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Abstract

How do people ask questions to zero in on a correct answer?
Although we can formally define an optimal query to max-
imize information gain, algorithms for finding this optimal
guess may impose large resource costs in space (memory) and
time (computation). To understand how people trade off the
information gain and the computational difficulty of choos-
ing the ideal query, we turned to a large dataset of 380,000
guesses made during a number-guessing game with Amazon
Alexa. We analyzed whether the arithmetic difficulty of fol-
lowing the optimal strategy predicts how far a guess deviates
from theoretically optimal query. We find that when memory
load is higher, and when more arithmetic operations need to be
performed, human guesses deviate more from the most infor-
mative query. These results suggest human computational re-
source constraints limit how people seek out informative ques-
tions.
Keywords: optimal experiment design; resource rationality;
mental arithmetic; decision theory; information gain

Introduction
In situations as wide-ranging as medical diagnosis, asking
for directions, and debugging software, people must come up
with good questions to reach a suitable answer (Coenen, Nel-
son, & Gureckis, 2019). However, identifying the best ques-
tion to ask is a difficult computational problem, even before
considering the limited cognitive resources available to hu-
mans. How do people balance the need to find informative
questions with the computational constraints of their cogni-
tive resources?

Research on active learning and optimal experiment design
reveals that in a wide range of circumstances, people are fairly
effective at asking informative questions (Coenen et al., 2019;
Nelson, 2005; Gureckis & Markant, 2012). People ask in-
formative queries when classifying unfamiliar alien creatures
(Nelson, 2005), finding battleships (Gureckis & Markant,
2009), and teasing out causal models (Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003; Cook, Goodman, & Schulz,
2011) Although people are sensitive to the informativeness of
questions, they do not always ask the most informative ques-
tions. For instance, in a battleship game, participants selected
the most optimal choice with a high frequency, but still chose

* indicates equal contribution

non-optimal spaces often (Gureckis & Markant, 2009). What
explains this deviation from optimality?

Finding the most diagnostic question can be a challenging
computational problem, so it may be the case that people fail
to find optimal questions because of their cognitive resource
constraints (Coenen et al., 2019). Cognitive psychology has
documented numerous limits in resources including mem-
ory (Baddeley, 1997), central processing capacity (Pashler,
1984), attention (Cavanagh & Alvarez, 2005), and process-
ing speed (Ratcliff & Rouder, 1998). Recently, these cog-
nitive constraints have been studied using algorithm analy-
sis from computer science (Lieder & Griffiths, 2020; Ger-
shman, Horvitz, & Tenenbaum, 2015; Dasgupta & Gersh-
man, 2021), clarifying the roles that limitations to memory
(space), computational speed (time), and language (commu-
nication throughput) have had on shaping human cognition
(Griffiths, Lieder, & Goodman, 2015; Griffiths, 2020). Al-
gorithm analysis allows researchers to incorporate resource
constraints in models of cognition to postulate “resource ra-
tional” algorithms that balance task objectives with the execu-
tion costs (Lieder & Griffiths, 2020; Gershman et al., 2015).
Such bounded-rational analyses have succeeded in explain-
ing peculiarities of human cognition in domains ranging from
sentence parsing (Levy, Reali, & Griffiths, 2009) to hypoth-
esis generation (Dasgupta, Schulz, Goodman, & Gershman,
2018).

Despite thorough analyses of the effect of cognitive limi-
tations on various inference and decision-making algorithms,
how these cognitive limitations apply to active learning and
optimal experiment design is less clear. Some analyses have
indicated that people are able to maximize their information
gain given what they already know; however, the relative effi-
ciency of the posed question varies as a function of the search
space (Gureckis & Markant, 2009). Cognitive limitations
might influence human active learning in at least two ways.
First, memory constraints mean that finding diagnostic ques-
tions in larger hypothesis spaces is harder, as it requires eval-
uating the diagnosticity of a question with respect to a larger
set of hypotheses. Second, algorithms for finding the most
diagnostic question might be limited by time – some hypoth-
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Figure 1: In the number guessing game, players try to guess
which number between 1 and 100 a computer voice assistant
has chosen. The player repeatedly queries the voice assis-
tant with a guess and receives feedback of either “lower”,
“higher” or “correct” as the answer. Each guess rules out a
part of the number space, and the game ends when the player
has guessed the correct number. The optimal strategy—
binary search—is guaranteed to halve the interval in which
the target number could lie at each guess, and will find the
correct answer in at most 7 guesses.

