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ABSTRACT 

Purpose
Uncertainty analyses in life cycle assessment (LCA) literature has focused primarily on the life 
cycle inventory (LCI) phase, but LCA experts generally agree that the life cycle impact 
assessment (LCIA) phase is likely to contribute even more to the overall uncertainty of an LCA 
result. The magnitude of perceived uncertainties in characterization relative to that in LCI, 
however, has not been examined in the literature. Here we use the pedigree approach to gauge 
the perceived uncertainty in the characterization phase relative to the LCI phase. In addition, we 
evaluate the level of approval on the pedigree approach as a means to characterize uncertainty in 
LCA.  

Methods
Applying the Numeral Unit Spread Assessment Pedigree (NUSAP) approach to environmental 
risk assessment literature, we extracted the criteria for evaluating the uncertainty in the 
characterization phase. We used expert elicitation to identify a pool of experts and conducted a 
survey, to which 47 LCA practitioners from 12 countries responded. In order to reduce personal 
biases in perceived geometric standard deviation (GSD) values, we used two reference questions 
on weight and life expectancy at birth for calibration.   

Results
Nearly half (49%) of respondents expressed their approval to the pedigree matrix approach as a 
means of characterizing uncertainties in LCA, and responses were highly sensitive to familiarity 
of the respondent with the pedigree matrix. For instance, respondents who are highly familiar 
with the pedigree matrix were more polarized, with 15% and 19% of them expressing either 
strong approval and strong disapproval, respectively. Respondents less familiar with the pedigree
approach were generally more favorable to its use. Compared with LCI, variability in 
characterization factors was influenced more strongly by geographical correlation and reliability 
of the underlying model, which showed 11% to 16% larger average GSDs when compared with 
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the comparable criteria for LCI. Conversely, temporal correlation criterion was a less significant 
factor in characterization than in LCI. 

Conclusions and discussion
Overall, survey respondents viewed LCIA characterization as only marginally more uncertain 
than LCI, but with a wider variability in responses on LCIA characterization than LCI. This 
finding indicates the need for additional research to develop more thorough methods for 
characterizing uncertainties in life cycle impact assessment that are compatible with the 
uncertainty measures in LCI.

Keywords

Uncertainty analysis, Impact assessment, Characterization factor, Life cycle assessment, 
pedigree approach

1. Introduction

Life cycle assessment (LCA) is a decision-support tool that quantifies the environmental 
impacts of products throughout their life cycles (International Standard Organization 1997). Life 
cycle assessment often involves the use of uncertain data and models, measurement errors in 
input data, unrepresentative data, choices of system boundaries, underlying assumptions, and 
model incompleteness all which contribute to uncertainty in the result (Lloyd and Ries 2007; 
Clavreul et al. 2012, 2013). Understanding the magnitude of uncertainty is essential in using 
LCA results for decision-making (Geisler et al. 2005; Sugiyama et al. 2005; Finnveden et al. 
2009).  

A growing number of LCA studies address uncertainty issues (Cooper et al. 2012; Sills et al.
2012; Groen et al. 2014). But the majority of the uncertainty analyses in LCA focus on life cycle 
inventory (LCI) (Heijungs 1996; Maurice et al. 2000; Björklund 2002; Sonnemann et al. 2003; 
Gavankar et al. 2015; Scherer and Pfister 2016; von Pfingsten et al. 2017). The most widely used 
LCI database, ecoinvent, includes uncertainty values, e.g., the geometric standard deviation for a 
lognormal distribution, for 62.7% of its unit process data in ver. 3.4. (Wernet et al. 2016; Qin and
Suh 2017). Professional LCA software tools including SimaPro and OpenLCA also provide 
uncertainty analysis functionality using Monte Carlo simulations, again mostly focusing on LCI
(SimaPro 2016; OpenLCA 2018). 

Both the LCI and life cycle impact assessment (LCIA) phases of LCA are data- and 
calculation-intensive, involving many model and data assumptions that can introduce errors
(Huijbregts 1998a; Heijungs and Huijbregts 2004; Lloyd and Ries 2007; Reap et al. 2008; 
Gavankar et al. 2015). Few studies consider uncertainty from the characterization phase, and 
quantitative uncertainty assessments on characterization mostly focus on climate change impact 
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category (Cellura et al. 2011; Hauschild et al. 2013). For example, Huijbregts (1998b) addressed 
the contribution of characterization factors to uncertainties in the global warming and 
acidification results of roof gutters. Huijbregts et al. (2003) further extended uncertainty analysis 
to parameter, scenario, and model uncertainties in a case study of two insulation models. Roy et 
al. evaluated parameter uncertainties in the characterization factor for terrestrial acidification
(2014). Later, a full uncertainty assessment of biofuels confirmed that both characterization 
factors and inventory uncertainties are essential in carbon and water scarcity footprints (Pfister 
and Scherer 2015). A study on characterization factors for ecotoxicity concluded that both 
parameter uncertainty and spatial variation should be accounted for in fate and exposure factors
(Nijhof et al. 2016).

