able to correctly predict.

USHER’s focus is on improving data quality, and its probabilistic formalism are based
on learning relationships within the underlying data that guide the user towards correct en-
tries. In addition to predicting question values, we develop and exploit probabilistic models
of user error, and target a broader set of interface adaptations for improving data quality,
including question reordering, reformulation, and re-asking. Some of the enhancements we
make for data quality could also be applied to improve the speed of entry.

2.2.3 Clinical Trials

Data quality assurance is a prominent topic in the science of clinical trials, where the
practice of double entry has been questioned and dissected, but nonetheless remains the
gold standard [21, 42]. In particular, Kleinman takes a probabilistic approach toward choos-
ing which forms to re-enter based on the individual performance of data entry staff [44].
This cross-form validation has the same goal as our approach of reducing the need for com-
plete double entry, but does so at a much coarser level of granularity. It requires historical
performance records for each data entry worker, and does not offer dynamic reconfirmation
of individual questions. In contrast, USHER’s cross-question validation adapts to the actual
data being entered in light of previous form submissions, and allows for a principled as-

11

sessment of the tradeoff between cost (of reconfirming more questions) versus quality (as
predicted by the probabilistic model).

2.2.4 Survey Design

The survey design literature includes extensive work on form design techniques that
can improve data quality [32, 56]. This literature advocates the use of manually specified
constraints on response values. These constraints may be univariate (e.g., a maximum value
for an age question) or multivariate (e.g., disallowing gender to be male and pregnant to be
yes). Some constraints may also be “soft” and only serve as warnings regarding unlikely
combinations (e.g., age being 60 and pregnant being yes).

The manual specification of such constraints requires a domain expert, which can be
prohibitive in many scenarios. By relying on prior data, USHER learns many of these
same constraints without requiring their explicit specification. When these constraints are
violated during entry, USHER can then flag the relevant questions, or target them for re-
asking.

It is important to note that USHER does not preclude the manual specification of con-
straints. This is critical, because previous research into the psychological phenomena of
survey filling has yielded common constraints not inherently learnable from prior data [32].
This work provides heuristics such as “groups of topically related questions should often be
placed together” and “questions about race should appear at the end of a survey.” USHER

complements these human-specified constraints, accommodating them while leveraging
any remaining flexibility to optimize question ordering in a data-driven manner.

2.3 System

USHER builds a probabilistic model for an arbitrary data entry form in two steps: first,
by learning the relationships between form questions via structure learning, resulting in
a Bayesian network; and second, by estimating the parameters of that Bayesian network,
which then allows us to generate predictions and error probabilities for the form.

After the model is built, USHER uses it to automatically order a form’s questions for
greedy information gain. Section 2.5 describes both static and dynamic algorithms that
employ criteria based on the magnitude of statistical information gain that is expected in
answering a question, given the answers that have been provided so far. This is a key idea
in our approach. By front-loading predictive potential, we increase the models’ capacity
in several ways. First, from an information theoretic perspective, we improve our ability
to do multivariate prediction and outlier detection for subsequent questions. As we discuss
in more detail in Section 2.7, this predictive ability can be applied by reformulating error-
prone form questions, parametrizing data entry widgets (type-ahead suggestions, default

12

values), assessing answers (outlier flags), and performing in-flight re-asking (also known
as cross-validation in survey design parlance). Second, from a psychological perspective,
front-loading information gain also addresses the human issues of user fatigue and lim-
ited attention span, which can result in increasing error rates over time and unanswered
questions at the end of the form.

Our approach is driven by the same intuition underlying the practice of curbstoning,
which was related to us in discussion with survey design experts [52]. Curbstoning is a way
in which an unscrupulous door-to-door surveyor shirks work: he or she asks an interviewee
only a few important questions, and then uses those responses to complete the remainder
of a form while sitting on the curb outside the home. The constructive insight here is that a
well-chosen subset of questions can often enable an experienced agent to intuitively predict
the remaining answers. USHER’s question ordering algorithms formalize this intuition via
the principle of greedy information gain, and use them (scrupulously) to improve data entry.

USHER’s learning algorithm relies on training data. In practice, a data entry backlog can
serve as this training set. In the absence of sufficient training data, USHER can bootstrap
itself on a “uniform prior,” generating a form based on the assumption that all inputs are
equally likely; this is no worse than standard practice. Subsequently, a training set can
gradually be constructed by iteratively capturing data from designers and potential users in
“learning runs.” It is a common approach to first fit to the available data, and then evolve
a model as new data becomes available. This process of semi-automated form design can
help institutionalize new forms before they are deployed in production.

USHER adapts to a form and dataset by crafting a custom model. Of course, as in many
learning systems, the model learned may not translate across contexts. We do not claim that
each learned model would or should fully generalize to different environments. Instead,
each context-specific model is used to ensure data quality for a particular situation, where
we expect relatively consistent patterns in input data characteristics. In the remainder of this
section, we illustrate USHER’s functionality with examples. Further details, particularly
regarding the probabilistic model, follow in the ensuing sections.

2.3.1 Examples

We present two running examples. First, the patient dataset comes from paper patient-
registration forms transcribed by data entry workers at an HIV/AIDS program in Tanzania.1

Second, the survey dataset comes from a phone survey of political opinion in the San Fran-
cisco Bay Area, entered by survey professionals directly into an electronic form.

In each example, a form designer begins by creating a simple specification of form
questions and their prompts, response data types, and constraints. The training data set is
made up of prior form responses. Using the learning algorithms we present in Section 2.4,
USHER builds a Bayesian network of probabilistic relationships from the data, as shown

1We have pruned out questions with identifying information about patients, as well as free-text comment
fields.

13

Figure 2.1. Bayesian network for the patient dataset, showing automatically inferred prob-
abilistic relationships between form questions.

in Figures 2.1 and 2.2. In this graph, an edge captures a close stochastic dependency be-
tween two random variables (i.e., form questions). Two questions with no path between
them in the graph are probabilistically independent. Figure 2.2 illustrates a denser graph,
demonstrating that political survey responses tend to be highly correlated. Note that a stan-
dard joint distribution would show correlations among all pairs of questions; the sparsity
of these examples reflects conditional independence patterns learned from the data. En-
coding independence in a Bayesian network is a standard method in machine learning that
clarifies the underlying structure, mitigates data over-fitting, and improves the efficiency of
probabilistic inference.

The learned structure is subject to manual control: a designer can override any learned
correlations that are believed to be spurious or that make the form more difficult to admin-
ister.

For the patient dataset, USHER generated the static ordering shown in Figure 2.3. We
can see in Figure 2.3 that the structure learner predicted RegionCode to be correlated with
DistrictCode. Our data set is collected mostly from clinics in a single region of Tanzania, so
RegionCode provides little information. It is not surprising then, that USHER’s suggested
ordering has DistrictCode early and RegionCode last—once we observe DistrictCode, Re-
gionCode has very little additional expected conditional information gain. When it is time
to input the RegionCode, if the user selects an incorrect value, the model can be more cer-
tain that it is unlikely. If the user stops early and does not fill in RegionCode, the model
can infer the likely value with higher confidence. In general, static question orderings are
appropriate as an offline process for paper forms where there is latitude for (re-)ordering
questions, within designer-specified constraints.

During data entry, USHER uses its probabilistic machinery to drive dynamic updates to
the form structure. One type of update is the dynamic selection of the best next question
to ask among questions yet to be answered. This can be appropriate in several situations,
including surveys that do not expect users to finish all questions, or direct-entry interfaces
(e.g., mobile phones) where one question is asked at a time. We note that it is still im-

14

Figure 2.2. Bayesian network for the survey dataset. The probabilistic relationships are
more dense. Some relationships are intuitive (Political Ideology - Political Party), others
show patterns incidental to the dataset (race - gender).

portant to respect the form designer’s a priori specified question-grouping and -ordering
constraints when a form is dynamically updated.

USHER is also used during data entry to provide dynamic feedback, by calculating
the conditional distribution for the question in focus and using it to influence the way the
question is presented. We tackle this via two techniques: question reformulation and wid-
get decoration. For the former, we could for example choose to reformulate the question
about RegionCode into a binary yes/no question based on the answer to DistrictCode, since
DistrictCode is such a strong predictor of RegionCode. As we discuss in Section 2.7, the
reduced selection space for responses in turn reduces the chances of a data entry worker se-
lecting an incorrect response. For the latter, possibilities include using a “split” drop-down
menu for RegionCode that features the most likely answers “above the line,” and after en-
try, coloring the chosen answer red if it is a conditional outlier. We discuss in Section ?? the
design space and potential impact of data entry feedback that is more specific and context
aware.

As a form is being filled, USHER calculates contextualized error probabilities for each
question. These values are used for re-asking questions in two ways: during primary form
entry and for reconfirming answers after an initial pass. For each form question, USHER

15

Figure 2.3. Example question layout generated by our ordering algorithm. The arrows
reflect the probabilistic dependencies from Figure 2.1.

predicts how likely the response provided is erroneous, by examining whether it is likely
to be a multivariate outlier, i.e., that it is unlikely with respect to the responses for other
fields. In other words, an error probability is conditioned on all answered values provided
by the data entry worker so far. If there are responses with error probabilities exceeding a
pre-set threshold, USHER re-asks those questions ordered by techniques to be discussed in
Section 2.6.

2.3.2 Implementation

We have implemented USHER as a web application (Figure 2.4). The UI loads a simple
form specification file containing form question details and the location of the training data
set. Form question details include question name, prompt, data type, widget type, and
constraints. The server instantiates a model for each form. The system passes information
about question responses to the model as they are filled in; in exchange, the model returns
predictions and error probabilities.

Models are created from the form specification, the training data set, and a graph of
learned structural relationships. We perform structure learning offline with BANJO [33],
an open source Java package for structure learning of Bayesian networks. Our graphical
model is implemented in two variants: the first model used for ordering is based on a
modified version of JavaBayes [19], an open-source Java software for Bayesian inference.
Because JavaBayes only supports discrete probability variables, we implemented the error
prediction version of our model using Infer.NET [2], a Microsoft .NET Framework toolkit
for Bayesian inference.

16

Figure 2.4. USHER components and data flow: (1) model a form and its data, (2) generate
question ordering according to greedy information gain, (3) instantiate the form in a data
entry interface, (4) during and immediately after data entry, provide dynamic re-ordering,
feedback and re-confirmation according to contextualized error likelihood.

2.4 Learning a Model for Data Entry

The core of the USHER system is its probabilistic model of the data, represented as
a Bayesian network over form questions. This network captures relationships between
a form’s question elements in a stochastic manner. In particular, given input values for
some subset of the questions of a particular form instance, the model can infer probability
distributions over values of that instance’s remaining unanswered questions. In this section,
we show how standard machine learning techniques can be used to induce this model from
previous form entries.

We will use F = {F1, . . . , Fn} to denote a set of random variables representing the
values of n questions comprising a data entry form. We assume that each question response
takes on a finite set of discrete values; continuous values are discretized by dividing the data
range into intervals and assigning each interval one value.2 To learn the probabilistic model,
we assume access to prior entries for the same form.

USHER first builds a Bayesian network over the form questions, which will allow it
to compute probability distributions over arbitrary subsets G ⊆ F of form question ran-
dom variables, given already entered question responses G′ = g′ for that instance, i.e.,
P (G | G′ = g′). Constructing this network requires two steps: first, the induction of
the graph structure of the network, which encodes the conditional independencies between

2Using richer distributions to model fields with continuous or ordinal answers (e.g., with Gaussian mod-
els) could provide additional improvement, and is left for future work.

17

the question random variables F; and second, the estimation of the resulting network’s
parameters.

The naı̈ve approach to structure selection would be to assume complete dependence of
each question on every other question. However, this would blow up the number of free
parameters in our model, leading to both poor generalization performance of our predic-
tions and prohibitively slow model queries. Instead, we learn the structure using the prior
form submissions in the database. USHER searches through the space of possible struc-
tures using simulated annealing, and chooses the best structure according to the Bayesian
Dirichlet Equivalence criterion [35]. This criterion optimizes for a tradeoff between model
expressiveness (using a richer dependency structure) and model parsimony (using a smaller
number of parameters), thus identifying only the prominent, recurring probabilistic depen-
dencies. Figures 2.1 and 2.2 show automatically learned structures for two data domains.3

In certain domains, form designers may already have strong common-sense notions
of questions that should or should not depend on each other (e.g., education level and
income are related, whereas gender and race are independent). As a postprocessing step,
the form designer can manually tune the resulting model to incorporate such intuitions. In
fact, the entire structure could be manually constructed in domains where an expert has
comprehensive prior knowledge of the questions’ interdependencies. However, a casual
form designer is unlikely to consider the complete space of question combinations when
identifying correlations. In most settings, we believe an automatic approach to learning
multivariate correlations would yield more effective inference.

Given a graphical structure of the questions, we can then estimate the conditional prob-

ability tables that parameterize each node in a straightforward manner, by counting the
proportion of previous form submissions with those response assignments. The probability
mass function for a single question Fi with m possible discrete values, conditioned on its
set of parent nodes P(Fi) from the Bayesian network, is:

P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)})

=
N(Fi = fi, {Fj = fj : Fj ∈ P(Fi)})

N({Fj = fj : Fj ∈ P(Fi)})
. (2.1)

In this notation, P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)}) refers to the conditional probability
of question Fi taking value fi, given that each question Fj in P(Fi) takes on value fj .
Here, N(X) is the number of prior form submissions that match the conditions X—in the
denominator, we count the number of times a previous submission had the subset P(Fi)
of its questions set according to the listed fj values; and in the numerator, we count the
number of times when those previous submissions additionally had Fi set to fi.

Because the number of prior form instances may be limited, and thus may not account
for all possible combinations of prior question responses, equation 2.1 may assign zero
probability to some combinations of responses. Typically, this is undesirable; just because
a particular combination of values has not occurred in the past does not mean that com-
bination cannot occur at all. We overcome this obstacle by smoothing these parameter

3It is important to note that the arrows in the network do not represent causality, only that there is a
probabilistic relationship between the questions.

18

Input: Model G with questions F = {F1, . . . , Fn}

Output: Ordering of questions O = (O1, . . . , On)

O ← ∅;

while |O| < n do

F ← argmaxFi /∈O H(Fi | O);

O ← (O, F);

end

Algorithm 1: Static ordering algorithm for form layout.

estimates, interpolating each with a background uniform distribution. In particular, we
revise our estimates to:

P (Fi = fi | {Fj = fj : Fj ∈ P(Fi)})

= (1− α)
N(Fi = fi, {Fj = fj : Fj ∈ P(Fi)})

N({Fj = fj : Fj ∈ P(Fi)})
+
α

m
, (2.2)

where m is the number of possible values question Fi can take on, and α is the fixed
smoothing parameter, which was set to 0.1 in our implementation. This approach is essen-
tially a form of Jelinek-Mercer smoothing with a uniform backoff distribution [39].

Once the Bayesian network is constructed, we can infer distributions of the form
P (G | G′ = g′) for arbitrary G,G′ ⊆ F—that is, the marginal distributions over sets of
random variables, optionally conditioned on observed values for other variables. Answer-
ing such queries is known as the inference task. There exist a variety of inference tech-
niques. In our experiments, the Bayesian networks are small enough that exact techniques
such as the junction tree algorithm [14] can be used. For larger models, faster approxi-
mate inference techniques like Loop Belief Propagation or Gibbs Sampling—common and
effective approaches in Machine Learning—may be preferable.

2.5 Question Ordering

Having described the Bayesian network, we now turn to its applications in the USHER

system. We first consider ways of automatically ordering the questions of a data entry form.
We give an intuitive analogy: in the child’s game twenty-questions, a responder thinks of a
concept, like “airplane”, and an asker can ask 20 yes-no questions to identify the concept.
Considering the space of all possible questions to ask, the asker’s success is vitally related
to question selection and ordering — the asker wants to choose a question that cuts through
the space of possibilities the most quickly. For example, the canonical opening question,
“is it bigger than a breadbox?” has a high level of expected information gain. The key

19

idea behind our ordering algorithm is this greedy information gain — that is, to reduce the
amount of uncertainty of a single form instance as quickly as possible. Note that regardless
of how questions are ordered, the total amount of uncertainty about all of the responses
taken together—and hence the total amount of information that can be acquired from an
entire form submission—is fixed. By reducing this uncertainty as early as possible, we
can be more certain about the values of later questions. The benefits of greater certainty
about later questions are two-fold. First, it allows us to more accurately provide data entry
feedback for those questions. Second, we can more accurately predict missing values for
incomplete form submissions.

