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Grouping all the terms that correspond to the same pow-
ers of  and using v, (¢ +A(1—a))— (1 —atar?)=(1—
M) (a2 — (1 — a)?), the result in (4) is obtained.

[Received March 1999. Revised June 2000.]
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Pena and Prieto present a new method for robust multi-
variate estimation of location and shape and identification of
multivariate outliers. These problems are intimately connected
in that identifying the outliers correctly automatically allows
excellent robust estimation results and vice versa.

Some types of outliers are easy to find and some are diffi-
cult. In general, the previous literature concludes that problems
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are more difficult when the fraction of outliers is large. More-
over, widely scattered outliers are relatively easy, whereas
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concentrated outliers can be very difficult (Rocke and
Woodruff1996). This article is aimed squarely at the case in
which the outliers form a single cluster, separated from the
main data and of the same shape (but possibly different size)
as the main data, an especially difficult case for many outlier-
detection methods (Rocke and Woodruff 1996). We believe

that it is entirely appropriate that special methods like those
in the present article be developed to handle this case, which
is often too difficult for general-purpose outlier-detection and
robust-estimation methods.

In this discussion, we make some comparisons of the esti-
mators kurtosisl, FAST-MCD, SD, and also certain M and S
estimators; then we point out the connection to cluster anal-
ysis (Rocke and Woodruff 2001). The MCD, MVE, SD, and
S estimators with hard redescending influence functions are
known to have maximum breakdown. Kurtosis1 probably also
has maximum breakdown, although this article has no formal
proof. M estimators are sometimes thought to be of breakdown
1/(p+ 1), but this is actually incorrect. Work by Maronna
(1976), Donoho (1982), and Stahel (1981) showed that when-
ever the amount of contamination exceeds 1/(p+1) a root of
the estimating equations that can be carried over all bounds
exists. In fact, a root may exist that remains bounded. S esti-
mators are a subclass of M estimators, as shown by Lopuhai
(1989), and have maximal breakdown when hard redescending
¢ functions are used and the parameters are correctly chosen.
This provides an example of a class of M estimators that have
maximal breakdown.

M estimators can be highly statistically efficient and are
easy to compute by iteratively reweighted least squares but
need a high-breakdown initial estimator to avoid converging
on the “bad” root (this also applies to S estimators, which
are computed by solving the related constrained M estimation
problem). MULTOUT (Rocke and Woodruff 1996) combines
a robust initial estimator with an M estimator to yield a high-
breakdown, statistically efficient methodology. Note also that
identifying outliers by distance and reweighting points with
weight O if the point is declared an outlier and weight 1 other-
wise is a type of M estimator with a ¢ function that is constant
until the outlier rejection cutoff point. This is used by many
methods (e.g., FAST-MCD, kurtosisl) as a final step, which
improves statistical efficiency.

Thus, the key step in outlier identification and robust esti-
mation is to use an initial procedure that gives a sufficiently
good starting place. The gap can be quite large between the
theoretical breakdown of an estimator and its “practical break-
down,” the amount and type of contamination such that suc-
cess is unlikely. Consider, for example, the case in Table 6
in which n =100, p =20, « = .3, A=1, and 6 = 100. The
amount of contamination is well below the breakdown point
(40%), and the contamination is at a great distance from the
main data, but none of the methods used in this study are very
successful.

The study reported in Table 6 has some difficulties:

1. The number of data points is held fixed at 100 as the
dimension rises, which leads to a very sparse data problem in
dimension 20. Many of these methods could perhaps do much
better with an adequate amount of data. This is particularly
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true of FAST-MCD and MULTOUT, which are designed to
handle large amounts of data.

2. When n =100 and p = 20, the maximum breakdown of
any equivariant estimator is .4. Of course, this does not mean
that the estimator must break down whatever the configuration
of the outliers, but it does show that at @« = .4 and p = 20 and
for every dataset generated there is an outlier configuration
such that no equivariant estimator will work.

3. The case A =15 is one in which the outliers are actually
scattered rather than concentrated. This is especially true when
6 = 10. With standard normal data in 20 dimensions, almost
all observations lie at a distance less than the .001 point of
a X,, distribution, which is 6.73. The outliers are placed at
a distance of 10, and the .999 sphere for these has a radius
of (5)(6.73) = 33.65. Thus, the outliers actually surround the
good data, rather than lying on one side. This explains why
FAST-MCD gets all of the A =5 cases regardless of other
parameter settings.

4. When n =100 and p = 20, the preceding computation
shows that standard normal data will almost all lie in a sphere
of radius 6.73 around the center. If the outliers are displaced
by 10 with the same covariance (A = 1), these spheres overlap
considerably, and in some instances no method can identify
all “outliers” because some of them lie within the good data.
Shrunken outliers (A = .1) do not have this problem since the
radius of the outliers is only .67, so a displacement of 10
prevents overlap. Expanded outliers (A = 5) are relatively easy
because the outliers surround the main data, and the chance
of one falling in the relatively small sphere of the good data
is small.