esis spaces might be more conducive to efficient calculations
of optimal questions. Although these possible influences of
cognitive resources on active learning have long been evident,
measuring the influences of these factors require a fairly con-
strained problem with well-defined cognitive constraints, and
with large amounts of data.

To study the role of cognitive constraints on human in-
formation seeking, we turn to a large dataset showing hu-
man performance on the relatively simple Number Guessing
Game on Amazon Alexa (Dobson, 2019). With the num-
ber guessing game, the integer interval domain allows us to
explicitly map well-studied memory and computation con-
straints onto the arithmetic properties of the interval under-
lying each guess. This precision in turn allows us to measure
how the efficiency of questions varies as a function of these
cognitive constraints, to ask whether guesses for intervals im-
posing larger memory or computational costs are further from
optimal.

Alexa Number Game
We used the Alexa Number Game dataset, which included
380,000 guesses across 50,000 games and 14,000 players,
with date, outcome, and unique player IDs for all games. In
each game, the computer randomly picks an integer between
1 and 100, and players have to find that number by making se-
quential guesses of integers (see figure 1). After each guess,
players receive feedback about whether the target number
matches their guess, or—if not—whether the target is higher
or lower than the guessed number. Feedback constrains the
plausible interval for the target, so that after guessing “50”,
and receiving the feedback “higher”, the player knows that
the target number is in the interval bounded by 51 and 100.
The target number can be reached in the fewest number of

guesses, on average, by following a binary search strategy:
guessing the midpoint of the current interval. Given the con-
figuration of the game, the binary search strategy not only
yields the earliest correct answer, on average, but also maxi-
mizes the expected information gain of the query.

This dataset offers several key advantages. First, the size
of the dataset yields fine-grained measurements of human
behavior in a variety of circumstances, rather than limiting
analyses to particular pre-designed conditions. Second, this
game reflects naturalistic information-seeking by voluntary
players, reflecting the behavior of motivated individuals in
lifelike situations, rather than in artificial lab settings where
people might make different tradeoffs between cognitive cost
and performance. Third, the game has a simple optimal so-
lution, yet finding that optimal solution requires a variable
amount of cognitive effort, depending on the specific interval
in question. Fourth, the game sets up a straight-forward dis-
tribution over the target location: it is equally likely to be any
point in the interval not yet already ruled out. This allows
us to assume that the players correctly represent the uncer-
tainty at each guess, which allows us to look for sources of
errors beyond incorrect estimations of the potential locations
of the target. Finally, the simple game structure — restricting
hypotheses to a set of integers — allows us to use the rich lit-
erature on human cognitive limitations in integer arithmetic
to define, a priori, the difficulty of information search in dif-
ferent circumstances.

Since this dataset reflects people interacting with their
smart speakers in a variety of circumstances, the dataset nec-
essarily contains an admixture of people who do not appear to
be intentionally playing the game. Fortunately, the structure
of the game means that completely inattentive play can be
easily detected and discarded. The available dataset already
excluded games that were not completed within 15 guesses,
or that contained guesses that could not be parsed by Alexa,
and we further excluded 33,442 games (176,107 guesses) that
contained guesses outside the bounds of the current inter-
val (45.8%). We also excluded from analysis 9,459 guesses
where there was only one candidate within bounds, as no in-
formation can be gained in these circumstances. These ex-
clusions left us with a dataset of relatively attentive play, con-
sisting of 12,115 players, playing 32,480 games for a total
of 198,487 guesses. To evaluate how well people pose ques-
tions in the number guessing game, we need to quantify the
efficiency of a given query, as well as the algorithmic diffi-
culty of posing a good question in a given circumstance. The
next two sections describe these measures in detail.

