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MIND, BRAIN, AND EDUCATION

A Naturalistic Assessment
of the Organization
of Children’s Memories Predicts
Cognitive Functioning and
Reading Ability
Natália Bezerra Mota1, Janaína Weissheimer1,2, Beatriz Madruga3, Nery Adamy1,4, Silvia A. Bunge5,
Mauro Copelli6, and Sidarta Ribeiro1

ABSTRACT— To explore the relationship between mem-
ory and early school performance, we used graph theory to
investigate memory reports from 76 children aged 6–8 years.
The reports comprised autobiographical memories of events
days to years past, and memories of novel images reported
immediately after encoding. We also measured intelligence
quotient (IQ) and theory of mind (ToM). Reading and
Mathematics were assessed before classes began (Decem-
ber 2013), around the time of report collection (June 2014),
and at the end of the academic year (December 2014).
IQ and ToM correlated positively with word diversity and
word-to-word connectivity, and negatively with word recur-
rence. Connectivity correlated positively with Reading in
June 2014 as well as December 2014, even after adjusting for
IQ and ToM. To our knowledge, this is the first study demon-
strating a link between the structure of children’s memories
and their cognitive or academic performance.
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When children begin formal schooling, they are faced with
the challenges of learning to read, write, and perform basic
mathematical calculations, among others. To achieve these
milestones, children must be able to attend to relevant infor-
mation, keep it in mind, organize and flexibly update it,
and recall it at a later time. These cognitive skills improve
dramatically over the elementary school years, as measured
by carefully controlled laboratory tests. At the same time,
there are important individual differences in performance
on these cognitive tests, and there is ample evidence that
interindividual variability in working memory and cognitive
control helps to explain differences in academic achievement
among children (Alloway & Passolunghi, 2011; Titz & Kar-
bach, 2014).

In comparison with research on working memory and
cognitive control, the degree to which episodic memory
contributes to academic achievement is less clear (Sander,
Werkle-Bergner, Gerjets, Shing, & Lindenberger, 2012). It is
generally assumed that the ability to recall detailed accounts
of past events is important for learning new material at
school (Harel et al., 2014). However, the most common
way to measure episodic memory is through the use of
simple laboratory tests in which participants must learn a
series of pairs of stimuli presented on the computer, and
retrieve them after a brief delay (Alloway & Alloway, 2010;
Alloway, Gathercole, Kirkwood & Elliott, 2009; Alloway &
Passolunghi, 2011; Blakemore & Bunge, 2012; Bunge &
Wright, 2007; Johnson, Miller Singley, Peckham, Johnson,
& Bunge, 2014; Sander et al., 2012). While these types of
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Memories Correlate With Academic Performance

paradigms are tightly controlled, they are rather artificial
and do not approach the complexity of memory processes
in the real world. Here, we sought to probe the relationship
between episodic memory and academic achievement in a
more naturalistic context, asking children to report on their
own memories. To this end, we sought to use new quantifi-
cation methods applied to unstructured, spontaneous, freely
produced speech.

The way people report their memories reflects sponta-
neous associations, and indirectly reveals the underlying
thought process. Recently, computational approaches based
on graph theory have succeeded in using structural features
of memory reports to quantify pathological cognitive deficits
(Bertola et al., 2014; Mota, Furtado, Maia, Copelli, & Ribeiro,
2014; Mota et al., 2012). A memory report can be accurately
represented by a graph in which the words are represented
by nodes, and the temporal links between consecutive words
are represented by edges. As described in Table 1, it is pos-
sible to calculate general attributes of graphs (such as the
number of nodes and edges or links), to examine the relation-
ship between those elements by studying recurrence mea-
sures (how repetitions of links between nodes and cycles of
nodes appear on the graphs), and to study the overall con-
nectivity between nodes (counting the number of nodes that
are connected), as well as to describe the global features that
characterize the structure of graphs as a whole (such as the
degree of clustering and the average shortest path between
nodes; Bollobas, 1998).