The results are better for two and four clusters (Table 8)
than for one and would be even better for individually scat-
tered outliers. The important insight is that many methods
work well except in one hard case—when the outliers lie
in one or two clusters. Methods such as the FAST-MCD
and MULTOUT must be supplemented by methods specifi-
cally designed to find clustered or concentrated outliers. These
clustered outlier methods are not replacements for the other
methods because they may perform poorly when there are
significant nonclustered outliers.

The remaining question concerns appropriate methods to
supplement the more general estimation techniques and allow
detection of clustered/concentrated outliers. The methods of
Pefia and Prieto are aimed at that task, by trying to find the
direction in which the clustered outliers lie. The performance
of these methods is documented in the article under discus-
sion. Another attempt in this direction was given by Juan
and Prieto (2001), who tried to find outliers by looking at
the angles subtended by clusters of points projected on an
ellipsoid. They showed reasonable performance of this method
but provided computations only for very concentrated outliers
(A=.01).

Rocke and Woodruff (2001) presented another approach. If
the most problematic case for methods like FAST-MCD and
MULTOUT is when the outliers form clusters, why not apply
methods of cluster analysis to identify them? There are many
important aspects to this problem that cannot be treated in
the limited space here, but we can look at a simple version
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of our procedure. We search for clusters using a model-based
clustering framework and heuristic search optimization meth-
ods, then apply an M estimator to the largest identified cluster
(for details, see Coleman and Woodruff 2000; Coleman et al.
1999; Reiners 1998; Rocke and Woodruff 2001).

To illustrate our point, we ran a slightly altered version of
the simulation study in Table 6 from Pefia and Prieto. First, we
placed the outliers on a diagonal rather than on a coordinate
axis. If wu=(1,1,...,1), then the mean of the outliers was
taken to be p~'/>8u, which lies at a distance of & from 0. After
generating the data matrix X otherwise in the same way as did
Pefia and Prieto, we centered the data to form a new matrix
X" and then generated “sphered” data in the following way:
Let X* =UDV", the singular value decomposition (SVD) in
which D is the diagonal matrix of singular values. Then the
matrix X = X*VD'V' =UV" is an affine transformed ver-
sion of the data with observed mean vector 0 and observed
covariance matrix I. The purpose of these manipulations is to
ensure that methods that may use nonaffine-equivariant meth-
ods do not have an undue advantage. Pushing the outliers
on the diagonal avoids giving an advantage to component-
wise methods. The SVD method of sphering, unlike the usual
Cholesky factor approach, preserves the direction of displace-
ment of the outliers.

We ran all the cases from the simulation of Pefia and Prieto.
Time constraints prevented us from running the 100 repeti-
tions, but out of the five repetitions we did run, we succeeded
in 100% of the cases in identifying all of the outliers, except
for the cases in which p =20 and A = 1; these required more
data for our methods to work. We could identify all of the
outliers in 100% of the cases when n = 500, for example,
instead of n = 100. The successful trials included all of the
other cases in which no other method reported in Table 6 was
very successful.

This insight transforms part of the outlier-identification
problem into a cluster-analysis problem. However, the lat-
ter is not necessarily easy (Rocke and Woodruff 2001). For
example, we tried the same set of simulation trials using the
standard clustering methods available in S-PLUS. In this case,
we ran 10 trials of each method. The methods used were
two hierarchical agglomeration methods, mclust (Banfield and
Raftery 1993) and agnes (Kaufman and Rousseeuw 1990;
Struyf, Hubert, and Rousseeuw 1997); diana, a divisive hier-
archical clustering method; fanny, a fuzzy clustering method;
pam, clustering around medoids (Kaufman and Rousseeuw
1990; Struyf et al. 1997); and k-means (Hartigan 1975). First,
it should be noted that all of these methods succeed almost
all of the time for separated clusters (A =.1 or A = 1) if the
data are not sphered. All of these methods except mclust use
Euclidean distance and make no attempt at affine equivariance.
Mclust uses an affine equivariant objective function based on
a mixture model, but the initialization steps that are crucial to
its performance are not equivariant.

Over the 72 cases considered (with sphered data), none of
these methods achieved as much as 50% success. The overall
success rates were agnes 36%, diana 48%, fanny 41%, k-
means 10%, mclust 37%, and pam 12% (compared to MCD
75%, SD 77%, kurtosis] 83%, and our clustering method
89%). For shrunken outliers (A = .1), the most successful
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were fanny 81% and mclust 37%, and the least successful
were agnes 1% and k-means 2% (compared to MCD 41%,
SD 70%, kurtosisl 88%, and our clustering method 100%).
For expanded outliers (A = 5), the most successful were
agnes 97%, diana 96%, mclust 73%, and fanny 39%, and the
least successful was pam 0% (compared to MCD 100%, SD
88%, kurtosisl 100%, and our clustering method 100%). This
case is quite easy for robust multivariate estimation methods;
FAST-MCD and MULTOUT each get 100% of these. Again,
the most difficult case is shift outliers (Rocke and Woodruff
1996; Hawkins 1980, p. 104), in which A = 1. The best per-
formance among these clustering methods is diana 34%, with
the next best being k-means at 16% (compared to MCD 82%,
SD 73%, kurtosisl 62%, and our clustering method 67%).