Relative Expected Information Gain
How good is a particular guess? Although there is a large
number of candidate criteria for optimal experimental design
(Nelson, 2005; Coenen et al., 2019), in the case of the number
game, their subtle differences are largely irrelevant. We will
evaluate the quality of a guess in terms of how much infor-
mation one expects to gain from the answer: how much un-
certainty (as measured by entropy) is expected to be reduced
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Figure 2: How much can we expect a guess to reduce our
uncertainty about the target number? The higher expected
information gain (EIG), the more informative the guess. The
distribution of EIG of human players (blue) is compared to
simulations of two key baselines: a random guessing strategy
(red) and the optimal strategy of binary search (green). On
average, human guesses are less efficient than optimal, but
much more diagnostic than random.

by getting an answer to the question posed (Shannon, 1948).
This ”expected information gain” (Lindley, 1956; Fedorov,
1972) not only maps onto the optimal binary search strategy,
but also explains human intuitions in a number of querying
tasks (Nelson, 2005).1In our case, the expected information
gain, for a given guess x is defined as:

EIG(x) = H (a)−∑
b∈B

H (b)p(b) (1)

Where H (a) is the entropy (in bits) associated with the
current interval (a), so if the interval is 1 to 78, H (a) =
log2(78) = 6.28. B is the set of possible intervals af-
ter the feedback is received for guess x. So if one were
to guess x = 53, the set of possible intervals is B =
{[1,52], [53,53], [54,78]}. We average the entropy of each of
these resulting posterior intervals, weighted by their proba-
bility, p(b) = |b|/|a|, to obtain an expected posterior entropy
of the interval: ∑b∈B H (b)p(b) = 5.7(0.67) + 0(0.013) +
4.64(0.32) = 5.29. The expected information gain for guess
x amounts to the difference between the current entropy, and
the expected posterior entropy: how much the guess is ex-
pected to reduce our uncertainty. Here EIG(x = 53) = 0.997.

For the number guessing game, EIG is maximized for a
simple optimal strategy: binary search. Binary search entails
repeatedly dividing the list of possible outcomes in half to
maximally narrow the list of possibilities. For example, if
starting with the interval [1,78], the first guess ought to be
39 or 40, and if given the response ”lower”, the next guess
would be 19, which bisects the ”lower” possibilities ([1,38]).
On average, idealized binary search should be able to guess
the number in log2(n) guesses, where n is the number of can-
didates. For this game, n=100; thus, the number of guesses
required is at most 7. Because of the possibility of the guess
being correct, the optimal guess (39 or 40 for an interval of
[1,78]) does not have an expected information gain of exactly
1 bit. Instead, in this case the optimal EIG is 1.086 bits. To

evaluate the quality of a particular guess, we calculate a rel-
ative Expected information gain by normalizing the EIG(x)
of the guess by the optimal EIG∗: rEIG = EIG(x)/EIG∗.
This Relative Expected Information Gain measure asks what
proportion of the maximum available information gain was
realized by the participant’s guess.

Arithmetic measures of algorithmic difficulty
In many domains, characterizing the cognitive constraints in-
herent in enumerating, evaluating, and searching over the hy-
pothesis space is an open challenge. Fortunately, in the do-
main of numbers and arithmetic these constraints are well
documented and each factor maps onto known cognitive lim-
itations. These cognitive constraints fall into two general cat-
egories: limited space in working memory, and limited time
for computations. In arithmetic, the size and quantity of num-
bers to be kept in working memory indicate the memory de-
mand of the calculation (Dehaene, 2003), and the number of
individual operations that need to be performed indicate the
time cost.

In order to estimate the processing cost of calculating the
optimal guess at each decision point, we make several as-
sumptions about how the player might determine the mid-
point of the interval. We assume that users store the lower
bound, L, and upper bound, U , of the interval in which the
target can lie. They then calculate the interval, I = U − L,
and divide the interval by 2: J = I/2. Finally they add the
quotient to the lower bound to find the midpoint of the two
numbers, M = L+ J.