Such speech graphs have recently been used to reveal
cognitive deficits in pathological populations comprising
patients suffering from psychosis (Mota et al., 2012, 2014)
or dementia (Bertola et al., 2014). In particular, we have
found that dream reports from psychotic patients were less
connected than similar reports from controls. Furthermore,
connectivity measurements were negatively correlated with
cognitive and negative symptoms, denoting that the more
isolated and cognitively impaired the subject is, the less
connected the corresponding dream reports (Mota et al.,
2014). In the case of dementia, the graph-theoretical anal-
ysis of the verbal fluency test led to good sorting between
patients with Alzheimer’s disease and mild cognitive deficits
(Bertola et al., 2014). Cognitive impairment was accompa-
nied by increased graph density, decreased diameter, and
smaller average shortest path.

Graph measurements have yet to be employed to investi-
gate the normal development of memory reports produced
by a healthy population. As a first step in this direction, we
set out to quantify the relationship between the structure of
spontaneous memory reports, and measurements of general
intelligence, theory of mind (ToM), and school achievement.
The longitudinal design of this study allowed us to inves-
tigate whether these structural properties can predict aca-
demic performance over time. The first academic assessment

was performed on December 2013, before the students were
exposed to Reading and Math classes, which began on March
2014. Two subsequent measurements were performed on
June 2014 and December 2014, allowing for the investiga-
tion of both cross-sectional and longitudinal relationships
between graph measurements and academic achievement
during the first year of alphabetization.

In order to characterize the mechanism behind the
possible relationship between declarative memory reports
and cognitive performance, we separated the reports into
those taxing short-term memory (STM), with a few sec-
onds between the encoding and recall of novel images; and
those taxing long-term memory (LTM), with days to years
between the encoding and recall of autobiographical events.
Based on previous studies of memory organization in adult
psychotic patients (Mota et al., 2012, 2014), we hypothe-
sized that three connectivity-related graph attributes that
decrease in association with cognitive decline in these sub-
jects (edges, LCC, and LSC; see Methods section) would
increase in the case of typical developmental improvement
in alphabetization. As this is a first exploratory graph-based
study of memory reports in healthy children, we also tested
whether other 11 graph attributes are relevant.

METHODS

Participants
A total of 76 children (40 males and 36 females, aged 6–8
years, 7.29± 0.58, mean± SD) participated in this study.
These children were recruited from six public schools in
Natal, Brazil. The children came from families with low lev-
els of educational attainment (parents’ years of education
8.76± 3.90) and low socioeconomic status (family income
R$ 1,133.58± 431.21; mean± SD; average national wage R$
1,855.00; Wages, Ministry of Planning, Budget and Manage-
ment, Brazil, 2014). The study was approved by the Ethics
on Research Committee of the Federal University of Rio
Grande do Norte (UFRN) (permit no. 742.116), and the
data were collected during regular class hours within the
school setting, with each child individually in a classroom
assigned exclusively for this purpose. Written informed con-
sent was obtained on behalf of all the children from their
legal guardians at a meeting between experimenters, legal
guardians, and teachers.

Protocol
Several assessments of cognitive functioning and academic
achievement were administered, as described below. We
also collected spontaneous memory reports with different
autobiographical time spans. The experimenter first inter-
viewed each child individually, explaining the experiment
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Table 1
Mathematical Definition and Psychological Interpretation of Speech Graph Attributes (SGA)

SGA Mathematical definition Psychological interpretation

N (nodes) Number of nodes Number of different words, measures
lexical diversity

E (edges) Number of edges Number of links between words
RE (repeated edges) Sum of all edges linking the same pair of

nodes
Number of links between two words;

measures recurrence
PE (parallel edges) Sum of all parallel edges linking the same

pair of nodes given that the source
node of an edge is the target node of
the parallel edge

Number of links between two words
with opposite directions; measures
recurrence

L1 (loop of one node) Sum of all edges linking a node with
itself, calculated as the trace of the
adjacency matrix

Numbers of repetitions of the same
word in sequence; measures
recurrence

L2 (loop of two nodes) Sum of all loops containing two nodes,
calculated by the trace of the squared
adjacency matrix divided by two

Number of sequences of two different
words; measures recurrence

L3 (loop of three nodes) Sum of all loops containing three nodes
(triangles), calculated by the trace of
the cubed adjacency matrix divided by
three

Number of sequences of three
different words; measures
recurrence

LCC (largest connected
component)

Number of nodes in the maximal
subgraph in which all pairs of nodes
are reachable from one another in the
underlying undirected subgraph

