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Abstract

Biological patterning in networks of interacting cells

by

Melinda Liu Perkins

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Murat Arcak, Chair

Biological organisms rely on spatial variation in cell activity to coordinate diverse activities,
such as microbial colonization and embryonic development. Interactions among neighboring
cells play a crucial role in generating spatial patterns spontaneously from stochastic initial
conditions or by refining simple spatially varying inputs, such as chemical concentration gra-
dients, into complex outputs, such as stripes in gene expression. The ability to synthetically
engineer multicellular patterning will facilitate advances in designing microbial communities,
creating synthetic biomaterials, and programming tissue and organ growth, among other ap-
plications. Researchers face numerous theoretical and practical challenges to implementing
patterning in synthetic biological setups, in part because living systems are extremely high
dimensional and nonlinear. Thus, a handful of theories have guided most experimental
e↵orts to implement multicellular patterning, and most successes have relied primarily on
trial and error or numerical simulation. Future progress in synthetic multicellular patterning
will benefit from interpretable mathematical theory for patterning phenomena, coupled with
experimental platforms for validating these theories in practice.

In this thesis, I develop methods for understanding and implementing multicellular pattern-
ing through the lens of networked dynamical systems, in which individual cells are modeled as
dynamical systems and their interactions are modeled as networks. With this mathematical
representation, cell behavior and network structure can be partially decoupled, facilitating
both analysis and intuition building. In Chapter 2, I introduce a spatial filtering approach to
biological pattern refinement, in which a network of interacting cells is treated as a “filter”
for interpreting a prepattern into a di↵erent output pattern. This approach separates the
exact form of the prepattern from the resulting readout, enabling a spatial frequency-based
interpretation of pattern refinement that is conducive to analysis with extant intuition from
signal processing. In the remaining two chapters, I apply theory for contrasting patterning
to two unique synthetic biological setups. Chapter 3 focuses on a platform in which colonies
of bacteria physically connected by channels interact through the exchange of di↵usible



2

molecules. Spatial parameters such as the distance between colonies and their placement
is exploited to modulate patterning features, including contrast level and stability. Chap-
ter 4 describes a setup in which chemical interaction among yeast cells is substituted with
computer-controlled inputs that are adjusted in real time based on the measured gene ex-
pression levels. Theory predicted spontaneous contrasting patterning with qualitative and
quantitative accuracy, demonstrating the potential benefits of this experimental platform for
future avenues in multicellular patterning research.

A central theme throughout this thesis is how exploiting a dynamical systems framework can
provide new insights into (possible) patterning behaviors by considering them with a di↵erent
perspective from the usual. For example, I show in Chapter 2 that random, constant-in-time
spatial variation can generate Turing-like patterns when system dynamics are stable; con-
ventional wisdom requires an instability to observe such patterns. Similarly, in Chapter
4, I show how “lateral inhibition” can be achieved without cells physically communicating
or even physically neighboring each other—an impossible paradigm in customary biological
setups. Moving forward, I hope this work will stand as just one example of how an interdis-
ciplinary approach can shed light on the structure and function of living systems, evolved
and engineered alike.
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Chapter 1

Introduction

“[L]ife is infinitely stranger than anything which the mind of man could invent.”

– Sherlock Holmes, in [1]

In some sense, life is a narrowing of possibilities: the process of selecting a particular set of
outcomes from an infinite space of physically permissible arrangements of matter. In biology,
the process operates at nested levels from the replication of chemical materials through the
transformation of fertilized eggs into adult organisms, all the way up to physiological adap-
tation, evolution, and arguably cultural and sociological phenomena as well. The activities
and interactions at each level both enable and constrain activities and interactions at other
levels, generating what many of us would intuitively refer to as order or structure in the
appearance, behavior, or configuration of the elements at each level. We might then apply
the term “pattern” to an observable, coherent set of such configurations, sharing certain dis-
cernible features in common, that arises reliably from a specified process. Setting aside the
philosophical question of whether the selection process itself generates order, or whether we
merely define order with respect to the outcomes we observe to be favored by the selection
process, we might ask: Given a particular set of mechanisms operating at a particular set of
levels—a “system”—how do we predict, understand, or develop intuition for the emergence
of patterns? What does pattern emergence tell us about the living creatures we see around
us, and the biological possibilities that have not (yet) been explored?

This thesis concerns itself with a microscopic facet of life, situated between the levels of
biochemical reactions in semi-isolated compartments and interactions among these compart-
ments and with the environment. Practically, these compartments comprise one or multiple
biological cells producing proteins, and the patterns that will be considered are di↵erences in
the concentration of protein products across compartments—specifically those resulting from
di↵erential levels of gene expression among cells. Since the compartments are understood to
occupy separate physical locations, the di↵ering expression levels can be visualized as recog-
nizable spatial patterns including stripes, spots, or checkerboards. Such multicellular gene
expression patterning is fundamental to organizing diverse biological activities, including
cooperation among colonial microorganisms and body planning in developing embryos.
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Encouraged by natural examples, genetic engineers have successfully modified living or-
ganisms to achieve multicellular patterning with aspirational applications in chemical pro-
duction, biomaterials, and regenerative medicine. Yet theory often lags behind technological
and experimental progress; many successes in multicellular patterning [181, 182, 266] have
relied primarily upon numerical simulation of whole systems (e.g., [149,163,165]) rather than
a holistic theory or methodological, modular characterization, and a few have not employed
models at all (e.g., [180]). In contrast, conventional engineering approaches rely on the pre-
dictive power of theory both to design complex systems from simpler constituent parts and
to build the intuition necessary to envision new capabilities. Future progress in synthetic
multicellular patterning will benefit from a firm understanding of the underlying theoretical
principles, as well as scalable, e�cient methods for implementing—and validating—these
principles in practice.

Here, I develop approaches to understanding multicellular gene expression patterning
using techniques from signal processing and networked dynamical systems theory—tools
traditionally employed in electrical and mechanical engineering. I then apply theoretical
insights to help design and implement new experimental platforms for attaining multicellular
patterning with genetically engineered microorganisms. My work demonstrates how taking a
new theoretical perspective can reveal behaviors in existing systems that were not previously
considered possible, as well as suggest new classes of systems capable of achieving identified
behaviors.

The remainder of this section situates the thesis in the context of extant research in
biological patterning. It begins with an introduction to theoretical paradigms for concep-
tualizing patterning from a century of work in developmental biology; progresses through a
brief history of multicellular pattern formation in synthetic biology; justifies more generally
the application of engineering approaches to biological research; and presents conceptual
and mathematical conventions that will be used in the remainder of the work. This section
concludes with an overview of the thesis organization and the contributions specific to each
chapter.

1.1 Gene Expression Patterning in Natural Systems

There are many senses in which biological systems can be understood to generate pat-
terns. On the cellular level, there are roughly two main classes of patterns: those that de-
scribe “shapes”, or the placement of cells in space—e.g., the structure of a bacterial colony or
the digits of a human hand—and those patterns that describe spatial variation in the activity
or anatomy of individual cells—e.g., the color patterns on an animal’s fur are produced by
variation in the types and quantities of pigments produced by the cells that grow each hair.
This thesis focuses on the latter type of pattern, specifically on cell-to-cell variation in gene
expression.

Gene expression is the process by which a gene coded in DNA is transcribed into mRNA
molecules that are then translated into protein molecules (Figure 1.1). These proteins deter-
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mine many important elements of a cell’s behavior and may generate e↵ects that persist over
long timescales. For example, the genes expressed by cells during embryonic development
will determine the ultimate “identity” of the cell (e.g., a nerve or skin cell) in the adult or-
ganism. Environmental and biological cues, physical or chemical, contribute to determining
whether, when, and how much a gene is expressed.

One particularly important avenue for modulating gene expression levels involves classes
of proteins that interact locally with DNA so as to increase (promote) or decrease (inhibit
or repress) the production rate for mRNA corresponding to a particular gene. In this case,
the DNA-interacting protein is called a transcription factor because it directly influences
whether mRNA for a particular gene (or set of genes) is transcribed. Because transcription
factors are proteins coded by genes, their production is ultimately subject to regulation by
other transcription factors. Collections of such interactions form genetic circuits that can
be exceedingly complex in living organisms. It is not uncommon for the products of genetic
circuits to cause cells to signal other cells in a way that changes those cells’ gene expression
levels, such that even relatively simple genetic circuits can generate sophisticated behaviors
at the multicellular level. Indeed, cell-to-cell signaling is an essential ingredient in most (if
not all) natural patterning systems, and will form the basis for the work presented in this
thesis.

Figure 1.1: A schematic of gene expression. An input (gray triangle) modifies the transcription rate

of mRNA (purple) from a gene (gold). The mRNA is then translated into protein (blue). The proteins
may in turn modify the transcription rate of some other target gene (green). If the target gene is the same
as the expressed gene, then the protein is said to be autoregulatory. Chemical, mechanical, or electrical
signals from neighboring cells may also influence transcription rates (not pictured). Cell-to-cell variability
in production rates that “persists” in time (i.e., is not due to the intrinsically stochastic nature of chemical
interactions) may arise, for example, from variation in the concentrations of intercellular machinery (red
circles) responsible for transcription and translation.

The remainder of this section provides a brief history of gene expression patterning in
developmental biology, where a great deal of theoretical and experimental research has taken
place. In keeping with the spirit of this thesis, emphasis is placed on conceptual frameworks
with mathematical underpinnings rather than specific molecules or model organisms.

Reaction-di↵usion and Positional Information

Biological patterns are easily found, and at least some aspects of their formation are
readily observed, but how a particular pattern emerges is not straightforward to probe
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or understand. Computer scientist Alan M. Turing is credited with the earliest formal
mathematical hypothesis for spontaneous biochemical pattern formation, published in 1952.
He envisioned a tissue with fixed geometrical form inside of which chemicals react with
each other and with the tissue, promoting or inhibiting the production of other chemicals.
Although “a perfectly homogeneous and possibly irregularly shaped mass of tissue [...] will
continue indefinitely be homogeneous”, statistical fluctuations in real systems can trigger
pattern formation provided that “the system has an appropriate kind of instability”—that is,
a dynamical system description indicates the homogeneous steady state is unstable. Turing
demonstrated that such an instability could arise from di↵usion of the involved chemicals,
resulting in periodic, oscillatory, or traveling-wave patterns of chemical concentrations [2].

It is di�cult to overstate the influence of Turing’s lucid theoretical formalism on subse-
quent research in multicellular patterning [3–5]. Although decades would pass before mathe-
maticians and experimental biologists recognized the importance of his ideas [6], his insights
have since accumulated experimental evidence in such varied systems as feather pattern-
ing [7], hair follice spacing [8], fish skin striping [9], and mammalian palate ridges [10]. To
date, most attempts to identify instances of Turing patterning in living systems have focused
on the two-chemical “substrate depletion” or “activator-inhibitor” models introduced in 1972
by Alfred Gierer and Hans Meinhardt [11]. More recent work has expanded the scope of
reaction-di↵usion patterning to systems exhibiting localized or “solitary” (but not global)
patterning [12,13], systems with space-dependent parameters [14–16], intrinsically stochastic
chemical networks [17,18], systems capable of pattern “inception” regardless of whether the
result is stable [19], generalized systems with local and nonlocal interactions [20], and locally
mass-conserving systems that conceptually relate Turing instabilities to other patterning
mechanisms [21,22].

Turing introduced the reaction-di↵usion paradigm within a more general discussion of
embryonic development, in which he postulated that chemical “morphogens” could induce
growth and formation of distinct structures by “[catalyzing] the production of other mor-
phogens” until eventually some substance was produced “whose duties [were] not purely
catalytic” [2]. Thus, morphogens would guide initially indistinguishable, unspecified cells
to adopt particular fates in an adult organism, with the identity and activity level of the
morphogen determining the fate, e.g., a skin cell or a nerve cell. The exact characteristics
of a “morphogen” have been a subject of some contention [23–25]—Turing himself had not
intended the term to have “any very exact meaning” [2]—but his ideas foreshadowed modern
understanding of genetic networks as chains of proteins modulating each other’s production
levels in context- and concentration-dependent fashion [25,26].

The notion of some “informative” substance specifying cell fate through signaling, thresh-
olding, or some combination thereof had received attention in the early 1900s from scientists
including Hilde Mangold, Hans Spemann, Leopold von Ubisch, and Hildegard F. Stumpf.
These ideas were synthesized into their most famous form by Lewis Wolpert in a series of
influential papers published in the late 1960s and early 1970s [27]. Wolpert distinguished
between “mosaic” development, in which a single cell divides into many cells whose fates are
specified by local interactions during division, and “regulative” development, in which cell
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fates are specified by global interactions across many extant cells. Focusing on regulative
development, he articulated the notion of positional information, which encodes a cell’s rel-
ative location within a tissue and instructs further gene expression so that the cell adopts
the fate appropriate to that location. His prototypical example was the “French flag model”,
in which cells arranged in a line must produce blue, white, or red pigment based on their
position in the line. He discussed a few conceptual “algorithms” to accomplish this pat-
terning, the most famous of which involves a preestablished gradient of some substance that
decreases monotonically from one end of the line to the other. The absolute concentration
of substance would then be su�cient to specify cell fate at the appropriate position in the
line [28].

Following Wolpert’s conceptualization—and Francis Crick’s suggestion that morphogen
gradients could be established through di↵usion [29]—a spate of studies sought to identify
just such molecules that “[spread] out from a localized source to form [...] a monotonic gra-
dient [...] that determines, point by point, the responses of all cells in the field” [23]. Within
thirty years researchers had identified putative morphogen gradients involved in chick limb
development [30, 31], axolotl limb regeneration [32], fruit fly [33, 34] and zebrafish [35, 36]
axis orientation, frog mesoderm formation [37], and vertebrate neurogenesis [38, 39], among
other candidates with varying levels of experimental evidence (and agreement among scien-
tists) [23, 24, 40]. Subsequent work expanded upon Wolpert’s original conception to provide
more detailed mathematical underpinnings, especially with regard to how concentration gra-
dients were established and maintained [27,41–46].

Scientists before Turing and Wolpert had postulated the existence of “formative sub-
stances”, “organizers” [47], and gradients of signals that would guide the di↵erentiation of
cells into distinct fates [23, 27]. What reaction-di↵usion and positional information con-
tributed were compelling theoretical frameworks that linked previously proposed high-level
concepts together with clearly hypothesized molecular means to particular patterning ends.
These frameworks have remained appealing in part because they are su�ciently general to
describe many systems, su�ciently specific to provide explanatory power, and su�ciently
simple to permit intuitive understanding. Decades of mathematical and empirical studies
alike have supported the basic tenets of reaction-di↵usion and positional information, even
as new observations have complicated the theories from their initial conceptions.

On the Shoulders of Giants

By the turn of the century enough experimental evidence had been accumulated to con-
vince most developmental biologists that reaction-di↵usion and morphogen gradient inter-
pretation were reasonable explanations for observed patterning phenomena. Through their
e↵orts to identify the involved biochemicals, researchers also made conceptual and empirical
observations that drove the field to adopt a new concern. “[R]eliability,” wrote Arthur D.
Lander in 2007, “[or] as engineers call it, robustness [in] patterning, has become something
of an obsession among experimentalists and theoreticians alike” [25].
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The “obsession” arose in studies of both reaction-di↵usion systems and morphogen gra-
dient systems, but for somewhat di↵erent reasons. While the end of the 1900s saw sev-
eral molecular candidates for gradient-forming morphogens, researchers had more di�culty
identifying biochemical players in reaction-di↵usion networks [48]. Overly “literal” interpre-
tation of theoretical models debatably exacerbated the situation: Gierer and Meinhardt’s
two-species reaction-di↵usion models [11] place stringent constraints on the kinetic rate pa-
rameters [49] that permit spontaneous patterning and typically require a large di↵erence in
di↵usivity between the two species [50]—a requirement that is di�cult to satisfy with biolog-
ical molecules. Furthermore, even systems capable of patterning are not necessarily robust
or reproducible, in that changes to boundary conditions [51] or initial conditions [52,53] can
alter or even eliminate patterning behaviors [54, 55]. This so-called “robustness problem”
formed the basis for a number of works exploring networks of more than two species that
are capable of spontaneous patterning in or near the Turing sense, with potentially more
biologically plausible parameter values [56–66], or how mechanisms such as tissue growth
might (de)stabilize reaction-di↵usion patterning [67, 68].