We identify four features of this calculation which might
index processing cost: interval size, midpoint, carrying, and
number of operations. Formally, we define the interval size as
U−L, and the midpoint as (U +L)/2. We identify 4 potential
carrying operations throughout the three steps of mid-point
calculation (subtraction, division, and addition). Carrying is
required during subtraction if the ones-place of L is greater
than the ones-place of U , during division if the tens-place
digit and/or the ones-place digit of the I is not divisible by
2 (e.g. 34/2; 43/2), and during addition if the sum of the
addends in the ones-place is > 10 (e.g. 5+ 7). There are
values of U and L for which all of these conditions are met
(e.g. U = 100, L = 23), and others for which none are met
(U = 69, L = 41). Therefore, the number of carries ranges
from 0 to 4.

To define the number of operations, we decompose the
midpoint calculation into single-digit operations (e.g. 42+12
can be decomposed into 2+ 2 and 4+ 1) (Hitch, 1978). If
we assume that adding or subtracting 0 from a single digit
number does not constitute an operation (as the value of the
other operand does not change), then there are 6 potential op-

1It is possible to evaluate actual information gained from each
guess, conditional on the answer. However, such a measure would
only noisily reflect the quality of questions people pose. Because,
absent any clairvoyance, when people make a guess, they cannot
know what answer will follow, therefore their choice of query must
be made based on the expected, rather than observed, answer.
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Figure 3: (A) Each pixel indicates the relative frequency of a particular interval the true number must be encountered by the
players. Every game starts in the top-left corner. Note the regular patterns on 10s and 5s. (B) Human guess efficiency as
a function of interval location. The average relative Expected Information Gain (rEIG)—how much information is gained
relative to following the optimal strategy?—for each interval is shown.

erations: 2 during subtraction (one if L > 10, another if L
is greater than zero in the ones-place); 2 during division (1
if I > 10, another is always necessary); and 2 during addi-
tion (1 if either J < 10 or L < 10, another if either J or L
have a 0 value in the ones-place. The number of operations
ranges from 6 (e.g. when U = 96, L = 72), to 2 (e.g. when
U = 80,L = 0).

Both the size of the interval and the value of the mid-
point place constraints on memory. As the size of the inter-
val between the two numbers increases, the number of avail-
able hypotheses about the target number increases (Zbrodoff,
1995). As the magnitude of the bounds of the interval in-
creases, keeping the size of the interval constant, a higher fi-
delity of representation is necessary to account for the change
in relative proportion of size and bounds (Dehaene, 2003)—
the midpoint of the interval measures the magnitude of the
bounds. The need to carry or borrow terms when calculat-
ing requires additional numbers to be kept in working mem-
ory, and increases the number of operations that need to be
performed (Imbo, Vandierendonck, & Vergauwe, 2007). Fi-
nally, each single-digit operation will take some amount of
time and processing effort to perform. Therefore, as the num-
ber of single-digit operations increases, the total processing
cost for the calculation should increase.

We predict that when the processing cost of finding the
optimal guess as indexed by these measures is high, users
will avoid incurring this cost by using easier but less accurate
strategies. Therefore, we predict that as processing cost in-
creases, the optimality of guesses—as measured by rEIG—
will decrease. In other words, how informative the chosen
guess is will depend on how difficult it is to identify the opti-
mal query. This would indicate that users’ querying behavior
is sensitive to cognitive effort in determining the most infor-
mative guess.

Results
To establish a baseline against which to compare the optimal-
ity of human guesses, we ran two simulations. To simulate
random guessing, we generated numbers from a uniform dis-
tribution with limits at the current lower and upper bounds.
For optimal guessing, we calculated the optimal guess at each
decision point using binary search. Figure 2 shows the distri-
bution of EIG across guesses for each simulation and the user
data.

User guesses had a significantly higher EIG on average
(mean=0.997, sd=0.324) than would be expected if they were
randomly guessing (mean=0.814, sd=0.164, z = 30.64, p <
0.001). However, the EIG of human guesses falls well short
of what would be expected following the optimal strategy
(mean=1.224, sd=0.241; z = 278.3, p < 0.001). This demon-
strates that human players perform much better than chance,
but much worse than optimal. Next, we examined whether
the deviation from optimality can be explained by processing
costs incurred during calculation of the optimal guess.