Number of different words in the
largest component in which all the
words are connected by a path of
edges; measures how well
connected the words of the report
are

LSC (largest strongly
connected component)

Number of nodes in the maximal
subgraph in which all pairs of nodes
are reachable from one another in the
directed subgraph (node a reaches
node b, and b reaches a)

Number of different words in the
largest component in which all the
words are mutually connected by a
path of edges; measures how well
connected the words of the report
are

ATD (average total degree) Given a node n, the total degree is the
sum of “in and out” edges. Average
total degree is the sum of total degree
of all nodes divided by the number of
nodes

Given the word X, total degree is how
many links this word has with any
other words in the report. ATD is
the average total degree of all words
in the report

Density Number of edges divided by possible
edges (D= 2×E/N × (N − 1)), where E
is the number of edges and N is the
number of nodes

Number of direct word links divided
by all the possible word links (using
all the different words in the report)

Diameter Length of the longest shortest path
between the node pairs of a network

Length (in words) of the path linking
the most distant pair of words in
the report

ASP (average shortest path) Average length of the shortest path
between pairs of nodes of a network

Average of all the shortest paths
between every pair of words in the
report.

CC (average clustering
coefficient)

Given a node n, the clustering coefficient
map (CCMap) is the set of fractions of
all n neighbors that are also neighbors
of each other. Average CC is the sum of
the clustering coefficients of all nodes
in the CCMap divided by number of
elements in the CCMap

Given the word X, CC of X is a
measure of how many words
directly linked to word X are also
directly linked to each other. The
average CC is the average CC of all
different words on the report
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and then collecting declarative memory reports compris-
ing long-term autobiographical memories—LTM (based on
events occurring in the preceding days to years) and STM
reports (based on events occurring immediately before-
hand). The interview began with questions regarding the for-
mer (LTM): “Please, tell me your oldest memory. When did
it happen? How old were you?” and then: “Please, tell me
how was your day yesterday,” then: “Please, tell me a dream
you had. When did it happen?” and finally: “Please, tell me
the events on the day before that dream.” Next we asked
questions to assess STM reports. We showed three affective
images (one positive, one negative, and one neutral) from
the International Affective Picture System (IAPS) database
validated in children (Lang, Greenwald, Bradley, & Hamm,
1993). After seeing each image for 15 s, the computer screen
used for the presentation was turned off, and the children
were asked to report a narrative regarding what was happen-
ing in that image. All reports were limited to a maximum of
30 s.

After collecting these memory reports, we applied stan-
dard ToM tests called the Sally–Anne task (Baron-Cohen,
Leslie, & Frith, 1985) and three cartoons of the picture
sequence test (PST; Baron-Cohen, Leslie, & Frith, 1986),
comprising a total of four tests of ToM abilities. On the
Sally–Anne test, the experimenter (NBM) used a computer
screen to show a story to the subject, and in the end she asked
a question to probe whether the subject differentiates his/her
own beliefs from the character’s beliefs (Baron-Cohen et al.,
1985). On PST, the experimenter asked the child to organize
a cartoon story in the correct sequence, and then report the
resulting story within 30 s. As in the Sally–Anne test, under-
standing of the correct picture sequence requires that the
subject understands that his own beliefs are different from
the character’s beliefs (Baron-Cohen et al., 1986). In addi-
tion, the PST provided another three STM reports.

We scored each of the four answers on the Sally–Anne
test as correct or incorrect, and entered an accuracy score of
0%, 25%, 50%, 75%, or 100% for each participant. On a sub-
sequent visit, 2–8 weeks later, we administered the RAVEN
Progressive Matrices test (Angelini, Alves, Custódio, Duarte,
& Duarte, 1999; Raven, 1936) to collect intelligence quotient
(IQ) data, scored for each child as the percentile corrected
by age. Memory reports, ToM, and RAVEN measurements
were sampled during August and September 2014 (right
after school vacations). Finally, we assessed the students’
scores on the standard national Brazilian test on Math
and Reading, called Provinha Brasil, which is the official
academic evaluation applied by the Ministry of Education
throughout the entire country. Each test is composed of
20 multiple-choice questions. The Reading test assessed
knowledge of grapheme–phoneme correspondence and text
comprehension, whereas the Math test presented questions
about absolute quantities, basic arithmetic operations,

and recognition of geometrical shapes. The academic
tests were administered during three different periods:
December 2013, right before the beginning of the school
year; June 2014, right before school vacations; and December
2014.