We can quantify uncertainty using information entropy. A question whose random
variable has high entropy reflects greater underlying uncertainty about the responses that
question can take on. Formally, the entropy of random variable Fi is given by:

H(Fi) = −
∑

fi

P (fi) logP (fi), (2.3)

where the sum is over all possible values fi that question Fi can take on.

As question values are entered for a single form instance, the uncertainty about the re-
maining questions of that instance changes. For example, in the race and politics survey,
knowing the respondent’s political party provides strong evidence about his or her political
ideology. We can quantify the amount of uncertainty remaining in a question Fi, assum-
ing that other questions G = {F1, . . . , Fn} have been previously encountered, with its
conditional entropy:

H(Fi | G)

= −
∑

g=(f1,...,fn)

∑

fi

P (G = g, Fi = fi) logP (Fi = fi | G = g), (2.4)

where the sum is over all possible question responses in the Cartesian product of
F1, . . . , Fn, Fi. Conditional entropy measures the weighted average of the entropy of ques-
tion Fj’s conditional distribution, given every possible assignment of the previously ob-
served variables. This value is obtained by performing inference on the Bayesian network
to compute the necessary distributions. By taking advantage of the conditional indepen-
dences encoded in the network, we can typically drop many terms from the conditioning in
Equation 2.4 for faster computation.4

Our full static ordering algorithm based on greedy information gain is presented in
Algorithm 1. We select the entire question ordering in a stepwise manner, starting with the
first question. At the ith step, we choose the question with the highest conditional entropy,
given the questions that have already been selected. We call this ordering “static” because
the algorithm is run offline, based only on the learned Bayesian network, and does not
change during the actual data entry session.

4Conditional entropy can also be expressed as the incremental difference in joint entropy due to Fi, that is,
H(Fi | G) = H(Fi,G)−H(G). Writing out the sum of entropies for an entire form using this expression
yields a telescoping sum that reduces to the fixed value H(F). Thus, this formulation confirms our previous
intuition that no matter what ordering we select, the total amount of uncertainty is still the same.

20

In many scenarios the form designer would like to specify natural groupings of ques-
tions that should be presented to the user as one section. Our model can be easily adapted
to handle this constraint by maximizing entropy between specified groups of questions. We
can select these groups according to joint entropy:

argmax
G

H(G | F1, . . . , Fi−1), (2.5)

where G is over the form designers’ specified groups of questions. We can then further
apply the static ordering algorithm to order questions within each individual section. In
this way, we capture the highest possible amount of uncertainty while still conforming to
ordering constraints imposed by the form designer.

Form designers may also want to specify other kinds of constraints on form layout,
such as a partial ordering over the questions that must be respected. The greedy approach
can accommodate such constraints by restricting the choice of fields at every step to match
the partial order.

2.5.1 Reordering Questions during Data Entry

In electronic form settings, we can take our ordering notion a step further and dynam-

ically reorder questions in a form as an instance is being entered. This approach can be
appropriate for scenarios when data entry workers input one or several values at a time,
such as on a mobile device. We can apply the same greedy information gain criterion as
in Algorithm 1, but update the calculations with the previous responses in the same form
instance. Assuming questions G = {F1, . . . , F!} have already been filled in with values
g = {f1, . . . , f!}, the next question is selected by maximizing:

H(Fi | G = g)

= −
∑

fi

P (Fi = fi | G = g) logP (Fi = fi | G = g). (2.6)

Notice that this objective is the same as Equation 2.4, except that it uses the actual responses
entered for previous questions, rather than taking a weighted average over all possible
values. Constraints specified by the form designer, such as topical grouping, can also be
respected in the dynamic framework by restricting the selection of next questions at every
step.

In general, dynamic reordering can be particularly useful in scenarios where the input of
one value determines the value of another. For example, in a form with questions for gender

and pregnant, a response of male for the former dictates the value and potential information
gain of the latter. However, dynamic reordering may be confusing to data entry workers
who routinely enter information into the same form, and have come to expect a specific
question order. Determining the tradeoff between these opposing concerns is a human
factors issue that depends on both the application domain and the user interface employed.

21

2.6 Question Re-asking

Figure 2.5. The error model. Observed variable Di represents the actual input provided
by the data entry worker for the ith question, while hidden variable Fi is the true value of
that question. The rectangular plate around the center variables denotes that those variables
are repeated for each of the " form questions with responses that have already been input.
The F variables are connected by edges z ∈ Z, representing the relationships discovered
in the structure learning process; this is the same structure used for the question ordering
component. Variable θi represents the “error” distribution, which in our current model is
uniform over all possible values. Variable Ri is a hidden binary indicator variable specify-
ing whether the entered data was erroneous; its probability λi is drawn from a Beta prior
with fixed hyperparameters α and β. Shaded nodes denote observed variables, and clear
nodes denote hidden variables.

The next application of USHER’s probabilistic model is for the purpose of identifying
errors made during entry. Because this determination is made during and immediately after
form submission, USHER can choose to re-ask questions during the same entry session. By
focusing the re-asking effort only on questions that were likely to be misentered, USHER is
likely to catch mistakes at a small incremental cost to the data entry worker. Our approach
is a data-driven alternative to the expensive practice of double entry. Rather than re-asking
every question, we focus re-asking effort only on question responses that are unlikely with
respect to the other form responses.

Before exploring how USHER performs re-asking, we explain how it determines
whether a question response is erroneous. USHER estimates contextualized error likeli-

hood for each question response, i.e., a probability of error that is conditioned on every
other previously entered field response. The intuition behind error detection is straightfor-

22

ward: questions whose responses are “unexpected” with respect to the rest of the known
input responses are more likely to be incorrect. These error likelihoods are measured both
during and after the entry of a single form instance.

2.6.1 Error Model

To formally model the notion of error, we extend our Bayesian network from Sec-
tion 2.4 to a more sophisticated representation that ties together intended and actual ques-
tion responses. We call the Bayesian network augmented with these additional random
variables the error model. Specifically, we posit a network where each question is aug-
mented with additional nodes to capture a probabilistic view of entry error. For question i,
we have the following set of random and observed variables:

• Fi: the correct value for the question, which is unknown to the system, and thus a
hidden variable.

• Di: the question response provided by the data entry worker, an observed variable.

• θi: the observed variable representing the parameters of the probability distribution

of mistakes across possible answers, which is fixed per question.5 We call the distri-
bution with parameters θi the error distribution. For the current version of our model,
θi is set to yield a uniform distribution.

• Ri: a binary hidden variable specifying whether an error was made in this question.
When Ri = 0 (i.e., when no error is made), then Fi takes the same value as Di.

Additionally, we introduce a hidden variable λ, shared across all questions, specifying how
likely errors are to occur for a typical question of that form instance. Intuitively, λ plays
the role of a prior error rate, and is modeled as a hidden variable so that its value can be
learned directly from the data.

Note that the relationships between field values discovered during structure learning
are still part of the graph, so that the error predictions are contextualized in the answers of
other related questions.

Within an individual question, the relationships between the newly introduced variables
are shown in Figure 2.5. The diagram follows standard plate diagram notation [17]. In
brief, the rectangle is a plate containing a group of variables specific to a single question i.
This rectangle is replicated for each of " form questions. The F variables in each question
group are connected by edges z ∈ Z, representing the relationships discovered in the struc-
ture learning process; this is the same structure used for the question ordering component.
The remaining edges represent direct probabilistic relationships between the variables that

5Note that in a hierarchical Bayesian formulation such as ours, random variables can represent not just
specific values but also parameters of distributions. Here, θi is the parameters of the error distribution.

23

are described in greater detail below. Shaded nodes denote observed variables, and clear
nodes denote hidden variables.

Node Ri ∈ {0, 1} is a hidden indicator variable specifying whether an error will happen
at this question. Our model posits that a data entry worker implicitly flips a coin for Ri

when entering a response for question i, with probability of one equal to λ. Formally, this
means Ri is drawn from a Bernoulli distribution with parameter λ:

Ri | λ ∼ Bernoulli(λ) (2.7)

The value of Ri affects how Fi and Di are related, which is described in detail later in this
section.

We also allow the model to learn the prior probability for the λ directly from the data.
This value represents the probability of making a mistake on any arbitrary question. Note
that λ is shared across all form questions. Learning a value for λ rather than fixing it allows
the model to produce an overall probability of error for an entire form instance as well
as for individual questions. The prior distribution for λ is a Beta distribution, which is a
continuous distribution over the real numbers from zero to one:

λ ∼ Beta(α, β) (2.8)

The Beta distribution takes two hyperparameters α and β, which we set to fixed constants
(1, 19). The use of a Beta prior distribution for a Bernoulli random variable is standard
practice in Bayesian modeling due to mathematical convenience and the interpretability of
the hyperparameters as effective counts [13].

We now turn to true question value Fi and observed input Di. First, P (Fi | . . .) is
still defined as in Section 2.4, maintaining as before the multivariate relationships between
questions. Second, the user question response Di is modeled as being drawn from either
the true answer Fi or the error distribution θi, depending on whether a mistake is made
according to Ri:

Di | Fi, θi, Ri ∼

{

PointMass(Fi) if Ri = 0,

Discrete(θi) otherwise,
(2.9)

If Ri = 0, no error occurs and the data entry worker inputs the correct value for Di, and
thus Fi = Di. Probabilistically, this means Di’s probability is concentrated around Fi (i.e.,
a point mass at Fi). However, if Ri = 1, then the data entry worker makes a mistake, and
instead chooses a response for the question from the error distribution. Again, this error
distribution is a discrete distribution over possible question responses parameterized by the
fixed parameters θi, which we set to be the uniform distribution in our current model.6

6A more precise error distribution would allow the model to be especially wary of common mistakes.
However, learning such a distribution is itself a large undertaking involving carefully designed user studies
with a variety of input widgets, form layouts, and other interface variations, and a post-hoc labeling of data
for errors. This is another area for future work.

24

2.6.2 Error Model Inference

The ultimate variable of interest in the error model is Ri: we wish to induce the proba-
bility of making an error for each previously answered question, given the actual question
responses that are currently available:

P (Ri | D = d), (2.10)

where D = {F1, . . . , F!} are the fields that currently have responses, the values of which
are d = {f1, . . . , f!} respectively. This probability represents a contextualized error likeli-
hood due to its dependence on other field values through the Bayesian network.

Again, we can use standard Bayesian inference procedures to compute this probabil-
ity. These procedures are black-box algorithms whose technical descriptions are beyond
the scope of this thesis. We refer the reader to standard graphical model texts for an in-
depth review of different techniques [14, 45]. In our implementation, we use the Infer.NET
toolkit [2] with the Expectation Propagation algorithm [54] for this estimation.

2.6.3 Deciding when to Re-ask

Once we have inferred a probability of error for each question, we can choose to per-
form re-asking either during entry, where the error model is consulted after each response,
or after entry, where the error model is consulted once with all form responses, or both.

The advantage of integrating re-asking into the primary entry process is that errors can
be caught as they occur, when the particular question being entered is still recent in the
data entry worker’s attention. The cognitive cost of re-entering a response at this point is
lower than if that question were re-asked later. However, these error likelihood calculations
are made on the basis of incomplete information—a question response may at first appear
erroneous per se, but when viewed in the context of concordant responses from the same
instance may appear less suspicious. In contrast, by batching re-asking at the end of a form
instance, USHER can make a holistic judgment about the error likelihoods of each response,
improving its ability to estimate error. This tradeoff reveals an underlying human-computer
interaction question about how recency affects ease and accuracy of question response, a
full exploration of which is beyond the scope of this thesis.

To decide whether to re-ask an individual question, we need to consider the tradeoff be-
tween improved data quality and the cost of additional time required for re-asking. USHER

allows the form designer to set an error probability threshold for re-asking. When that
threshold is exceeded for a question, USHER will re-ask that question, up to a predefined
budget of re-asks for the entire form instance. If the response to the re-asked question dif-
fers from the original response, the question is flagged for further manual reconciliation,
as in double entry. For in-flight re-asking, we must also choose either the original or re-
asked response for this field for further predictions of error probabilities in the same form
instance. We choose the value that has the lesser error probability, since in the absence of

25

further disambiguating information that value is more likely to be correct according to the
model.

2.7 Question Reformulation

Figure 2.6. An example of a reformulated question.

Our next application of USHER’s probabilistic formalism is question reformulation. To
reformulate a question means to simplify it in a way that reduces the chances of the data
entry worker making an error. Figure 2.6 presents an example of a question as originally
presented and a reformulated version thereof. Assuming that the correct response is Foot,
the data entry worker would only need to select it out of two rather than eight choices,
reducing the chance of making a mistake. Moreover, reformulation can enable streamlining
of the input interface, improving data entry throughput.

In this work we consider a constrained range of reformulation types, emphasizing an
exploration of the decision to reformulate rather than the interface details of the reformula-
tion itself. Specifically, our target reformulations are binary questions confirming whether
a particular response is the correct response, such as in the example. If the response to the

26

binary question is negative, then we ask again the original, non-reformulated question. We
emphasize that the same basic data-driven approach described here can be applied to more
complex types of reformulation, for instance, formulating to k values where k < D, the
size of the original answer domain.

The benefits of question reformulation rely on the observation that different ways of
presenting a question will result in different error rates. This assumption is borne out by
research in the HCI literature. For example, in recent work Wobbrock et al. [82] showed
that users’ chances of clicking an incorrect location increases with how far and small the
target location is. As a data entry worker is presented with more options to select from, they
will tend to make more mistakes. We also note that it takes less time for a data entry worker
to select from fewer rather than more choices, due to reduced cognitive load and shorter
movement distances. These findings match our intuitions about question formulation—as
complexity increases, response time and errors increase as well.

However, question reformulation comes with a price as well. Since reformulating a
question reduces the number of possible responses presented to the data entry worker, it is
impossible for the reformulated question to capture all possible legitimate responses. In the
example above, if Foot was not the correct response, then the original question would have
to be asked again to reach a conclusive answer. Thus, the decision to reformulate should
rest on how confident we are about getting the reformulation “right”—in other words, the
probability of the most likely answer as predicted by a probabilistic mechanism.

In light of the need for a probabilistic understanding of the responses, USHER’s refor-
mulation decisions are driven by the underlying Bayesian network. We consider reformu-
lation in three separate contexts: static reformulation, which occurs during the form layout
process; dynamic reformulation, which occurs while responses are being entered; and post-

entry reformulation, which is applied in conjunction with re-asking to provide another form
of cross-validation for question responses.

2.7.1 Static Reformulation

In the static case, we decide during the design of a form layout which questions to
reformulate, if any, in conjunction with the question ordering prediction from Section 2.5.
This form of reformulation simplifies questions that tend to have predominant responses
across previous form instances. Static reformulation is primarily appropriate for situations
when forms are printed on paper and question ordering is fixed. Standard practice in form
design is to include skip-logic, a notation to skip the full-version of the question should the
answer to the reformulated question be true. Alternatively, false responses to reformulated
questions can be compiled and subsequently re-asked after the standard form instance is
completed.

For each question, we decide whether to reformulate on the basis of the probability
of its expected response. If that response exceeds a tunable threshold, then we choose to

27

reformulate the question into its binary form. Formally, we reformulate when

max
j

P (Fi = fj) ≥ Ti, (2.11)

where Ti is the threshold for question i. In this work we consider values of Ti that are fixed
for an entire form, though in general it could be adjusted on the basis of the original ques-
tion’s complexity or susceptibility to erroneous responses. We note that this reformulation
mechanism is directly applicable for questions with discrete answers, either categorical
(e.g., blood-type) or ordinal (e.g., age); truly continuous values (e.g., weight) must be dis-
cretized before reformulation. However, continuous questions with large answer domain
cardinalities are less likely to trigger reformulation, especially if their probability distribu-
tions are fairly uniform.

Setting the threshold T provides a mechanism for trading off improvements in data
quality with the potential drawback of having to re-ask more questions. At one extreme,
we can choose to never reformulate; at the other, if we set a low threshold we would provide
simplified versions of every question, at the cost of doubling the number of questions asked
in the worst-case.