One major challenge is that characterization models do not typically provide uncertainty 
information for input parameters (Hung and Ma 2009; Noshadravan et al. 2013; Henriksson et al.
2015; Gregory et al. 2016). As a result, the influence of uncertainty in characterization models on
the overall uncertainty of an LCA result is largely unknown (Hung and Ma 2009). But it is 
possible for characterization uncertainty to dominate the overall uncertainty of an LCA study. 
Characterization factors are calculated from simplified models of complex interacting physical 
and chemical systems that often require the linearization of non-linear relationships (Cucurachi 
et al. 2017). As a result, characterization models may carry larger uncertainties than LCI (Lloyd 
and Ries 2007).

Literature suggests that LCA practitioners tend to perceive larger uncertainty with the LCIA 
phase than the LCI phase (Owens 1997; Huijbregts 1998b; Clavreul et al. 2012). But to date, no 
study has attempted to quantify perceived uncertainties between LCI and characterization. Here, 
we use the expert elicitation procedure to gather perceptions about the uncertainty of LCI and 
characterization. We also created a pedigree matrix, which has been used for LCI data quality 
evaluation, for the characterization phase of LCIA. Next we present the survey design and 
respondent demographics in Section 2, results and pedigree matrix in Section 3, as well as 
discussion and conclusions in Section 4.

2. Methods

This study combines the pedigree approach and expert elicitation approach using a survey. 

1. Pedigree matrix
Uncertainty characterization in LCA using Monte Carlo simulations or global sensitivity 

analysis requires information about ranges or distributions of the underlying parameters. 
Experimental (empirical) measurements offer the best source for such ranges and distributions, 
but are unfortunately often unavailable. Absent such data, the pedigree method has often been 
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used in LCA to translate qualitative characteristics of underlying parameters into quantitative 
variability metrics (Frischknecht and Rebitzer 2005). 

The pedigree approach—originally inspired by the Numeral Unit Spread Assessment 
Pedigree (NUSAP) system—was proposed by Funtowicz and Ravetz (1990). The pedigree 
approach is essentially a method to estimate the quantitative uncertainties based on qualitative 
characteristics of a data set (Weidema and Wesnaes 1996; Weidema 1998). The study by Van 
den Berg et al. (1999) is an early example of a pedigree matrix which uses 15 criteria for 
characterizing uncertainty. The pedigree method has since come into widespread use. In the 
United States, the Environmental Protection Agency offers a guide on the development, 
management, and use of data quality information in LCA using a pedigree matrix (Edelen and 
Ingwersen 2018). The ecoinvent database has adopted the pedigree method since its version 2.0
(Althaus et al. 2007; Weidema et al. 2013). The ecoinvent database uses the this method to adjust
default uncertainty values, which are either measured or estimated based on five qualitative 
uncertainty characteristics of the data: reliability, completeness, temporal correlation, 
geographical correlation, and technological correlation (Muller et al. 2014). The resulting 
uncertainty value is expressed as geometric standard deviation (GSD) of a lognormal 
distribution. GSD is a measure of the spread of lognormally distributed data points. For example,
a GSD of 1.8 translates to one order of magnitude difference between the lower bound and the 
upper bound of a data set within the 95% confidence range.

The pedigree method enables quantitative uncertainty analysis absent measured variability 
information, and can be used to assess not only parameter uncertainties but also non-parametric 
uncertainties associated with the technical, methodological, and epistemic dimensions of a data 
set (Van Der Sluijs et al. 2005). Despite these strengths, at its core the pedigree approach relies 
on the subjective judgments of experts, which raises questions about its usefulness and validity. 
Ciroth et al. (2013) compared empirical observations and the uncertainty characteristics derived 
using the pedigree approach of the ecoinvent database and found that it tended to underestimate 
underlying uncertainties (Ciroth et al. 2013). Yang et al. (2018) examined LCA results of major 
crops in the U.S. based on high-resolution spatial data and concluded that the uncertainty values 
of agricultural inputs based on the ecoinvent pedigree method lead to a large underestimation.

If nothing else, the pedigree method helps gauge perceived level of uncertainties in a data set 
when quantitative measurements are lacking. In this study, we employed the pedigree approach 
with various modifications to compare perceived uncertainties in characterization relative to 
those in LCI. We sent two sets of survey questions, one for characterization and another for 
LCA, to each expert. For LCI, we modified the pedigree matrix used in the ecoinvent database. 
For characterization, we created a new pedigree matrix based on NUSAP and environmental risk
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assessment literature (Funtowicz and Ravetz 1990; Jaworska and Bridges 2001; Van Der Sluijs 
et al. 2005; Ragas et al. 2009). 