Graph Analysis
The memory reports were fully transcribed to a text file that
included all the words spoken by the subject within the 30-s
limit. Whenever the child stopped the report short of the
limit, the interviewer prompted the subject to talk more. In
these cases, the ensuing words spoken by the subject were
transcribed on another line of the text. Declarative mem-
ory reports comprised a concatenation of all the memory
reports (“oldest memory,” “memory from yesterday,” “mem-
ory of a dream,” “memory from the day before the dream,”
IAPS pictures and PST). For STM reports, we concatenated
the IAPS pictures and PST reports. For LTM reports, we
concatenated the answers for the questions regarding “oldest
memory,” “memory from yesterday,” “memory of a dream,”
and “memory from the day before the dream.” The con-
catenated text files were represented as graphs using the
free software SpeechGraphs (Mota et al., 2014; available at
http://neuro.ufrn.br/softwares/speechgraphs).

In summary, for LTM we used the answers to the following
four questions, concatenated into one text file:

1. “Please, tell me your oldest memory”;
2. “Please, tell me how was your day yesterday”;
3. “Please, tell me a dream you had”;
4. “Please, tell me the events on the day before that dream.”

For STM we used the following six reports concatenated
as one text file:

1. Description of three affective images from IAPS database
(one negative, one positive, and one neutral image);

2. Description of three cartoon stories, each made of four
pictures.

For declarative memory, we combined all the reports (4
LTM+ 6 STM) as one text file.

A graph is a mathematical representation of a network
with nodes linked by edges, formally defined as G= (N , E),
with the set of nodes N = {w1, w2, … , wn} and the set of
edges E = {(wi,wj)} (Bollobas, 1998; Börner, Sanyal, & Vespig-
nani, 2007). A speech graph represents the sequential rela-
tionship of spoken words in a verbal report, with each word
represented as a node, and the sequence between succes-
sive words represented as a directed edge (Figure 1; Mota
et al., 2012, 2014). Each line or paragraph in the text file
represents a graph component. If the components share the
same words, those components become linked as a larger
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Fig. 1. Memory reports represented as graphs. (a) Experiment design timeline. Note that the academic performance tests were repeated
at three different time points. (b) Example of a graph from a single memory report and illustrative examples of graph attributes (general
attributes: N=nodes, E= edges; recurrence attributes: RE= repeated edges, PE= parallel edges, L1= loops of one node, L2= loops of
two nodes, and L3= loops of three nodes; connectivity attributes: LCC= largest connected component, LSC= largest strongly connected
component. For a detailed explanation see Table 1). (c) Graph examples from single memory reports of two representative subjects with
high and low cognitive performance.
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Fig. 2. Similar correlations between intelligence quotient (IQ) and theory of mind (ToM) performances and graph attributes
(medium-sized graphs 50 words) from declarative memory. (a) Correlations between IQ performance and nodes, repeated edges (RE),
parallel edges (PE), and largest connected component (LCC; R and p values indicated). Tertile comparison between low, medium, and
high IQ performance groups (RE: high< low IQ, p= .0002). (b) Correlations between ToM performance and nodes, RE, PE, and LCC (R
and p values indicated). Tertile comparison between low, medium, and high IQ performance groups (RE: high< low ToM, p= .0009; PE:
high< low ToM, p= .0002, medium< low IQ, p= .0016).

graph component (Figure 1). A total of 14 speech graph
attributes were calculated for each text file, comprising gen-
eral graph attributes related to the number of elements as
nodes and edges (N=nodes and E= edges), recurrence mea-
sures that count repetitions of links between nodes and
cycles of nodes presented on the graphs (PE= parallel edges,
RE= repeated edges, L1, L2, and L3= loops of one, two, and
three nodes), connectivity measures to count the number of
nodes that are connected by some path of edges regardless
of directionality (LCC= largest connected component and
LSC= largest strongly connected component) and global
attributes to quantify topological features that characterize
complex graphs (ATD= average total degree, density, diame-
ter, ASP= average shortest path, CC= clustering coefficient;
for detailed information about graph attributes, see Figure 1
and Table 1).