Effect of processing cost on optimality

An overview of the frequency and the mean rEIG for each
interval is shown in Figure 3. Although some patterns are
suggested in the heatmap, we aim to characterize the vari-
ation pictured, in terms of the arithmetic properties of each
interval, as well as the computational difficulty it imposes on
the guesser.

To investigate whether the difficulty of computing the mid-
point of the interval predicts the rEIG of a guess, we con-
structed linear mixed effects models to predict rEIG using
our measures of arithmetic difficulty. We constructed sepa-
rate linear models, which tested the effect of each measure
in isolation as well as a full model with all four measures in-
cluded. All models were constructed using the lmerTest R
package (Luke, 2017) and t statistics are computed via Sat-
terthwaite’s degrees of freedom method (Satterthwaite, 1946;
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Table 1: Standardized coefficients for a full model predicting
rEIG from the arithmetic properties of the interval.

Std. Coef Std. Error df t value Pr( |t|)
(Intercept) 0.882 0.002 78194.4 442 < 0.001
Interval size −0.135 0.002 194588.6 −60.3 < 0.001
Midpoint −0.011 0.003 194421.8 −4.2 < 0.001
Carrying −0.078 0.003 194417.4 −30.2 < 0.001
No. of operations −0.002 0.003 196532.3 −0.8 0.411

Luke, 2017). All models used the same random effects struc-
ture: random intercepts by user.

There was some ambiguity about how users might update
their bounds. A rational user would update their bound to
exclude their most recent guess: after guessing “50” and re-
ceiving “higher” as feedback, the players would update their
lower bound to 51. However, we hypothesized that many
players may have stored their most recent guess itself as
the bound due to its saliency. We ran a version of our full
model with and without adjustment for this effect. Then, we
computed the Akaike information criterion for both (AIC ad-
justed: −25407, AIC unadjusted: −24584), which indicates
that the adjusted model better fits the data. All reported re-
sults and figures therefore include this adjustment.

Interval Size Larger intervals impose higher memory loads
by virtue of requiring that a larger hypothesis space be
kept in mind. Insofar as memory limits the efficiency
of posed questions, we would expect lower rEIG for
larger intervals. Figure 4 confirms this effect of inter-
val size on rEIG: rEIG decreases with increasing in-
terval size t(191700.8) = −53.89, p < 0.001; 95% CI
[−7.940×10−4,−7.380×10−4]. This effect holds in the full
model (Table 1), controlling for other arithmetic properties
of the interval: t(194588.6) = −60.312, p < 0.001; 95% CI
[−1.010×10−3,−9.440×10−4]. Less informative guesses,
from participants when there are large intervals, is consis-
tent with the interval size imposing a working memory load.
However, part of the effect is driven by poor performance at
interval sizes between 50 and 100. These interval sizes can
only contain data from people who had made particularly in-
efficient early guesses, and thus, ought to be expected to make
bad guesses in the future. However, this adverse selection
process is not responsible for this effect, for even when we
consider only interval sizes less than 50, the negative linear
trend still holds (t(120963.54) = −13.028, p < 0.001; 95%
CI [−7.100×10−4,−5.240×10−4]).

Midpoint The magnitude of numbers is known to cause de-
lays in processing during mental arithmetic (Dehaene, 2003),
consistent with a role for the approximate number system
in such calculations. If the approximate number system in-
fluences the efficiency of search, we would expect intervals
bounded by larger numbers to yield less efficient guesses.
The midpoint of the upper and lower bounds indexes the
mean magnitude of both bounds and is orthogonal to inter-
val size. Therefore, as the midpoint increases we expect the
cost of calculating the optimal guess to increase and there-

Figure 4: Relative Expected Information Gain as a function
of interval size. rEIG is lower when the interval is larger
(r = −0.147), with some notable exceptions at 100 (first
guess), 50 and 25 (second and third guess following the opti-
mal strategy), and 2-3 (final guess).