The poor performance of these clustering methods is prob-
ably due to two factors. First, use of the Euclidean metric is
devastating when the shape of the clusters is very nonspher-
ical. Since this can certainly occur in practice, such methods
should at least not be the only method of attack. Second,
some of these problems require more extensive computation
than these methods allow, at least in the implementation in
S-PLUS. Performance of many descents of the algorithm from
a wide variety of starting points, including random ones, can
obtain better solutions than a single descent from a single
plausible starting point. This is particularly true when the data
are extremely sparse, as they are in these simulations. Many
of these methods could, of course, be modified to use mul-
tiple starting points and might show enormously improved
performance.

We confirmed this by using two additional model-based
clustering methods that permit control of the amount of com-
putation. The first of these was EMMIX (McLachlan and
Basford 1988; McLachlan and Peel 2000). The second was
EMSamp (Rocke and Dai 2001). For both programs, the per-
formance was similar to that of our clustering method; success
was usual if enough random starting points were used except
for shift outliers in dimension 20 in the present n = 100 case.

Since different methods are better at different types of out-
liers and since once the outliers have been identified by any
method they can be said to stay identified, an excellent strat-
egy when using real data instead of simulated data (where the
structure is known) is to use more than one method. Among
the methods tested by Pefia and Prieto, the best combina-
tion is FAST-MCD plus kurtosis1. Together these can improve
the overall rate of identification from 75% and 83%, respec-
tively, to 90%, since FAST-MCD is better for shift outliers
and kurtosisl is better for shrunken outliers. An even better
combination is our clustering method plus FAST-MCD, which
gets an estimated 95% of the cases.

We can summarize the most important points we have tried
to make here as follows:

1. General-purpose robust-estimation and outlier-detection
methods work well in the presence of scattered outliers or
multiple clusters of outliers.

2. To deal with one or two clusters of outliers in diffi-
cult cases, methods specifically meant for this purpose such
as those of Pefia and Prieto and Juan and Prieto (2001) are
needed to supplement the more general methods.
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3. An alternative approach for this case is to use clustering
methods to supplement the general-purpose robust methods.

4. Choice of clustering method and computational imple-
mentation are important determinants of success. We have
found that model-based clustering together with heuristic
search technology can provide high-quality methods (Cole-
man and Woodruff 2000; Coleman et al. 1999; Reiners 1998;
Rocke and Dai 2001; Rocke and Woodruff 2001).

5. The greatest chance of success comes from use of multi-
ple methods, at least one of which is a general-purpose method
such as FAST-MCD and MULTOUT, and at least one of which
is meant for clustered outliers, such as kurtosisl, the angle
method of Juan and Prieto (2001), or our clustering method
(Rocke and Woodruff 2001).
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Pefia and Prieto propose a new algorithm to detect multi-
variate outliers. As a byproduct, the population scatter matrix
is estimated by the classical empirical covariance matrix of
the remaining data points.

The interest in outlier-detection procedures is growing fast
since data mining has become a standard analysis tool in both
industry and research. Once information (“data”) is gathered,
marketing people or researchers are not only interested in the
behavior of the regular clients or measurements (the “good
data points”) but they also want to learn about the anomalous
observations (the “outliers”).

As pointed out by the authors, many different procedures
have already been proposed over the last decades. However,
none of them has a superior performance at all kinds of
contamination patterns. The high-breakdown MCD covari-
ance estimator of Rousseeuw (1984) is probably the most
well known and most respected procedure. There are sev-
eral reasons for this. First, the MCD has good statistical
properties since it is affine equivariant and asymptotically
normally distributed. It is also a highly robust estimator,
achieving a breakdown value of 50% and a bounded influ-
ence function at any elliptical distribution (Croux and Haes-
broeck 1999). Another advantage is the availability of a
fast and efficient algorithm, called FAST-MCD (Rousseeuw

and Van Driessen 1999), which is currently incorporated in
S-PLUS and SAS. Therefore, the MCD can be used to robus-
tify many multivariate techniques such as discriminant anal-
ysis (Hawkins and McLachlan 1997), principal-component
analysis (PCA) (Croux and Haesbroeck 2000), and factor anal-
ysis (Pison, Rousseeuw, Filzmoser, and Croux 2000).

Whereas the primary goal of the MCD is to robustly esti-
mate the multivariate location and scatter matrix, it also can
be used to detect outliers by looking at the (squared) robust
distances RD (x;) = (x; — Tycp) Syt (X; — Tyep)- Here, Tycp
and Sy,cp stand for the MCD location and scatter estimates.
One can compare these robust distances with the quantiles
of the )(f, distribution. Since this rejection rule often leads
to an inflated Type II error, Hardin and Rocke (2000) devel-
oped more precise cutoff values to improve the MCD outlier-
detection method.

If one is mainly interested in finding the outliers, it is less
important to estimate the shape of the good points with great
accuracy. As the authors explain, it seems natural to try to find
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