A moving window analysis of graph attributes was per-
formed using windows with length of 50 words and 90%

overlap from one window to the next, which means that for
the first 50 words we generated a graph, then jumped five
words to again count 50 words and thus generate the next
graph, and so on. The average graph attributes of all graphs
of 50 words for each text file were calculated and used for
statistical analysis. Illustrative examples of isolated memory
reports from two subjects (one with high cognitive perfor-
mance and one with low cognitive performance) are shown
in Figure 1b.

Statistical Analysis
Statistical analyses were performed using Matlab software
(MathWorks, Natick, MA, United States). Pearson correla-
tions were used to investigate the relationship between graph
attributes and the different measures of cognitive and aca-
demic performance (IQ, ToM, Reading, and Math tests).
We also defined tertiles for each level of performance (low,
medium, and high) for each of the four assessments, and
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Table 2
Statistical Analysis: Cognitive Performances and Graph Attributes From Declarative Memories

Speech graphs Pearson correlation t-Test
Cognitive test Attributes (SGA) R p-Value Comparison p-Value

IQ N 0.36 .0014 — >.0042
RE −0.40 .0004 Low× high .0002
PE −0.43 .0001 — >.0042

LCC 0.40 .0005 — >.0042
ToM N 0.35 .0022 — >.0042

RE −0.40 .0003 Low× high .0009
PE −0.45 .0000 Low×medium .0016

Low× high .0002
LCC 0.34 .0023 — >.0042

Reading June 2014 LCC 0.33 .0041 — >.0042
LSC 0.37 .0012 — >.0042

Reading November 2014 LSC 0.35 .0023 — >.0042

IQ= intelligence quotient; LCC= largest connected component; LSC= largest strongly connected component; N=nodes; PE= parallel edges; RE= repeated edges;
SGA= speech graph attributes; ToM= theory of mind.

compared graph attributes across tertiles using Student’s
t-test. Correction for multiple comparisons using the Bon-
ferroni method included three different memory reports
types (declarative, STM, and LTM) and four cognitive assess-
ments (IQ, ToM, Reading, and Math), totaling 12 compar-
isons (corrected α= 0.0042). Multiple linear regressions of
Reading with IQ, ToM, LCC, and LSC were calculated using
the MATLAB function <regress>.

RESULTS

When we analyzed the entire set of declarative memory
reports, we found significant positive correlations between
cognitive performance (IQ and ToM performance) and
nodes (IQ: R= 0.36, p= .0014; ToM: R= 0.35, p= .0022) and
LCC (IQ: R= 0.40, p= .0005; ToM: R= 0.34, p= .0023). We
also found negative correlations with RE (IQ: R=−0.40,
p= .0004, high< low IQ, p= .0002; ToM, R=−0.40,
p= .0003, high< low ToM, p= .0009) and PE (IQ: R=−0.43,
p= .0001; ToM: R=−0.45, p= .0000, medium< low ToM,
p= .0016, high< low ToM, p= .0002; Figure 2, Tables 2 and
S1). In summary, children who reported their declarative
memories with a larger number of different words, and with
more connections among them and fewer repetitions of
word–word associations performed better on IQ and ToM
tests. As expected, IQ and ToM were positively correlated
(R= 0.48, p< .0001).

To determine whether the correlation between verbal
reports and ToM performance was because of the pres-
ence of PST reports (the ToM task) in the text file, we
also performed the correlations using either graphs from
all the memory reports except PST, or graphs made exclu-
sively from PST reports. Notably, there were significant

correlations between verbal reports and ToM performance
even when excluding those derived from the PST (Table S2).
Thus, the relationship holds for several kinds of memory
reports.

Regarding school achievement, we found significant pos-
itive correlations between Reading performance and LCC
(R= 0.33, p= .0041) and LSC (R= 0.37, p= .0012) on the sec-
ond test (June 2014). Notably, LSC predicted Reading perfor-
mance 3–4 months later (R= 0.35, p= .0023, third time point
on December 2014; Figure 3, Tables 2 and S1). We calcu-
lated score differences between December 2013/June 2014,
December 2013/December 2014, and June 2014/December
2014 to estimate gains, but found no significant correlations
between speech graph attributes and gains on either Read-
ing or Math performance (all p≥ .021, corrected α= 0.0042).
In general, the correlations with different cognitive perfor-
mances were preserved when performing graph analyses
using windows of different word lengths (small graphs of 10
words and large graphs of 100 words; Table S1). Thus, LCC
was concurrently related to Reading performance, and LSC
was both concurrently and longitudinally related to Reading
performance.