Concurrently, researchers realized that the simplest model of morphogen gradient in-
terpretation could not account for experimental observations. The original conception of
a morphogen gradient suggested a purely feedforward network in which cells had only to
read out their position relative to the morphogen concentration. But individual animals
of the same species maintain their proportions despite variability in size, and evidence in-
dicated that morphogen gradients tend to be produced by localized production, di↵usion,
and global degradation, which—left unregulated—would produce exponential gradients that
do not scale with tissue size, and would therefore lead to errors in positional decoding by
concentration alone. Theoreticians were obliged to suggest additional system constraints
or regulatory mechanisms between morphogen and target gene that would scale gradients
to match experimental observations [69–72]. Building on one of Wolpert’s original sugges-
tions [28], researchers also explored how positional decoding could be improved by processing
two opposing gradients of morphogens [73–75].

Related challenges continued to emerge to the idea of target genes directly reading mor-
phogen concentrations. Theoretical work identified limits to the positional information that
could be decoded from gradients owing to intrinsic stochastic influences, and suggested strate-
gies to bu↵er disruption from noise and cell-to-cell variability [76–84]. Meanwhile, experi-
mental observations indicated that features other than morphogen concentration—such as
the slope or temporal evolution of the gradient—might be key to the transfer of positional
information [85–91]. These developments have led researchers to the next logical (and still
open) question, namely, how the interplay between morphogen gradients and genetic net-
works actually generates an output pattern with appropriate features in the appropriate
places [92–98].

Turing’s and Wolpert’s frameworks have historically been placed in opposition to each
other [6], but there is no reason this must be so, as pointed out by Jeremy B. A. Green and
James Sharpe in their 2015 paper illustrating how genetic networks might combine informa-
tion both from a reaction-di↵usion network and a morphogen gradient either sequentially
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or in parallel [5]. Their argument highlights a growing need for integrative theoretical ap-
proaches to untangle the perplexing complexities behind natural patterning systems, most
of which appear to resist classification into simple, siloed schemes. For now, it seems enough
to predict that as researchers persist in pushing theoretical and experimental boundaries,
the “two big ideas in developmental biology” [5] will continue to expand and adapt to the
ever-evolving landscape of our scientific understanding.

From the Perches of Dwarfs

While discussions of gene expression patterning may have been dominated by reaction-
di↵usion and positional information, researchers have not restricted their studies or their
mathematical models to systems that do not quite fit either scheme. For example, con-
temporaneously with Wolpert’s investigations, Jonathan Cooke and Elizabeth C. Zeeman
proposed a “clock-and-wavefront” model to describe the emergence of periodic, regularly
spaced structures in embryonic vertebrates. According to this model, biochemical concen-
trations (forming a “segmentation clock”) oscillate within cells at a rate faster than the
anterior-to-posterior passage of a wavefront that “freezes” cells at some point in the oscilla-
tion [99]. Supported by experimental evidence for involved molecules, a moving morphogen
gradient was proposed to generate the di↵erentiation wavefront [100], and mathematical
models were produced for the oscillators specifically [101,102] as well as for the process as a
whole [103–105]. Later models examined scaling [106,107] and robustness to noise [108–110],
and also challenged the initial premises by suggesting alternatives without the segmentation
clock [111] or (separately) the gradient [105,112,113].

The clock-and-wavefront model addresses the appearance of periodic patterns along
one dimension. An alternative mechanism is hypothesized to explain the emergence of
checkerboard-like periodic patterns in two dimensions. As early as 1940, Sir Vincent B.
Wigglesworth, in his study of the cuticle of kissing bugs, discovered that plaques and bristles
would arise with regular spacing based not on absolute distance but on the number of cells
separating them. His experimental observations led him to postulate that plaque- and bristle-
destined cells inhibited other cells in the vicinity from becoming plaques and bristles [114].
Half a century later, Joanne Collier and colleagues revisited this idea in a di↵erent model sys-
tem, with a mathematical description in which the more strongly a cell expresses a gene, the
more strongly it inhibits its neighbors from expressing the same gene. Such lateral inhibition
sets up a competition that can spontaneously generate “salt-and-pepper” or “checkerboard”
patterns of expression across the whole field of cells [115]. Their model of lateral inhibition
was based on a contact-based signaling scheme with known molecular components [116,117],
which establishes communication more locally than a di↵usion-based signaling scheme such
as the “short-range activation, long-range inhibition” invoked by Gierer and Meinhardt [11].
Subsequent research has generalized and elaborated upon lateral inhibition models in diverse
contexts [118–124], often in conjunction with other patterning methods [125–131].

In addition to these more well-known schemes, specific study systems have also inspired
unique but potentially generalizable models. For example, a “wave-pinning” mechanism
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introduced to explain cell polarization (asymmetry) in response to a chemical signal [132,133]
was subsequently extended to describe germ layer establishment in frog embryos [134]. As
for many reaction-di↵usion models, the crux of the wave-pinning model involves a disparity
in di↵usivity between two chemicals, and indeed theoretical work has subsequently unified
more traditional Turing patterning with wave-pinning through a general analysis of mass-
conserving chemical systems [21]. Studies have also examined alternatives to traditional
morphogen gradient readouts for establishing gene expression boundaries, such as a recently
proposed “speed regulation” strategy for segmentation in developing insects. According to
this strategy, genes are always expressed in a particular sequence. Either high concentrations
of or long exposures to a molecular factor are required to progress through the sequence, such
that a gradient or a wavefront of the factor can generate experimentally observed stripes of
gene expression [135, 136]. Researchers have also hypothesized a molecular implementation
for speed regulation termed the “gradual enhancer switching model” [137].

In summary, the past seven decades of research into gene expression patterning during
embryonic development have revealed—perhaps surprisingly—that a rich variety of outcomes
may result from elaborations upon a few core ideas. Conceptual frameworks such as reaction-
di↵usion and positional information have inspired experimentalists to gather supporting
evidence and theoreticians to develop explanations for evidence to the contrary, leading to a
proliferation of models inspired by data and experiments inspired by models. Concurrently,
researchers have begun to appreciate that the complexity and intricacy of living systems
demands new approaches, including mathematical and quantitative analyses, to explain and
predict the dynamics of patterning as well as its robustness, reliability, and reproducibility.
In this regard, interdisciplinary work especially has the potential to inform our perspectives
on patterning systems with an eye toward the underlying principles, which no doubt still
hold surprises in store.

Further Reading

I have attempted here to cover in general terms the conceptual frameworks that have
guided theoretical research into gene expression patterning in developmental biology, as ap-
propriate to establish context for this thesis. As such, I have necessarily omitted much of the
fascinating details (and particularly the experimental intricacies) that have facilitated theo-
retical advances. For related reviews in the literature, I recommend [4] (interplay of theory
and experiment in pattern formation research), [138] (computational approaches to pattern-
ing in developmental biology), and [139] (self-organization in diverse experimental systems).
For more focused overviews, I suggest [22] (recent developments in reaction-di↵usion re-
search) as well as [25] and [27] (morphogens and challenges related to their study). I will
end by noting that new strands of research into gene expression patterning are increasingly
considering the interaction between molecular concentrations and mechanical forces during
embryonic development. Although these discoveries are exciting and relevant, they are also
(sadly) beyond the scope of this thesis. I refer the interested reader to the latter half of [139]
(as a survey) and to [140] (for more detailed treatment).
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1.2 Multicellular Patterning in Synthetic Biology

The field of synthetic biology has yet to adopt a standard definition. For the purposes
of this discussion, I will adapt a version from [141]: synthetic biology encompasses e↵orts
to create biological systems in order to establish control over cellular behaviors. This fram-
ing excludes genetic engineering for measurement or perturbation of extant systems (e.g.,
“molecular recording” [142], applying fluorescent labels to endogenous components, adding
optogenetic domains to existing proteins), as well as studies employing biomolecules outside
the context of a living organism (e.g., [143,144]). A good deal of work has gone into develop-
ing synthetic microbes for technological purposes, including chemical production, medicine,
and materials science. In contrast, most of the multicellular patterning systems to be dis-
cussed here have yet to find direct application. Tools from synthetic biology have also been
used to reconstruct or recapitulate the function of known genetic circuits in model organisms,
rather than to “control” the behavior of systems per se; this approach will be addressed in
the next section during our discussion of “building to understand” natural systems.

Although the exact conception of synthetic biology is di�cult to pinpoint, its birth might
be recorded as January 20, 2000, when a pair of papers published in the same issue of the
same journal reported the first synthetic biological circuits: a chemically inducible toggle
switch comprising two mutually repressive transcription factors [145], and a network termed
the “repressilator” comprising three transcriptional repressors with temporally oscillating
concentrations [146]. A few months later, researchers published on a genetic network with
negative feedback to reduce stochastic fluctuations in biochemical concentrations [147]. By
the following year, genetic engineers had designed the first synthetic cell-to-cell communi-
cation [148]. Already in its first two years, then, the nascent field had demonstrated the
potential to regulate three key ingredients for patterning: gene expression, robustness to
stochasticity, and intercellular signaling.

The first pattern-forming circuit was of the Wolpert flavor, involving a chemical gradient
that was interpreted by a microbial lawn into a stripe pattern. “Receiver” strains of bacteria
expressed green fluorescent protein (GFP) for a specific range of concentrations of a di↵usible
chemical, which was produced by “sender” strains of bacteria seeded in localized regions.
Di↵usion from sender strains generated a chemical gradient, such that only receivers at a
narrow range of distances from the sender expressed GFP. In this way, a green “ring” centered
around a sender would emerge. The researchers called their implementation a “‘band-detect’
gene network”1 [149]. A later version of the circuit allowed the position of the band to be
tuned through externally administered signals in the growth medium of the bacteria [150].
Subsequent work has explored di↵erent implementations of the band-detect as a strategy for
stripe formation [151–154].

Synthetic biologists have had more di�culty implementing “true” Turing patterning
(with a di↵usion-driven instability), for much the same reason developmental biologists have

1The terminology has since morphed in many places into “band-pass”—a most unfortunate development
so far as anyone who has studied signal processing is concerned.
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had di�culty identifying it in nature—namely, restrictive parameter ranges that biological
parts do not tend to satisfy. Theoreticians have proposed alternatives, including a scheme for
producing Turing patterns with a single di↵user [155,156], and have employed computational
modeling to suggest practical requirements for achieving more standard reaction-di↵usion
patterning [157]. Experimental demonstrations have been shown in cell-free biological setups
(e.g., [158]), but the only successful multicellular demonstrations thus far are of stochastic
Turing patterning in engineered bacteria [159] and “solitary” reaction-di↵usion patterning
in mammalian cells [160]. The latter di↵ers from conventional Turing patterning in that
the “short-range activator” will only activate its own production once a certain threshold is
reached. Thus, a perturbation to the homogeneous steady state that locally increases the
activator concentration past the threshold will initiate patterning, but the faster-di↵using
inhibitor will at some radius from the perturbation prevent enough activator from being
produced to cross the threshold, thereby preventing propagation of the pattern past that
radius [12]. As a result, patterns may strongly depend on initial conditions in a way they
would not be expected to in Turing’s original setup [160].

Concurrently, researchers have explored other patterning schemes based on models of
naturally evolved systems. Genetic oscillations have been employed experimentally in con-
junction with cell growth to generate ring patterns in microbial colonies [161], reminiscent
of the clock-and-wavefront mechanism [162]. Lateral inhibition has been engineered into
mammalian cells to produce mixed populations with a predictable ratio of cells expressing
one gene vs. those expressing another, although the system did not produce salt-and-pepper
patterns per se since the cells growing in a colony were not organized in a regular lat-
tice [163]. Inspired by proposed mechanisms for morphogen gradient scaling in developing
embryos, synthetic biologists engineered stripe-forming systems in circular bacterial colonies
that scale the location [164] and width [165] of a ring of gene expression with the size of the
colony, based on collective sensing of the size of the domain in which the colony is growing.

In addition to borrowing ideas from developmental patterning, synthetic biologists have
also investigated schemes that are not as yet known to occur in “wild-type” organisms. Ex-
perimentalists have engineered bacteria to produce pigments in response to light, and have
used colonies of these bacteria to identify outlines in black and white images (edge detec-
tion) [166] or reproduce RGB color images [167]. (Image processing schemes using reaction-
di↵usion of nucleic acids outside of living cells have also been proposed [144,168,169].) Theo-
reticians have uncovered dynamic patterning schemes in two-dimensional systems, including
a “tug-of-war” mechanism that produces transient but long-lived Turing-like patterns [170],
and have performed computational screens to identify two-node networks capable of produc-
ing spontaneous dynamic patterning in discrete cellular tissues [171].

Synthetic biology as a whole faces unique hurdles relative to conventional engineering
fields, ranging from the practical di�culty of integrating and maintaining networks in living
organisms to a lack of available methods to screen components or prototypes for desired
functionality [172, 173]. Synthetic multicellular patterning additionally su↵ers from compli-
cations associated with cell-to-cell signaling, such as ensuring synthetic receptors respond
to cues without activating native pathways, or that multiple signaling “channels” (including
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engineered and endogenous) do not interfere with each other [174, 175]. On the theoretical
end, challenges tend to arise from the high dimensionality of patterning systems. Genetic
networks within individual cells are often already intricate and involve many components;
coupling these networks with coordinated population-level behaviors can produce extraor-
dinarily high-dimensional models, which may not be easy to analyze or interpret. How to
reduce these models without losing important details—how to make them “as simple as pos-
sible but not simpler”—is an ongoing area of research and philosophical exploration within
both the synthetic and developmental biological communities.

Further Reading

As before, I have grossly neglected examples of self-organization related to mechanical
properties or physical arrangements of cells, including patterns arising from variable pop-
ulation densities [176–178] and cell-to-cell adhesion [179, 180]. These systems are reviewed
alongside other synthetic multicellular patterning systems in [181] and [182]. For a history of
synthetic biology in microbes, see [183]. For extensive reviews of practical challenges facing
synthetic biologists, see [172] and [173].

1.3 Why Engineering?

“[E]nlightenment can come in di↵erent forms—not just in the elegant simplicity of a

physicist’s theory, but also in the more utilitarian guise of an engineer’s analysis.”

– the (anonymous) editorial board of Nature, in [184]

Denis Noble, one of the first scientists to apply computational models in physiology, has
argued that researchers have yet to succeed in establishing a theoretical approach to the life
sciences, having thus far relied rather on borrowed principles from chemistry and physics
[185, 186]. His remarks motivate the mathematical aims of systems biology, or the study of
biological functions or pathways that consist of or comprise complex, integrated networks with
dynamic interactions (definition adapted from [187]). This somewhat nebulous field arose
primarily in the 20th century and gained momentum into the early 2000s, concurrently
with synthetic biology. Given the context, it is not entirely surprising that calls to apply
engineering techniques to systems biology also emerged around this time [184,188,189].