2.7.2 Dynamic Reformulation

Paralleling the dynamic approach we developed for question ordering (Section 2.5.1),
we can also decide to reformulate questions during form entry, making the decision based
on previous responses. The advantage of dynamic reformulation is that it has the flexibility
to change a question based on context—as a simple example, conditioned on the answer for
an age question being 12, we may choose to reformulate a question about occupation into a
binary is-student question. Dynamic reformulation is appropriate in many electronic, non-
paper based work-flows. In this case, the reformulation decision is based on a conditional

expected response; for question i we reformulate when

max
j

P (Fi = fj | G = g) ≥ Ti, (2.12)

where previous questions G = {F1, . . . , F!} have already been filled in with values
g = {f1, . . . , f!}. Note the similarities in how the objective function is modified for both
ordering and reformulation (compare equations 2.11 and 2.12 to equations 2.4 and 2.6).

2.7.3 Reformulation for Re-asking

Finally, another application of reformulation is for re-asking questions. As discussed in
Section 2.6, the purpose of re-asking is to identify when a response may be in error, either
during or after the primary entry of a form instance. One way of reducing the overhead
associated with re-asking is to simplify the re-asked questions. Observe that a re-ask ques-
tion does not have to elicit the true answer, but rather a corroborating answer. For example,

28

for the question age, a reformulated re-ask question could be the discretization bucket in
which the age falls (e.g., 21–30). From the traditional data quality assurance perspective,
this technique enables dynamic cross-validation questions based on contextualized error
likelihood.

The actual mechanics of the reformulation process are the same as before. Unlike the
other applications of reformulation, however, here we have an answer for which we can
compute error likelihood.

2.8 Evaluation

We evaluated the benefits of USHER by simulating two data entry scenarios to show
how our system can improve data quality. We focused our evaluation on the quality of
our model and its predictions. We set up experiments to measure our models’ ability to
predict users’ intended answers, to catch artificially injected errors, and to reduce error
using reformulated questions. We first describe the experimental data sets, and then present
our simulation experiments and results.

2.8.1 Data Sets and Experimental Setup

We examine the benefits of USHER’s design using two data sets, previously described
in Section 2.3. The survey data set comprises responses from a 1986 poll about race and
politics in the San Francisco-Oakland metropolitan area [8]. The UC Berkeley Survey
Research Center interviewed 1,113 persons by random-digit telephone dialing. The patient

data set was collected from anonymized patient intake records at a rural HIV/AIDS clinic
in Tanzania. In total we had fifteen questions for the survey and nine for the patient data.
We discretized continuous values using fixed-length intervals and treated the absence of a
response to a question as a separate value to be predicted.

For both data sets, we randomly divided the available prior submissions into training

and test sets, split 80% to 20%, respectively. For the survey, we had 891 training instances
and 222 test; for patients, 1,320 training and 330 test. We performed structure learning and
parameter estimation using the training set. As described in Section 2.4, this resulted in the
graphical models shown in Figures 2.1 and 2.2. The test portion of each dataset was then
used for the data entry scenarios presented below.

In our simulation experiments, we aim to verify hypotheses regarding three components
of our system: first, that our data-driven question orderings ask the most uncertain questions
first, improving our ability to predict missing responses; second, that our re-asking model
is able to identify erroneous responses accurately, so that we can target those questions for
verification; and third, that question reformulation is an effective mechanism for trading off
between improved data quality and user effort.

29

2.8.2 Ordering

For the ordering experiment, we posit a scenario where the data entry worker is inter-
rupted while entering a form submission, and thus is unable to complete the entire instance.
Our goal is to measure how well we can predict those remaining questions under four differ-
ent question orderings: USHER’s pre-computed static ordering, USHER’s dynamic ordering
(where the order can be adjusted in response to individual question responses), the original
form designer’s ordering, and a random ordering. In each case, predictions are made by
computing the maximum position (mode) of the probability distribution over un-entered
questions, given the known responses. Results are averaged over each instance in the test
set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of inputted fields

%
 r

e
m

a
in

in
g
 f
ie

ld
s

p
re

d
ic

te
d Survey Dataset

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of inputted fields

A
ll

re
m

a
in

in
g
 f
ie

ld
s

p
re

d
ic

te
d Survey Dataset

1 2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of inputted fields

%
 r

e
m

a
in

in
g
 f
ie

ld
s

p
re

d
ic

te
d Patient Dataset

1 2 3 4 5 6 7 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of inputted fields

A
ll

re
m

a
in

in
g
 f
ie

ld
s

p
re

d
ic

te
d

Patient Dataset

Dynamic Reordering

Static Ordering

Original Ordering

Random

Figure 2.7. Results of the ordering simulation experiment. In each case, the x-axis measures
how many questions are filled before the submission is truncated. In the charts on the left
side, the y-axis plots the average proportion of remaining question whose responses are
predicted correctly. In the charts on the right side, the y-axis plots the proportion of form
instances for which all remaining questions are predicted correctly. Results for the survey
data are shown at top, and for the HIV/AIDS data at bottom.

The left-hand graphs of Figure 2.7 measure the average number of correctly predicted
unfilled questions, as a function of how many responses the data entry worker entered
before being interrupted. In each case, the USHER orderings are able to predict question
responses with greater accuracy than both the original form ordering and a random ordering
for most truncation points. Similar relative performance is exhibited when we measure
the percentage of test set instances where all unfilled questions are predicted correctly, as
shown in the right side of Figure 2.7.

The original form orderings tend to underperform their USHER counterparts. Human

30

form designers typically do not optimize for asking the most difficult questions first, instead
often focusing on boilerplate material at the beginning of a form. Such design methodology
does not optimize for greedy information gain.

As expected, between the two USHER approaches, the dynamic ordering yields slightly
greater predictive power than the static ordering. Because the dynamic approach is able
to adapt the form to the data being entered, it can focus its question selection on high-
uncertainty questions specific to the current form instance. In contrast, the static approach
effectively averages over all possible uncertainty paths.

Re-asking

For the re-asking experiment, our hypothetical scenario is one where the data entry
worker enters a complete form instance, but with erroneous values for some question re-
sponses.7 Specifically, we assume that for each data value the data entry worker has some
fixed chance p of making a mistake. When a mistake occurs, we assume that an erroneous
value is chosen uniformly at random. Once the entire instance is entered, we feed the
entered values to our error model and compute the probability of error for each question.
We then re-ask the questions with the highest error probabilities, and measure whether
we chose to re-ask the questions that were actually wrong. Results are averaged over 10
random trials for each test set instance.

Figure 2.8 plots the percentage of instances where we chose to re-ask all of the er-
roneous questions, as a function of the number of questions that are re-asked, for error
probabilities of 0.05, 0.1, and 0.2. In each case, our error model is able to make signifi-
cantly better choices about which questions to re-ask than a random baseline. In fact, for
p = 0.05, which is a representative error rate that is observed in the field [63], USHER suc-
cessfully re-asks all errors over 80% of the time within the first three questions in both data
sets. We observe that the traditional approach of double entry corresponds to re-asking
every question; under reasonable assumptions about the occurrence of errors, our model
is able to achieve the same result of identifying all erroneous responses at a substantially
reduced cost.

Reformulation

For the reformulation experiment, we simulate form filling with a background error rate
and time cost in order to evaluate the impact of reformulated questions. During simulated
entry, when a possible response a is at the mode position of the conditional probability
distribution and has a likelihood greater than a threshold t, we ask whether the answer is

7Our experiments here do not include simulations with in-flight re-asking, as quantifying the benefit of
re-asking during entry—question recency— is a substantial human factors research question that is left as
future work.

31

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
cc

e
ss

fu
l t

ri
a
ls

Survey dataset, error prob = 0.05

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
cc

e
ss

fu
l t

ri
a
ls

Survey dataset, error prob = 0.1

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
cc

e
ss

fu
l t

ri
a
ls

Survey dataset, error prob = 0.2

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
cc

e
ss

fu
l t

ri
a
ls

Patient dataset, error prob = 0.05

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
cc

e
ss

fu
l t

ri
a
ls

Patient dataset, error prob = 0.1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of questions re−asked

%
 s

u
cc

e
ss

fu
l t

ri
a
ls

Patient dataset, error prob = 0.2

Usher

Random

Figure 2.8. Results of the re-asking simulation experiment. In each case, the x-axis mea-
sures how many questions we are allowed to re-ask, and the y-axis measures whether we
correctly identify all erroneous questions within that number of re-asks. The error prob-
ability indicates the rate at which we simulate errors in the original data. Results for the
survey data are shown at top, and for the HIV/AIDS data at bottom.

a as a reformulated binary question. If a is not the true answer, we must re-ask the full
question. Results are averaged over each instance in the test set.

Before discussing these results, we motivate the choice of error rates and cost func-
tions that we employ in this experiment. As mentioned in Section 2.7, the intuition behind
question reformulation is grounded in prior literature, specifically the notion that simpler
questions enjoy both lower error rate and user effort. However, the downside with reformu-
lation is that entry forms may cost more to complete, due to reformulated questions with
negative responses.

In order to bootstrap this experiment, we need to derive a representative set of error
rates and entry costs that vary with the complexity of a question. Previous work [82, 26]
has shown that both entry time and error rate increase as a function of interface complexity.
In particular, Fitts’ Law [26] describes the time complexity of interface usage via an index

of complexity (ID), measured in bits as log(A/W + 1). This is a logarithmic function
of the ratio between target size W and target distance A. Mapping this to some typical
data entry widgets such as radio-buttons and drop-down menus, where W is fixed and A
increases linearly with the number of selections, we model time cost as log(D) where D is
the domain cardinality of the answer. In other words, time cost grows with how many bits
it takes to encode the answer. For our experiments, we set the endpoints at 2 seconds for
D = 2 up to 4 seconds for D = 128.

We also increase error probabilities logarithmically as a function of domain cardinality

32

0 0.2 0.4 0.6 0.8 1
0

0.006

0.012

0.018

0.024

0.03

Reformulation threshold

E
rr

o
r

ra
te

Error rate − Survey

0 0.2 0.4 0.6 0.8 1
0

0.006

0.012

0.018

0.024

0.03

Reformulation threshold

E
rr

o
r

ra
te

Error rate − Patient

Reformulated

Standard

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reformulation threshold

P
ro

p
o

rt
io

n
 s

u
cc

e
ss

fu
l Reformulation accuracy − Survey

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reformulation threshold
P

ro
p

o
rt

io
n

 s
u

cc
e

ss
fu

l Reformulation accuracy − Patient

0 0.2 0.4 0.6 0.8 1
30

36

42

48

54

60

Reformulation threshold

T
im

e
 c

o
st

 (
se

c)

Reformulation time cost − Survey

0 0.2 0.4 0.6 0.8 1
20

23

26

29

32

35

Reformulation threshold

T
im

e
 c

o
st

 (
se

c)
Reformulation time cost − Patient

Reformulated

Standard

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

Reformulation threshold

T
im

e
 d

iff
e

re
n

ce
 (

se
c)

Reformulation efficiency − Survey

0 0.2 0.4 0.6 0.8 1
−8

−4

0

4

8

12

Reformulation threshold

T
im

e
 d

iff
e

re
n

ce
 (

se
c)

Reformulation efficiency − Patient

Cost of incorrect

Gain of correct

Average change

A

B

C

D

Figure 2.9. Results of the question reformulation experiment. In each chart, the x-axis
shows the reformulation thresholds; when the threshold = 1, no question is reformulated.
A shows the overall error rate between reformulated and standard entry. B shows the like-
lihood that a reformulated answer was, in fact, the correct answer. C shows the impact of
reformulation on user effort, measured as time—average number of seconds per form. D

shows the gain/loss in effort due to when reformulation is correct vs incorrect.

33

D, relying on the intuition that error will also tend to increase as complexity increases [82].
Our error rates vary from 1% for D = 2 to 5% for D = 128.

We do not claim the generalizability of these specific numbers, which are derived from
a set of strong assumptions. Rather, the values we have selected are representative for
studying the general trends of the tradeoff between data quality and cost that re-asking
enables, and are in line with typical values observed in the field [63]. Furthermore, we
attempted this experiment with other error and cost parameters and found similar results.

The results of question reformulation can be found in Figure 2.9. In the pair of graphs
entitled A, we measure the error rate over reformulation thresholds for each dataset. Our
results confirm the hypothesis that the greater the number of additional reformulated ques-
tions we ask, the lower the error rate. In the pair of graphs entitled B, we observe that as
the selectivity (threshold) of reformulation goes up, the likelihood that we pick the correct
answer in reformulation also rises. Observe that reformulation accuracy is greater than
80% and 95% for the survey and patient datasets, respectively, at a threshold of 0.8. In the
pair of graphs entitled C, we see an unexpected result: entry with reformulation features
a time cost that quickly converges with, and in the case of the patient dataset, dips below
that of standard entry, at thresholds beyond 0.6. Finally, in the pair of graphs entitled D,
we summarize the time cost incurred by additional questions versus the time savings of
the simpler reformulated questions. Of course, given our assumptions, we cannot make a
strong conclusion about the cost of question reformulation. Rather, the important takeaway
is that the decrease in effort won by correct reformulations can help to offset the increase
due to incorrect reformulations.

2.9 Conclusion and Future Work

In this chapter, we have shown that a probabilistic approach can be used to design in-
telligent data entry forms that result in high data quality. USHER leverages data-driven
insights to automate multiple steps in the data entry pipeline. Before entry, we find an
ordering of form fields that promotes rapid information capture, driven by the greedy infor-
mation gain principle, and can statically reformulate questions to promote more accurate
responses. During entry, we dynamically adapt the form based on entered values, facili-
tating re-asking, reformulation, and real-time interface feedback in the sprit of providing
appropriate entry friction. After entry, we automatically identify possibly-erroneous inputs,
guided by contextualized error likelihoods, and re-ask those questions, possibly reformu-
lated, to verify their correctness. Our simulated empirical evaluations demonstrate the
data quality benefits of each of these components: question ordering, reformulation and
re-asking.

The USHER system we have presented combines several disparate approaches to im-
proving data quality for data entry. The three major components of the system—ordering,
re-asking, and reformulation—can all be applied under various guises before, during, and
after data entry. This suggests a principled roadmap for future research in data entry. For

34

example, one combination we have not explored here is re-asking before entry. At first
glance this may appear strange, but in fact that is essentially the role that cross-validation
questions in paper forms serve—pre-emptive, reformulated, re-asked questions. Translat-
ing such static cross-validation questions to dynamic forms is a potential direction of future
work.

This work can be extended by enriching the underlying probabilistic formalism. Our
current probabilistic approach assumes that every question is discrete and takes on a series
of unrelated values. Relaxing these assumptions would make for a potentially more accu-
rate predictive model for many domains. Additionally, it is worthwhile to consider models
that reflect temporal changes in the underlying data. Our present error model makes strong
assumptions both about how errors are distributed and what errors look like. On that front,
an interesting line of future work would be to learn a model of data entry errors and adapt
our system to catch them.

We can adapt this approach to the related problem of conducting on-line surveys. To
do so, we will have to deal explicitly with potential for user bias resulting from adaptive
feedback. This concern is mitigated for intermediated entry, where the person doing the
entry is typically not the same as who provides the data. An intriguing possibility is to use
USHER’s predictive model to detect problematic user behaviors, including detecting user
fatigue and satisficing, where a respondent does just enough to satisfy form requirements,
but nothing more [32]. In general, we believe this approach has wide applicability for
improving the quality and availability of all kinds of data, as it is becoming increasingly
important for decision-making and resource allocation.

35

Chapter 3

Adaptive Feedback

3.1 Introduction

In this chapter, we use USHER’s predictive ability to design a number of intelligent user
interface adaptations that can directly improve data entry accuracy and efficiency during the
act of entry. We evaluated each of these mechanisms with professional data entry clerks
working with real patient data from six clinics in rural Uganda. The results show that our
adaptations have the potential to improve entry accuracy: for radio buttons, the error rates
decreased by 54-78%; for other widget types, error rates fell in a pattern of improvement,
but were not statistically significant. The impact of our adaptations on entry cost (time)
varied between -14% – +6%.

The specific adaptations we tested include: 1) setting defaults corresponding to highly-
likely answers, 2) dynamically re-ordering and highlighting other likely options, and 3)
providing automatic warnings when the user has entered an unlikely value. The first tech-
nique changes an entry task to a confirmation task, which we show has the potential to
significantly improve accuracy and efficiency. The second approach guides the user to-
wards more likely values, and away from unlikely ones, which we show further improves
accuracy. Finally, by warning the user about particularly unlikely values, we approximate
double entry at a fraction of the cost.