To assess how much of the Reading performance could
be jointly predicted by cognitive and graph measures, we
assessed multiple linear regressions of Reading with a
linear combination of IQ, ToM, and connectivity-related
graph attributes (Figure 3b). Explained variance ranged
from R2 = 0.09 (p= .0151) in December 2013 to R2 = 0.26
(p< .0001) in June 2014 and R2 = 0.21(p< .0001) in Decem-
ber 2014.

To test whether IQ or ToM mediate the relationships
between graph connectivity (LCC and LSC) and school per-
formance, we assessed the corresponding correlations with
or without adjustments for IQ or ToM. As shown in Figure 4
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Fig. 3. School achievement and declarative memory graphs (medium-sized graphs, 50 words). (A) Correlations between connectivity
graph attributes (largest connected component [LCC] and largest strongly connected component [LSC]) and Reading performance on
June (second test) and December 2014 (third test; R2 and p values indicated). (B) Multiple linear regressions of Reading with IQ, ToM,
LCC, and LSC. Combination of these attributes on the x axis. Reading scores for each time point on the y axis.

and Table 3, we found that graph connectivity (LCC, LSC)
was correlated with Reading even after adjusting for IQ and
ToM. Conversely, IQ and ToM were correlated with Read-
ing even after adjusting for graph connectivity. However, the
correlation between ToM and Reading did not reach signif-
icance when adjusted for IQ, and the correlation between
Reading and IQ did not reach significance when adjusted for
ToM (Figure 4, Table 3).

When we distinguished between LTM and STM reports,
we found that STM correlations were stronger than LTM
correlations, but that in most cases their combination
yielded even stronger correlations than STM alone. A
comparison of Tables S1 (declarative= STM+LTM) and
S3 (STM vs. LTM) shows that the former displays overall
higher R values and lower p values—that is the sum of STM
and LTM is more informative than STM alone. IQ and ToM
were positively correlated with Nodes, and the same two
measurements were negatively correlated with RE as well
as PE (Tables 4 and S3). In addition, there were significant
negative correlations between IQ performance and L3 and
between IQ and CC (Tables 4 and S3). Thus, children with
higher IQ scores reported memories with less recurrence
(loops of three nodes), and with less graph clustering.
Although graph attributes from memory reports correlate

significantly with IQ and ToM, altogether the results show
that the correlation of Reading with graph attributes cannot
be reduced to the correlations of Reading with either IQ
or ToM.

DISCUSSION

The results indicate that the children with better IQ, ToM,
and Reading performance report memory events with a
richer word repertoire (more nodes), more connections
among them (larger LCC and LSC), fewer repetitions of the
same associations (less RE and PE), overall reflecting richer
and more complex contents, in comparison with the chil-
dren with medium or lower performance. Graph connectiv-
ity correlated positively with Reading in June 2014 as well as
in December 2014. IQ and ToM were also correlated with
Reading but did not mediate the correlations between graph
connectivity and Reading, because these persisted even after
adjustment for IQ or ToM. Therefore, graph connectivity
provides additional explanatory and predictive power over
IQ and ToM.

As words are symbols that signify objects of the natural
and social world, the usage of a greater variety of words likely

8
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Fig. 4. Diagram illustrating the significant and nonsignificant adjusted correlations of Reading with graph connectivity, intelligence
quotient (IQ) or theory of mind (ToM). (a) Largest connected component (LCC) and (b) largest strongly connected component (LSC).
Note that connectivity attributes correlate significantly with Reading even after adjusting for IQ or ToM (Table 3).

reflects a greater variety of things and concepts remembered,
stemming from more elaborate semantic memory. A richer
word repertoire can thus be understood as a greater capac-
ity to store and retrieve mnemonic associations, especially
considering that these nodes are also more connected to the
other nodes of the graph. This could imply a better strategy
for memory retrieval, and/or a more adaptive response to
new rules of the environment, leading to better cognitive
performance (Blakemore & Bunge, 2012; Sander et al., 2012).
More nodes may also reflect a larger vocabulary; indeed, this
result replicates a known relationship between vocabulary
and nonverbal IQ (Rice & Hoffman, 2015) as well as ToM
(Milligan, Astington, & Dack, 2007). Of note, an important
limitation of this study was the lack of assessment of general
linguistic abilities.