2. Expert elicitation
Expert elicitation is the use of expert judgment on a subject which has insufficient data 

because of physical constraints or a lack of knowledge (de Franca Doria et al. 2009; Knol et al., 
2010; McBride & Burgman, 2012; Morgan, 2014). Expert elicitation has been used since the late
1960s, and was first used in the Delphi method to collect expert judgement on probability 
estimation (Brown et al. 1969; Amara and Lipinski 1971; Rowe and Wright 1999). The use of 
the knowledge and wisdom of experts can inform policies when scientific evidence is lacking 
and help address uncertainties when there is insufficient information. Elicitation of expert 
judgment also has been used in various science-policy contexts such as the Intergovernmental 
Panel for Climate Change (IPCC) (Rypdal and Winiwarter 2001), European Environmental 
Agency (Meozzi and Iannucci 2006) and U.S. Environmental Protection Agency (2005). 

The key steps of conducting expert elicitation are summarized in Fig. 1 (Ayyub 2000; Knol 
et al. 2010). Under the expert elicitation process, experts receive a short description of the 
purpose of the expert elicitation and the conditions of their participation, as well as an 
explanation of the performance measures, uncertainties related to the studied problem, and key 
literature substantiating the problem (Cooke and Goossens 1990; Frey 1998). This information 
elicits the formation of responses to the questions. The purpose of the expert elicitation described
here was to create a pedigree matrix for characterization factors. We provided background 
information of the pedigree matrix and graphic visualization of distributions with different GSDs
so that the experts can better conceptualize the relationship between GSDs and corresponding 
shapes of the distribution.
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Fig. 1. Flow chart of expert elicitation procedures.

The selection process involves identifying what expertise is relevant to the elicitation and 
selecting a sample of experts who can best satisfy the requirements of that expertise under time 
and resources constraints (Czembor and Vesk 2009; McBride and Burgman 2012). The quality 
of expert elicitation depends on the experts’ knowledge, experience and practice (Hickey and 
Davis 2003; Slottje et al. 2008; Martin et al. 2012). It is important to include a diverse range of 
experts because a large sample of experts can not only represent the whole community but also 
reduce the influence of individual mistakes and biases (Clemen & Winkler, 1985; Armstrong, 
2008). We selected experts based on publication records from the Web of Science in the field of 
LCA and uncertainty analysis. We used the search keywords, “Life Cycle Assessment” and 
“uncertainty” (or “LCA” and “uncertainty”) in the titles of peer-reviewed journal articles 
published over the last 20 years. We invited all the co-authors of the publications found using the
search keywords to our survey.

After the collection of expert judgments, verification and calibration of the expert responses 
were performed. This step is essential in the analysis of the expert opinions because it can not 
only check for errors and consistencies in the responses, but it also compares the responses to 
other responses in the elicitation participation and other available information (Cooke, 1991). 
The sources of bias and error include carelessness, misinterpretation, and overconfidence (Moore
and Healy, 2008). Calibration can be used to control overconfidence and inconsistency (Murphy 
and Daan, 1984). Some methods involved in the calibration process are probability theory, 
aggregation method, and analysis of bias (Clemen and Winkler, 1985). The purpose of the 
calibration is to “level the playing field”, reducing the influence of bias and overconfidence and 
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making the experts’ responses consistent and close to expected true value (Winkler and Murphy, 
1968; Alpert and Raiffa, 1982; Ferrell, 1994). In our study, we used weight and life expectancy 
at birth to calibrate experts’ ability to relate perceived distribution to a GSD value (see Section 
2.4.1). 

3. Survey design and expert selection
We sent the survey information to 197 potential respondents with varying experience levels 

in LCA. The survey invitation was personalized with recipient’s name, and one reminder was 
sent two months after the first invitation. The web-based survey contained 12 questions and was 
coded in HTML format. The average completion time was about 16 minutes. The full 
questionnaire and survey data can be found in the Supporting Information. Given the nature of 
the survey that involves human subjects, the survey was reviewed and approved by the 
Institutional Review Board at the University of California, Santa Barbara. The structure and the 
content of the survey are elaborated below.

1. Background questions
We asked the respondents about their affiliation types, the continents that they reside on, and

their level of experience in LCA. Based on their responses, we assigned them into two groups as 
follows: Group 1- respondents with 6 or more years of experience in LCA and who are familiar 
with the pedigree approach, and Group 2- respondents with fewer than 6 years of experience or 
who are not familiar with the pedigree method (see Fig. S1 in SI). We asked about their degree 
of approval regarding the use of the pedigree approach in estimating uncertainties. 