I think it is relatively clear why engineering theory has strongly influenced synthetic
biology, which, as an endeavor focused on “building things” for various applications, shares
many of the same concerns as more traditional engineering disciplines (but see [190] as to
whether it should). What requires more explaining is why an engineering perspective ought
to inform our understanding of naturally evolved systems. This is of course a matter of some
nuance and opinion, but at a philosophical level, engineering analysis is commonly justified
for application to physiology and molecular biology on the basis of the following parallels
(observed or proposed):
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1. Living and engineered systems are distinguished from purely physical or chemical sys-
tems by their purpose, function [188], or performance objectives [191].

2. Living and engineered systems are modular, redundant, and hierarchical in structure
[188,189,192,193].

3. Both living and engineered systems “operat[e] in a world that is messy and unpre-
dictable” [193], and therefore must regulate aspects of themselves or their environment
so as to reject or adapt to disturbances [25, 189,192,194–196].

4. Both living and engineered systems are the result of optimization processes, the former
through natural selection and the latter through deliberate design [197–199].

In considering these parallels, researchers must balance the desire to unify concepts be-
tween engineering and biology with the aims and details that are unique to each discipline.
Put another way, researchers must recognize not just the analogies, but where they break
down. For example, molecular signaling networks—in comparison to human-built automated
systems—“do not have the luxury of employing specially-designed, dedicated components
whose purpose is to sense or control biochemical signals” and thus “are comprised of el-
ements that must serve both as the transmitted signals and their own controllers” [200].
The biochemical components employed by organisms impose constraints on system design
that warrant careful consideration within—or in comparison to—existing frameworks [201]
(e.g., [202–204]), especially with regard to intrinsic stochasticity (e.g., [205–207]).

Similarly, optimization is an entire field of research in engineering that is often formalized
with respect to precise mathematical representations of the objectives, costs, and constraints
relevant to a particular problem. For many biological systems, it is unclear what these ob-
jectives and costs would be, or how they ought to be expressed mathematically. There are
also objections to this framing on philosophical grounds: Does optimization for one context
necessarily entail suboptimality in other contexts? Do organisms even need to be optimal,
or merely su�cient? Can su�ciency itself be encoded in, or emerge as a consequence of,
objectives, costs, and constraints? Such challenges urge caution in applying principles and
approaches established in one context to another context [25,199,201,208–210]. At the same
time, the unique characteristics of living matter open new avenues for theoretical, mathe-
matical, and engineering research, by demonstrating principles of function and structure yet
unimagined by human minds.

Theory-based engineering approaches to life sciences tend to fall into three camps. The
first, which I will call “reverse engineering design”, focuses on applying engineering tech-
niques or analysis to uncover principles behind biological “designs”—meant here in the sense
invoked by Daniel Dennett, as emergent structures resulting from environmental pressures,
natural selection, and other “free-floating reasons”, rather than from conscious intent [211].
The second, forward-engineering approach is sometimes referred to as “building to under-
stand” [212,213], in the spirit of Richard Feynman’s famous blackboard quip, “What I cannot
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create, I do not understand.” The central aim is to synthetically reconstitute existing sys-
tems, in whole or in part, to test current understanding of the mechanisms guiding their
behavior. I would add to this approach the practice of implementing new or hypothesized
mechanisms that have yet to be observed in order to evaluate their plausibility as biological
“solutions”. The third approach, which I tentatively term “behavior certification”, is of
a more practical bent. The goal is to develop tractable mathematical tests for whether a
system is capable of exhibiting a particular behavior or class of behaviors. The test criteria
that are necessary and/or su�cient to guarantee a behavior of interest are justified on ana-
lytical grounds, even if the test itself is administered computationally. Behavior certification
may overlap with the other two approaches, particularly if the test criteria have physically
meaningful interpretations.

Approach 1: Reverse Engineering Design

“[T]here is good reason for believing that there are a set of general and universal principles

involved in the translation of genetic information into pattern and form.”

– L. Wolpert, in [28]

For the purposes of this discussion, “design principles” can be thought of as guidelines
for selecting structural features that enable a system to fulfill its performance objective(s).
Defining a design principle necessitates (1) identifying the system’s performance objectives
and (2) identifying the structures responsible for achieving those objectives. Both steps re-
quire explicit consideration of the tradeo↵s and constraints imposed by evolutionary history,
biochemical and physical limitations, conditions of operation, and context (i.e., relation to
other systems).

The hunt for design principles in systems biology has been predicated primarily on the
notion of modularity, which maintains that living systems are organized into a series of inter-
connected modules, each of which carries out a function separate from that of other modules.
Individual components (e.g., molecular species) may “belong to multiple modules at di↵er-
ent times” and may be “quantitatively regulated, or switched between qualitatively di↵erent
functions, by chemical signals from other modules” [188]. Many di↵erent combinations of
molecules and their interactions may execute the same function, such that a given module
can be implemented in myriad ways. The implementation independence of modules means a
module-level analysis should apply to multiple similar systems operating in di↵erent contexts
(e.g., in di↵erent organisms). Hence, with a modular representation, one ought to be able
to consider “design principles” that apply to living systems in general, and not merely to
specific examples.

Modularity received a critical vote of support with the reported discovery of “genetic
network motifs” in bacteria [214]. A motif is a particular pattern of interactions among
a small number of molecular species [215]. For example, stripes of gene expression can
be produced by feedforward loops [149, 153, 216], in which one species activates or inhibits
another species directly and also by way of an intermediary [217]. Interlaced cross-repressive
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motifs (“toggle switches”) are also well known for their role in positioning gene expression
boundaries (e.g., [94, 218]). Similarly, a combination toggle switch/repressilator motif2 was
proposed based on observations of stripe formation in vertebrate neural tube development
[219, 220] and was subsequently identified in fruit fly patterning as well [98]. Although
genetic network motifs were originally envisioned to assume a specific function based solely
on topology (the pattern of interactions) [221], the behavior of most motifs does in fact
depend on parameter values to a significant degree [222]. Motifs that can perform the same
function despite significant variation in parameter values are said to exhibit “parameter
robustness” or to have “structural” behaviors [196, 223], a property that can also apply to
modules more generally [224].

Whether a system is evaluated at the level of motifs or of other modules (e.g., [225]),
it is the interconnection of these abstract elements that is responsible for producing full
patterns of spatial and temporal gene expression observed in developing organisms [26,226].
Engineers are familiar with the complications that can arise from hooking modules together:
impedance matching, for example, is essential for designing electrical circuits in which each
module in the full circuit behaves similarly to its behavior in isolation, implying that modules
can be individually characterized before assembly of the whole device. Extending this idea
to biochemical networks, Domitilla Del Vecchio and colleagues introduced the notion of
“retroactivity” to capture the e↵ect on a module of attaching its output to the input of
another module. Accounting for retroactivity requires additional elements relative to models
of more conventional engineered systems. Analysis based on retroactivity has identified
certain biological mechanisms that enhance the “separation of function” among modules
[227], as well as examples where genetic network motifs exhibit counterintuitive behaviors
due to contextual factors [228]. Although this approach has yet to be widely applied outside
synthetic biology, it serves as a welcome example of how certain high-level phenomena—in
this case, changes in module behavior in isolation vs. in context—may be shared by both
living and engineered systems, but nevertheless require mathematical formalisms tailored to
the specific realities of each field.

Studies of genetic network motifs and interconnections thereof typically rely on dynam-
ical systems models, which describe systems that change in time. These models originated
in physics and have generated substantial interest among mathematicians; however, many
practical methods for analyzing them were pioneered by engineers beginning in the late 19th
century, who were concerned with applications related to electrical power, communications,
manufacturing, and military technology [229–232]. In particular, the field of control theory
has contributed a wealth of analysis and design techniques for regulating and controlling
the behavior of automated systems. The notion of “control” implicitly frames the problem
in terms of a performance objective (i.e., what manipulations or means can be employed
to achieve predetermined ends), which distinguishes it from traditional approaches in the
hard sciences. Control-theoretic representations of systems are modular by nature, with the
“controller” characterized separately from the “plant” that it controls.

2The authors dubbed this motif the “AC-DC circuit” [219], confoundingly to this engineer.
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The application of control theory to biological networks has resulted in some of the
most successful attempts to explore mathematical principles behind evolutionary designs. A
number of biological processes involve homeostasis, or maintaining certain quantities within
certain ranges despite environmental perturbations; for example, a human’s internal body
temperature generally should not depart too drastically from ca. 37 C, regardless of the
weather outside. Similarly, in a process sometimes referred to as “desensitization”, many
systems will respond to a stimulus initially but return to basal activity levels after a short
time, thereby ensuring sensitivity to future stimuli. Both homeostasis and desensitization are
examples of adaptative regulatory processes, many of which (e.g., bacterial chemotaxis [233–
235], ion channel responsiveness [236]) have been analyzed from the standpoint of feedback
control systems [237]. Feedback implies that measurements of a system’s output modify
the system’s behavior so that the output achieves some desired response—in the case of
adaptation, settling to basal levels after a transient [238]. In a sensory system, the transient
is necessary because it encodes the response to a stimulus, while in a homeostatic system,
the transient is rather a necessary evil, because it represents a departure from the constant
set point. A given system may employ multiple “nested” feedbacks in serial or in parallel;
modular decomposition of the heat shock pathway in bacteria has suggested functional roles
for such feedbacks with respect to the performance objective of adaptation [239].

Glycolysis is an example of a biological process whose observed behavior is puzzling at first
sight, but has a meaningful interpretation from an engineering perspective. This metabolic
pathway transfers energy stored in glucose into energy stored in molecules of adenosine
triphosphate (ATP). Although an organism would seem to benefit from maintaining a con-
stant pool of ATP even as its energy demands vary, empirical observations in yeast [240,241]
and skeletal muscle cells [242] have shown that the concentrations of metabolites oscillate in
time. A study of the glycolysis network from a control-theoretic perspective concluded that
oscillations might arise not for any functional reason per se, but as a byproduct of constraints
imposed by the simultaneous need for e�ciency (low metabolic cost of manufacturing neces-
sary network components) and low steady-state error (di↵erence between actual and desired
levels of ATP for a given energetic demand). Similar performance constraints were found to
apply even when the purported molecular mechanisms in the model were replaced with an
arbitrarily complex (linear) stabilizing controller [243].

This study well illustrates two of the advantages of engineering approaches. First, fram-
ing a problem with an eye toward design can make explicit the tradeo↵s that influence
system performance—in this case, between robustness (oscillations, steady-state error) and
e�ciency. Second, modular deconstruction—such as decomposition of a full system into
controller and plant—facilitates analysis that is independent (to a degree) of molecular de-
tails, and can therefore allow generalizations beyond a particular model to a broader class
of systems. In the aforementioned work on glycolysis, the ability to generalize was used to
highlight fundamental constraints and tradeo↵s (including in later work extending to au-
tocatalytic networks beyond glycolysis [244]). More broadly, analytic techniques may also
clarify the necessary and su�cient conditions for carrying out a particular aim, and therefore
aid in the search for, or characterization of, systems that achieve that aim. For example,
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robust perfect adaptation3 of a biochemical system is equivalent to the control-theoretic re-
quirement for robust steady-state tracking and disturbance rejection in deterministic linear
systems, for which integral controllers are necessary and su�cient. Expanding this concept
into the biological sphere, theoretical work has revealed an antithetic motif that attains
integral control of stochastic unimolecular and bimolecular chemical reaction networks (sat-
isfying reasonable constraints) [207]. Furthermore, it has been shown that any biomolecular
controller achieving robust perfect adaptation for arbitrary stochastic reaction networksmust
include this motif [246]. This observation may be considered as a kind of “design principle”
directly analogous to a concept in conventional engineered systems.

Control systems approaches are slowly finding their way into developmental biology as
well. Theoretical research into how morphogen gradients scale with tissue size suggested
an “expansion-repression” mechanism analogous to an integral controller [69], and a com-
bination of modeling and experiments in fruit flies identified a control architecture with
redundant negative feedback loops that are responsible for reducing developmental errors.
Interestingly, the redundancy only appears to be necessary when cell metabolism is high
and therefore development is fast; at slower metabolic rates, additional feedback loops have
little e↵ect on the dynamics of gene expression [247]. It remains to be seen whether the
architecture of multiple feedback loops that are redundant in certain contexts and not in
others constitutes a “design principle” that applies to other biological patterning systems,
especially given that similar cascades of serially connected modules, with the output of the
whole cascade fed back into each of the modules, have also been identified in intracellular
signaling and metabolic pathways (e.g., [239, 248]) and are commonly employed in process
engineering [237].

While the previous examples have considered control of molecular concentrations, Michael
Levin has argued for further application of control theory to higher-level outcomes. He notes
that salamanders may regenerate entire limbs with proper structure even from tails grafted
onto the flanks of the animals, and suggests that this process may be interpreted as a home-
ostatic feedback system “work[ing] to reduce the error between the current morphogenetic
state and an anatomical setpoint [...] that is a macrostate compatible with several molecular
mechanisms that can implement it” [249]. Such a “top-down view” of biological systems
is well supported by existing techniques in control theory [250], provided that states and
set points can be defined in a meaningful way. More generally, the arguments of Levin and
colleagues suggest that the design principles of patterning systems may be better understood
at levels above genetic network motifs or other modules operating on similarly small scales.

Dynamical systems may be the most common representations invoked to study genetic
networks mathematically, but other classes of models from engineering fields have also been
employed to study biological pattern formation. For example, a Boolean network model—in
which interacting state variables take on binary values—was invoked to conclude that the

3
Perfect adaptation means that the system, after perturbation, returns to the set point without any

steady-state error. Robust adaptation means adaptation to perturbing inputs occurs even despite (reason-
able) perturbations to system parameters [245].
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pattern of segment polarity genes in fruit fly embryos4 results primarily from the topology
of the network rather than exact kinetic rate parameters [251]. In this case, simplifying the
model by treating genes as binary on/o↵ switches facilitated mathematical analyses that
would have been less tractable with other representations [187]. The results of this study
support the hypothesized principle that naturally evolved systems are robust to parame-
ter variation because they encode behaviors primarily into the structure of the underlying
biochemical network.

Even more abstract representations of biological systems have emerged from applications
of information theory, a branch of engineering that deals with communication over noisy
channels. Techniques based on Claude Shannon’s notion of information (as a reduction in
uncertainty once an event is observed) have been employed to study transcriptional regula-
tion [252] and thereafter to provide a literal interpretation of positional information [81,253].
Experimental studies in vertebrate neural tube [75] and early fruit fly embryos [254] indi-
cate that genetic networks do appear to optimally decode a cell’s relative position from the
concentrations of underlying morphogen gradients or pre-established expression patterns of
upstream genes. Taking optimal decoding as a performance objective for networks that im-
plement sequential patterning, one might then ask what network features or design schemes
facilitate optimal decoding. Unfortunately, the methodology employed in these studies can-
not address this question5, leading biologists Johannes Jaeger and Berta Verd to argue for
a synergystic approach between information theory and dynamical systems in order to un-
derstand positional information [255].