The rest of this chapter is organized as follows. In the next section, we discuss related
work, and after that we recall the relevant parts of USHER. In the section after, we provide
a cognitive model of data entry based on our contextual inquiry, and after that we use the
model to motivate a number of specific intelligent user interface adaptations. Finally, we
present the experimental setup for our evaluation, and describe the results.

36

3.2 Related Work

In this section we summarize the major areas of related work: managing data quality,
improving data entry efficiency, and designing dynamic, adaptive user interface widgets.

3.2.1 Managing Data Quality During Entry

A best-practice for data quality during entry is to use pre-determined constraints to re-
ject or warn the user when they enter illegal or unlikely values [76]. A standard practice in
electronic form design is to set binary constraints that accept or reject an answer. Consider
the example of using red highlighting to denote that an invalid answer has been rejected,
post entry. In essence, the entry task is parameterized with 0% likelihood for the invalid
value, a special case of our approach. With finer-grained probabilities during entry, we gen-
eralize the practice of setting constraints to one of apportioning friction [36] in proportion
with answer likelihood.

Multivariate outlier detection is used for post hoc data cleaning, where data is “cleaned”
after it resides in a database [36]. Our approach is similar, except we weed outliers using
adaptive feedback mechanisms during entry, when it is often still possible to correct the
error directly.

3.2.2 Improving Data Entry Efficiency

Cockburn et al. modeled the performance of menu interfaces as control mecha-
nisms [18]. They offer insight on the transition from novice to expert behavior. We focus
on a wider class of input interfaces for expert entry.

Recall that we referenced several approaches that use learning techniques to automat-
ically fill or predict a top-k set of likely values [11, 37, 83], in the previous chapter. In
addition, there have been several efforts to improve data input with modeling and interface
adaptation [46, 70, 77, 79, 80]. Most of these have only provided simulation results of
predictive accuracy and improvements in efficiency.

The work by Warren et al is relevant to our domain. They worked with medical doc-
tors entering diagnosis information into an electronic medical record [77, 79, 80]. They
trained models on drugs and diagnoses to automatically populate a “hotlist”of potential
drug choices for the provider. Their models rely only on bi-variate relationships between a
drug and a single diagnosis.

Again, all these works were primarily concerned with improving data entry efficiency.
While we have adapted several of the specific widgets they have described (setting defaults
and ranking auto-complete suggestions), our primary goal is demonstrating improvement
in bottom-line accuracy.

37

3.2.3 Adaptive User Interfaces

The literature on adaptive user interfaces discusses feedback mechanisms’ behavioral
predictability, cognitive complexity, cost of being wrong, predictive accuracy, and users’
ability to opt-out of an adaptation [29]. These guidelines were useful for framing our
system. We also explored some specific adaptive widget types discussed in this literature,
namely split or ephemeral selection boxes, and enlarging the click-able area for more likely
options [25, 58, 73, 81].

3.3 A Data-driven Foundation For Adaptive Forms

USHER serves as a data-driven foundation for adapting data entry forms. Here, we
summarize the aspects relevant to this chapter.

Recall the goal of an USHER model: given a subset of answers for a form, accurately
predict values for the unanswered questions. As shown in Figure 3.1, the model learns
from previously entered form instances to improve entry in the future. The model itself is a
Bayesian network over a form that captures the relationships between form questions based
on prior data. Learning these relationships for an arbitrary form is the first step for building
this model. In Figure 3.1, we can see the Bayesian network generated for the data set that
we used for the evaluation described later in this chapter. USHER estimates the parameters
of the network by calculating, for each field, a conditional probability table, which holds
the proportion of each possible answer value, given each possible assignment of parent
values. Using this model, we can then infer a probability distribution for unanswered form
questions given answered ones. Improving the predictive accuracy of the model allows for
more effective feedback during entry.

3.4 Opportunities For Adaptation During Entry

Figure 3.2 provides a simplified representation of the major physical and/or mental
tasks involved in data entry. This cognitive model was derived based on our own observa-
tion of professional data entry clerks. It also assumes that the user is transcribing data from
paper into an electronic equivalent.

• First, the user acquires question nature by looking at the screen for the question
number, text, data type, widget type, etc.

• Then, the user searches for this question on the paper form to acquire the answer

from the source and memorize it.

38

Figure 3.1. USHER components, data flow and probabilistic model: Above are USHER

system components and data artifacts, with arrows showing data flow; zoom circle shows
the Bayesian network learned from data.

• Next, the user tries to locate the answer on screen. This may require a visual scan
(for radio button widgets), scrolling and scanning (for drop down menus), or a set of
individual keystrokes, each separated by a visual scan (for text fields with autocom-
plete).

39

Figure 3.2. A cognitive task model for data entry. The vertical spans, on the right, show
opportunities for dynamic adaptation.

• The user commits the answer after finding it, typically with a single physical opera-
tion, such as clicking on the “Next” button.

• The user may also review answer after commit.

Each of these stages creates its own opportunities to improve data entry accuracy and
efficiency. In this chapter, we discuss how intelligent interface adaptation can:

1. Before entry, allow the user to preview likely answers, or to convert an entry task to
a confirmation task.

2. During entry, help the user locate the correct answer on the screen, and reduce the
effort required to enter more likely values.

3. After entry, warn the user to review the answer if it is likely to be incorrect.

Before and during entry, we want to decrease the time and cognitive effort required for
transferring an answer from paper, to reduce the possibility that the answer is lost from

40

short-term memory in that period. In contrast, after entry, we want to increase the time and
cognitive effort spent to verify the answer’s correctness. Toward these goals, we can use
USHER’s fine-grained probabilities, in each stage of entry, to tune the amount of friction in
the input interface in proportion with answer likelihood.

3.5 Adaptive Feedback For Data Entry

In this section, we propose a specific set of adaptive feedback mechanisms that leverage
USHER’s predictive capability, and describe how they were iteratively refined through user
observation and discussion.

3.5.1 Design Process

Figure 3.3. Christine and Solomon, two professional data entry workers, and our study
participants.

To design appropriate feedback mechanisms, we worked closely over a period of three
months with a team of professional data entry clerks working for an international health
and research program in Uganda. The purpose of the design phase was two-fold: (1)
acclimate users to our electronic forms implementation, so we could ignore any learning
effects during the evaluation, and (2) leverage the clerks’ experience and knowledge to
design a better set of feedback mechanisms.

Working together, we made many interesting design observations. We include a few of
those here:

41

Figure 3.4. Alternative designs for radio button feedback: (1) radio buttons with bar-chart
overlay. (2) radio buttons with scaled labels.

• Any feedback we provide should be part of the user’s mandatory visual path, by
which we mean the locations on the screen where the user must look to complete the
task. We learned this by experimenting with alternative designs that did not conform
to this guideline (on the left side of Figure 3.4). The more visually complicated
design yielded no significant improvement in terms of accuracy. The users explained
that because the bar-charts were laid out beside the label, they did not have time to
consult them. This is consistent with our observation that it is important to minimize
the time between answer acquisition from paper and confirmation in the interface.

• Entry should not depend on semantic understanding of questions and answers.
Through conversation with data entry clerks, we concluded that there is no time for
this type of processing. The users commented that they see, but do not think about
the meaning of the answer they are transcribing. This is consistent with the differ-
ence between pattern recognition and cognition, where the latter involves potentially
expensive access to long-term memory [24].

• The visual layout of the form and individual questions should remain consistent.
We experimented with an alternative radio button feedback mechanism that scaled
each option in proportion with the value’s likelihood, as shown on the right side of
Figure 3.4. The users felt this mechanism was “annoying”. This is consistent with
prior work that discusses the importance of physical consistency in adaptive graphical
user interfaces [29].

• Feedback should not depend on timed onset. Timed interaction techniques like
ephemeral adaptation [25] can be effective in other selection contexts. However,
for a repetitive, time-sensitive task like data entry, the delay-for-accuracy tradeoff is
frustrating.

• Feedback should be accurate. Specifically, when warnings or defaults are triggered
too frequently, these mechanisms feel untrustworthy. One user complained about this
in our early trials, saying that the “computer is trying to fool me.” Indeed, Gajos et

al. found that user behavior can change based on predictive accuracy [28].

42

3.5.2 Feedback Mechanisms

Figure 3.5. (1) drop down split-menu promotes the most likely items (2) text field ranks
autocomplete suggestions by likelihood (3) radio buttons highlights promote most likely
labels (4) warning message appears when an answer is a multivariate outlier.

Here we present the adaptive feedback mechanisms that we implemented and tested
based on user feedback from early trials. These mechanisms are shown in Figure 3.5.

• defaults: A default is automatically set when the expected likelihood of a value is
above a threshold t. In our evaluation, we set this threshold to 75% for binary radio
buttons.

• widgets: We implemented a set of feedback mechanisms for specific widget types.

– text autocomplete: The ordering of autocomplete suggestions are changed from
an alphabetical ordering to a likelihood-based ordering. For example, in Fig-
ure 3.5(2), “Asiimwe” is a popular name in Uganda, and so is ranked first, even
though it is not alphabetically first.

– drop down: A split-menu is added to the top of the menu, copying the most
likely k answer choices. In Figure 3.5(1), the most conditionally likely parishes
are in the split-menu.

– radio: k radio button labels are highlighted according to the likelihood of the
answers. After trying a few alternative designs (Figure 3.4), we decided to
simply scale the opacity of the highlights according to a log2-scale [55].

43

• warnings: A warning message is shown to the user when the likelihood of their
answer is below some threshold t. In our evaluation, we set this threshold to 5% for
binary choice radio buttons.

3.5.3 Feedback Parameterization

As mentioned above, we parameterize each feedback mechanism with the question’s
conditional probability distribution over the answer domain. In addition, defaults and warn-

ings require a threshold t to determine whether they should be activated, and the widget

mechanisms require an integer number of potentially highlighted or promoted items k. We
also need to map each form question to the appropriate widget and feedback type. In this
section, we discuss how we set these parameters.

Mapping to widgets

Mapping of form questions to widgets is driven by the observation that both visual
bandwidth and short-term memory are limited to a small number (7 ± 2) of distinct
items [53, 55]. When this number is exceeded, the potential for user error increases [50].
We mapped questions to widgets based on domain size: for questions with answer domain
that could be shown all at once (domain size D ≤ 23), we decided to use radio buttons; for
questions with answer domain that could reasonably fit in a scrolling menu (D ≤ 26), we
chose drop down menus; and for questions with any larger answer domain, we decided on
autocompleting text fields.

When to trigger?

We want the triggering threshold t for defaults and warnings to vary appropriately with
the domain size. We formalize this simple notion as follows, with domain size D and a
constant a:

t = a/D, a > 0

Observe that when a = 1, the threshold t is set to the likelihood of a value in the uniform
distribution. For example, we can set a = 1.5 for defaults so that an answer to a binary
question needs > 75% confidence to trigger setting the default value. Similarly, if we
set a = 0.1 for warnings, a warning will be given when the chosen answer has < 5%
confidence.

44

Figure 3.6. (A) linear interpolations of error rate for each widget-type. (B) linear interpo-
lations of average time spent per question (seconds) for each widget-type.

How many values to show?

We verified this notion with a baseline experiment in which the data clerks entered
randomly picked dictionary words. We varied the number of options (feedback positions)
shown in our three widget types, found that feedback position k to be strongly related to
both error rate (R2 > 0.88)) and entry duration (R2 > 0.76). We use this intuition and
specify k as follows:

k = min(7, ceiling(logb(D)), b > 1

The constant 7 is the maximum visual channel size; the log base b is a constant; D is the
question’s answer domain cardinality. For instance, we can set b = 3.

Table 3.1 shows a range of answer cardinalities and resulting number of feedback po-
sitions as determined by our parameterization heuristics.

Domain size # feedback pos. Widget
2 1 radio button
4 2 radio button
8 3 radio. or drop down

16 3 drop down
32 4 drop down
64 5 drop down or autocomp.

128 5 autocomp.
256 6 autocomp.
512 7 autocomp.

> 1024 7 autocomp.

Table 3.1. Example answer domain cardinalities map to the number of appropriate feedback
positions and the appropriate data entry widget.

45

3.6 User Study

To evaluate these adaptive, data-driven feedback mechanisms, we conducted an experi-
mental study measuring improvements in accuracy and efficiency in a real-world data entry
environment.

3.6.1 Context and Participants

To conduct this research, we collaborated with a health facility in a village called Ruhi-
ira, in rural Uganda. Ruhiira is actively supported by the Millennium Villages Project [4]
(MVP). MVP conducts multi-pronged interventions in health, agriculture, education and
infrastructure to reduce poverty in Sub-Saharan Africa. The MVP health team in Ruhiira
(also serving six surrounding villages), implemented an OpenMRS [6] electronic medi-
cal record system (EMR), but lack the resources and expertise necessary to ensure data
quality in EMR data entry. To address these limitations, we are working closely with the
health facility management and staff to design both long-term and short-term strategies for
improving data quality and use.

The six study participants were professional data entry clerks working at this facility,
entering health information on a daily basis. These are the same clerks that we observed
when obtaining the insights described in prior sections. Prior to the study, each of them
became proficient with our electronic forms interface.

3.6.2 Forms and Data

Widget type # questions Answer domain sizes
radio button 21 2-5
drop down 4 6-8

autocomplete 5 >100

Table 3.2. “Adult Outpatient” form and dataset questions.

Data and forms came directly from the health facility’s EMR. For this evaluation, we
used a form that is filled out during an adult outpatient visit. We randomly sampled 3388
patient visits to train an USHER model. From the form, we removed the questions that are
rarely answered, such as those related to medications that are not actively stocked. About
half of the questions we chose described patient demographics and health background,
while the rest asked about symptoms, laboratory tests, diagnoses and prescriptions. We
mapped the questions to widgets according to answer domain size, specified in Table 3.1.
More details about the data set can be found in Table 3.2.

46

3.6.3 An USHER Model for Patient Visits

The zoom circle in Figure 3.1 graphically depicts the USHER model resulting from
structure learning on this patient visit dataset. The edges denote correlations between pairs
of variables.

Figure 3.7. Results of the ordering experiment: x-axis measures the number of questions
“entered”; y-axis plots the percentage of remaining answers correctly predicted.

After learning the model’s parameters from our dataset, we conducted a simulation ex-
periment to evaluate its predictive accuracy under 4 different question orderings: static,

dynamic, original and random. Our experiment simulated a scenario in which a data entry
clerk does not finish entering a form. As in the previous chapter, the x-axis in Figure 3.7
represents the question position at which entry was interrupted. At each stopping point, we
use the model to predict the answers for the rest of the questions. The y-axis shows the
resulting accuracy. We see that the original ordering does better than random, but under-
performs USHER’s optimized information-theoretic orderings. The evaluation described in
the next section is based on a static ordering.

3.6.4 System

We built a web application using Java Servlets and Adobe Flex (see Figure 3.1). This
included a Java implementation of USHER, running inside a J2EE application server. The

47

USHER model was built offline and summarized in a Bayesian Inference File (BIF) format,
instantiated as a singleton upon request from the client. The optimized question ordering
was captured in an XML form specification, which included details like question ordering,
question labels, data types, widget types and answer domains.

During data entry, the web form interface collected an answer from the user and sub-
mitted it to the USHER model. The model then calculated the conditional probability distri-
bution for the next question, resulting in likelihood values for each possible choice. These
probabilities were embedded in a XML question fragment that was rendered by the client-
side code, which prompted the user to answer the next question. All adaptive feedback
mechanisms were implemented within this client-side code.

3.6.5 Task

A set of 120 test form instances were randomly drawn from the EMR. These instances
were withheld from the training set used to build the model described in the previous
section. We printed out these form instances on paper. To more closely mimic a real form,
we used a cursive “script” font in the printout for answers that are typically handwritten.
The electronic forms were presented to the user as a web table with 120 links. During the
study, participants were instructed to click each link, enter the form serial number printed
at the top of the form, and to perform data entry as they normally do for each form.

3.6.6 Procedure

The study was set up as follows: participants sat at a desk and transcribed answers. Par-
ticipants used their existing data entry client machines: low-power PCs running Windows
XP with 256MB of RAM, and a full-sized keyboard and mouse. Each PC had an attached
12” color LCD display. The clients connected via LAN to a “server” that we provided: a
dual-core, 2.2 GHz MacBook Pro laptop with 4G of RAM. To mitigate power concerns,
we relied on existing solar power and a gasoline generator. Besides this, the working con-
ditions were arguably not too different from that of any cramped office setting.