2. Pedigree matrix for LCI 
In the survey, we asked experts to provide their opinions about the importance of each 

criterion to be included in the pedigree matrix for LCI (Table 1). For this pedigree matrix, we 
used the criteria that were provided in the previous versions of the pedigree matrix of data 
quality, including geographical correlation, temporal correlation, technological correlation, 
completeness, reliability, and sample size (Weidema 1998; Wernet et al. 2016). Because the 
current pedigree matrix that ecoinvent uses for data quality evaluation has five criteria, we used a
Likert scale to allow respondents to indicate their perceived importance of including each criteria
in the pedigree matrix, and then used the results to narrow criteria down to the top five. The 
Likert scale used the following five levels: strongly disagree, disagree, neutral, agree, and 
strongly agree.

We asked the respondents to provide their perceived GSDs for all six criteria in the pedigree
matrix used for evaluating LCI data quality. We provided descriptions of criteria in the original 
pedigree matrix used for LCI data quality evaluation for each uncertainty level for each criterion,
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but did not show the actual GSDs (Weidema 1998; Wernet et al. 2016). Instead, respondents 
input their perceived GSD scores under each criteria description. To help respondents to better 
link GSDs with their conceptual thinking regarding uncertainty, we provided frequency density 
plots of lognormal distributions for different GSDs.

3. Pedigree matrix for characterization factors 
We developed the pedigree matrix for characterization factors and let the respondents 

indicate the importance of each criterion to be included in the matrix. Similar to the pedigree 
questions for LCI, we used a Likert scale to gather their opinions on the importance of each 
criterion to be included in the pedigree matrix for characterization factors. The six proposed 
criteria were: level of consensus, model completeness, temporal specification, geographical 
specification, reliability of underlying science, and input data characteristics. For consistency 
with the pedigree matrix used in LCI, we let respondents indicate the importance of each 
criterion and then selected the top five for inclusion in the final version of the pedigree matrix for
characterization factors. We also asked experts their perceived GSDs for all criteria.

The criteria for the LCI and characterization models are reproduced in Table 1 along with 
descriptions. 
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Table 1. Pedigree matrix criteria for LCI and characterization factors. 

Criteria for 
LCI Purpose

Criteria for 
characterization 
factors

Purpose

       
Completeness Measure of the 

representativeness of the 
data based on statistics.

Model 
completeness

Measure of the coverage of the 
characterization factors for the 
elementary flows in life cycle 
inventory.

Reliability Indicator of whether the 
data is based on 
measurement or 
assumptions.

Reliability of 
underlying science

Indicator of the reliability of the 
underlying science of the 
method.

Temporal 
correlation

Addresses the temporal 
difference between the 
data and the process under 
study.

Temporal 
specification

Addresses the level of temporal 
dynamics in characterization 
modeling.

Geographical 
correlation

Measure of the difference 
in the geographical 
dimension between the 
data and the process under 
study.

Geographical 
specification

Measure of the regional 
resolution of characterization 
models.

Technological
correlation

Measure of the 
technological difference 
between the data and the 
process under study.

Level of 
consensus

Indicator of the level of 
consensus in characterization 
methods.

Sample size Measure of the sample size
of the data.

Input data 
characteristics

Indicator of the level of 
empirical support to the 
parameters used in 
characterization modeling.

At the end of the survey, we also collected suggestions and concerns regarding the use of the
pedigree matrix in LCA uncertainty estimation. More than half (53%) of the respondents 
submitted their suggestions as well as their concerns in the survey. The concerns and 
recommendations are summarized in the discussion section.

4. Survey analysis
A total of 47 experts from various countries and levels of experience responded to the 

survey. Among the 47 responses we received, 23 were in Group 1 with at least 6 years of 
experience in LCA and familiarity with the pedigree approach. The remaining 24 respondents 
were assigned to Group 2. To find whether the pedigree scores were different between the two 
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groups, we used non-paired t-test to determine the statistical significance of the difference 
between the means of the two groups.

To evaluate the importance of the criterion to be included in the pedigree matrix, we 
calculated the average scores from the Likert scales for the criteria. We mapped the Likert scales 
to a linear range such that 1 meant strongly disagree and 5 meant strongly agree.  In our version 
of the pedigree matrices, we only selected the top five criteria based on the respondents’ 
selections and included the criteria and the GSDs for the selected criteria into the pedigree matrix
for LCI and characterization factors. 