In summary, researchers have exploited parallels between engineered and evolved systems
to uncover common schemes underlying observed behaviors in diverse biological contexts.
Motivated by a notion of living systems as modular entities, engineers have developed and
adapted existing theories for control and information processing to describe the properties
of genetic networks in terms of their ostensible function. These approaches have deepened
our understanding of why genetic networks may exhibit nondesirable behaviors, or what
properties may be required for a series of biochemical reactions to acheive a defined aim.
Despite its intuitive appeal, an approach to biological design principles based on modularity
still requires experimental and philosophical justification to address fundamental criticisms,
including the apparent inability for most modules to be entirely separated from their context
in a full system, the di�culty in defining a performance objective [256], and the underlying
assumption that commonly observed modules were necessarily selected for functionality (the
implication being that randomly generated networks could produce such modules with equal

4Propriety demands I mention that a su�ciently early fruit fly embryo is actually a synctytium, or a
single cell with multiple nuclei. In the spirit of mathematical equivalence, theoretical simplification, and/or
engineering practicality, I will continue to use it in the context of discussion about multicellular systems with
the understanding that patterning in the synctytium takes place among nuclei rather than cells, and that
any signaling must be di↵usion- and not contact-based.

5As theoretical physicist Boris Shraiman has remarked, “The problem with [Shannon] information is that
it’s just one number and there’s not much information in it” (overheard at the 2019 UCSB/KITP summer
course on Morphogenesis: Form, Fate, and Function).
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frequency) [257]. Fortunately, mathematical models are hypotheses whose predictions can be
(and are being) tested experimentally. An explosion in methods and technologies, particu-
larly in synthetic biology, is opening a new frontier for empirical verification of mathematical
theories, founded on the notion that our understanding of a system should be su�cient for
us to reconstitute it (as far as we can) from scratch.

Approach 2: Building to Understand

“The properties of a system can be explained by the properties of its components. They cannot

be deduced from them.”

– F. Jacob, in [208] (a lecture delivered at UC Berkeley in 1977)

In his excellent review entitled “Using synthetic biology to explore principles of devel-
opment”, Jamie Davies writes that “if a complex system is believed to achieve its action
according to a simple principle, then constructing a new system based on that principle and
assessing whether it performs the required action provides a powerful verification” [258].
This idea has motivated synthetic biology since that same fateful year of its “birth” in 2000,
by which time researchers had already used a synthetic gene network to experimentally verify
the theory that negative autoregulatory feedback loops in a genetic circuit might reduce the
range over which chemical concentrations fluctuate [147]. Similarly, many of the examples
of synthetic patterning systems presented earlier demonstrate “proof of principle” simply
by virtue of their successful functioning. Some of them—constructed without the intent to
exactly mimic a known genetic network or validate an existing theory—have even suggested
new possible mechanisms for naturally observed phenomena. Rather than retread the terri-
tory discussed in Section 1.2, the following discussion will focus on two examples of “building
to understand” gene expression patterning in developmental biology that seem conducive to
further consideration with engineering approaches.

The pathways that sense morphogen gradients can be implemented in multiple ways [89],
but why a particular system might employ a particular architecture is not fully understood.
In 2018, Pulin Li and colleagues explored the design principles of morphogen gradient for-
mation and signaling using a synthetic setup that allowed them to build and test various
network structures in mammalian cells grown on a plate. Sender cells seeded in a point
or column produced morphogen, which di↵used through a field of receiver cells that could
sequester (uptake) the morphogen by way of a ligand. The receiver cells were engineered
with one of three network structures based on a naturally occurring pathway, and signal-
ing levels (response to morphogen) were visualized. In an open-loop system in which the
amount of sensed morphogen did not feed back on the sequestration rate, the spatial pat-
tern of signaling was more sensitive to variation in morphogen production rate than the
system with feedback. Other modifications to the architecture elucidated forms of feedback
that could bu↵er changes in gradient length scale or amplitude to changes in morphogen or
ligand production rate, backed by mathematical modeling [259].
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Li and colleagues’ observations have the potential to expand beyond the exact models
that were studied, in a manner particularly ripe for further investigation with tools from
control theory. Is there a more abstract framework in which to consider the role of the mul-
tiple feedback loops in gradient formation and maintenance, along the lines of the controls
analysis performed on the heat shock system [239]? Could this framework account for the
robustness of the various architectures to variation in di↵erent parameters, or for the behav-
ior of other known morphogenetic systems in which positive rather than negative feedback
loops are employed? Could theory suggest alternative architectures or implementations to
achieve the results observed by the authors? Could these alternatives be constructed to
validate the generality of the framework? These and related questions illustrate (1) how
engineering abstractions could help to distinguish characteristics common to systems more
broadly from characteristics specific to a particular experimental implementation; and (2)
how the design principles identified through reverse engineering might be evaluated through
systematic forward engineering, ideally across multiple model systems or implementations.

One of the benefits of using synthetic circuits to test design principles is that they can
operate outside the context of a complex surrounding genetic network, and are therefore
more amenable to characterization in isolation than are endogenous modules. For example,
to explore how regulation of a single gene by multiple proteins might influence downstream
patterning, Justin Crocker and colleagues engineered two synthetic transcription factors into
a fruit fly embryo: an activator expressed in a gradient along the length, and a repressor
expressed in a stripe through the center. A reporter was placed under the control of both
transcription factors, causing it to be expressed in two stripes on either side of the anterior
half of the embryo. The authors found that the number and arrangement of binding sites for
the transcription factors modulated the sharpness of the stripes, with overlapping binding
sites creating more well-defined boundaries, perhaps due to competition between the tran-
scription factors at the enhancer (where the binding sites are located). This observation may
help explain the prevalence of overlapping binding sites in developmental enhancers [260].
A similar system in its native context would have been more challenging to investigate in
this manner, since the researchers would not have had as much control over the layout of
binding sites or over the upstream and downstream elements possibly interacting with the
gene of interest. This study also highlights how “microscale” properties such as the lay-
out of genes and binding sites on DNA can a↵ect macroscale patterning behaviors—a trait
that control-theoretic engineering approaches, with their focus on network topologies and
implementation-independent modules, have yet to account for in a systematic way.

The idea of “building to understand” pattern formation has gained traction within a
larger context of growing interest in synthetic (tissue) development or synthetic morphogen-
esis, which aims to construct and control the processes by which single cells or homogeneous
clusters of cells self-organize into complex, specialized structures [261–268]. In my experi-
ence the members of this nascent community are eager for multidisciplinary perspectives
to tackle the exciting challenges that lie ahead [213, 269, 270]. Theoretical approaches from
engineering have particular potential in this field, for engineering demands not simply a
model of a system, but a model intuitive enough that a human can use it to design some-



CHAPTER 1. INTRODUCTION 20

thing new. Whether such designs would (or should) recapitulate natural ones remains to be
seen, but the very process of creating them ought to shed light upon the “allowances and
constraints” [141] of working with biological material, and the plausible principles that arise
therefrom.

Approach 3: Behavior Certification

“Now is the time to incorporate computational modeling [...] and not merely to manipulate

language as done here.”

– A. Trewavas, in [271]

To understand the context for “behavior certification”-type approaches to biological sys-
tems, I think it is necessary to first take a step back and consider the interplay between
analytical theory and computation. Thus far, I have tended to use “theory” (in the math-
ematical sense) to apply to abstract representations with explanatory power. This usage
distinguishes theory from modeling, which need not be abstract (generalizable) nor have
explanatory power (which derives primarily from the interpretability of the representation).
Models in biology are most often studied in simulation through the use of computational
approaches, that is, numerical methods that produce results or “conclusions”, rather than
through analytical means, since many such models do not have closed-form solutions.6

I have sometimes found that biologists question the value of mathematical theory, which
seems to require vast oversimplifications that render it useless for modeling a particular
system with any accuracy. In this view, theory is something like the austere and recalcitrant
older sibling of a↵able, talkative simulation, which—with the appropriate guidance—can
approximately solve some of the most repugnant of equations in milliseconds. In the spirit
of bridging gaps, I submit that theory and computation in fact work closely to account for
each other’s deficits, and it is really the combination of approaches that most successfully
imparts insight.

I will attempt to illustrate with an example. In 2009, researchers carried out a compu-
tational screen to identify network topologies capable of near-perfect adaptation, and found
that only two “core topologies”—negative feedback and incoherent feed-forward—achieved
this goal across a large range of kinetic parameter values [272]. Previous work had tended to
focus on the possible behaviors of known motifs rather than on the possible motifs that could
demonstrate known behaviors, thus this study represented a welcome new approach to mod-
ularity in biochemical networks [238, 273]. However, due to computational constraints, the
authors restricted their study to systems with three species, each of which exists in either an
active or inactive state, and they were only able to scan about 4% of parameter space. These
limitations meant that their analysis failed to identify two more motifs capable of adaptation:

6It is worth reiterating that mathematical is not the same as quantitative. Quantitative (“numerical”)
measurements can be made without any underlying model to explain where they came from, and similarly
mathematical theory can be conducted symbolically with only the barest of constraints upon the involved
numbers.
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a state-dependent inactivation mechanism (in which nodes can be “o↵” in addition to being
active or inactive) [236] and the antithetic motif [207,238]. Even with greater computational
power, research conducted with similar methods could not feasibly conclude that any system
achieving adaptation is required to contain at least one of these motifs, in the way that the
antithetic motif was found to be required for robust perfect adaptation for any stochastic
reaction network. Thus, in this situation, analytical theory was able to address a class of
questions impractical (or impossible) to answer with computational screens.

Nevertheless, in many cases computational techniques can be more accurate and more
practical than “equivalent” analytical proofs. Biological systems are constrained to operate
with physical parts, usually within certain environments, and can also tolerate occasional
anomalous failures. Hence, metrics “empirically” assessing simulation results under ordinary
circumstances may be adequate to identify “su�cient” or approximate solutions to satisfy
a performance objective—and substantially easier to pursue than corresponding analytical
avenues (which may be impossible). Furthermore, it is possible that many of the nuances
in system performance arise from complexities that would not anyway be included in a
simplified but mathematically tractable model. Of course, the appropriate choice of model
might also confer benefits in the computational sphere; for example, a hybrid systems model
incorporating both continuous and discrete dynamics was used to model lateral inhibition,
and found to be as accurate as a full nonlinear model, but more interpretable and less com-
putationally expensive [274]. (That accuracy is maintained with respect to the behavior of
interest is an essential ingredient of a useful model, and is often best tested through collabo-
ration with experimentalists.) Overall, these tradeo↵s suggest a synergy between analytical
theory and computation, with the former primarily concerned with formal justification and
generalization, and the latter primarily focused on evaluating utility or plausibility in more
complex or specific settings.

This synergy is exemplified by the behavior certification approach, in which theory serves
not necessarily to explain the behavior of a system, but to justify in rigorous fashion that
certain outcomes are inevitable or impossible if that system (model) meets a given set of
requirements. In this way, models that evade exact analytical solutions may still be found
numerically to satisfy criteria that are analytically guaranteed to result in or preclude par-
ticular classes of behaviors. These criteria are loosely analogous to the “necessary” or “suf-
ficient” conditions that biologists traditionally discuss (though see [275] for arguments that
researchers should move beyond this classical paradigm), with the di↵erence being that such
conditions need not admit a physical interpretation or provide intuitive insight into system
behavior (though ideally they will). Control theory has developed a number of such methods
for certification based on technological demands for controllability, reliability, safety and the
like, some of which are applicable to biological systems.

Identifying mathematical conditions to guarantee the (non)existence of oscillatory solu-
tions or the (in)stability of particular steady states in biochemical networks has a history
at least as long as that of positional information. One of the earliest examples arises from
mathematical treatments of enzymatic pathways, specifically a chain of reactions in which
the end product modulates the rate of the first reaction [276, 277]. For pathways in which
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the feedback reaction is inhibitory and all others are “facilitatory”, initial approaches based
on linearization identified a condition on the collective decay rates and interaction strengths
su�cient to guarantee stability of the steady state [278–280]. Subsequently, researchers in
control theory harnessed methods for analyzing networks of input-output systems to gen-
eralize the condition [281] to fully nonlinear models [282] and to interconnection structures
other than the negative feedback loop [283].

Similar control-theoretic methods have been applied to other intracellular metabolic and
genetic networks to probe the existence and stability of steady-state solutions (partially
reviewed in [284]). Fewer such approaches have been applied specifically to networks capable
of patterning. A handful of theoretical works have examined the stability of spatially uniform
(homogeneous) solutions in reaction-di↵usion settings [285–288], and a test for contrasting
patterning through lateral inhibition [122,289] will form the basis for Chapters 3 and 4 in this
thesis. A few extant procedures for verifying synchrony among coupled oscillators (e.g., [290–
293]) might eventually be applied to clock-and-wavefront or other proposed mechanisms for
translating temporal oscillations into spatial patterns, though to the best of my knowledge
this work has yet to be done.

Despite the existence of many behavior certification methods for biochemical networks,
they do not appear to have found wide use in the experimental community, especially outside
synthetic biology. Many factors might contribute to the gap, including lack of awareness,
a di↵erence in timescale between theory and experiment, or a mismatch in concerns be-
tween fields (existence and uniqueness are not the customary purview of biologists). In my
opinion, however, the most significant barrier is accessibility. Leaving aside the fact that
most of these tests are published in engineering journals that biologists are unlikely to pe-
ruse, traditional education in life sciences does not equip biologists with the vocabulary or
the training to make sense of control theory papers. With a few exceptions (e.g., [294])
those works framed for biological audiences tend to focus on synthetic biology, which has
a relatively larger cadre of researchers trained as engineers than do other branches of life
sciences, and therefore requires only a partial “repackaging” of the work for accessibility.
That theoretical methods are not more widely adopted cannot be attributed solely to lack of
e↵ort; until education in biology incorporates more mathematical background, researchers
reframing mathematical work in more intuitive terms will continue to run the risk of losing
nuance in translation, which could exacerbate issues—perceived or actual—with the valid-
ity of theory. In the meantime, I believe both engineering and biology would benefit from
more concerted e↵orts to communicate across the divide and unlock the full potential for
interdisciplinary exploration and discovery.

Further Reading

My thoughts on the interface between engineering and biology have been shaped by
a number of opinions with varying levels of philosophical and technical concern. For ap-
proachable yet insightful reads, I recommend Yuri Lazebnik’s humorous “Can a biologist
fix a radio?” (which argues convincingly for a more formal, quantitative language in sys-
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tems biology) [295], Michael Elowitz and Wendell Lim’s “Build life to understand it” [296],
and Uri Alon’s “Biological networks: the tinkerer as an engineer” [189] (a response in part
to François Jacob’s largely philosophical but fascinating lecture on “Evolution and tinker-
ing” [208]). Arthur D. Lander has argued clearly and compellingly for considering perfor-
mance objectives when analyzing living systems [191], while Andreas Wagner and William
Rosen have proposed a philosophical framework for uniting “technological and biological
innovation” [198] (see also [199] for an example of where these varieties of “evolution” might
diverge). Further examples of control theory in genetic networks can be found in [201],
with a more detailed discussion geared toward synthetic biology available in [297]. For those
intrigued by synthetic morphogenesis and related topics, I recommend [258] and [266].

I have tried to focus my discussion on the principles behind gene expression patterning,
with excursions into solely intracellular networks only insomuch as they are necessary to un-
derstand the context for, or have come to contribute to, patterning analysis. As such, I have
excluded a great deal of related work without explicit relation to engineering theory, as well
as a few engineering-inspired tools (e.g., sensitivity analysis in biochemical networks [298],
noise filtering during transcription [299]) without immediate application to pattern-forming
systems (though a creative mind would doubtless identify connections). Finally, the reader
will forgive me for eschewing any discussion of network identification or parameter fitting,
which has received extensive attention from electrical engineers and computer scientists, but
bears little relation to the content of this thesis.

1.4 Preliminaries

“This model will be a simplification and an idealization, and consequently a falsification.”