We conducted the study in 2 sessions, in the morning and afternoon of a single day. All
six clerks were available for both entry sessions. In each session, participants entered as
many form instances as they could. Ideally, we wanted the data clerks to treat the study
like their normal work. As such, we employed an incentive scheme to pay piece-meal (500
USH or 0.25 USD per form) for each form entered. We also constrained the cumulative
time allotted to enter all the forms. We felt this most closely matched the clerks’ current
incentive structure.

Our primary experimental variation was the type of feedback mechanism employed:
defaults, widgets, and warnings. We added a control variation, plain with no adaptive
feedback. For each form entered, one of these four variants was chosen randomly by the

48

system. For setting default values, we set t = 1.5/D. For example, when making a binary
choice, if the most likely answer has likelihood > 0.75, we set that answer to be the default
value. For triggering warnings, we set t = 0.1/D. For example, when making a binary
choice, if the likelihood is less then 0.05, we trigger a warning dialog.

For each question that was answered, we collected the following information: answer,
correct answer, duration, and feedback provided for each possible answer option. At the
end of the experiment, the data clerks each filled out a survey about their experience with
the system.

3.7 Results

In total, we collected 14,630 question answers from 408 form instances. The 4 feed-
back types were randomly assigned across form instances, with the Widgets type receiving
double weighting: the sample sizes were plain 84, defaults 79, warnings 88, and widgets

157. In this section, we present the results of this evaluation.

3.7.1 Accuracy

To analyze the impact on entry accuracy, a mixed effect generalized linear analysis of
variance (ANOVA) model was fitted using SAS procedure PROC GLIMMIX for determin-
ing the effect of feedback types. A Bernoulli distribution with logit link was specified for
modeling the binary response of correct/incorrect entry for each question. The model in-
cluded widget type, feedback type, and their interaction as fixed effects, and the participants
as a random effect for accounting for the variation between testers. Dunnetts correction was
applied to adjust for multiple-comparisons against the plain feedback variation.

The effect of adaptive feedback mechanisms on error rate are summarized and com-
pared to plain at both the overall level (Table 3.3) and by each widget type (Table 3.4).
Each error rate shown was estimated by its least square mean.

Table 3.3 shows the error rates of each feedback mechanism, and compares each ex-
perimental mechanism to plain (using a one-tail test for lower error rate than that of plain).
The widget and warning mechanisms improved quality by 52.2% and 56.1%, with marginal
significance. The improvement by the defaults mechanism was not statistically significant.

Breaking down the results by widget type leads to more statistically significant findings.
Table 3.4 shows accuracy results for each of the autocompete, drop down and radio buttons

widget types. Each feedback mechanism improves accuracy in form fields with radio button
widgets: the highlighted radio button label (widgets) and the warnings mechanisms achieve
75% and 78% respective decreases in error %, with statistical significance. The defaults

mechanism was marginally significant with a 53% decrease in error %.

49

Feedback type Error rate vs. plain Adj. p-value
plain 1.04%
defaults 0.82% -21.0% 0.497
widgets 0.50% -52.2% 0.097
warnings 0.45% -56.1% 0.069

Table 3.3. Mean error rates for each feedback variation (across all widget types) and com-
parisons to the plain control-variation.

Widget type Feedback Type Error rate vs. plain Adj. p-value # wrong / # total

radio button

plain 0.99% 22/1760
defaults 0.46% -53.04% 0.0769 9/1659
widgets 0.25% -74.77% 0.0005 10/3297

warnings 0.22% -77.89% 0.0034 5/1846

drop down

plain 0.47% 2/334
defaults 1.09% 130.45% 0.9645 4/316
widgets 0.26% -44.50% 0.5041 2/628

warnings 0.23% -51.19% 0.5055 1/350

autocomplete

plain 2.37% 10/336
defaults 1.09% -54.24% 0.2118 4/316
widgets 1.85% -21.98% 0.5135 14/628

warnings 1.85% -21.92% 0.5494 8/352

Table 3.4. Mean error rates for each widget type with break down by feedback type; as
well, comparisons to the plain control-variation.

As expected, the error rate tended to increase with the size of the answer domain for
each widget. For the drop down and autocomplete widgets, we observed some improve-
ments in accuracy, although given the rarity of errors, statistical significance was not ob-
served due to the limited number of trials and participants.1 Table 3.2 shows that there
were fewer questions in the original form that mapped to these widget types. In general,
studying rare events like data entry errors requires a very large number of trials before any
effect can be observed. We further discuss the challenges inherent in studying entry errors
below.

3.7.2 Correct vs. Incorrect feedback

We want to investigate the impact of incorrect feedback, We define correct as when
the true answer is set as a default or included as one of the k promoted choices, and when
the user is warned after entering an actually incorrect answer. We define incorrect as the
converse of this, and ignore cases when there is no adaptive feedback. To do so, we fit a

1The drop down widget with defaults feedback was the only trial that resulted in an error rate higher than
than of plain. A separate two-tail test showed that this difference was also not significant (p = 0.65).

50

similar ANOVA model as above for each feedback type, but with one exception: warnings

feedback given on correctly entered values (false positives) exhibited a 0% error rate, which
caused anomalous model estimates. Instead, for the warnings variation, we used Fisher’s
exact test to determine statistical significance. Analysis results are shown in Table 3.5.

Error rate: feedback
Feedback type. correct incorrect * Adj. p-value
defaults 0.10% 10.97% 0.0001
widgets 0.28% 0.84% 0.0171
warning 52.94% 0.00% 0.0001

Table 3.5. Error rate when the feedback mechanism is correct versus when it is incor-
rect. Each comparison between correct and incorrect feedback is statistically significant
(adjusted p < 0.05).

For each experimental variation, as expected, we see that when the feedback mecha-
nism promotes the correct answer, the observed error rate is quite low for defaults: 0.1%,
and widgets: 0.28%. As well, the error rate is quite high for warnings: 53%. For warnings,
when feedback is correct, that is, a wrong answer is “caught” by the warning mechanism,
the observed 53% error rate means that 47% of these potential errors were corrected. This
may seem less than optimal, but given the low baseline error rate, a warning is much more
likely to be a false positive for an unlikely answer than an actual input error. In our eval-
uation, we invoked warnings when the entered answer had less then a 10%/D likelihood,
and still only 8.7% of the warnings were issued in the case of actual user error. Given such
a large number of false positives, and the low baseline error rate, even catching half of the
errors during the warning phase can significantly improve data quality.

When the feedback mechanism promotes an incorrect answer (a false positive), the
results are quite different across feedback mechanisms. For defaults, incorrect feedback
mean that a wrong value is pre-set while the user acquires the question nature. In this
situation, the observed error rate is an order of magnitude higher than in the plain experi-
ment. Indeed, this is the reason why defaults do not perform as well as the other feedback
mechanisms. The result suggests that when users are presented with an automatic com-
mitment to an incorrect value, they tend to accept it. Two things are happening: 1) when
defaults are set, the user is primed with a candidate answer prior to the acquire answer

from source step, causing a potential for confusion; 2) defaults transform an entry task into
a confirmation task, which is easier (next Subsection), but more error prone.

The impact of incorrect feedback for widgets, on the other hand, is negligible: we can
see that incorrect feedback does not increase the error rate much beyond the plain baseline.
These during-entry adaptations stay within the locate answer on screen stage, and leaves
the user to commit to an answer each time. 2

When warnings give incorrect feedback, users receive false alarms on correctly entered
values. Observe that the error rate in this situation is 0%. It would appear that users, having
committed to a value, are unlikely to change it on a false alarm.

2One reason not to provide more frequent feedback is for maintaining the user’s trust.

51

3.7.3 Effort

Feedback type Duration (sec) vs plain Adj. p-value
plain 2.812
defaults 2.420 -13.93% 0.0001
warnings 2.995 6.49% 0.0001
widgets 2.787 -0.89% 0.8391

Table 3.6. Mean time per question (seconds, estimated by least square mean), and compar-
ison to plain variation, for each experimental variation.

The effect of our feedback mechanisms on the amount of time required to answer a
question is summarized in Table 3.6. A mixed effect ANOVA model with the same fixed
and random effects as described in the Accuracy subsection was used to compare the dura-
tion between feedback types. We observe that defaults led to a 14% faster average question
completion time. We did not observe a statistically significant difference for widgets. Both
results are in accordance with our goal of reducing the time required to go from paper to
electronic. In the warnings experiments, we expected a slow-down, and found a small (6%)
statistically significant increase in effort. The key conclusion is that our adaptive feedback
mechanisms can moderately affect the amount of time required to enter a form, and each
adaptation comes with a particular exchange rate when trading off effort vs. quality.

3.8 Discussion

3.8.1 Every Error Counts

Our baseline plain-form gave an error rate of 1.04% . What might this mean, given that
our data is used for critical decision-making? Consider the estimated 350-500 million cases
of malaria in 2007 [9]. Taking the low-end estimate, if just half resulted in a clinic visit,
and on the visit form, a single question recorded malaria-status, then approximately 1.8
million3 patients’ malaria status could be misrepresented in the official records due to entry
error, putting their opportunity to receive drugs, consultation or follow-up at risk. Keep
in mind that each field, on average, could have 1.8 million mistakes. In this admittedly
contrived example, our adaptive feedback mechanisms could reduce the number of at-risk
patients by more than half.

3350 million × 1

2
visit clinic × 1.04% error rate

52

3.8.2 Room for improvement

Data quality is taken very seriously in the high-resource science of clinical trials, which
relies heavily on the practice of double entry [21, 42]. One study showed that double entry
reduced the error rate by 32%, from 0.22% to 0.15% (p < 0.09), but increased entry
time by 37%, when compared to single-entry [67]. As a point of comparison, our results
demonstrate the potential for greater relative improvement in accuracy, and decrease in
entry time. However, due to the operating conditions, the error rates we observe are an
order of magnitude higher than those of the clinical trials. We believe the error rates we
observed are suppressed due to observer-effects, and that actual error rates may be even
higher.

3.8.3 Generalizability

Error rates vary greatly across operating conditions, depending on various factors in-
cluding work environment, incentives, user capabilities and training, as well as the specific
form questions and entry modality. We hypothesize that data entry programs with higher
error rates could benefit even more from our approach. In particular, our approach could be
particularly good for input-constrained devices like mobile phones, where even small re-
ductions in effort could lead to dramatic improvements in accuracy (for example, by setting
defaults or promoting likely values to the top of drop down menus, which are notoriously
difficult to use on mobile devices). In mobile entry settings, we can also use USHER dy-

namic orderings to further improve the predictive accuracy of the system.

3.8.4 Studying Rare Events

Throughout this work, we have been constrained by the fundamental rarity of making
an error. Our own results show that error rates typically range between 0-2%. Conducting
a contextual inquiry to understand the source of these errors was exceedingly difficult. It is
hard to ever directly observe an error being made, especially because the enterer is being
observed. Moreover, because the phenomenon we wanted to observe is so rare, it meant we
had to conduct many more trials to obtain statistical significance. We even experimented
with various ways of increasing the error rate (do not punish wrong answers, constrain the
time even further, etc.) but found that each of those approaches led to aberrant behavior
that was not consistent with normal data entry practice.

53

3.9 Conclusion and Future Work

We have presented a set of dynamic user interface adaptation for improving data entry
and efficiency, driven by a principled probabilistic approach. We evaluated these techniques
with real forms and data, entered by professional data entry clerks in Ruhiira, Uganda.
Our results show that these mechanisms can significantly improve data entry accuracy and
efficiency.

A next step is to develop a version of USHER that can work with existing data collec-
tion software on mobile phones. We expect that a large number of ongoing mobile data
collection projects in the developing world [1, 3, 5] can benefit from this approach.

54

Chapter 4

Shreddr

4.1 Introduction

The SHREDDR system transforms paper form images into structured data on-demand. It
combines batch processing and compression techniques from database systems, automatic
document processing with computer vision, and value verification with crowd-sourced
workers.

The approach redesigns data entry as an always-on software service in order to ad-
dress the critical bottlenecks in existing solutions. First, SHREDDR extracts a paper form’s
schema and data locations via a web interface. Next, it uses computer vision to align then
break up images into constituent image shreds. Then, the system reformulates the grouping
of shreds according to an entropy-based metric, and places the shred groups into batched

worker interfaces. Lastly, the system assigns work to distributed on-line workers whom
iteratively refine shred estimates into final values.

SHREDDR is novel in several ways.

1. It allows approximate automation to simplify a large portion of data entry tasks.

2. Working with shreds in the cloud, and a crowd, gives us latitude to control latency
and quality at a per-question granularity. For instance, time-sensitive answers can be
prioritized, and important answers can be double- or triple-checked.

3. Shredded worker interfaces use cognitive and physical interface compression to en-
able fast, batched data entry and verification.

In the following sections, we compare and contrast “shredding” to existing approaches,
and follow with a description of the SHREDDR system and a case study. Next, we illustrate

55

SHREDDR’s design principles and quantitative results for data quality and effort. Finally,
we summarize our findings.

4.2 Related Work

The most relevant prior work to SHREDDR includes research on document recognition
and various other systems for improving data digitization.

4.2.1 Automatic document processing

One of the first applications of computer technology was for the digitization of paper
forms for large enterprises. Platforms like EMC’s Captiva 1, and IBM’s DataCap 2 handle
millions of forms, ranging from invoices to insurance claims and financial statements for
well-resourced organizations. Completely automated end-to-end solutions exist, but are
financially unattainable for low-resource organizations.

The document processing industry views paper digitization as consisting of three main
challenges: (1) recognizing the page being examined, (2) reading values from the page
and (3) associating values together across pages [69]. The field of document recognition
has provided reliable solutions for a number of these challenges, including: automatic
recognition of handwritten numbers, short text with a small number of possible values,
and machine produced text. Researchers now focus on issues like reading text in many
languages and automatic segmentation and reading of challenging document images. The
field, like many enterprise-scale systems, has given relatively little attention to the user-
centric requirements and contextual constraints [69] that would make their tools useful in
low-resource contexts. Addressing these issues is SHREDDR’s primary focus.

4.2.2 Improving data entry

Lorie et al. proposed an automated data entry system that integrates operator inter-
vention with OCR, and describes a multi-staged verification process that improves the re-
sults [48]. This approach focuses on optimizing human attention for correcting OCR in
an enterprise environment. Their iterative results improvement model is similar to some
aspects of the SHREDDR’s pipeline. Several academic evaluations of automatic forms pro-
cessing systems have been performed on flight coupons [84, 49]. In contrast to these OCR-
then-correct approaches, SHREDDR is (1) an on-line service that (2)handles arbitrary legacy
forms, with format agnostic input.

1http://www.emc.com/products/family2/captiva-family.htm
2http://www.datacap.com/solutions/applications/forms-processing

56

There have been novel mobile data collection solutions specifically designed for low-
resource organizations. Systems like CAM and Open Data Kit provide in situ data entry
directly on mobile devices [34, 62]. In contrast with SHREDDR, these approaches conflate
rather than separate capturing versus encoding data.

DigitalSlate is an elegant approach that uses pen and paper on top of a customized
tablet device, providing immediate electronic feedback to handwritten input [66]. In this
approach, the number of these novel and dedicated tablets required grows with the number
of agents or points of service delivery.

Automatic interpretation of bubble forms was evaluated for numeric data entry [75].
SHREDDR handles all form data types.

4.3 Existing Solutions

In this section, we describe the prevailing standard approaches: direct digital entry, and
double entry from paper forms. Examination of their strengths and weaknesses motivates
our ensuing discussion about SHREDDR.

4.3.1 Replacing paper with direct-entry

Direct digital entry means digitally capturing data as close to the source as possible,
often using a mobile device. Direct entry focuses on improving efficiency and feedback.
The thinking goes: if a remote agent can enter values directly into a device, then it saves
the work of hiring data entry clerks and transferring paper. Several groups have demon-
strated potential efficiency improvements, on-device feedback to the worker, and faster
turn-around time through digitization at the point of collection [22, 34, 71].

However, in many situations paper cannot be replaced; recall the discussion in Chap-
ter 1. Organizations may desire to retain paper documents for reference [62]. More impor-
tantly, adoption of new technology and associated work-flow changes can incur significant
cost, including training, hardware, and software. For some settings, the initial and on-going
costs of such an approach is not financially viable over a reasonable time frame [65]. Low
literacy users have also shown preference for traditional analog information capture medi-
ums such as voice or paper [64]. A study of students doing math problems showed that
writing modalities less familiar than pen and paper increased cognitive load and reduced
performance [40].