The children with better IQ, ToM, and school perfor-
mance not only have a richer word repertoire but also
showed more connections between words, keeping distant
parts of the verbal report connected by the reoccurrence of
certain words. In order to be meaningful, a report rich in new
information needs to have solid links among all the events
reported. In a previous study with a psychotic population,
the same connectivity attributes (LCC and LSC) were found
to be smaller in the memory reports of psychotic patients
than in the reports of controls. Importantly, these measure-
ments were negatively correlated with negative symptoms
(such as poor eye contact, emotional retraction, and social
isolation) and cognitive deficits (difficulty of understand-
ing abstract meanings; Mota et al., 2014). These results sug-
gest that our spontaneous capacity for reporting memories
with strong connections among events/elements is related
to our general cognitive capacity to interact with the external
world, so that this memory ability runs together with general
cognitive improvement, increasing with healthy cognitive

development and declining with psychopathological cogni-
tive deficits.

In addition, the children with higher IQ, ToM, and school
performance also showed less word recurrence. When a
report includes a large enough vocabulary, and the speaker
is able to make a linear trajectory comprising different mem-
ory events/elements, repetition of the same word association
is not necessary. Patients suffering from Alzheimer’s disease
tend to make more loops of three nodes (L3) than control
subjects when performing the verbal fluency test (which asks
subjects to name as many different animals as possible within
1 min; Bertola et al., 2014). In other words, the patients
repeat the same animal name after two different names,
which reflect a working memory deficit. It is thus conceiv-
able that less recurrence reflects a more developed work-
ing memory. Impaired working memory leads to impaired
cognitive development (Alloway, Gathercole, et al., 2009;
Alloway, Rajendran, & Archibald, 2009), and reduced school
achievement even in children without cognitive impair-
ments (Alloway & Alloway, 2010; Alloway & Passolunghi,
2011). Consistent with this hypothesis, analysis of STM
reports revealed significant negative correlations between
cognitive measures (IQ or ToM) and recurrence-related
graph attributes (RE, PE), thus strengthening the notion that
the development of working memory contributes to the cog-
nitive and academic results.

In order to gain insight into the mechanisms related to
these correlations, and determine whether they are specif-
ically related to memory capacity or to language abilities
in general, we compared the results obtained with STM
and LTM reports. Both reflect episodic memories, but of
different kinds. STM reports are related to events that
have just occurred to the subject, while LTM reports are
related to past events with a time lag of days, months

9
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Table 3
Correlation With Reading Performance. Results Adjusted for Cognitive Performance or SGA. Statistically Significant Differences Are
Shown in Boldface

Reading June 2014 Reading December 2014
Adjusted by R p-Value R p-Value

No adjustment LCC 0.33 .0041 0.32 .0056
LSC 0.37 .0012 0.35 .0023
ToM 0.42 .0002 0.34 .0029
IQ 0.41 .0003 0.37 .0016

IQ LCC 0.36 .0023 0.35 .0034
LSC 0.38 .0011 0.37 .0018
ToM 0.28 .0171 0.20 .0981

ToM LCC 0.35 .0026 0.34 .0037
LSC 0.39 .0007 0.36 .0020
IQ 0.25 .0381 −0.02 .8977

LCC ToM 0.42 .0002 0.34 .0041
IQ 0.40 .0005 0.36 .0021

LSC ToM 0.43 .0002 0.34 .0038
IQ 0.40 .0005 0.36 .0019

IQ= intelligence quotient; LCC= largest connected component; LSC= largest strongly connected component; SGA= speech graph attributes; ToM= theory of
mind.