1. Calibration 
We also used calibrated responses in order to minimize personal biases in relating a 

perceived distribution to corresponding GSD value. First, we provided the GSD value of the 
height of American adult males, which was 1.04 (Fryar et al. 2012). We then let the respondents 
provide their “best estimate” of the distributions for (1) the weights of American adult males and 
(2) the life expectancies at birth of the global population, which were 1.07 and 1.1, respectively
(Fryar et al. 2012; CIA 2018). We assumed a linear relationship between actual GSD and the 
GSD in the response as shown in equation 1:

ĜSD=a∗GSDsurvey+b (Eq. 1)

where a and by are the slope and y-intercepts used to calibrate responses, and the GSD terms
are described above. In addition, we explained—and assumed that the survey respondents 
understood—that GSD = 1 when there is no uncertainty, which provides the second equation to 
derive both a and b as shown below. As an example of the calibration process, recall that the 
actual GSD for the distribution of the weights of American males is 1.07. If a respondent 
estimated it to be 1.1, then we calibrated the respondent’s GSD estimates by solving the 
following system of equations:

{ 1=a∗1+b
1.07=a∗1.1+b , (Eq. 2)

which results in:
ĜSD=0.7 GSDsurvey+0.3 .

We calculated the expected GSD from both weight and life expectancy at birth for each 
respondent and used the average of a and b as the coefficients for the expected GSD equation to 
calibrate all GSDs.

3. Results

We analyzed the survey data and created the pedigree matrix based on the top five selected 
criteria in the matrix and GSDs for each uncertainty level for each criterion for both LCI and the 
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characterization factors. The GSDs calibrated by weight and life expectancy at birth for the 
pedigree matrices of LCI and characterization factors are shown in Tables 3 and 4. Uncalibrated 
GSDs are in Tables S1 and S2. For the sake of comparison, calibrated GSDs by the second 
version of ecoinvent pedigree scores which removes the indicator “sample size” for 
characterization factors also are given in Tables S1 and S2 in the Supplementary Information.

3.1.    Survey demographics
Most (72%) respondents reported that they had been working in the LCA field for at least 6 

years: 36% had worked more than 10 years and 26% had worked in the field for 1 to 6 years. The
majority of the respondents worked in academia (72%). Of the remaining respondents, 13% 
worked in a corporation, 9% worked at consulting firms, and 6% worked at from governmental 
organizations/research centers. Most respondents were in North America (49%) and Europe 
(34%), with 13% and 4% from Asia and South America, respectively. Additional details can be 
found in the Supplementary Information (Fig. S2-S5).

3.2.   The degree of approval of the use of the pedigree approach for uncertainty 
quantification in LCA data

Approximately half of respondents expressed their approval to the use of the pedigree matrix
to estimate uncertainty in LCA data (Fig. 2). However, Group 1 respondents with 6 or more 
years of experience were more likely to disagree with the use of the pedigree matrix for 
estimating uncertainty than Group 2 respondents with fewer than 6 years of experience. As much
as 38% of the respondents in Group 1 disagreed or strongly disagreed with the use of the 
pedigree method for uncertainty estimation, while only 5% of the respondents in Group 2 
disagreed. No respondents from Group 2 strongly disagree or strongly agree to the use of the 
pedigree approach in uncertainty quantification, reflecting a lack of polarization in this group.
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Fig 2. Survey results for the question of the use of the pedigree approach for uncertainty
quantification in LCA data.

We also received comments about the level of acceptance for the use of the pedigree matrix 
in characterizing uncertainties in LCA. Some respondents strongly disapproved of the use of the 
pedigree method, largely on the ground of the lack of empirical support to the approach, while 
others strongly supported the use of the pedigree method given the lack of information about 
quantitative uncertainty. One respondent commented that “LCA practitioners do not have an 
accurate intuitive sense of what is the GSD of the pedigree matrix”. Some respondents found it 
difficult to provide uncertainties even when they had sufficient experience in this field, partly 
because the uncertainty characteristics would depend on the characterization models in question. 
For example, one respondent noted that “GWP and freshwater toxicity will express uncertainties 
at different orders of magnitude.” Such responses are reasonable given that the characterization 
model for ecotoxicity is regionally-sensitive, but that climate change is not. Thus, applying the 
same GSDs for multiple-impact categories is not appropriate. One respondent recommended 
using “the distribution coming from the characterization model directly” incorporating empirical
data instead of using the pedigree approach.

However, some respondents commented that they support the use of the pedigree approach 
for the purpose of filling in the gaps in the uncertainty information in LCIA. One respondent 
commented that the method “would indeed be worthwhile to quantify the uncertainty of LCIA 
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models”. Another respondent noted that “the method could be useful in the absence of 
uncertainty data”.

3.3.   Criteria to be included in the pedigree matrix
We asked respondents to what extent they agreed or disagreed with including each of the six

criteria in the pedigree matrices for LCI and characterization factors. As described in Section 2.4,
we mapped the Likert scale to numerical values from 1 to 5 representing strongly disagree to 
strongly agree. Table 2 and Table 3 show the ranking and average scores of the six criteria used 
in our study. 