57

4.3.2 Traditional double data entry

Double data entry (DDE) refers to keying the same values multiple times by differ-
ent workers. The two (or more) sets of entries are batch compared after completion to
determine the values that need correction. This comparison-and-fix process is most often
performed with software.

Data quality from data entry paper forms can vary widely, ranging from poor to excel-
lent. A study of paper data collection in South Africa demonstrated completion rates of
only about 50% and accuracy rates of 12.8%. [51]; paper-based clinical trials (for phar-
maceutical development) achieve error rates of 0.15% [68], relying on well-honed double
entry practices.

The user’s skill level is critical for accurate and efficient data entry. Factors like ex-
perience, job engagement level and subject matter expertise of the worker are significant
factors in data quality. Trusted workers with high accuracy can produce results close to that
of DDE [41].

4.4 SHREDDR

In this section, we describe how the SHREDDR system digitizes paper forms.

Figure 4.1. A form image template on the left; highlighted field areas of interest on the
right.

1. First, a user uploads a sample of a form (”template”) to SHREDDR’s servers. Using
SHREDDR’s on-line tools, users highlight data fields of interest using a web interface
(Figure 4.1). The user draws boxes of relevant fields, and for each field, provides us
with a few pieces of meta-data, including: name, data-type, unit, significant digits,
and potential values. It has been shown that this process itself can be sourced to
Amanzon’s Mechanical Turk (MTurk) [47].

58

Figure 4.2. Our makeshift copy-stand used to digitize a country-wide survey in Mali.

2. Next, the user generates images of the forms (”instances”) needing processing. This
can be done using a multitude of methods (e.g. scanner, low-cost digital camera,
camera phone, etc.; see Figure 4.2).

3. These images are then uploaded to our website, either individually or using a batch
submission interface (for example: a file or image service, email, website upload.)
Images are aligned and auto corrected for rotation, lighting, and perspective transfor-
mation using computer vision algorithms (Figure 4.3)

4. The system then “shreds” apart the form images into fragments according to the
document definition (Figure 4.4).

5. Shreds are batched together by field (for example: all the numeric age fields) into
groups of 30 - 100, depending on field difficulty, and the type of question. We prompt
crowd workers using specific instructions like: “Type in this handwriting” (entry),
“Verify our guesses” (verify) and “Correct the spelling” (spell-check). An example
entry interface is found in Figure 4.5 Each shred is tracked by a decision plan—a
state machine that decides, as estimates come in from workers, when to confirm an
answer (depending on the desired accuracy), or what next question to ask.

6. Gold standard values and decision plans’ logic govern data quality heuristically,
based on data type (details of SHREDDR quality control process in Section 4.7).

59

Figure 4.3. A. The original image, B. The template form, C. the results of image registra-
tion.

Asynchronous daemon processes advance the state of decision plans as estimates
arrive from workers.

7. Finalized shred decisions, history of decision processes, along with shred and orig-
inal page images are securely stored in SHREDDR’s database. The end user can
browse and edit, filter by problematic values (such as those marked for user review),
and download in CSV format.

4.5 Why “shred”?

SHREDDR decomposes the data entry work-flow into many small steps, and shred aparts
paper documents into many small images, Our approach is to data production what to
manufacturing assembly lines are to, say, cars. Pipelined digitization steps each require a
specific type of human or algorithmic attention. Automation does the “heavy lifting”—the
straightforward, anyone-can-do-it tasks, and specializes workers to focus on particularly
problematic values that require expertise or local troubleshooting.

In this section, we examine the benefits of SHREDDR, which (1) allow users to control
the trade-off between cost, data quality and turn-around time, (2) handle arbitrary paper
forms, old and new, and (3) make minimal impact on an organization’s capital investment
in technology, training, and staffing.

60

Figure 4.4. Form image on the left, “shredded” fragments on the right.

4.5.1 Capture and encode separately

The first principle behind pipelined data entry is to separate capturing and encoding
data into many distinct steps (recall Chapter 1). The capturing step records analog signals
from the real world into a persistent digital state, and encoding steps iteratively transcribe,
clean, translate and annotate the recorded signals according to pre-defined schemata. Field
workers of low-resource organizations are often well-suited to capture local information,
given their contextual familiarity. However, they may be ill-suited to encode high quality
information, which requires more literacy, training and domain / technology expertise.

Adoption: From the perspective of an organization, subscribing to a data entry service
is an incremental change to an existing paper-based work flows. Wherever in situ data
entry needs to occur, a “data-imager” armed with a single device for imaging and upload
will suffice. SHREDDR’s elastic worker pool can turn-around structured data on the order of
many hours or few days. These characteristics make it easier for organizational champions
to muster the political will to adopt this technology.

Robustness: Imaging devices are resilient to infrastructural unreliability. Intermittent
power failures may grow the paper stack to-be-scanned, and Internet failures may grow the
upload queue, but these failures do not disrupt the flow of paper. SHREDDR is also robust to
data schema change. The data manager can simply update the document definition on-line.

4.5.2 Paper independence

The second principle behind pipelined data entry is to separate the usage of paper from
the usage of data. The main idea, like the concept of data independence from the data
management literature, is to uncouple the organization and layout of data on paper from

61

Figure 4.5. Entry interface.

its usages. In other words, fields on a page must be accessible without the page, and the
person who captured the value cannot be required to know all its intended usages. This
decoupling of value from page has significant benefits:

Access control: Shredding allows different users to see different shred image subsets,
for example: (1) research staff can double-check single values, or (2) a subject matter
expert can look at just at-risk or “user review”-flagged values.

Because workers only see a single field at a time without knowing what type of docu-
ment it comes from, we have the potential to safely digitize sensitive data, including person-
ally identifiable information by presenting to on-line workers in a way that does not allow
an individual to decipher the original content by combining shreds over time. Shredding
allows automatic redaction of values from images before they are shown to workers.

Multiple worker pools: Shredding allows granular control over sending work to mul-

62

tiple different providers. For example, regulations may require sensitive data to be digitized
in-country, or values flagged as difficult by MTurk workers can be sent to specialists at an
organization’s headquarters. Thinking more creatively, medically related shreds would be
ideal as a re-CAPTCHA3-like mechanism on particular types of websites. We may even be
able to rely on “cognitive surplus” in the developed world, in the form of volunteer workers
earning social kudos or other incentives [74].

Lazy evaluation: With linked images to shreds available, it may not be worthwhile to
transcribe high-cost responses such as open response text fields, or data captured just-in-
case, since it can be gleaned from the image when relevant and on-demand.

Furthermore, because answer quality for fields can be improved on-demand (with more
estimates and verifications), an organization may choose to start with only computer-vision
estimates and request higher confidence values later when needed.

4.5.3 Create economies of scale

Aggregating data entry work from many sources together allows us to achieve
economies-of-scale across documents and organizations. By hosting a central service, we
can (1) invest deeply in new data digitization technologies, e.g. improve automatic value
estimation via computer vision and other probabilistic means, (2) have enough volume to
engage with many different labor pools, and (3) specialize work assignments according to
workers’ skills and incentives.

4.6 Case Study

SHREDDR digitized the paper forms of a paper survey of Malian citizens across 576
villages in 95 rural towns with the goal of evaluating the political impacts of a randomized
information intervention: a village-level civics course. Ten survey enumerator teams filled
out 36819 pages of three surveys with 460 fields and 13 distinct pages. Their work occurred
over three months, ending in August 2011.

The project had planned to hire two or three data entry clerks, rent office space, pur-
chase computers and provide training and supervision in-country. By their own estimation
of three surveys per hour rate of data entry, it would have required two data clerks seven–
eight months to finish the job at single-entry quality. This rough estimate totaled 2600
estimate hours of human work—assuming five working days per week, and eight working
hours per day.

Using SHREDDR, one data staff member was trained to collect paper forms at a centrally

3http://en.wikipedia.org/wiki/ReCAPTCHA

63

located office. He photographed the pages with a point-and-shoot digital camera (Canon
Powershot A620) and tripod (as seen in Figure 4.2).

4.6.1 Imaging and uploading

For imaging and uploading, the data manager explained: “I was able to explain the
process in 10 minutes to [a data clerk] and leave him unsupervised.” Striking a balance
between legibility and upload size, each image was saved in JPG format at 1200 by 1600
resolution and averaged 350KB each. Images were transferred via SD card swapping to
Picasa image management desktop software 4 on a netbook laptop computer. In Picasa, im-
ages were batch-renamed according to a previously agreed-upon convention, and exported
to a shared DropBox folder. DropBox 5 is a commercial software service for synchronizing
files over the Internet—it provided us delay tolerant file syncing over a 3G mobile data con-
nection. Each battery charge lasted about 6 hours. If there was no power, back up batteries
were needed or the upload process was stalled.

The data manager estimates that he processed roughly 150 pages (or 22 surveys) per
hour, and split his time as follows: 15% organizing and preparing paper forms for imag-
ing, 60% photographing, and 25% organizing and uploading the digital files. At this rate
of image creation and upload: 150 pages per hour * 350KB per page, they need only a
15KB/sec upload link to keep up with the demand. This rate is achievable with a GPRS
cellular connection.

4.6.2 Alignment and shredding

We batch loaded the uploaded images into SHREDDR and first performed image align-
ment. As part of alignment, SHREDDR’s computer vision based algorithms attempt to
detect when pages may be swapped, missing or mislabeled. A generic solution to this
problem, referred to as doctype classification by the document processing research com-
munity, is still considered a “holy grail.” We side-step the generic problem, for the batch
upload case, by specifying a file naming convention.

4.6.3 Document definition

Our document definition tool has been successfully used by several well-educated and
computer-savvy survey researchers. In the Mali case, the principal investigator (PI) of
the survey project marked up each of 13 template pages after a a single in-person tutorial

4http://picasa.google.com
5http://dropbox.com

64

Datatype #Shreds % Time
Text 186324 18.7% 18.8s
Integer 180144 18.1% 10.1s
Select-one 551542 55.4% 11.0s
Select-many 77284 7.8% 12.7s
Total 995294 100.0 % 12.5s

Table 4.1. This table shows the number of shreds (and percentage of total), and mean
amount of worker time spend per value for the case study dataset.

Country/Territory Visits Pages/Visit
India 7565 16.7
United States 1939 9.4
United Kingdom 108 32.4
Chennai 1799 21.6
Bangalore 1385 14.9
Total 10443

Table 4.2. Worker demographics

session. Document definition requires sufficient domain expertise to know which data fields
are relevant and what the potential answers could be.

4.6.4 Digitization effort

This dataset has about 1 million values (shred images). The number of shreds (and
percentage of total) per data type can be found in Figure 4.1. Figure 4.1 also shows the
cumulative amount of worker attention (from 3 up to 12 workers). Quality will be explored
in detail later in Sections 4.7.

MTurk workers cumulatively spent 2923 hours on this dataset. Using SHREDDR, each
shred was seen by at least 3 MTurk workers. We can see that SHREDDR has a clear advan-
tage in cost. Still, we believe the total effort can be much lower.

During data entry, the maximum throughput reached roughly 3000 assignments per
hour. Throughput was constrained by both by an early system slowdown (bug), as well as,
later, reaching an arbitrary maximum limit of tasks live on MTurk. With starts and stops,
the run took more than 4 days. At the observed peak rate (which we do not believe is a true
peak), we could have completed the dataset in under 24 hours (71169 total assignments
were submitted).

65

4.6.5 Workers and errors

3672 unique workers saw our tasks on MTurk over 10,443 visits; each performing on
average 28 minutes of work. 98% of those workers used a downloaded browser (Chrome
and Firefox), indicating some technical sophistication. Most workers hailed from India.
Among Indian workers, almost half had IP addresses registered in Chennai or Bangalore
(Table 4.2), both being significant outsourcing hubs.

4.7 Data Quality

Errors can happen at each step of the data collection pipeline. Here, we briefly introduce
some common techniques of managing data quality and discuss how SHREDDR contributes
to these methods.

Incorrect or missing measurements during initial capture: These issues fall under
the topic of instrument and protocol design. To address these errors, an organization may
take action such as:

1. Planting respondents who give known answers among the population

2. Repeating measurements over the same populations

3. Adding questions to the data collection instrument to cross-validate important an-
swers

4. Finding outliers in the answers, and prioritizing the most unlikely answers for review

These methods help establish invariants, which if violated, indicate quality degradation.
SHREDDR helps in doing so by providing data incrementally, as collection takes place, so
data managers can make corrections in-flight.

Corruption to digital files or physical paper during transit or storage: These issues
are a matter of backup and security. An organization must implement procedures for inter-
nal safekeeping unless it is outsourced to a trusted third party. In our experience, the longer
paper stacks sit idle, without digitization or curation, the more likely it is lost, shuffled,
and lose usefulness. By capturing whole document images, then transmitting, encrypting
and storing them in the “cloud”, SHREDDR is a straightforward means to safeguard against
these issues.

Mis-keying during transcription: These errors are the primary focus of our discussion
below. At a high level, an organization can fix mis-keying with the following approaches:

• Use gold standards to measure error rates and root out systematic errors early

• Repeat entry and verification to fix random errors

66

• Leverage dynamic interfaces to guide high quality entry (Chapter 3)

Below, and in the following sections, we will describe each of these methods and how
they fit together in SHREDDR’s digitization pipeline.

4.7.1 Double entry quality

To better understand how SHREDDR manages quality control, we first take a deeper
look at the way double entry works. In full-DDE, when all values are double entered, the
approach is quite effective in catching random errors. We propose a simplified model of
the expected DDE error rate: errors in the data that were flagged and incorrectly reconciled
and errors that were not flagged; more specifically:

p(dde) = p(de conflict) ∗ p(judge error)

+p(mutual mistakes) (4.1)

The first term models the likelihood that two independent measurements disagreed, and
a third attempt to arbitrate was also mistaken. The second term models the likelihood that
the two independent measurements made the same mistake on the same answer.

However, errors can quite easily be systematic in nature; for example, both DDE work-
ers misunderstand the entry protocol and skip an entry that should be have the value as “not
applicable”. In this case, DDE cannot recover these errors.

Often, due to resource and time limits, partial-DDE only checks a portion of values, as
a quality-control measure, to ensure that the single-entry error rate is at a reasonable level.
In this case, the expected error rate decreases as follows:

p(partial dde) = p(single pass error)

−portion double entered

∗(p(dde)− p(single pass error)) (4.2)

This quality check is quite useful for many reasons, including reporting accuracy.

4.7.2 Quality control

Here, we detail SHREDDR’s approach and analyze results of the Malian dataset.

Gold standards: SHREDDR programmatically creates gold standard values, from a
randomly selected subset of shreds, to act as the first line in quality control. This has been

67

shown to be an effective technique for managing quality in crowd-sourced systems [43,
57]. For gold standards, we are very conservative about error and do not mind a high
rate of failure: gold shreds are randomly assigned, with entry prompts, to three to five
different MTurk workers. A gold shred is accepted if all answers exactly match (after
canonicalization to case-insensitive Unicode).

For the remaining shreds, entry batches are injected with a small number of correct
gold standards; verify batches are injected with correct and incorrect gold standards. If an
answer set from a worker fails a majority of gold standard values, it is rejected.

Gold standards have the added benefit that we use them as ground truth data to compare
against regularly-transcribed values, and achieve the same effect as partial-DDE (Equa-
tion (4.2)). However, we must first make up for the gold standards that were attempted-but-
failed, in order to have an unbiased, random sample.

Decision plans: SHREDDR currently uses heuristic decision plans for catching mis-
takes. For all data types, but particularly numbers and multiple choice answers, we use
entry + majority-verification(E3V) decision plans. We have also created other decision
plans, for example: for handwritten text answers, we may use a double entry + spelling-

correction.

Figure 4.6. Quality control work-flow in SHREDDR (E3V).

E3V: The decision process, shown in Figure 4.6, starts with a single entry estimate for
each shred. The estimate is verified by a majority vote over two (or if necessary, three)
verify tasks. If the vote fails, repeat the loop; if rejected three times, mark as needing user
review.

68

DES: This decision process starts with DDE (Equation (4.1)): source two entry esti-
mates from different workers, if they match (after canonicalization), accept the answer. If
the answers are close (by the metric described below), we ask a third worker to choose the
one with better spelling and accept that answer. If the answers are not close or the shred
is flagged “can’t read this”, ask for a third estimate. If the 3rd estimate answer does not
match either the 1st or 2nd, mark as needing user review.