– A. M. Turing, in [2]

As with any work predicated on modeling, there are multiple ways of representing the
same physical system mathematically. Particularly relevant to multicellular pattern forma-
tion is the distinction between continuous models, in which chemicals are produced at every
point in a domain in continuous space, and discrete models, in which cells are considered as
separate entities and therefore chemicals are produced at a countable number of points in
space. Examples of continuous models include most reaction-di↵usion networks (although
Turing himself in his seminal paper started by analyzing a discrete ring of cells [2]), most
clock-and-wavefront models, and many discussions of morphogen gradients and their subse-
quent interpretation. Discrete models are more commonly evoked for systems with (very)
small numbers of cells or heterogeneous populations of cells, many of which are primarily
examined in simulation. Systems in which cell-to-cell signaling requires cells to to be in
physical contact with their neighbors also tend to be treated with discrete representations.
While some behaviors can qualitatively be exhibited by both continuous and discrete mod-
els, there are often underyling subtleties between the two. For example, traveling wavefronts
emerging from bistable dynamics can propagate in continuous media with any (nonzero)
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amount of di↵usion, but will stall in discrete media unless a di↵usion (coupling) threshold
is reached [300, 301] (see also [302] for another form of “propagation failure” in discrete
lattices).

The work in this thesis is built o↵ a discrete representation of cells as networked dynamical
systems. In this view, each individual cell is an input-output system that can receive or read
inputs from the environment or from other cells, and also produces one or more outputs that
can act as inputs to other cells. Each cell has certain properties that evolve in time and are
influenced by the inputs the cell receives. In this thesis, cellular properties will generally be
chemical concentrations with dynamics described by sets of ordinary di↵erential equations,
or ODEs. Connecting the outputs of some cells to the inputs of others produces a network of
dynamical systems. The fact that the network is explicitly considered—that is, represented
separately from the behaviors of the cells—enables certain mathematical tools to be applied
in ways that would be di�cult to manage with other representations of multicellular systems.

In the following subsections I establish conventions for mathematical notation as well as
introduce the basic models of gene expression that are employed throughout the remainder
of the thesis.

Network Structure and Cell-to-Cell Signaling

In this thesis, discrete models of multicellular systems will be represented as graphs, which
are mathematical structures consisting of nodes connected by edges. Nodes will correspond
to cells and edges to an unspecified means of signaling between them (e.g., di↵usion, contact).
Specifically, we will consider undirected graphs, in which signaling is bidirectional; that is, if
one cell is capable of signaling a second cell, the second cell is also capable of signaling the
first.

Suppose we have a graph G with N nodes indexed 1 through N . The adjacency matrix
of G is an N ⇥ N matrix representing the edges between nodes, with the (i, j)th entry
equal to 1 if nodes i and j are connected and 0 otherwise. We will primarily work with
conceptual variants of the adjacency matrix that are weighted (the nonzero entries are not
necessarily equal to 1) and may include negative diagonal terms to quantify the “cost” to
a cell of signaling its neighbors. These matrices explicitly model network structure (which
cells signal to which) and may also capture aspects of cell-to-cell signaling. For example,
in Chapter 2, the interconnectivity matrix M indicates whether cells communicate through
di↵usion- or contact-based mechanisms.

Input-Output Dynamical Systems

Cells are modeled as input-output dynamical systems. Let i index the cells 1 through N .
I will generally consider models where the dynamics of the ith cell are given by

(
d

dt
xi(t) = fi(xi(t), ui(t))

yi(t) = gi(xi(t))
(1.1)
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where xi(t) is the vector of states (chemical concentrations) in cell i, ui(t) is an input (usually
scalar), and yi(t) is an output (also usually scalar). Often gi(xi(t)) will simply select a single
entry of xi(t) to act as a readout. Frequently, all entries of xi(t) will represent chemical
concentrations and will therefore be nonnegative at all times t; similarly for ui(t) and yi(t).
I will customarily use the dot notation to indicate time derivatives, i.e., ẋ(t) = d

dt
x(t). The

vertical concatenations

x(t) =

2

6664

x1(t)
x2(t)
...

xN(t)

3

7775
, u(t) =

2

6664

u1(t)
u2(t)
...

uN(t)

3

7775
, y(t) =

2

6664

y1(t)
y2(t)
...

yN(t)

3

7775
(1.2)

will contain all of the states, inputs, and outputs respectively in the full system of N cells.
Thus, a full networked system of interacting cells will be given by (1.1) in conjunction with

u = My (1.3)

for some matrix M of appropriate dimension that captures the structure of the network
(which cells signal to which). This matrix is more specifically defined by chapter for specific
application.

Gene Expression

One of the great challenges to studying biological systems from a mathematical stand-
point is their nonlinearities. These are present by necessity, because cells and organisms are
of limited size and duration, and cannot contain or produce negative or infinite quantities
of chemicals. Practically, this means that fi(xi(t), ui(t)) as given in (1.1) will be a nonlinear
function of xi(t) and ui(t), though it may be linearized in the course of analysis. (Note
gi(xi(t)) need not be nonlinear, as it may simply serve to identify which of the states xi(t)
is the output.)

A simple model of gene expression is given by
(
ṁ(t) = ↵mh(u(t))� �mm(t)

ṗ(t) = ↵pm(t)� �pp(t)
(1.4)

where m(t) 2 R+ is the concentration of mRNA, p(t) 2 R+ is the concentration of protein,
↵m,↵p are transcription or translation rates respectively, and �m, �p are degradation (decay)
rates. (All four of these constants are scalar and nonnegative.) At steady state for a constant-
in-time input u(t) = u⇤

2 R+ the protein concentration is a linear multiple of steady-state
mRNA concentration. For this reason, models that are not concerned with transient system
responses will occasionally lump the dynamics of mRNA and protein.

In biological modeling, h(·) in (1.4) is typically a sigmoidal function called a Hill function,
after Archibald V. Hill, who postulated their form in his studies of hæmoglobin dissociation
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curves in the presence of aggregates [303]. Typically u(t) is a transcription factor that binds
the DNA near the gene so as to influence the transcription rate. For activation (the input
u(t) increases gene expression),

h(u) =

�
u

K

�n

1 +
�

u

K

�n , (1.5)

while for inhibition (u(t) decreases transcription),

h(u) =
1

1 +
�

u

K

�n . (1.6)

If multiple transcription factors regulate the expression of a gene, then depending upon the
application one may multiply or add many Hill functions together, or adopt alternative forms
such as

h(u1, u2) =
a1u

n1
1 + a2u

n2
2

1 + b1u
n1
1 + b2u

n2
2 + b3u

n1
1 un2

2

. (1.7)

The activating Hill function (1.5) can be derived from a chemical model of a system in
which molecular receptors are bound by other molecules called ligands. If there are two
reactions in the system—n ligands bind or unbind a receptor simultaneously—then in a
population of many molecules the fraction of bound to unbound receptors will be given by
(1.5), where K is the ratio of unbinding to binding rate. In practice this model is not often
physically realistic [304], and h(·) is rather used as an ansatz, with the “dissocation constant”
K and Hill coe�cient or “cooperativity” n obtained by fitting to data.7 Indeed, many
researchers (myself not excluded) find it convenient to use Hill functions for any sigmoidal
response curve, regardless of the (lack of) physical interpretation.

Finally, I will stress that there are many more ways for gene expression to be regulated
than simple binding of a transcription factor near a gene of interest, and many more ways
to model such processes than through deterministic sigmoidal functions. These fascinating
details have filled many a thesis, and are unfortunately out of scope for the introdution to
this one.

1.5 Thesis Organization and Contributions

This thesis is organized into three main chapters. The first chapter introduces a general
theoretical framework for examining prepattern processing (or pattern refinement), with
analyses of examples in developmental and synthetic patterning. The second and third
chapters each focus on one experimental implementation of spontaneous contrasting pat-
terning in synthetic biology. Although both experimental systems rely on the same behavior

7Fittingly, Hill himself admitted to having guessed the form of his function, because otherwise “the
calculation of the constants [...] is very tedious”. His “object was rather to see whether an equation of this

type can satisfy all the observations, than to base any direct physical meaning on n and K” [303].
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certification-type theory, its realization is quite distinct between the two, based on the af-
fordances and constraints of the respective setups. The design principle of bistability for
large-scale patterning, however, remains intact. Where relevant, I have emphasized the pro-
cess of translating theory into practice, as well as areas where empirical observations have
inspired theoretical directions. A brief conclusion with outlook is also provided.

Chapter 2: Spatial Filtering Approach

We propose a discrete filtering approach to predict how networks of interacting cells
modulate spatially varying input signals to produce more complicated or precise output
signals. The interconnections between cells determine the set of spatial modes that are
amplified or suppressed based on the coupling and internal dynamics of each cell, analogously
to the way a traditional digital filter modifies the frequency components of a discrete signal.
We apply the framework to two systems in developmental biology and to one synthetic
biological system that acts as an edge detector. In the course of our analysis, we identify
experiments to di↵erentiate between similar models and find that Turing-like patterns may
occur even in the absence of instabilities. Results also indicate patterning systems may be
inherently robust to both correlated and uncorrelated noise sources. Our work shows that a
spatial frequency-based interpretation simplifies the process of predicting patterning in living
organisms when both environmental influences and intercellular interactions are present, and
may facilitate designs for synthetic multicellular systems that execute image processing tasks
in vivo.

Most of the material in this chapter first appeared in [305] and [306], co-authored with
Murat Arcak.

Chapter 3: Contrasting Patterning through Di↵usion-mediated Lateral
Inhibition

Pattern formation and specific cell-to-cell interactions are important for microbial con-
sortia to divide labor and perform complex functions. To obtain further insight into such
interactions, we experimentally demonstrate control over gene expression patterning in a
di↵usion-mediated lateral inhibition circuit whose behavior is well predicted by theory. We
highlight the importance of spatial arrangement as a control knob for modulating system
behavior. Our systematic approach provides a foundation for future applications that re-
quire understanding and engineering of multistrain microbial communities for sophisticated,
synergistic functions.

This work was published in [307] with co-first author Mika Tei, who conducted the
experiments, and co-authors Justin Hsia, Murat Arcak, and Adam Arkin.
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Chapter 4: Cell-in-the-loop Patterning with Optogenetically Emulated
Cell-to-Cell Signaling

Here, we introduce a “cell-in-the-loop” approach where living cells interact through in
silico signaling, establishing a new testbed to interrogate theoretical principles when inter-
nal cell dynamics are incorporated rather than modeled. We present a theory that o↵ers an
easy-to-use test to predict the emergence of contrasting patterns in gene expression among
laterally inhibiting cells. Guided by the theory, we experimentally demonstrate spontaneous
checkerboard patterning in an optogenetic setup where cell-to-cell signaling was emulated
with light inputs calculated in silico from real-time gene expression measurements. The
scheme successfully produces spontaneous, persistent checkerboard patterns for systems of
sixteen patches, in quantitative agreement with theoretical predictions. Our research high-
lights how tools from dynamical systems theory may inform our understanding of patterning,
and illustrates the potential of cell-in-the-loop for engineering synthetic multicellular systems.

This work, co-authored with Dirk Benzinger, Murat Arcak, and Mustafa Khammash,
appears in [308].
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Chapter 2

Spatial Filtering Approach

“Most of an organism, most of the time, is developing from one pattern into another, rather

than from homogeneity into a pattern.”

– A. M. Turing, in [2]

The main contribution of this work is a filtering perspective for analyzing prepattern
processing in multicellular biological systems. While research into spontaneous patterning
generally involves searching for conditions that destabilize a homogeneous solution, this
framework considers patterning when that homogeneous solution is stable. The prepattern
is then treated as a spatial perturbation about this point. A central component of the
approach is spatial mode decomposition, a common tool in distributed systems analysis
(e.g., [309]) that has previously been applied to detect instabilities in cellular networks lacking
external inputs [310]. The spatial modes are determined from the network structure and the
mode of communication among cells. The genetic network in each cell acts to attenuate or
amplify (“filter”) the spatial modes relative to their weights in the prepattern, in a manner
analogous to image filtering in traditional signal processing. The primary benefit of this
framework for biological analysis is that it decouples the activity of the genetic network
from the exact shape of the prepattern, enabling one to build intuition without reliance on
computational simulations of the entire system. Examples from developmental and synthetic
biology highlight the insights gained from use of the framework.

2.1 Introduction

In multicellular patterning systems, prepattern processing describes the process by which
an extant pattern drives a downstream genetic network [26] to output a di↵erent pattern
[2]. Prepatterns may arise directly from environmental influences that di↵er by cell, from
internal processes such as those that establish molecular concentration gradients, or from
consistent parameter variation across space. In synthetic biology, prepatterns comprising
chemicals [153] or light [166] may be manually established and subjected to post-processing
by “lawns” of microbes. Despite its potential generality, mathematical analysis of prepattern
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processing—where it exists—has been largely limited to data-driven modeling [92], [311],
numerical simulations [312], [126], or information-theoretic approaches for specifying cell
position [254].

We propose a discrete filtering approach to analyze how networks of interacting cells
respond to prepatterns. The framework elucidates which components of spatial structure
are amplified and which ones attenuated by the system to produce an output from any
given input. The insights gained from this perspective challenge the conventional notion
that instability is necessary for complex patterning; for example, our approach reveals that
Turing-like stripes can emerge from a stable system lacking di↵usion-driven instability, and
furthermore that external noise reinforces rather than combats this behavior (Section 2.6).

To set up our framework, we combine the internal dynamics of cell behavior with in-
teraction between cells by modeling each cell as an input-output module coupled to other
modules. We examine the steady-state gains for constant-in-time, spatially varying inputs
(prepatterns) and show that the system behaves as a discrete spatial filter, where the inter-
connectivity between cells determines the spatial modes, while the coupling and input-output
dynamics dictate how each mode is scaled to generate a readout pattern. We also examine
the system response to temporal and spatially varying noise inputs, measured with the H2

norm, to determine which spatial modes are sensitive to stochastic influence.
We next present a brief tutorial of spatial modes corresponding to various network struc-

tures for readers unfamiliar with the material. In the following section, we show how to
apply the filtering approach by considering a simple model of gene expression that exem-
plifies two of the most common classes of filter behaviors—highpass or lowpass—depending
on the choice of parameters. Finally, we demonstrate the utility of the filtering perspective
by examining two developmental biological case studies, the Notch-Delta system in fruit fly
wings (Section 2.5) and the Sox9/Wnt/Bmp network in vertebrate digit formation (Section
2.6), as well as a synthetic biological circuit for edge detection in binary images (Section
2.7). We conclude with a brief summary and areas for future research.

Throughout this chapter, we use the following notational conventions (illustrated in Fig.
2.1):

• Cells are indexed by i in vector form and spatial modes are indexed by k in vector
form or (m,n) in an array, unless noted otherwise.

• Inputs except white noise in the context of the H2 norm are assumed constant in time.

• Vectors containing strictly constant-in-space entries are designated with an underline.
The entries corresponding to any fixed point in space are additionally labeled with an
overbar, e.g., u = ū1N where ū 2 R and 1N is the length N vector of all ones.

• Steady-state values for time-dependent variables are designated with superscript aster-
isks. Constant-in-space steady-state (i.e., homogeneous) solutions to nonlinear systems
are designated with both an asterisk and an underline, e.g., y⇤ = ȳ⇤1N .
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• “Actual” values in the standard basis are unadorned. Perturbations from constant-in-
space values are designated with a tilde; time-dependent perturbations are understood
to be linear approximations of “actual” nonlinear solutions, e.g., x̃i(t) ⇡ xi(t) � x̄⇤.
Perturbed variables in the basis T are designated with a hat, e.g., x̂⇤ = T�1x̃⇤.