Figure 5: rEIG as a function of the magnitude of the in-
terval midpoint. rEIG decreases as midpoint increases (r =
−0.026).

fore rEIG of each guess to decrease. A linear model confirms
this negative effect (t(191472.5) = −11.93, p < 0.001; 95%
CI [−3.070×10−4,−2.210×10−4]; Figure 5). This effect
holds in the full model, controlling for other predictors, in-
cluding interval size (t(194421.8) = −4.17, p < 0.001; 95%
CI [−1.520×10−4,−5.470×10−5]). Although these results
do support our hypothesis, the effect size is negligible (an
expected change of ∼ 0.01 rEIG across the whole range of
possible midpoint values).

Carrying When doing multi-digit arithmetic, carrying
across decimal places requires one to temporarily store ad-
ditional pieces of information and perform additional oper-
ations on an internal representation of the number. Carry-
ing thereby imposes costs both in terms of memory and the
time needed to perform a calculation (Imbo et al., 2007). We
therefore expect users’ performance to decrease as the num-
ber of required carry operations increases. A linear model
confirms this effect (t(195207.03) =−17.52, p< 0.001; 95%
CI [−0.009,−0.007]; Figure 6). The marginal effect of car-
rying remains even when controlling for other factors in-
cluding midpoint, and thus the overall size of the num-
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bers in play (t(194417.4) = −30.17, p < 0.001; 95% CI
[−0.018,−0.016]).

Figure 6: rEIG as a function of the number of carries required
for a calculation. rEIG decreases as the number of carries
increases (r =−0.049).

Number of Operations Finally, the total number of
arithmetic operations involved in finding the midpoint
is expected to decrease efficiency. Indeed, we found
an effect on rEIG when marginalizing over all other
variables (t(198070.66) = −2.698, p = 0.007; 95% CI
[−1.760×10−3,−2.783×10−4].

However, the effect is not robust to controlling for the ef-
fect of other factors. In the full model it is attenuated and
no longer significant (t(196532.3) =−0.822, p = 0.41; 95%
CI [−1.406×10−3,5.759×10−4]). This likely reflects that
the negative marginal effect above arises from correlations
with factors such as interval size, midpoint, and the number
of carry operations.

Discussion
We found that the efficiency of questions posed by humans,
compared to the optimal question, varies systematically as
a function of the magnitude and arithmetic properties of the
current interval. People were less efficient when faced with
larger intervals, intervals comprised of bigger numbers, and
intervals requiring more elaborate arithmetic operations. To-
gether, these results highlight the role of cognitive limita-
tions and processing constraints in shaping human informa-
tion search. Understanding how people trade off cognitive
ease with their effectiveness in gathering information is cru-
cial to explaining how people can efficiently make sense of
an uncertain world.

The finding that the midpoint of the interval predicts re-
duction in rEIG independent of the size of the interval hints
at an additional hypothesis on mental arithmetic: that certain
computations are not actually computed, but merely retrieved,
or estimated from the approximate number system (Dehaene,
2011; Zbrodoff, 1995).

These findings should not be taken to suggest that players
are incapable of the simple operations needed to calculate the
optimal guess: it is to be expected that given sufficient time
and motivation, most players would be able to solve the calcu-

lation required to find the optimal guess. Rather, these results
indicate that people trade off information gain and cognitive
effort. Because the queries were undertaken in a game rather
than an explicit study that rewards people for their partici-
pation, the reduction in optimality shows how people weigh
information gain against effort in play, without an external re-
ward. As such, this finding hints not at absolute limitations
of human cognition, but rather at the weighing priorities and
effort: people choose to accept less information gained per
guess when the alternative is to expend significant cognitive
effort. As there is no explicit cost associated with multiple
guesses, performing multiple less-than-optimally informative
guesses can be a rational strategy when determining the op-
timal query is time consuming. Without information on how
long each guess took, this hypothesis is hard to confirm.

In sum, our paper presents a novel source of evidence for
the claim that information gathering behavior is guided by
cognitive effort. This connects fundamental measures of in-
formation to the human cognitive limitations and suggests
that humans balance the cost and gain of gathering informa-
tion.
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