Automatic word and mark recognition algorithms can be used to make initial entry
estimates. These improvement promise to drastically reduce the amount of human atten-
tion required for good estimates. Automation of straight-forward work will allow human
workers to focus on more difficult (and higher paying) tasks.

4.7.3 SHREDDR results

Figure 4.7. Accuracy of SHREDDR versus single pass entry and that of idealized double
entry.

We processed all shreds of the case study using the E3V decision plan. In order to
measure quality, we sampled a random subset of 23,255 shreds, and manually curated
a“ground truth” baseline based on the gold standards approach describe above.

The industry-standard metric for comparing data quality is errors-per-keystroke. For

69

text or number entry, it means the number of characters typed. For multiple choice fields,
it is the number of items selected.

Figure 4.8. Examples of difficult shreds. In A and B, the number script is unfamiliar to
many workers; in C, French and cursive handwriting proved difficult; in D, the markings
require some deduction to determine what is the intended answer.

Figure 4.8 features some example shreds that workers got wrong or were marked “I
can’t read this”: in A and B, the number script is unfamiliar to many workers; in C, French
and cursive handwriting was difficult; in D, the marking require some deduction to deter-
mine what is the intended answer. Notably, these examples show that there exists some
baseline rate of ambiguous shreds that must be “caught” and escalated back to the user
(and potentially the data’s source).

We observed an overall errors-per-keystroke rate of 2.85% (label shreddr in Fig-
ure 4.7). SHREDDR performed well on select-one multiple choice fields: 0.19%, and num-
bers: 0.96%, as well as select-many multiple choice fields: 1.61%.

The text entry error rate of 13.37% required more exploration. The responses being
in Malian French was the chief cause of error. More specifically, (1) MTurk workers’ un-
familiarity with the language prevented them from correcting ambiguous writing to actual
words and phrases; (2) the handwriting was often in French cursive script which featured
unfamiliar serifs and conventions; (3) many MTurk workers did not know how to type
accented characters (such as “é”).

It is entirely possible to transcribe difficult text and achieve high quality results, with
both poorly printed text , as well as ambiguous English handwriting on MTurk . We corrob-
orated these results in a separate quality assessment, which removed handwriting ambiguity
and the need for word-level semantic understanding. We used unfamiliar, but unambiguous
and English-language keyboard type-able, words, asking MTurk workers to enter Ugandan
last names rendered in a handwriting-style font (shown in Figure 4.9). The experiment of-
fered tasks with 25 names to type for $0.02 USD, and then doubled the number of names
per task to 50, 100, and so on, until workers were unwilling to perform the task. We mea-
sured the errors-per-keystroke rate of all completed tasks to be 1.28% in a single-pass.

Character-separation can be an important quality control mechanism. We noted that
when the space to write a short response is placed in a character-segmented box, like this:

Name: | | | |

the results were significantly better than those for open-ended response fields.

To best address this issue, we simply need to find French-proficient workers. More
broadly, we need to specialize a subset of the workforce to a subset of the work. On MTurk

70

Figure 4.9. Example interface showing Ugandan last names rendered in a cursive font.

specifically, we can require workers have French knowledge through a “qualification”, and
beyond MTurk, we can engage with other worker pools.

4.7.4 Quality comparison

Data collection scenarios differ significantly across different contexts. Recall in Sec-
tion 4.3, that data entry quality can range up to many orders of magnitude, making it very
difficult to make “fair” comparisons. A poorly designed instrument, under-trained enumer-
ators or data entry workers can each make significant impact on data quality. As such, for
our comparison, we try to hold contextual factors constant and compare the outcomes of
SHREDDR digitization, to that of hypothetical single and double entry scenarios.

In Figure 4.7, the variables shreddr refers to SHREDDR’s finalized results; single
refers to the same work that was assign to MTurk workers using the same interfaces and
infrastructure as SHREDDR, except SHREDDR’s decision plan quality control mechanisms;
de-ideal is the hypothetical best case for double entry quality (details about how it is
computer to follow.)

Vs. single pass: We see that SHREDDR outperforms single entry across every data type.
For categorical fields, SHREDDR is an order of magnitude more accurate; in select-one
accuracy, SHREDDR is the range of the lowest reported error rates from the clinical trials
literature [41, 68]. Number fields saw 40% fewer errors than single pass entry, and for text
fields, the advantage was a smaller 27% fewer errors. The relatively smaller improvement
for text, given the above discussion about French language transcription, is indicative of a

71

baseline error rate, due to systematic error rather than something repeated measurements
can fix.

Vs. ideal double entry: Recall Equation (4.1):

p(dde) = p(de conflict) ∗ p(judge error)

+p(mutual mistakes)

To calculate de-ideal, we make two simplifying assumptions: (1) the data accuracy
of reconciliation is equal to that of single entry; and (2) in general, mistakes are indepen-
dently and uniformly distributed. The latter implies that we can model the likelihood of
a worker choosing a particular wrong answer as a random drawing from the domain of
possible choices, repeated for each decision (a keystroke). This means:

p(judge error) = p(single pass error)

p(mutual mistakes) = p(single pass error)

∗
1

domain sizekeystrokes

So, our model becomes:

p(dde) =

p(de conflict) ∗ p(single pass error)

+p(single pass error) ∗
1

domain sizekeystrokes
(4.3)

We parameterize the model with a combination of empirical measurements and deriva-
tions, summarized Table 4.3. p(de conflict) are the empirical % values that were flagged
by two independent single entry passes; average keystrokes are the empirical averages rep-
resenting the number of categorical values chosen or the length of characters typed; domain

size is the total number of categorical values available or 10 and 26 for number and text
fields, respectively. For example, for select-one fields: 3.39%∗1.01%+1.01%∗(1/4.11) =
0.31%.

We were pleased to see that SHREDDR’s select-one error rates were below what would
be expected from idealized double entry (select-many, number and text types are roughly
2.5, 5.5 and 3 times the ideal rate, respectively). Recall the difficult shreds shown in Fig-
ure 4.8: we must keep in mind that the ideal double entry error rate does not account for
the baseline error rate due to ambiguity, that is, values that we simply cannot say for sure
what is the correct value.

This comparison validates SHREDDR’s ability to surpass standard practice in terms of
quality, as well as pointing out areas where we must improve.

72

select-1 select-many number text
de conflict 3.39% 8.96% 5.50% 25.60%
keystrokes 1.00 1.57 1.26 2.75
domain 4.13 6.92 10 26

Table 4.3. p(de conflict) is the empirical % of values that were flagged by two indepen-
dent single entry passes; average keystrokes empirical averages representing the number of
categorical values chosen or the length of characters typed; domain size is the total number
of categorical values available or 10 and 26 for number and text fields, respectively.

1 worker 1 or 2 workers 3 workers
P(disabled) 7.9% 0.76% 0.04%
% answered by 1.3% 16% 84%

Table 4.4. Probabilities of a gold standard value being answered by, and being disabled, by
number of unique workers

4.7.5 Error independence

The ability to assign shreds to workers gives us independence from the original pa-
per form. Paper independence also implies error independence—that errors are not sys-
tematic and correlated to other errors. The key idea is that a single worker may tend to
make the same type of mistake for same type of question over and over again, perhaps
due to systematic biases, such as misunderstanding task instructions. Consequently, dig-
itization approaches with relatively few workers has a higher likelihood of encountering
systematically-confused workers agreeing on wrong answers. In contrast, SHREDDR dis-
tributes the work across thousands of workers. As such, for a given question, the probability
that a random pair of workers will repeatedly make the same systematic error is less. This
is not to say that MTurk workers are necessarily better individually, but with N workers,
their systematic confusion will cancel out as N grows.

We can test this hypothesis by measuring the effects of worker distribution in
SHREDDR’s generation of gold standard values, described in Section 4.7. After gold stan-
dard values are created, they are used to police other work. We keep a running rate of
worker disagrees vs. agreement percentage, and automatically disable the gold standard
if the rate rises above a conservative threshold T . A reject essentially means the value is
wrong or ambiguous.

We examined the distribution of workers who participated in generating our gold stan-
dard data (Table 4.4). Recall that over three thousand different workers provided input to
our case study dataset. Still, there was a 1.3% chance that a single worker answered all
3 gold standard estimates (separately), and a 16% chance that a single worker provided at
least 2 of 3. These worker-distribution scenarios, per shred, is akin to that of DDE or direct
entry.

When a gold standard was created with input from three different workers, its likelihood
of being disabled is 0.04%; this increases to 0.76% if fewer than 2 workers provided the

73

input, and increase much higher to 7.9% if only 1 worker provided all 3 estimates. In other
words, a value that was agreed on by three different workers is exponentially more likely
to be correct than if fewer (but still independent) workers provided the opinion. It stands to
reason that SHREDDR can catch a much greater number of systematic errors with its wider
worker distribution.

4.8 Efficiency

4.8.1 Shredded interfaces

Figure 4.10. Verification interface: list-style.

74

Figure 4.11. Value-ordered verification interface: grid-style.

Recall that the idea for SHREDDR began with a conversation about a run of “yes” val-
ues during data entry (Chapter 1). Repeated runs of the same value allow the worker to
compress the input into one operation, like run-length-encoding enables vector operations
over stored data. Data compression algorithms like run-length-encoding reduce the con-
sumption of storage and and network bandwidth. In the same way, we can engineer the
data entry task to reduce the consumption of human cognitive bandwidth.

Shredding filled-in documents create the opportunity to create worker optimized in-
terfaces. The freedom to work with images representing individual values is key. Both
physical and cognitive operations can benefit. We use information entropy, the metric for
data compress-ability, combined with Fitts’ Law [27], the metric for physical efficiency, to
measure the effectiveness of a compressed data entry interface

Order by field: Figure 4.5, as mentioned before, is an example of our entry interface.
In it, we show only values from a single field—in this case, a 2-digit number. This interface
is advantageous in terms required physical movements: the value image is co-located with
the entry field, rather than, say, on a desk; as well as entropy: the worker only has to think
about numbers, rather than switch mental context between different value domains. This
also allows them to center their hands on the numeric keypad, if one is available.

Reformulation and order by value: Figures 4.10 and 4.11 show examples of our
verification interfaces: the first lists our best estimate alongside the image and prompts the
worker to confirm whether an answer is correct, the second pre-sorts our best estimates

75

by value, and lays out only those that we believe to be a particular value, and prompts the
worker to click those that do not match. The list interface reduces the active domain size
to a binary decision. The value-ordered grid interface reduces the task to that of pattern
matching.

Efficiency analysis:

Figure 4.12. Durations in seconds of how long a MTurk worker spent per value, by data
type and question difficulty

Figure 4.12 shows durations in seconds of how long a MTurk worker spent per value,
by data type and question difficulty. We present question difficulty as the number of choices
to select from for checkbox and radiobuttons, and the number of keystrokes for handwritten
text or numbers.

We can see that for the same number of characters, integers take less time than text,
providing more evidence that a smaller domain size (10 digits) is faster then a larger one (all
letters). The durations of radiobuttons are consistently below that of checkboxes, because
checkboxes are can have multiple answers and thus a longer amount of time.

By the same argument, we can also gain by turning an entry task into a verification—
recall the question reformulation technique from Chapter 2. Our earlier results show that
for best guess estimates, reformulated questions can both be faster and more accurate.

76

4.9 Discussion

Scan and upload: The data manager reported that his biggest pain was removing sta-
ples from surveys and having to manually transfer and rename batches of images. Since
then, we have improved our image alignment algorithm to handle stapled-page image dis-
tortion (see Figure 4.3). A mobile phone camera-based application can help make easier
the process of organizing, imaging, and uploading.

Re-extraction: It is inevitable that mistakes are made in document definition. The
implication is that workers are given bad instructions, and data quality suffers. For example,
one of a question’s multi-select options was missing. Workers had to mark answers without
the missing item, which let to some confusion. We fixed the mistake, and “re-extracted”
the field as another run.

The re-extraction feature is a mechanism for handling data schema and extraction policy
changes. It is notable that SHREDDR handles such changes with little additional overhead.

Escalation pipeline: Each response value lies on a continuum of difficulty between
those that unspecialized workers can correctly transcribe (roughly speaking, via pattern
matching), and those that are truly ambiguous. We call the process that each shred goes
through an escalation pipeline.

DDE clearly points to a set of answers needing escalation. Its escalation pipeline is
typically a one-step procedure: after independent entries are compared, all conflicts go
to the data manager. Sometimes, an additional step may occur whereby the ambiguous
answers goes to original data capturer, if available.

Anecdotally, we have seen that the cost of this error reconciliation pass often goes
unaccounted for when planning data collection projects. Assuming a random distribution
of errors in full DDE, if a page has on average 20 fields, and the error rate is 5%, it is
likely that all pages must be reviewed by the arbiter. Often, the arbiter is a data manager
or higher-up who creates a latency bottleneck in the whole process—as a result, data often
sits waiting for a 3rd “expert” pass.

Expert reconciliation is unnecessary for all conflicts. For example, random errors that
are straightforward can be handle by just another measurement. Local experts with domain
knowledge should only see the truly ambiguous values. Toward this goal, we propose a
more refined and granular pipeline for data entry. Each step goes to increasingly specialized
workers to solve parts of the problem, and to decrease the number of the values escalated
beyond. To tease out types of errors, we escalate first to data entry specialists in particular
aspects (such as a cursive script in a language), then to subject matter specialists (such as
medical terms or regions of Uganda).

As we learn more about particular fields and shreds, we tag potentially difficult shreds
in various ways, including:

1. Better-instructions-required

2. Need context from page

77

3. Need context from other fields

4. Domain-expert-required

5. Truly ambiguous

Shredded entry and traditional entry provide different types of context: shredded entry
allows a worker to see across a value’s domain (for example, other villages in a region).
Traditional name-age-phone ordered entry provides semantic and correlational context, en-
abling a worker who is not speeding through the task to reflect on semantic incongruities
(for example, whether a 5-year weighs 100 kilograms). Recall in Chapter 3 that our work-
ers also often say they do not think about the meaning behind what they are transcribing.
As such, the domain context is much more useful than the correlational context. As for the
latter, if we use USHER, we can automatically find semantic incongruities as well.

4.10 Conclusion and Future Work

We have presented a new way to digitize paper documents into structured data.
SHREDDR’s primary design goal was to address the constraints faced by grassroots or-
ganizations and field offices of international agencies while streamlining data entry. This
is achieved with a novel combination of emergent technologies and techniques, including
computer vision, data compression, crowd-sourcing, cloud computing.

We presented a case study of the system in action, in which we digitized one million
values from a large-scale citizen survey conducted in Mali. Our results indicate that this
is an opportunity for improvement, particularly for dealing with specialized languages and
in identifying and escalating difficult values to appropriate expert workers. Other data
types (select-one) showed excellent results that put us in the same league as clinical trial
practitioners.

Opportunities for future work include: develop algorithms that group together special-
ized and more difficult (higher paying) work; model confidence of estimates per value, and
expanding support to in-house, in-country and volunteer workers.

78

Chapter 5

Conclusion

This dissertation addresses first-mile data collection challenges with data-driven tech-
niques. The multi-prong approach covers optimizing individual acts of data entry to aggre-
gating work across multiple organizations.

USHER relies on previous data to automatically improve digitization of arbitrary forms.
Re-ordering, re-formulating and re-asking are techniques that reduce the amount of lo-
cal expertise and training required to operate data collection work-flows. Furthermore,
USHER models enable a number of dynamic user-interface mechanisms that improve accu-
racy and efficiency during the act of data entry. Based on a cognitive model, these interface
adaptations can be applied as interventions before, during, and after input. We see both
experimentally and empirically that USHER can increase the quality and efficiency of data
entry.

SHREDDR allows field workers to capture information using existing and familiar pa-
per forms, which are then transferred as images out of challenged settings, and iteratively
digitized, using a combination of automated and human-assisted techniques. SHREDDR’s
approach segments the work-flow to leverage pipeline and task parallelism. The key mech-
anisms are to separate data capture from encoding, to shred images to create opportunities
for vector operations in the interface, and to leverage on-line workers to achieve sufficient
turn-around times at-scale.

79

5.1 Discussion and Future Work

5.1.1 Maximizing bits-per-decision

In data systems research, streamlining dataflows is about finding bottlenecks—
mismatches in impedance. The orders of magnitude time-difference between the rates of
human and computer decision-making indicate that we should optimize around the amount
of latency human computation introduces into a computing system. As data digitization
becomes more and more automated, we must ask, “What diminishing roles do humans
have in a mostly digital system”? Our belief is that we should treat human computation
as input for significant events, and use it during computational fix-points or to break ties,
or to answer very hard problems. It follows that human-computer hybrid data flows must
reformulate the human task to maximize the bits-per-decision as much as possible.