Figure 2.1: Schematic illustrating the variables utilized in the filter coe�cient derivation. Left, red cor-
responds to input-related variables; right, blue corresponds to readout-related variables. Top, plots in the
standard basis; the solid line for the input is the exact input to the full system, while the solid blue line is the
approximated readout based on the filter coe�cient analysis. Bottom, plots in the basis of the spatial modes.
Dashed gray lines indicate values associated with the linearization; in this example, these constant-in-space
inputs produce impulses at constant frequency (i.e., contribution to all other modes is zero—these values are
not plotted). This example uses periodic boundary conditions and sinusoidal modes given by 2 with k (from
0 to N � 1) indexing increasing frequency toward the middle of the x-axis, i.e., modes k and N � k have the
same frequency. The filter coe�cients are symmetric about the midpoint but the mode representations of
input and readout are not. This asymmetry captures the “location” of the standard-basis input and readout
relative to the cell indices i, since modes k and N � k have opposite phase (sign).



CHAPTER 2. SPATIAL FILTERING APPROACH 32

Figure 2.2: Weights of spatial modes in a prepattern are multiplied by filter coe�cients,
determined by the internal dynamics and interconnectivity among cells, to produce patterns.
Each cell acts as an input/output module. The collective activity of cells produces the filtering behavior.
Here, a single line of cells with periodic boundary conditions communicates through contact-based lateral
inhibition, resulting in a highpass filter (see Section 2.5; note that wavenumber increases toward the center
of the axis). The spatial modes di↵er from the standard Fourier basis (Observation 2), hence the asymmetry
in the spatial mode representation of the input and readout (Figure 2.1).

2.2 Main Results

2.2.1 Filter Coe�cients

We consider a generalized system of N identical cells with the state variables of the ith
cell at time t given by xi(t) 2 Rn, readout yi(t) 2 R, and constant-in-time input ui 2 R,
which may represent an environmental stimulus or intrinsic parameter variation. Coupling
occurs via vi(t) 2 Rq and output wi(t) 2 Rq where q  n. Let the vectors for the full system
be the vertical concatenation x(t)T := [x0(t)Tx1(t)T ...xN�1(t)T ] and similarly for u, y(t),
w(t), and v(t). The dynamics of the ith cell and the full linear coupling between the N cells
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are given by 8
>>><

>>>:

ẋi(t) = f(xi(t), vi(t), ui)

wi(t) = g(xi(t))

yi(t) = h(xi(t))

v(t) = (M ⌦ Iq)w(t)

(2.1)

where ⌦ is the Kronecker product, Iq is the q ⇥ q identity matrix, and M 2 RN⇥N .
The system (2.1) accommodates a wide range of specific deterministic models. Intercel-

lular processes such as gene expression and protein decay are encapsulated by appropriate
definition of the evolution function f for chemical concentrations xi, including the e↵ect
of environmental stimuli or parameter values ui as well as signals from neighbors vi. The
output wi is the subset of elements in xi that transmit signals to neighbors, with the method
of transmission (e.g., di↵usion, cell-to-cell contact) and the neighboring cells specified by the
interconnection matrix M . The readout yi isolates a quantity of interest to the user, which
may be experimentally measurable (e.g., fluorescence) or simply relevant to a particular
model (see examples in Sections 2.5, 2.6, and 2.7).

The vectors indexed by i describe patterns by the concentration of chemicals within
individual cells at individual points in space. A full pattern is reconstructed fromN elements,
each of which represents the concentration of a chemical in a single cell. However, patterns
can also be thought of as combinations of spatially varying components that span multiple
cells, e.g., stripes of varying thickness (frequency). When weighted and summed, these
spatial modes can represent arbitrary patterns of interest. We use the term “filtering” to
refer to the process by which a network of interacting cells alters the weighting of the spatial
modes of the input, thereby producing a readout that is built from the same components
as, but di↵ers in appearance from, the input. A key approximation to facilitate the analysis
is that coupling between spatial modes is negligible, such that the readout can be expressed
as a linear sum of the same set of spatial modes used to represent the input. In analogy
to traditional signal processing, the network of cells plays the role of a linear time-invariant
system (filter) that modifies the frequency components of a (spatially) varying signal. The
following proposition formalizes this concept mathematically.

Proposition 1. If the system described by (2.1) satisfies

1. M1N = µ1N and M is diagonalized by T (M = T⇤T�1),

2. given ū 2 R, 9 x̄⇤
2 Rn such that f (x̄⇤, µg (x̄⇤) , ū) = 0 and x⇤ := 1N ⌦ x̄⇤, u := ū1N ,

3. the homogeneous steady state (x⇤, u) is stable,

then the system may be linearized about (x⇤, u) with linearization matrices

A :=
@f

@xi

����
(x̄⇤,v̄⇤,ū)

, Bv :=
@f

@vi

����
(x̄⇤,v̄⇤,ū)

, Bu :=
@f

@ui

����
(x̄⇤,v̄⇤,ū)

, C :=
dh

dyi

����
x̄⇤
, G :=

dg

dxi

����
x̄⇤
. (2.2)
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A constant-in-time, varying-in-space input u to (2.1) equates to a perturbing input

û = T�1(u� u) (2.3)

to the linearized system in the coordinate system T . Then the steady-state perturbed readout
ỹ⇤ in the basis T is ŷ⇤ := T�1ỹ⇤ = Sû where S is a diagonal matrix and

[S]
kk

= �C(A+ �k(M)BvG)�1Bu (2.4)

is the steady-state gain of the kth eigenvector of T .

Derivation. Let u := ū1N be a spatially homogeneous input and assume 9 x̄⇤
2 Rn

such that f (x̄⇤, µg (x̄⇤) , ū) = 0. Then x⇤ := 1N ⌦ x̄⇤ is a homogeneous steady state. The
remaining steady-state quantities are similarly designated y⇤ = ȳ⇤1N , w̄⇤ = g(x̄⇤), and v⇤ =
Mqw⇤ = 1N ⌦ v̄⇤ (where Mq := M ⌦ Iq). Let x̃i(t), ũi, ỹi(t), w̃i(t), ṽi(t) denote perturbations
about that steady state. The full system linearized about (x⇤, u) yields perturbed dynamics

˙̃x(t) = [(IN ⌦ A) + (IN ⌦ Bv)Mq (IN ⌦G)] x̃(t) + (IN ⌦ Bu) ũ (2.5)

where A := @f

@xi

��
(x̄⇤,v̄⇤,ū)

, Bv := @f

@vi

��
(x̄⇤,v̄⇤,ū)

, Bu := @f

@ui

��
(x̄⇤,v̄⇤,ū)

, C := dh

dyi

��
x̄⇤ , and G := dg

dxi

��
x̄⇤

are the linearization matrices.
Assume that the interconnection matrixM 2 RN⇥N is diagonalizable and letM = T⇤T�1

be the diagonalization (so that Mq is diagonalized by T ⌦Iq). Define x̂(t) := (T�1
⌦ In) x̃(t),

û := T�1ũ, and ŷ(t) := T�1ỹ(t). Recasting (2.5) in the coordinate system T , we obtain the
dynamical system

˙̂x(t) = [(IN ⌦ A) + ⇤⌦ (BvG)] x̂(t) + (IN ⌦ Bu) û. (2.6)

In contrast to the conditions for spontaneous pattern formation, we will not require this
system to be unstable; large amplification of spatial modes is possible even when the system
is stable. The steady-state perturbed readout in basis T is

ŷ⇤ := � (IN ⌦ C) [(IN ⌦ A) + ⇤⌦ (BvG)]�1 (IN ⌦ Bu) û (2.7)

=: Sû, (2.8)

where S is a diagonal matrix with entries

[S]
kk

= �C(A+ �k(M)BvG)�1Bu (2.9)

for k = 0, 1, ..., N�1 and [S]
kk

collectively form the “filter coe�cients” for the corresponding
N spatial modes. The matrix S is thus analogous to a digital filter that processes the input
ũ into readout ỹ⇤ with respect to the eigenvectors, or spatial modes, of M as contained in
T . ⌅
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The conditions (1) through (3) ensure that the network, when given a constant-in-space
input, will admit a stable, homogeneous steady-state solution, and that the expression pat-
tern across cells can be represented in a complete orthonormal basis other than the standard;
this basis T comprises the modes. The [S]

kk
collectively form the “filter coe�cients”, which

dictate how the corresponding N spatial modes are multiplicatively scaled by the system
when the input is no longer constant in space (Figure 2.2). In other words, the matrix S
“filters” the perturbed input into a perturbed readout with respect to the eigenvectors, or
spatial modes, of M as contained in T . In contrast to the conditions for spontaneous pat-
tern formation, our approach does not require the perturbed system to be unstable; large
amplification of spatial modes is possible even when the system is stable. Figure 2.8 shows
eight examples of prototypical filter behaviors that vary with interaction type and cellular
interconnectivity.

It is straightforward to extend the framework to multiple orthogonal signals sharing
the same spatial modes. Let M0,M1, ...,Mq�1 2 RN⇥N be the interconnection matrices
for q orthogonal signals and assume they all commute (share the same basis). Let �i 2

Rq⇥q signify the matrix with (i, i)th entry one and all other entries zero, such that the full
interconnectivity is

M =
q�1X

i=0

(Mi ⌦�i) . (2.10)

If ⇤i = T�1MiT for i = 0, 1, ..., q � 1, then the basis T ⌦ Iq diagonalizes M such that the
filter coe�cients are given by

[S]
kk

= �C

 
A+

q�1X

i=0

�k (Mi)Bv�iG

!
Bu. (2.11)

Many continuous pattern-forming and distributed dynamical systems exhibit spatial in-
variance of the dynamics with respect to linear transformations such as reflections, rotations,
or translations [313], [309]. The discrete-space cellular network has a direct analog: If M is
invariant under a linear transformation, then S is also invariant under the same transforma-
tion, since the system dynamics are identical within each cell and therefore the only spatial
information contained within the system is contained in M . Formally:

Observation 1. Under the assumptions listed in Proposition 1, if ⇧ 2 RN⇥N and M and ⇧
commute, then ⇧ and the filter coe�cient matrix S also commute (i.e., the map from input
to output is equivariant).
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Derivation. Let ỹ⇤ = Sũ and ỹ⇤⇧ = S⇧ũ. An equivalent statement to “S is equivariant”
is then ỹ⇤⇧ = ⇧Sũ =) ỹ⇤⇧ = ⇧ỹ⇤. To see this, take

ỹ⇤⇧ = S⇧ũ = � (IN ⌦ C) [(IN ⌦ A) +M ⌦ (BvG)]�1 (IN ⌦ Bu)⇧ũ (2.12)

= � (IN ⌦ C) [(IN ⌦ A) +M ⌦ (BvG)]�1 (⇧⌦ In) (IN ⌦ Bu) ũ (2.13)

= � (IN ⌦ C)
⇥�
⇧�1

⌦ In
�
((IN ⌦ A) +M ⌦ (BvG))

⇤�1
(IN ⌦ Bu) ũ (2.14)

= � (IN ⌦ C)
⇥�
⇧�1

⌦ In
�
(IN ⌦ A) + ⇧�1M ⌦ (BvG)

⇤�1
(IN ⌦ Bu) ũ. (2.15)

Since �
⇧�1

⌦ In
�
(IN ⌦ A) = (IN ⌦ A)

�
⇧�1

⌦ In
�
, (2.16)

then

M = ⇧M⇧�1 =) ⇧�1M = M⇧�1 =) ⇧�1M ⌦ (BvG) = M⇧�1
⌦ (BvG) (2.17)

such that (2.15) becomes

ỹ⇤⇧ = � (IN ⌦ C)
⇥
((IN ⌦ A) +M ⌦ (BvG))

�
⇧�1

⌦ In
�⇤�1

(IN ⌦ Bu) ũ (2.18)

= � (IN ⌦ C) (⇧⌦ In) [(IN ⌦ A) +M ⌦ (BvG)]�1 (IN ⌦ Bu) ũ (2.19)

= �⇧ (IN ⌦ C) [(IN ⌦ A) +M ⌦ (BvG)]�1 (IN ⌦ Bu) ũ (2.20)

= ⇧ỹ⇤. (2.21)

If ⇤ = T�1MT , then since M = ⇧M⇧�1 =) ⇧�1M⇧, ⇤ = T�1⇧�1M⇧T (i.e., T
diagonalizes the permuted version of M with the same resultant eigenvalues). Note that
the immutability of M under permutation ⇧ confers immutability of ⇤ under permutation
T�1⇧T , which is just the permutation in the basis of M ; i.e.,

⇤ =
�
T�1⇧T

�
⇤
�
T�1⇧T

��1
, (2.22)

or equivalently, ⇤ and (T�1⇧T ) commute. ⌅

Thus, M ’s permutation M⇧ := ⇧M⇧�1 shares the same eigenvectors T and correspond-
ing eigenvalues ⇤ as M , which implies that the filter coe�cients for a system with intercon-
nection matrix M are the same as for that system with interconnection matrix M⇧.

2.2.2 Stochastic Influence on Patterning

The role of stochastic influences in biological patterning is a subject of ongoing theoretical
and experimental interest (e.g., [17], [159]). Here, we concern ourselves with the response
of spatial modes to time-varying white noise inputs, for which the H2 norm of the system
quantifies the expected power of the perturbed readout. The H2 norm has previously been
used to analyze energy amplification in channel flows [314], networks of cells [122], and
reaction-di↵usion systems [315], among others.
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To begin our analysis we rewrite the linearized ordinary di↵erential equations in the form
of a nonlinear Langevin equation (Itô interpretation). Since the N modes are decoupled we
can write the equation for the perturbed states in the kth mode as

dx̂k(t) = [(IN ⌦ A) + ⇤⌦ (BvG)] x̂k(t)dt+ (IN ⌦ Bu) dûk(t). (2.23)

Here û(t) is an nu-dimensional independent standard Wiener process, also known as the
standard Brownian motion process. Implicitly we assume that concentrations of reactants
are high enough to permit us to neglect molecular-level fluctuations, which cannot accurately
be described by the Langevin approach [316].

With slight abuse of notation, dûk(t) is stationary, therefore the variance of the readout
y(t) = Cx(t) in mode k does not change in time. The variance is given by

E
⇥
|ŷk|

2⇤ = E
⇥
Tr
�
ŷkŷ

T

k

�⇤
= Tr

�
CE

⇥
x̂kx̂

T

k

⇤
CT
�
= Tr

�
CQkC

T
�
, (2.24)

where Qk := E
⇥
x̂kx̂T

k

⇤
is the covariance of the reactants in the kth mode.

Let Gk(t) be the impulse response of (2.23) for readout y(t). We could equivalently write

E
⇥
Tr
�
ŷkŷ

T

k

�⇤
=

Z
1

0

E
⇥
Tr
�
Gk(t)dûkdû

T

k
Gk(t)

T
�⇤

dt (2.25)

=

Z
1

0

Tr
�
Gk(t)E

⇥
dûkdû

T

k

⇤
Gk(t)

T
�
dt =

Z
1

0

Tr
�
Gk(t)Gk(t)

T
�
dt (2.26)

=: ||Gk(t)||
2
H2
, (2.27)

from which we deduce that the H2 norm is equivalent to the variance of ŷk and can be
calculated as Tr

�
CQkCT

�
where Qk is the positive semi-definite solution to the Lyapunov

equation
(A+ �kBvG)Qk +Qk (A+ �kBvG)T +BuB

T

u
= 0. (2.28)

The unit variance of dûk(t) allows us to interpret ||Gk(t)||2H2
as the ratio of the variance

of the readout to the variance of the input in mode k. Moreover, since dûk(t) is zero mean,
the squared H2 norm is also equivalent to the time integral of the expected power spectral
density, or the factor by which the system amplifies the average power of the readout within
mode k. Those modes with the highest H2 norms are most strongly amplified by the external
noise source.