3.3.1 Criteria for LCI

Table 2 presents the rankings of pedigree matrix criteria of LCI. For LCI, both geographical 
correlation and temporal correlation were ranked as the top criteria to be included in the pedigree
matrix. These criteria were followed by completeness, technological correlation, and reliability. 
Group 1 tended to rank technological correlation higher than completeness and reliability, 
whereas Group 2 ranked reliability and sample size higher than technological correlation. 
Ultimately, we included temporal correlation, geographical correlation, completeness, 
technological correlation, and reliability into the pedigree matrix for LCI (Table 4). 

Table 2. The pedigree matrix criteria selected for LCI and mean scores. 1 = strongly
disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree. 

Rank All Respondents Score Group 1 Score Group 2 Score
1 Geographical correlation 4.11 Geographical correlation 4.11 Geographical correlation 4.10
2 Temporal correlation 4.11 Temporal correlation 4.11 Temporal correlation 4.10
3 Completeness 3.91 Technological correlation 4.00 Completeness 4.05
4 Technological correlation 3.89 Completeness 3.81 Reliability 3.95
5 Reliability 3.83 Reliability 3.74 Sample size 3.90
6 Sample size 3.32 Sample size 2.89 Technological correlation 3.75

3.3.2 Criteria for characterization factors

For characterization factors, both Group 1 and Group 2 agreed upon with the same ranking. 
Temporal specification was the most important criterion to be included in the pedigree matrix for
characterization factors, followed by geographical specification, model completeness, reliability 
of underlying science, input data characteristics, and level of consensus (Table 3). The average 
score of level of consensus responded by Group 1 is below 3 (neutral). We included temporal 
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specification, geographical specification, model completeness, reliability of underlying science, 
input data characteristics into the pedigree matrix for characterization factors (Table 5). 

Table 3. The pedigree matrix criteria for characterization factors and mean scores. 1 = 
strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree.

Rank All Respondents Score Group 1 Score Group 2 Score
1 Temporal specification 4.05 Temporal specification 3.96 Temporal specification 4.19
2 Geographical specification 3.93 Geographical specification 3.81 Geographical specification 4.11

3 Model completeness 3.70 Model completeness 3.56 Model completeness 3.89
4 Reliability of underlying 

science
3.59 Reliability of underlying 

science
3.41 Reliability of underlying 

science
3.83

5 Input data characteristics 3.42 Input data characteristics 3.19 Input data characteristics 3.76
6 Level of consensus 3.09 Level of consensus 2.89 Level of consensus 3.39

3.4.    Pedigree matrix obtained from the survey
The respondents were asked to provide their best estimates of GSDs for each level of 

uncertainty for each criterion for LCI and characterization factor, as well as the GSDs for weight 
and life expectancy at birth where the uncertainty is known. The purpose of the GSDs for weight 
and life expectancy at birth were to calibrate a broad range of expert opinions. Overall, 
respondents tended to overestimate the GSDs for the distribution of weight and life expectancy at
birth. The average ratios of the surveyed GSD to the actual GSD for distributions of weight and 
life expectancy at birth were 111% and 118%, respectively. The resulting average a and b of 
equation (1) were 0.60 and 0.40, respectively. 

3.4.1 Pedigree matrix for LCI

Table 4 shows the pedigree matrix generated by averaging the responses after the calibration
using the distributions of weight and life expectancy at birth. Both Group 1 and Group 2 gave 
similar GSD responses to LCI uncertainties. We performed a non-paired t-test for the two groups
and found no significant difference between the average of the answers of the two groups to all 
of the cell entries, as the p-value was much larger than 0.05, while Group 1 tended to give 
slightly higher GSDs (3%) than Group 2.
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Table 4. The pedigree matrix for LCI from the survey results with GSDs calibrated using
GSDs of distributions of weight and life expectancy at birth. 

  Criteria Score        

    1 (Low 
uncertainty)

2 (Moderately 
low 
uncertainty)

3 (Moderate 
uncertainty)

4 (Moderately 
high uncertainty)

5 (High 
uncertainty)

1 Reliability Verified data 
based on 
measurement

Verified data 
partly based on 
assumptions or 
non-verified data
based on 
measurements

Non-verified 
data partly based
on assumptions

Qualified estimate 
(e.g. by industrial 
expert)

Non-qualified 
estimate

    1.00 1.09 1.20 1.32 1.59
2 Completeness Representative 

data from a 
sufficient sample
of sites over an 
adequate period 
to even out 
normal 
fluctuations 

Representative 
data from a 
smaller number 
of sites but for 
adequate 
periods 

Representative 
data from an 
adequate 
number of sites 
but from shorter 
periods 

Representative 
data but from a 
smaller number of
sites and shorter 
periods or 
incomplete data 
from an adequate 
number of sites 
and periods