5.1.2 Bottom-up bootstrapping

The work of optimizing data entry work-flows all point towards the goal of an organi-
zation using and benefiting from data. An important long-term goal is to help local people
(and their global supporters) surface locally-important outliers and trends that may other-
wise get lost at higher levels of reporting (and aggregation).

Generating locally-actionable insights from data has a chicken-and-egg relationship
with an organization’s ability and will to maintain its local data work-flows. Sometimes,
immediate local benefit can be bootstrapped. While in a rural Ugandan village, I developed
a simple tool that allowed clinicians to view data visualizations of health trends in their
community. The key idea was leveraging “found data” from the intermediate results of ful-
filling external data collection requirements. The tool was simple: an Excel workbook with
macros that tapped into data collected from community health workers (CHWs). I created
a workbook tab of visualizations featuring PivotCharts like “Patients under 5 years old with
malaria by village”, and taught the village doctor create his own PivotCharts. The village
doctor was delighted with his new-found ability to monitor CHWs through visualizations.
I saw that the ability to see and benefit from CHW-collected data immediately improved
the incentives and feedback loops for CHW data collection. This simple tool’s adoption
is a hint at what an orchestrated and purposeful intervention can do in creating a virtuous
cycle between better data and improved service delivery and capacity.

5.1.3 Getting Started

There are a number of first-mile data challenges that can be directly addressed by re-
organizing and optimizing local data work-flows. Data scientists are well-positioned to

80

make significant contributions in this area, but have been focusing on backend infrastruc-
ture and algorithms because their customers – the people with the means to acquire and
manage data – demand it. In order for us to create appropriate solutions, we must shift our
attention to those potential customers who have trouble acquiring data in the first place. We
must work on optimizing data work-flows in the context of limited human, organizational
and technical resources.

The notion of “too much data”: William Gibson observed that “The future is already
here, it is just unevenly distributed” [31]. This insight applies to data as well. Data scientists
often talk about the data deluge occurring in the developed world, but there is ironically far
too little data available about conditions in the developing world—data that is relevant to
some of the most important challenges and opportunities of the 21st century. While we are
very comfortable with issues like scale and privacy in data-rich environments, we are less
familiar with circumstances where even the most basic improvements in data availability
can enable significant progress in meeting local needs.

The infatuation with “big data”: Researchers take more interest in problems that
center on large data volumes. But, because low-resource organizations use tools like Mi-
crosoft Access, they tend to fly under our radar. However, their multitude of “little data”,
each different by culture and environment, also presents an interesting scale problem: the
challenge of wide-scale in contextual diversity, rather than large-scale in volume.

The myth of expertise: We often assume that competent staff is on hand to implement,
administer and use computer systems. This thinking is reasonable for many office-based,
developed world environments, but if we want to extend the reach of our systems to more
people and organizations, we must go further in terms of making our solutions more appro-
priate for a broader range of skill levels and familiarity with technology.

The most direct route to engaging with global problems is pragmatic. Several early
researchers in this emerging field have highlighted a simple formula for achieving suc-
cess [15, 61]: go to the problem, find a good partner organization, and solve their real
problems in an empirically demonstrable, and hopefully broadly generalizable, way.

81

Bibliography

[1] “CommCare,” http://dimagi.com/commcare.

[2] “Infer.NET,” Microsoft Research Cambridge, http://research.microsoft.com/en-
us/um/cambridge/projects/infernet.

[3] “JavaRosa,” http://www.javarosa.org.

[4] The millennium villages project. [Online]. Available: http://www.millenniumvillages.
org

[5] “Open Data Kit,” http://opendatakit.org.

[6] “OpenMRS,” http://openmrs.org.

[7] “OpenRosa,” http://openrosa.org/.

[8] “Survey documentation and analysis,” U. C. Berkeley, http://sda.berkeley.edu.

[9] “Human Development Report,” United Nations Development Program, 2007, http:
//hdr.undp.org/en/reports/global/hdr2007-2008.

[10] “The open society: Governments are letting in the light,” The Economist: A special
report on managing information., Feb. 2010.

[11] A. Ali and C. Meek, “Predictive models of form filling,” Microsoft Research, Tech.
Rep. MSR-TR-2009-1, Jan. 2009.

[12] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies and Tech-

niques. Springer, 2006.

[13] J. M. Bernardo and A. F. Smith, Bayesian Theory. Wiley Series in Probability and
Statistics, 2000.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[15] E. A. Brewer. (2007) VLDB Keynote Address: Technology for Developing Regions.

[16] J. V. D. Broeck, M. Mackay, N. Mpontshane, A. K. K. Luabeya, M. Chhagan, and
M. L. Bennish, “Maintaining data integrity in a rural clinical trial,” Controlled Clini-

cal Trials, 2007.

82

[17] W. L. Buntine, “Operations for learning with graphical models,” Journal of Artificial

Intelligence Research, vol. 2, pp. 159–225, 1994.

[18] A. Cockburn, C. Gutwin, and S. Greenberg, “A predictive model of menu perfor-
mance,” in Proceedings of the SIGCHI conference on Human factors in computing

systems, 2007.

[19] F. G. Cozman, “JavaBayes - Bayesian Networks in Java.” [Online]. Available:
http://www.cs.cmu.edu/∼javabayes

[20] T. Dasu and T. Johnson, Exploratory Data Mining and Data Cleaning. Wiley Series
in Probability and Statistics, 2003.

[21] S. Day, P. Fayers, and D. Harvey, “Double data entry: what value, what price?” Con-

trolled Clinical Trials, 1998.

[22] B. DeRenzi, N. Lesh, T. Parikh, C. Sims, W. Maokla, M. Chemba, Y. Hamisi, D. S hel-
lenberg, M. Mitchell, and G. Borriello, “E-imci: improving pediatric health care in
low-income countries,” in Proc. SIGCHI, 2008.

[23] C. J. Elias, “Can we ensure health is within reach for everyone?” The Lancet, vol.
368, pp. S40–S41, 2006.

[24] M. W. Eysenck, Principles of cognitive psychology. Psychology Press, 1993.

[25] L. Findlater, K. Moffat, J. McGrenere, and J. Dawson, “Ephemeral adaptation: The
use of gradual onset to improve menu selection performance,” in Proceedings of CHI,
2009.

[26] P. M. Fitts, “The information capacity of the human motor system in controlling the
amplitude of movement.” J. of Exp. Psychology, vol. 47, no. 6, 1954.

[27] P. M. Fitts, “The information capacity of the human motor system in controlling the
amplitude of movement.” J. of Exp. Psychology, vol. 47, no. 6, 1954.

[28] K. Z. Gajos, M. Czerwinski, D. Tan, and D. S. Weld, “Exploring the design space for
adaptive graphical user interfaces,” in Proceedings of AVI, 2006.

[29] K. Z. Gajos, K. Everette, D. Tan, M. Czerwinski, and D. S. Weld, “Predictability and
accuracy in adaptive user interfaces,” in Proceedings of CHI, 2008.

[30] B. Gates. (2009) ICTD Keynote Address. [Online]. Available: {http://ictd2009.org/
event footage/videos/ICTD2009 Bill Gates Keynote.mp4}

[31] W. Gibson, “The science in science fiction,” Talk of the Nation, 1999.

[32] R. M. Groves, F. J. Fowler, M. P. Couper, J. M. Lepkowski, E. Singer, and
R. Tourangeau, Survey Methodology. Wiley-Interscience, 2004.

83

[33] A. Hartemink, “Banjo: Bayesian network inference with java objects,” http://www.
cs.duke.edu/∼amink/software/banjo.

[34] C. Hartung, Y. Anokwa, W. Brunette, A. Lerer, C. Tseng, and G. Borriello, “Open
data kit: Building information services for developing regions,” in Proc. ICTD, 2010.

[35] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning bayesian networks: The
combination of knowledge and statistical data,” Machine Learning, vol. 20, no. 3, pp.
197–243, 1995.

[36] J. M. Hellerstein, “Quantitative data cleaning for large databases,” United Nations
Economic Commission for Europe (UNECE), 2008.

[37] L. A. Hermens and J. C. Schlimmer, “A machine-learning apprentice for the comple-
tion of repetitive forms,” IEEE Expert: Intelligent Systems and Their Applications,
vol. 9, no. 1, 1994.

[38] I. E. G. (IEG), Monitoring and Evaluation: Some Tools, Methods and Approaches.
Washington, DC: World Bank, 2004.

[39] F. Jelinek and R. L. Mercer, “Interpolated estimation of markov source parameters
from sparse data,” in Proceedings of the Workshop on Pattern Recognition in Practice,
1980.

[40] W. Johnson, H. Jellinek, L. Klotz Jr, R. Rao, and S. Card, “Bridging the paper and
electronic worlds: the paper user interface,” in Proceedings of the INTERACT’93 and

CHI’93 conference on Human factors in computing systems. ACM, 1993, pp. 507–
512.

[41] C. Jørgensen and B. Karlsmose, “Validation of automated forms processing: A com-
parison of teleform with manual data entry,” Computers in biology and medicine,
vol. 28, no. 6, pp. 659–667, 1998.

[42] D. W. King and R. Lashley, “A quantifiable alternative to double data entry,” Con-

trolled Clinical Trials, 2000.

[43] A. Kittur, E. Chi, and B. Suh, “Crowdsourcing user studies with mechanical turk,”
in Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in

computing systems. ACM, 2008, pp. 453–456.

[44] K. Kleinman, “Adaptive double data entry: a probabilistic tool for choosing which
forms to reenter,” Controlled Clinical Trials, 2001.

[45] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press, 2009.

[46] D. Lee and C. Tsatsoulis, “Intelligent data entry assistant for xml using ensemble
learning,” in Proceedings of ACM IUI, 2005.

84

[47] G. Little and Y. Sun, “Human ocr: Insights from a complex human computation pro-
cess,” 2011.

[48] R. Lorie, V. Riyaz, and T. Truong, “A system for automated data entry from forms,”
in Pattern Recognition, 1996., Proceedings of the 13th International Conference on,
vol. 3. IEEE, 1996, pp. 686–690.

[49] J. Mao, R. Lorie, and K. Mohiuddin, “A system for automatically reading iata flight
coupons,” in icdar. Published by the IEEE Computer Society, 1997, p. 153.

[50] J. Martin, Design of Man-Computer Dialogues. Prentice-Hall, Inc., 1973.

[51] K. Mate, B. Bennett, W. Mphatswe, P. Barker, and N. Rollins, “Challenges for routine
health system data management in a large public programme to prevent mother-to-
child hiv transmission in south africa,” PLoS One, vol. 4, no. 5, p. e5483, 2009.

[52] R. McCarthy and T. Piazza, “Personal interview,” University of California at Berkeley
Survey Research Center, 2009.

[53] G. A. Miller, “The magical number seven, plus or minus two: Some limits on our
capacity for information processing,” Psychological Review, vol. 63, no. 2, 1956.

[54] T. P. Minka, “Expectation propagation for approximate bayesian inference,” in Pro-

ceedings of the Conference in Uncertainty in Artificial Intelligence, 2001.

[55] K. Mullet and D. Sano, Designing Visual Interfaces: Communication Oriented Tech-

niques. Prentice Hall, 1995.

[56] K. L. Norman, “Online survey design guide,” http://lap.umd.edu/survey design.

[57] D. Oleson, A. Sorokin, G. Laughlin, V. Hester, J. Le, and L. Biewald, “Programmatic
gold: Targeted and scalable quality assurance in crowdsourcing,” 2011.

[58] C. Olston and E. H. Chi, “Scenttrails: Integrating browsing and searching on the web,”
ACM TOCHI, vol. 10, no. 3, 2003.

[59] W. J. Ong, Orality and Literacy: The Technologizing of the Word. Routledge, 2002.

[60] T. S. Parikh, “Designing an architecture for delivering mobile information services
to the rural developing world,” Ph.D. dissertation, University of Washington, Seattle,
WA, USA, 2007.

[61] T. S. Parikh, K. Ghosh, and A. Chavan, “Design studies for a financial management
system for micro-credit groups in rural India,” in Proc. Conference on Universal Us-

ability, 2003.

[62] T. Parikh, P. Javid, et al., “Mobile phones and paper documents: evaluating a new ap-
proach for capturing microfinance data in rural india,” in Proceedings of the SIGCHI

conference on Human Factors in computing systems. ACM, 2006, pp. 551–560.

85

[63] S. Patnaik, E. Brunskill, and W. Thies, “Evaluating the accuracy of data collection on
mobile phones: A study of forms, sms, and voice,” in ICTD, 2009.

[64] S. Patnaik, E. Brunskill, and W. Thies, “Evaluating the accuracy of data collection on
mobile phones: A study of forms, sms, and voice,” in ICTD, 2009.

[65] A. Ratan and M. Gogineni, “Cost realism in deploying technologies for development,”
2008.

[66] A. Ratan, S. Chakraborty, K. Toyama, P. Chitnis, K. Ooi, M. Phiong, and M. Koenig,
“Managing microfinance with paper, pen and digital slate,” Proc. Info. & Comm. Tech.

and Development (ICTD 2010), London, IEEE, 2010.

[67] R. A. Reynolds-Haertle and R. McBride, “Single vs. double data entry in cast,” Con-

trolled Clinical Trials, vol. 13, no. 6, 1992.

[68] R. A. Reynolds-Haertle and R. McBride, “Single vs. double data entry in cast,” Con-

trolled Clinical Trials, vol. 13, no. 6, 1992.

[69] E. Saund, “Scientific challenges underlying production document processing,” in
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.
7874, 2011, p. 1.

[70] J. C. Schlimmer and P. C. Wells, “Quantitative results comparing three intelligent
interfaces for information capture,” Journal of Artificial Intelligence Research, vol. 5,
1996.

[71] Y. Schwartzman and T. Parikh, “Using cam-equipped mobile phones for procurement
and quality control at a rural coffee cooperative,” MobEA V: Mobile Web in the De-

veloping World, 2007.

[72] S. Scribner and M. Cole, The Psychology of Literacy. Harvard University Press,
1981.

[73] A. Sears and B. Shneiderman, “Split menus: effectively using selection frequency to
organize menus,” ACM Trans. Comput.-Hum. Interact., vol. 1, no. 1, pp. 27–51, 1994.

[74] C. Shirky, Cognitive Surplus: Creativity and Generosity in a Connected Age. Pen-
guin, 2010.

[75] G. Singh, L. Findlater, K. Toyama, S. Helmer, R. Gandhi, and R. Balakrishnan, “Nu-
meric paper forms for ngos,” in Information and Communication Technologies and

Development (ICTD), 2009 International Conference on. IEEE, 2009, pp. 406–416.

[76] S. L. Smith and J. N. Mosier, “Guidelines for designing user interface software,” 1986.

[77] S. E. Spenceley, J. R. Warren, S. K. Mudali, and I. D. Kirkwood, “Intelligent data en-
try for physicians by machine learning of an anticipative task model,” in Proceedings

of OzCHI, 1996.

86

[78] UNICEF, “The state of the world’s children 2008: child survival,” 2008.

[79] J. Warren and P. Bolton, “Intelligent split menus for data entry: a simulation study in
general practice medicine,” J Amer Med Inform Assoc, 1999.

[80] J. Warren, A. Davidovic, S. Spenceley, and P. Bolton, “Mediface: anticipative data
entry interface for general practitioners,” in Proceedings of OzCHI, 1998.

[81] W. Willett, “Scented widgets: Improving navigation cues with embedded visualiza-
tions,” IEEE Transactions on Visualization and Computer Graphics, 2007.

[82] J. O. Wobbrock, E. Cutrell, S. Harada, and I. S. MacKenzie, “An error model for
pointing based on fitts’ law,” in Proceeding CHI, 2008.

[83] Y. Yu, J. A. Stamberger, A. Manoharan, and A. Paepcke, “Ecopod: a mobile tool for
community based biodiversity collection building,” in JCDL, 2006.

[84] S. Zhao and Z. Wang, “A high accuracy rate commercial flight coupon recognition
system,” in Document Analysis and Recognition, 2003. Proceedings. Seventh Inter-

national Conference on. IEEE, 2003, pp. 82–86.

87