2.3 Spatial Modes and the Interconnection Matrix

In the remainder of this chapter we construct the interconnection matrix M for a partic-
ular signal as follows:

1. The length N vector of all ones 1N is an eigenvector of M , which implies that a
homogeneous steady-state solution exists.
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2. The ith, jth entry [M ]
ij
for i 6= j is 0 if cell i is not connected to cell j. Otherwise

0 < [M ]
ij
, where the magnitude [M ]

ij
captures the “strength” of the connection.

3. The diagonal entries [M ]
ii
encapsulate the “signaling cost” associated with interaction.

Negative values imply the cell loses signal to transmit to its neighbors, e.g., di↵usion.

In many biological systems, cells can be approximated to have the same distance between
them and the same communication strength with each of their neighbors. In such systems,
the corresponding spatial modes are sinusoidal, giving rise to stripes or spots. Lower-
frequency modes correspond to longer-wavelength spatial modes, while higher-frequency
modes correspond to shorter-wavelength spatial modes. The relationship between pattern-
ing wavelength and spatial mode frequency enables these systems to be interpreted from
the standpoint of how the weights of the frequency components in an input are scaled to
produce the readout, analogous to filtering as it is understood in discrete signal processing.
In this chapter we will consider basis vectors arising from a line or sheet of regularly spaced
cells with periodic or no-flux boundary conditions. The modes then pertain to two common
signal processing transforms: the discrete Fourier transform (DFT) for periodic boundaries
or the second discrete cosine transform (DCT-2) for no-flux boundaries. The eigenvectors
and eigenvalues for these transforms are well known (e.g., [317]); a review is o↵ered in the
following subsections, which the familiar reader may skip. We will assume modes are in-
dexed in order of increasing frequency with increasing k toward N

2 for the DFT and N for
the DCT-2.

2.3.1 Discrete Fourier Transform (DFT)

If the N cells form a ring indexed clockwise or counterclockwise, then M is circulant.
The eigenvectors of a circulant matrix form the discrete Fourier basis such that the spatial
modes of T correspond exactly to the frequencies of sinusoids.

We can choose T to be the discrete Fourier transform matrix (DFT) where the jth entry
of the kth eigenvector, j, k = 0, 1, ..., N � 1, is given by

[T ]
jk

=
1

p
N
e�

2⇡ijk
N (2.29)

with i :=
p
�1. T is conjugate symmetric. If we let m0, m1, ...,mN�1 denote the entries in

the first row of M , then the eigenvalues of M are given by

�k (M) =
1

p
N

N�1X

n=0

mne
�

2⇡ijk
N , (2.30)

which corresponds to the coe�cients of the discrete Fourier transform (DFT) of the first row
of M .

If M is symmetric in addition to circulant, then we can alternatively select the eigenvec-
tors such that all entries are real.
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Observation 2. Let M 2 RN⇥N be a symmetric circulant matrix where m0 2 RN is the
first row and define m as the periodization of m0. Let the matrix T have entries

[T ]
jk

=
1

p
N

✓
cos

2⇡jk

N
+ sin

2⇡jk

N

◆
. (2.31)

Then T is a basis for M with eigenvalues

�k (M) =
N�1X

n=0

mn cos
2⇡nk

N
, (2.32)

k = 0, 1, ..., N � 1.

Derivation. Let W be the unitary DFT matrix, i.e., the jth entry of the kth column is

W j

k
=

1
p
N
e

i2⇡jk
N . (2.33)

We can express T as

T =
1

2


W +WH + e

�i⇡
2 W +

⇣
e

�i⇡
2 W

⌘H�
. (2.34)

Then

T�1MT = THMT = TMT (2.35)

=
1

4


W +WH + e

�i⇡
2 W +

⇣
e

�i⇡
2 W

⌘H�
M


W +WH + e

�i⇡
2 W +

⇣
e

�i⇡
2 W

⌘H�

(2.36)

=
1

4

�
W +WH

�
M
�
W +WH

�
+

1

4

⇣
e

�i⇡
2 W + e

i⇡
2 WH

⌘
M
⇣
e

�i⇡
2 W + e

i⇡
2 WH

⌘
+

1

4

�
W +WH

�
M
⇣
e

�i⇡
2 W + e

i⇡
2 WH

⌘
+

1

4

⇣
e

�i⇡
2 W + e

i⇡
2 WH

⌘
M
�
W +WH

�

(2.37)

=
1

2
WHMW +

1

2
WMWH +

1

2
cos

⇡

2

⇥
WHMW +WMWH

⇤
+

1

2
e

i⇡
2 WHMWH +

1

2
e

�i⇡
2 WMW

(2.38)

=
1

2
WHMW +

1

2
WMWH +

1

2
e

i⇡
2 WHMWH +

1

2
e

�i⇡
2 WMW. (2.39)

Since M is real and even (symmetric), the DFT is also real. The symmetry of M together
with the symmetry of W and the fact that diagonal matrices are symmetric also imply that
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WHMW = (WHMW )T = W TMTW ⇤T = WMWH , so we can somewhat simplify (2.39) to

WHMW +
1

2

h
e

i⇡
2 WHMWH + e

�i⇡
2 WMW

i
(2.40)

= WHMW +
1

2

h
e

i⇡
2
�
WHMW

�
WHWH + e

�i⇡
2
�
WMWH

�
WW

i
(2.41)

= WHMW +WHMW
1

2

h
e

i⇡
2 WHWH + e

�i⇡
2 WW

i
. (2.42)

For k = 1, 2, ..., N2 (N odd) or k = 1, 2, ..., N�1
2 (N even), the (N � k)th row or column of

W is equal to the kth row or column of WH . Therefore [WW ]
k,N�k

= 1. Because of the
orthogonality of complex exponentials, the remaining entries are 0. By the same logic we
deduce an identical structure for WHWH such that WW = WHWH . Now (2.42) becomes

WHMW +WHMW
1

2

h
e

i⇡
2 WW + e

�i⇡
2 WW

i
(2.43)

= WHMW +WHMW (WW ) cos
⇡

2
(2.44)

= WHMW, (2.45)

which is just M diagonalized by the complex exponential DFT matrices, as desired. From
this we derive that the eigenvalues are the same as the DFT coe�cients of h0, which owing
to symmetry may be calculated as

�m (M) =
N�1X

n=0

mn cos
2⇡nm

N
. (2.46)

⌅

Owing to the periodicity of cosine, the eigenvalues of symmetric circulant M (and hence
the corresponding [S]

kk
) are symmetric about the highest-frequency eigenvector associated

with k = N

2 .
A situation of particular interest occurs when vi is a di↵usible molecule and the connection

strength is equal between cells. Then M is a scaled version of the circulant finite di↵erences
(Laplacian) matrix

M =

2

6664

�2 1 0 . . . 0 1
1 �2 1 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 �2

3

7775
(2.47)

with eigenvalues

�k(M) = �2 + 2 cos
2⇡k

N
. (2.48)

This form of M corresponds to the second di↵erences matrix for a system with periodic
boundary conditions [317].
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Figure 2.3: Sample spatial modes for a ring interconnectivity with N = 10 cells. Each cell is connected
to each of its two neighbors with equal connection strength. M is circulant, so the eigenvectors form the
discrete Fourier basis such that the spatial modes of T correspond exactly to the frequencies of sinusoids.
The value k corresponds to the spatial frequency, or the number of complete periods present in a single
cycle around the ring. Because the basis is the discrete Fourier transform (DFT) and N is even, the highest
frequency is N

2 = 5. Neighboring cells in this mode alternate between two values. Such a pattern is not
possible in a ring configuration when N is odd.
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Figure 2.4: Sample spatial modes for a line interconnectivity with N = 10 cells. The two cells on the
end each interact with only one neighbor such that the basis vectors are the DCT-2 vectors. The value k

corresponds to twice the frequency of its corresponding mode, i.e., k

2 periods are represented in mode k.
“Even” modes (k even) have symmetry about the midpoint between cells N

2 � 1 and N

2 + 1, while “odd”
modes (k odd) are antisymmetric about this same point. If N were odd, the midpoint would instead be the�
N�1
2

�
th cell.
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2.3.2 Second Discrete Cosine Transform (DCT-2)

If the N cells are organized in a line, then the two cells on the end each communicate
with only one neighbor. If the mode of communication is a di↵usible molecule and the cells
are indexed from one end of the line to the other, then the connectivity takes the form of a
second di↵erences matrix with Neumann boundary conditions centered at the midpoint:

M =

2

666664

�1 1 0 . . . 0 0 0
1 �2 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 �2 1
0 0 0 . . . 0 1 �1

3

777775
. (2.49)

The spatial modes of T form the basis for the second discrete cosine transform (DCT-2).
The jth entry of the kth eigenvector, j, k = 0, 1, ..., N � 1, is given by

[T ]
jk

=

r
2

N
cos

✓
j +

1

2

◆
k⇡

N

�
(2.50)

(for k = 0, divide by additional factor of
p
2) with corresponding eigenvalue

�k(M) = �2 + 2 cos
k⇡

N
. (2.51)

The highest frequency is k = N � 1 [317]. Unlike the case of circulant M , there are no
guarantees of symmetry in the filter S and T itself is not conjugate symmetric.

2.3.3 2D Spatial Arrays

Consider a two-dimensional, rectangular NR ⇥ NC array of N := NCNR cells indexed
from 0 to NCNR � 1 starting in the upper corner from top to bottom and then left to right,
i.e.,

0 NR 2NR . . . (NC � 1)NR

1 NR + 1 2NR + 1 . . . (NC � 1)NR + 1
...

...
...

. . .
...

NR � 2 2NR � 2 3R� 2 . . . NCNR � 2
NR � 1 2NR � 1 3NR � 1 . . . NCNR � 1

. (2.52)

It is known (e.g., [310]) that if any isolated row has interconnection matrixMR 2 RNC⇥NC

and any isolated column has interconnection matrix MC 2 RNR⇥NR , then the full matrix M
for the interconnectivity of the entire array is

M := (MR ⌦ INR) + (INC ⌦MC) . (2.53)
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If TR and TC diagonalize MR and MC respectively then M is diagonalized by

T := (TR ⌦ INR) (INC ⌦ TC) = TR ⌦ TC , (2.54)

giving NCNR eigenvalues

�m+nNR (M) = �m (MC) + �n (MR) (2.55)

where m = 0, 1, ...NR�1, n = 0, 1, ..., NC�1. The (m,n)th spatial mode is given by Tm

C
T nT

R
.

We can explicitly relate the spatial modes for a 2D array of cells to constituent modes in
the horizontal and vertical directions by recasting the vector ŷ in matrix form. Let U and
Y be matrices arranged as in (2.52) where ui is the input to compartment i. Vector form is
recovered through the vectorization operation vec(U) = u. The readout matrix Y is defined
similarly. If the matrices Ũ and Ỹ designate perturbations from steady state in the original
basis and Ŷ , Û designate perturbations in the basis for the spatial modes, then

Ỹ = TC Ŷ T T

R
= TC

⇣
⇤S � Û

⌘
T T

R
(2.56)

where � is the Hadamard product (element-by-element multiplication) and ⇤S has mth, nth
entry

[⇤S]mn
= �C [A+ (�m(MC) + �n(MR))BvG]�1 Bu. (2.57)

From this it can be seen that the full system alters the input along the ith vertical spatial
mode and the jth horizontal spatial mode defined by the vertical and horizontal connectivi-
ties.

Observation 3. Consider an NR⇥NC array of cells. Let MF describe the interconnectivity
of CD := min(NR, NC) elements in the forward diagonal direction and MB the interconnec-
tivity of CD elements in the backward diagonal direction. Let P 2 RCD⇥CD be the permutation
matrix with lower diagonal ones and the last entry of the first column also one, such that
PF := P T

B
:= diag

�
P 0, P 1, P 2, ..., PRD

�
where RD := max(NR, NC). In total, the intercon-

nectivity of an array with horizontal, vertical, and diagonal components is described by

M := (MR ⌦ INR) + (IC ⌦MC) + P T

F
(MF ⌦ IRD)PF + P T

B
(MB ⌦ IRD)PB (2.58)

where MR, MC, MF , and MB are circulant. Furthermore, if NR = NC = N0 and the real
or complex DFT basis T0 diagonalizes each of MR, MC, MF , and MB individually, then
(T0 ⌦ T0) diagonalizes M .

Derivation. Let T0 diagonalizeM0 such that (T0 ⌦ T0) diagonalizes (MR ⌦ INR)+(IC ⌦MC).
Since M0 is circulant,

M0 =

2

6664

m0 mNR�1 mNR�2 . . . m1

m1 m0 mNR�1 . . . m2
...

...
...

. . .
...

mNR�1 mNR�2 mNR�3 . . . m0

3

7775
= m0P

0 +m1P +m2P
2 + ...+mNR�1P

NR�1

(2.59)



CHAPTER 2. SPATIAL FILTERING APPROACH 45

Figure 2.5: A complete set of spatial modes for a 2D periodic boundary interconnectivity (DFT basis) on a
4⇥ 4 rectangular array. Due to the symmetry in the eigenvectors, modes (m,n) and (m, 4�n) are identical,
as are (m,n) and (4�m,n).
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Figure 2.6: A complete set of spatial modes for a 2D interconnectivity with Neumann boundary conditions
(DCT-2 basis) on a 4⇥ 4 rectangular array. Modes are indexed such that the (m,n)th mode has frequency
⇡m

NR
in the vertical direction (down rows) and ⇡n

NC
in the horizontal direction (across columns).



CHAPTER 2. SPATIAL FILTERING APPROACH 47

and therefore

P�1
F

(M0 ⌦ INR)PF = P�1
F

 
NR�1X

q=0

mqP
q
⌦ INR

!
PF (2.60)

=
NR�1X

q=0

mqP
�1
F

(P q
⌦ INR)PF . (2.61)

If we expand PF and use the fact that P�1 = PNR�1 = P T , then the summation simplifies
to

NR�1X

q=0

mq

�
P q

⌦ P�q
�

(2.62)

which is diagonalized by the complex exponential DFT vectors T�1
0 and T0 as follows:

�
T�1
0 ⌦ T�1

0

�
"
NR�1X

q=0

mq

�
P q

⌦ P�q
�
#
(T0 ⌦ T0) =

NR�1X

q=0

mq

�
T�1
0 ⌦ T�1

0

� �
P q

⌦ P�q
�
(T0 ⌦ T0)

(2.63)

=
NR�1X

q=0

mq

�
T�1
0 P qT0

�
⌦
�
T�1
0 ⌦ P�qT0

�
,

(2.64)

which is a sum of diagonal matrices because permutation matrices are circulant and therefore
diagonalized by the DFT matrices T0, and the Kronecker product of two diagonal matrices
is diagonal. Since PB = P T

F
= P�1

F
, the same derivation for diagonal connectivity in the

backward direction gives

P�1
B

(M0 ⌦ INR)PB =
NR�1X

q=0

mq (P
q
⌦ P q) , (2.65)

which is also diagonalized by DFT matrices as

NR�1X

q=0

mq

�
T�1
0 P qT0

�
⌦
�
T�1
0 ⌦ P qT0

�
(2.66)

where each summand is diagonal. This implies that the complex exponential form of the
DFT is the basis for an array that is diagonally connected in either or both directions.