Table 4
Statistical Results Comparing STM Graph Attributes With Different Cognitive Performances

Speech graphs Pearson correlation t-Test
Cognitive test Attributes (SGA) R p-Value Comparison p-Value

IQ N 0.40 .0004 Low×High .0032
RE −0.40 .0004 Low×High .0029
PE −0.43 .0001 Low×High .0019
L3 −0.34 .0026 Low×High .0025

LCC 0.36 .0018 — >.0042
CC −0.37 .0012 Low×High .0007

ToM N 0.37 .0010 Low×High .0029
RE −0.34 .0024 — >.0042
PE −0.40 .0004 Low×High .0018

Reading June 2014 LSC 0.34 .0031 — >.0042

CC= average clustering coefficient; IQ= intelligence quotient; L3= loop of three nodes; LCC= largest connected component; LSC= largest strongly connected
component; N=nodes; PE= parallel edges; RE= repeated edges; SGA= speech graph attributes; ToM= theory of mind

or years. Therefore, STM and LTM reports engage differ-
ent memory mechanisms: STM reflects short-term memo-
ries of novel images retrieved immediately after encoding,
while LTM depends on the recall of consolidated memory
traces related to first-person events. The results show that
the graph attributes correlated with cognition are mostly
those extracted from STM reports, not LTM reports. This
indicates that the correlations between declarative mem-
ory attributes and cognitive performance are likely driven
by STM.

Individual differences in the ability to retrieve episodic
memories are large, reflecting differences in the devel-
opment and maturation of brain networks required for
episodic memory processing and executive functions
(Bunge & Wright, 2007; Ghetti & Bunge, 2012; Ghetti,

DeMaster, Yonelinas, & Bunge, 2010; Paz-Alonso et al.,
2013; Satterthwaite et al., 2013). While these neural changes
explain how we learn and recall, we are still far from translat-
ing this knowledge to classroom education. The notoriously
challenging translation of neuroscience findings to the
school setting (Bruer, 1997) motivates the increasing inter-
est in diminishing this gap by improving education based
on scientific evidence across a range of disciplines, with a
focus on the interdisciplinary interaction between cognitive
psychology, animal behavior and brain research (Blakemore
& Bunge, 2012; Sigman, Pena, Goldin, & Ribeiro, 2014). Part
of the problem is related to the environmental complexity of
the naturalistic school setting, which determines differences
in learning behavior that are difficult to assess. For instance,
most of the approaches used to measure memory abilities
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are based on artificially designed laboratory tests aimed at
isolating independent cognitive components.

Surprisingly, we did not find significant correlations
between speech structure and future gains in Reading or
Math. This is likely related to the different temporal nature
of the variables assessed, because speech structure was
measured only once, while academic gains were calculated
as the difference of Reading or Math scores sampled at differ-
ent time points. Alternatively, it is possible that the sample
size was too small to reach significance when multiple
factors were considered. A replication of our study using
different instruments for cognitive assessment is in order to
better understand the possible mediators of the relationship
between speech structure and academic performance.

Our exploratory study indicates that the graph analysis of
naturalistic memory reports generated by healthy children
in the school setting allows for an objective quantification
of memory development. To our knowledge, this is the first
study demonstrating that the structure of children’s memory
reports is linked to key psychological measures of cognition
and to formal academic achievement. These results provide
a proof of concept that objective speech analysis could be
a useful tool in schooling and clinical settings. Follow-up
studies should attempt to replicate the present results in a
larger sample, with a small number of preregistered anal-
yses. In future, a better understanding of the relationship
between graphs from spontaneous memory reports and dif-
ferent memory components could lead to the development
of a quick, objective screening tool for assessing cognitive
functioning in children.
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SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article:

Table S1. Similar results were obtained using different
graph sizes. The table shows R and P values of the Pear-
son correlation between Speech Graph Attributes using
small (10 words), medium (50 words) and large (100 words)
graphs. Significant correlations indicated in red.

Table S2. Pearson correlations between Speech Graph
Attributes and ToM performance using all declarative mem-
ory reports except PST versus only PST reports. Attributes
that show correlations with ToM using all declarative mem-
ory reports are shown in boldface; statistically significant dif-
ferences are shown in red.

Table S3. Pearson correlation (R and P values) between
Speech Graph Attributes and cognitive performance using
short-term memory (STM) or long-term memory (LTM)
reports. Red indicates statistically significant correlations.
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