Representativeness
unknown or 
incomplete data 
from a smaller 
number of sites 
and/or from 
shorter periods

    1.00 1.09 1.18 1.29 1.55
3 Temporal 

correlation
Less than three 
years of 
difference to 
year of study 

Less than six 
years difference 

Less than 10 
years difference 

Less than 15 years
difference 

Age of data 
unknown or more 
than 15 years of 
difference

    1.00 1.09 1.18 1.29 1.51
4 Geographical

correlation
Data from area 
under study 

Average data 
from larger area 
in which the 
area under study
is included 

Data from area 
with similar 
production 
conditions 

Data from area 
with slightly 
similar production
conditions 

Data from 
unknown area or 
area with very 
different 
production 
conditions

    1.00 1.09 1.16 1.28 1.57
5 Technologica

l correlation
Data from 
enterprises, 
processes and 
materials under 
study 

Data from 
processes and 
material under 
study but from 
different 
enterprises 

Data from 
processes and 
materials under 
study but from 
different 
technology 

Data on related 
processes or 
materials but same
technology 

Data on related 
processes or 
materials but 
different 
technology

    1.00 1.08 1.22 1.33 1.63

We also compared the GSDs that respondents provided for the LCI pedigree matrix with 
GSDs that the pedigree matrix of ecoinvent uses (Fig. 3). We found that respondents generally 
estimated higher GSDs for LCI than those estimated by ecoinvent. The average ratios of non-
calibrated GSDs and calibrated GSDs to ecoinvent-based GSDs were 1.19 and 1.06, respectively,
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which means that the GSDs after calibration were closer to the GSDs used by ecoinvent. When 
comparing respondents’ GSDs to the GSDs in Ciroth et al. (2013), which is shown in Fig 4, there
was no clear trend. Respondents gave lower GSDs to reliability and further technology 
correlation criteria and higher GSDs for completeness, temporal correlation and geographical 
correlation criteria.

 
Fig 3. Comparison of the average GSDs in the pedigree matrix for LCI in the response and

the GSDs in the ecoinvent pedigree matrix.
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Fig. 4. Comparison of the average GSDs in the pedigree matrix for LCI in the response and
the GSDs in Ciroth et al. (2013).

3.4.2 Pedigree matrix for characterization factors

Table 5 shows the pedigree matrix of the calibrated GSDs for characterization factors. 
Similar to the LCI results, Group 1 gave higher GSDs than Group 2 on average, and the average 
ratio of GSDs from Group 1 to Group 2 was 1.08.  We also performed statistical non-paired t-test
between the average of the answers of the two groups to find whether the two groups provided 
significantly different GSDs, and found their responded GSDs were not significantly different. 
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Table 5. The pedigree matrix for characterization factors from the survey results with GSDs
calibrated using GSDs of distributions of weight and life expectancy at birth. *The non-

calibrated results of the GSDs that the respondents directly provided in the survey are presented
in the Supplementary Information (Table S2).

  Criteria Score        
    1 (Low 

uncertainty)
2 (Moderately 
low uncertainty)

3 (Moderate 
uncertainty)

4 (Moderately 
high uncertainty)

5 (High 
uncertainty)

1 Reliability of 
underlying 
science

The model has 
been published in 
at least one peer-
reviewed journal 
and has since been
independently 
validated using 
observation or 
empirical data

The model is 
based on peer-
reviewed results

The model is 
based on non-
peer-reviewed 
report

The model has 
been documented 
but has no 
indication of peer-
review

The model has no 
documentation on 
its underlying 
science

    1.00 1.11 1.21 1.38 1.70
2 Model 

Completeness
The results of the 
model have a full 
coverage of the 
characterization 
factors for all 
elementary flows 
in an LCI (100%)

The results of the 
model have a 
relatively high 
coverage of the 
characterization 
factors for all 
elementary flows 
in an LCI (over 
80%)

The results of the 
model have a 
moderate 
coverage of the 
characterization 
factors for all 
elementary flows 
in an LCI (over 
60%)

The results of the 
model have a 
relatively low 
coverage of the 
characterization 
factors for all 
elementary flows 
in an LCI (over 
40%)

The model have a 
relatively low 
coverage of the 
characterization 
factors for all 
elementary flows 
in an LCI (over 
40%) The results 
of the model have 
a low coverage of 
the 
characterization 
factors for all 
elementary flows 
in an LCI (equal 
to or less than 
40%)

    1.00 1.08 1.16 1.31 1.55
3 Temporal 

specification
The model is a 
fully dynamic 
model and 
considers 
background 
concentration and 
population change
for receptors 

The model is a 
fully dynamic 
model 

The model is a 
non-steady-state 
model, which 
considers some 
dynamic 
components 

The model is a 
steady-state model

The model has no 
indication of its 
temporal 
information

    1.00 1.06 1.12 1.18 1.36
4 Geographical 

specification
The model is 
spatially explicit 
with a high level 
of spatial detail 

The model is 
spatially explicit 
with a regional 
level of detail 

The model 
provides 
continental level 
estimates of the 
characterization 
factors 

The model 
provides specific 
archetypes for 
generic locations 

The model is not 
spatially explicit

    1.00 1.09 1.21 1.26 1.58
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5 Input data 
characteristic
s

The input 
parameters used in
the 
characterization 
models are an 
exact measure of 
the desired 
quantity 

The input 
parameters are 
statistically 
representative 
proxies 

The input 
parameters are 
proxy values 
based on some 
statistical 
representativeness

The input 
parameters are 
proxies based on 
expert judgement 

No indication on 
how input 
parameters were 
derived

    1.00 1.07 1.14 1.24 1.46

3.5.     Comparison of GSDs for LCI and characterization factors
We also compared GSDs for LCI and characterization factors provided by the respondents 

to find which LCA phase has higher perceived uncertainty (Fig. 5). In general, GSDs for 
characterization factors were statistically slightly larger (3%) than those for LCIs. Respondents 
gave higher uncertainty scores for geographical correlation and reliability criteria. These 
differences were again statistically significant. Respondents also gave slightly higher uncertainty 
scores for the completeness criterion for characterization factors than those for LCI. For temporal
correlation, respondents gave lower uncertainty scores for characterization factors than for LCI. 
The criterion for LCI, technological correlation, and the criterion for characterization factors, 
input data characteristics, are not comparable, but the respondents provided similar GSDs for 
them. 

Fig. 5. Comparison between uncalibrated GSDs in the LCI and characterization factor
pedigree matrices from the survey. Light blue and grey colors represent the GSDs for LCI
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criteria, and dark blue and grey colors represent characterization criteria. Each box plot presents
the surveyed GSDs for the five uncertainty levels for each indicator.

4. Discussion and Conclusions 

In this study, we surveyed and analyzed perceived uncertainties in characterization factors 
relative to those in LCI using an expert elicitation approach. We found that perceived 
uncertainties were generally higher for characterization factors than for LCI, which was 
consistent with prior observations in the literature (Owens 1997; Huijbregts 1998b; Clavreul et 
al. 2012). However, the overall difference in mean GSDs between LCI and characterization 
across all criteria was only marginal (3%). The differences in variations were also larger for 
characterization (coefficient of variance: 24.4%) than for LCI (coefficient of variance: 22.4%). 

About half (49%) of respondents were in favor of using the pedigree method to characterize 
uncertainty in LCA, while 26% of the respondents disapproved. The opinions were sharply 
divided among the respondents with 6 years or more experience in LCA, with 19% of them 
strongly approving versus 15% strongly disapproving. In general, the more experienced group 
was much more skeptical about the use of the pedigree approach. 

The respondents perceived model reliability and geographical correlation to have a higher 
impact on characterization variability compared with the two criteria in LCI. The respondents 
generally perceived that temporal correlation was less important in characterizing uncertainty 
than in LCI. 

We found it is challenging to apply the pedigree approach to characterization. At the outset, 
our intent was to create a different pedigree matrix for each impact category and each 
characterization model. But it became evident that such an approach would lead to a complicated
questionnaire and that the time commitment of respondents would be too large. As a result, we 
went with a broader approach. We believe that the wide variability in responses observed for 
characterization can be explained in part by the lack of specificity in the characterization model 
in our survey, which is a major limitation. 

Overall, our survey results show that there is no strong consensus among LCA experts on 
the use of the pedigree method in LCA, while a UNEP-SETAC Life Cycle Initiative working 
group recommended that regionalized characterization factors should report uncertainty factors
(Mutel et al. 2019). The lack of appropriate methods to estimate underlying variability in LCA 
data is the main barrier to making uncertainty analysis in LCA mainstream. Our experience 
would be beneficial to further develop similar pedigree matrices for all contexts in which a 
proper uncertainty analysis was never conducted, and for which limited data is available to 
conduct a quantitative uncertainty analysis. Given that few disagree on the importance and need 
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of uncertainty analysis in LCA, developing widely-accepted methods to estimate underlying 
variability in LCA data is urgently needed. This need can be met by not only continued research 
and development by individual researchers, but also systematic efforts by international 
organizations to identify and build consensus on the best practices. 

Our survey also confirms that uncertainties in characterization are perceived to be at least as 
large as those in LCI. Given the virtually nonexistent uncertainty measurements in 
characterization in modern LCA practices, our results indicate that existing uncertainty analyses 
in LCA are perceived to cover no more than half of the true uncertainties. Our results call for 
expediting the efforts to measure uncertainties in characterization and other steps in LCIA.         
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