If M0 is symmetric, then in addition to the complex exponential basis T0 we might also
choose the basis T 0

0 with the jth entry of kth eigenvector given by

T 0

0(k) =
1

p
R

✓
cos

2⇡jk

R
+ sin

2⇡jk

R

◆
, (2.67)
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in which case each term in the summation (2.64) is no longer diagonal because T 0

0 does not
diagonalize the nonsymmetric permutation matrices. Hence for the real-valued basis T 0

0 we
require that the array is diagonally connected in both forward and backward directions such
that the full connectivity matrix is given by the sum of (2.65) and (2.62):

NR�1X

q=0

mq

�
P q

⌦ P�q
�
+

NR�1X

q=0

mq (P
q
⌦ P q) =

NR�1X

q=0

mqPq ⌦
�
P�q + P q

�
. (2.68)

The matrix (P�q + P q) is circulant and symmetric and hence diagonalized by T 0

0. To com-
plete the argument we appeal to the symmetry of mq. Specifically, if NR is odd,

NR�1X

q=0

mqP
q
⌦
�
P�q + P q

�
(2.69)

= 2m0INR +

NR�1
2X

q=1

mqPq ⌦
�
P�q + P q

�
+

NR�1X

q=
NR�1

2 +1

mqP
q
⌦
�
P�q + P q

�
(2.70)

= 2m0INR +

NR�1
2X

q=1

mqP
q
⌦
�
P�q + P q

�
+mR�qP

R�q
⌦
�
P q�R + PR�q

�
(2.71)

= 2m0INR +

NR�1
2X

q=1

mqP
q
⌦
�
P�q + P q

�
+mqP

�q
⌦
�
P q + P�q

�
(2.72)

= 2m0INR +

NR�1
2X

q=1

mq

�
P q + P�q

�
⌦
�
P�q + P q

�
, (2.73)

where each individual term is diagonalized by T 0

0, and hence the whole summation is diagonal.
If NR is even, the summation (2.68) breaks into

2m0INR +mNR
2
P

NR
2 ⌦

⇣
P

NR
2 + P�

NR
2

⌘
+

NR�1
2X

q=1

mq

�
P q + P�q

�
⌦
�
P�q + P q

�
. (2.74)

When NR is even, PR/2 alone is circulant symmetric, hence the additional term is also
diagonalized by T 0

0. Therefore when M0 is circulant symmetric, the matrix

M = P T

F
(M0 ⌦ INR)PF + P T

B
(M0 ⌦ INR)PB (2.75)

is diagonalized by T 0 := T 0

0 ⌦ T 0

0. Note that this implies

(M0 ⌦ INR) + (INR ⌦M0) + P T

F
(M0 ⌦ INR)PF + P T

B
(M0 ⌦ INR)PB (2.76)

is also diagonalized by T 0. ⌅
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Remark. For a system with diagonal connections only (MR = MC = 0), then if NR = NC

odd, the diagonal transformations are identical to a 2D DFT rotated 45�. For NR = NC

even, the array becomes divided into two separate classes that are transformed separately;
i.e., the underlying network graph is no longer connected. This is because for NR = NC odd,
the array has a compartment at the center, while for NR = NC even, the center would (in
physical space) represent a crossing of intersections.

Observation 4. Let NC = NR = N0, M0 circulant with complex exponential basis vectors
T0 and consider the full forward diagonal interconnection matrix M = P T

F
(M0 ⌦ IN0)PF .

The (m,n)th eigenvalue of M is

�m+nN0 (M) =

8
>>>><

>>>>:

m0 + 2

N0�1
2P

q=0
mq cos

2⇡q(n�m)
N0

, N0 odd,

m0 +mN0
2
(�1)n�1 + 2

N0
2 �1P
q=0

mq cos
2⇡q(n�m)

N0
, N0 even,

(2.77)

where mk is the kth entry of the first row or column of M0.

Derivation. For NC = NR = N0 and MF as defined above, the kth entry of the N0-point

DFT of the first row of P q is e
2⇡ikq
N0 , k = 0, 1, ..., N0 and the diagonalization T�1

0 P qT0 is the
matrix with the DFT entries on the diagonal. This implies that we can write (2.64) as

�
T�1
0 ⌦ T�1

0

�
P T

F
(IN0 ⌦M0)PF (T0 ⌦ T0) =

N0�1X

q=0

mq

�
T�1
0 P qT0

�
⌦
�
T�1
0 P�qT0

�
(2.78)

=
N0�1X

q=0

mq

2

6666664

1

e
2⇡iq
N0

e
4⇡iq
N0

. . .

e
2⇡iq(N0�1)

N0

3

7777775
⌦

2

6666664

1

e
�2⇡iq
N0

e
�4⇡iq
N0

. . .

e
�2⇡iq(N0�1)

N0

3

7777775
(2.79)

=:
N0�1X

q=0

mq

2

666664

IN
Eq

1

Eq

2
. . .

Eq

N0�1

3

777775
, (2.80)
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where we have defined

Eq

k
:=

2

66666664

e
2⇡iqk
N0

e
2⇡iq(k�1)

N0

e
2⇡iq(k�2)

N0

. . .

e
2⇡iq(k�(N0�1))

N0

3

77777775

. (2.81)

For N0 odd, we use the symmetry mq = m�q to rewrite the summation (2.80) as

m0IN2
0
+

N0�1
2X

q=1

mq

2

666664

2IN
Eq

1 + E�q

1

Eq

2 + E�q

2
. . .

Eq

N0�1 + E�q

N0�1

3

777775
. (2.82)

Conveniently,

Eq

k
+ E�q

k
=

2

6666664

2 cos 2⇡iqk
N0

2 cos 2⇡iq(k�1)
N0

2 cos 2⇡iq(k�2)
N0

. . .

2 cos 2⇡iq(k�(N0�1))
N0

3

7777775
, (2.83)

from which we infer

�m+nN0

�
P�1
F

(M0 ⌦ IN0)PF

�
= m0 + 2

N0�1
2X

q=0

mq cos
2⇡q (n�m)

N0
(2.84)

is the eigenvalue for the (m,n)th spatial mode owing to diagonal connectivity, N0 odd. If
N0 is even, we write (2.80) as

m0IN2
0
+mN0

2

2

66664

IN

E
N0
2

1
. . .

E
N0
2

N0�1

3

77775
+ (2.85)

N0
2 �1X

q=1

mq

2

6664

2IN
Eq

1 + E�q

1
. . .

Eq

N0�1 + E�q

N0�1

3

7775
, (2.86)

(2.87)
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and note that

E
N0
2

k
=

2

6664

(�1)k

(�1)k�1

. . .
(�1)k�(N0�1)

3

7775
(2.88)

to write the (m,n)th eigenvalue as

�m+nN0 (MF ) = m0 +mN0
2
(�1)n�1 + 2

N0
2 �1X

q=0

mq cos
2⇡q (n�m)

N0
. (2.89)

⌅

2.3.4 Spatial Modes on Planar Lattices

It is straightforward to generalize a frequency-based interpretation to cells arranged in
periodic planar lattices, which are well described mathematically. Throughout the following
discussion we will refer to coordinates in physical space as ê, the unit vector pointing “east,”
and ŝ, the unit vector pointing “south”. This choice of vector orientations mimics the
numbering scheme in an array, whereby indices increase horizontally left to right (with ê)
and vertically top to bottom (with ŝ). We will assume a system of cells indexed in an
NR ⇥NC array with periodic boundary conditions such that M is diagonalized by TR ⌦ TC

where both TC and TR are real or complex DFT bases of appropriate dimension.
Let cells in physical space be arranged in a planar lattice described by vectors aR and

aC corresponding respectively to the rows and columns of the indexed array. Without loss
of generality we orient aR along ê (such that aR · ê = |aR|). We define the unit vectors
âR := aR

|aR|
= ê and âC := aC

|aC |
. Letting ✓ be the angle between aR and aC , we can write

aR = |aR|ê and aC = |aC | cos ✓ê+ |aC | sin ✓ŝ. Note that the eigenfunctions are periodic in n
with period NC |aR| along aR and periodic in m with period NR|aC | along aC .

Observation 5. For an NR ⌦ NC cellular lattice with lattice vectors aR, aC and periodic
boundary conditions, the (m,n)th spatial mode corresponds to a plane wave of frequency

n

|aR|NC

âR +
m

|aC |NR

âC =: faR âR + faC âC = (faR + faC cos ✓) ê+ faC sin ✓ŝ (2.90)

in physical space, with an “absolute” frequency of

f =
q

|faR + faC cos ✓|2 + |faC sin ✓|2 (2.91)

pointing at an angle

� = tan�1

✓
faC sin ✓

faR + faC cos ✓

◆
(2.92)

from the x̂ axis.
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Remark. One may liken the translation from physical space into matrix space to “sampling”
in space from an underlying pattern with “spatial sampling frequency” 1

|aR|
along aR and 1

|aC |

along aC . The translation into spatial modes, or the DFT, recovers normalized frequency
components from the discrete samples. Maintaining a constant surface area but increasing
the number of cells occupying that surface area (i.e., N 0

R
= cRNR, N 0

C
= cCNC , a0R = 1

CR
aR,

a0
C
= 1

cC
aC) does not change the physical range of space over which the modes are described

but does increase the “resolution” or “sampling rate” of the system by a factor of cR along aR
and cC along aC , enabling the system to modify higher frequencies than before and therefore
permitting finer filtering of a continuous-in-space input gradient.

Figure 2.7: Examples of lattice configurations. Cells are uniformly spaced along the directions indicated
by the black arrows. The gray arrow indicates a 90� angle from horizontal. Left, hexagonal (✓ = 60�)
with nearest-neighbor (row/column/forward diagonal) interconnectivity; center, rectangular (✓ = 90�) with
|a1| = 2|a2| and row/column interconnectivity; right, an arbitrary lattice with ✓ = 105�, |a2| = 2|a1|, and
row/backward diagonal interconnectivity.

The hexagonal lattice is of particular importance in our later examples, as it is the tightest
2D packing arrangement for cells of fixed area, and is found in many natural systems such
as the wing epithelial cells of Drosophila [318]. With the cells numbered as shown in Figure
2.7, the (m,n)th spatial mode corresponds to the mth mode horizontally and the nth mode
on a line at a 60� angle from each row. Cells in the hexagonal lattice interact with each
of their six nearest neighbors such that there are “diagonal interconnections” between rows
of cells. Following notation in Observation 3, the diagonal interconnections are handled as
follows: Define CD := min (NR, NC) and RD := max (NR, NC), and let P 2 RCD⇥CD be
the permutation matrix with lower diagonal ones and the last entry of the first column also
one. Define PF := diag

�
P 0, P 1, ..., PRD

�
. Then the interconnection matrix for a hexagonal

lattice with periodic boundary conditions is given by

M := (MR ⌦ IR) + (IC ⌦MC) + P T

F
(MF ⌦ IRD)PF . (2.93)

If we let MR = MC = MF = M0 2 RN0⇥N0 be the circulant di↵usion matrix, then M has
eigenvalues

[⇤]
mn

= �6 + 2

✓
cos

2⇡m

N0
+ cos

2⇡n

N0
+ cos

2⇡(m� n)

N0

◆
. (2.94)
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From this we see that ⇤ = ⇤T and [⇤]
mn

= [⇤](N0�m)(N0�n).

2.4 Minimal Model: Gene Expression with
Autoregulation

The following example is a simple model of gene expression that is easy to solve analyti-
cally for the filter coe�cients. We apply the filtering approach to the example, including an
expansion of the matrix notation to emphasize the role of the filter coe�cients as “weights”
for the spatial modes. As this model focuses on biological and filtering concepts, intercellular
interaction is described only in the most general terms, leaving exploration of the underlying
mechanisms to later examples.

Here, we consider a simple model of an autoregulatory process in which each cell tran-
scribes mRNA m that is translated into protein p that in turn modifies the production rate of
m. The signaling molecule v, generated in exact proportion to p, also regulates p production
in the self and neighbors by modulating the production rate of m. The system dynamics are

8
>>><

>>>:

ṁi = ��mm+ ↵mf(vi, ui, pi)

ṗi = ��pp+ ↵pm

y = p

v = Mp

(2.95)

where �m, �p are the degradation (decay) rates of mRNA and protein respectively, and ↵m,
↵p are the corresponding transcription or translation rates. The function f(vi, ui, pi) captures
the influence of the coupling, input, and protein on the production rate of the mRNA and
therefore of the protein.

When linearized at steady state, the system becomes

8
>>><

>>>:

˙̃mi = ��mm̃i + ↵m (Fvṽi + Fuũi + Fpp̃i)
˙̃pi = ��pp̃i + ↵pm̃i

ỹ = p̃

ṽ = Mp̃

(2.96)

where Fv :=
@f

@vi

��
(m̄⇤,p̄⇤,v̄⇤,ū⇤)

, Fu := @f

@ui

��
(m̄⇤,p̄⇤,v̄⇤,ū⇤)

, and Fp :=
@f

@pi

��
(m̄⇤,p̄⇤,v̄⇤,ū⇤)

.

Define ↵ := ↵m↵p and � := �m�p. Note that the steady-state protein concentration
is a linear multiple of the steady-state mRNA concentration, such that mathematically a
molecule produced at rate ↵f(vi, ui, pi) and decayed at rate � would have the same steady-
state concentration as the protein in (2.95). Indeed, it is not uncommon for the dynamics of
transcription and translation to be lumped together (usually by neglecting mRNA dynamics)
in mathematical models such as those presented later in this chapter.
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The steady-state solution to the perturbed system yields filter coe�cients

[S]
kk

=
↵

�
Fu

1� ↵

�
(Fp + Fv�k (M))

(2.97)

for k = 0, 1, ..., N � 1. For the homogeneous steady state to be stable—and therefore for the
filtering approach to be applicable—we require

↵

�
(Fv�k (M) + Fp) < 1. (2.98)

We henceforth assume this condition is satisfied.
Recall that the spatial modes are given by tk, the columns of the matrix T that diago-

nalizes M . The perturbing input can be written as

ũ = (u� u) = T û =
N�1X

k=0

ûktk. (2.99)

The coe�cients ûk (the entries of û) are the weights assigned to each of the spatial modes
tk. The steady-state perturbed readout is given by

ỹ⇤ =
N�1X

k=0

[S]
kk
ûktk, (2.100)

such that the readout in the ith cell is given by ȳ + ỹ⇤
i
.

The H2 norm for the kth spatial mode is analytically calculated to be Fu
2↵ [S]

kk
. This

relationship indicates that the modes in the system respond identically to within a scaling
factor to both persistent spatial disturbances and temporally varying white noise inputs.

Figure 2.8 exemplifies how the choice of interaction type and interconnectivity a↵ects the
filtering behavior of the system with no autoregulation. In particular, activation of neighbors
tends to cause the system to amplify low spatial frequencies, while inhibition of neighbors
introduces amplification at high spatial frequencies.

To investigate the e↵ect of autoregulation, suppose we fix all parameters except Fp.
As Fp ! �1 all filter coe�cients approach 0. This attenuating behavior occurs because
allowing a protein to e↵ectively shut down its own production prevents the system from
responding to signal.

For Fp > 0 (autoactivation), increasing Fp disproportionately increases the coe�cients
at spatial modes with low eigenvalues. For T corresponding to the DFT or DCT-2, the
lower eigenvalues are associated with higher-frequency spatial modes. In the case of lateral
inhibition (Fv < 0), the filter coe�cients already amplify high-frequency spatial modes
relative to intermediate ones (Figure 2.8), such that adding autoactivation enhances the
filter’s intrinsic highpass characteristics. Indeed, mechanisms involving lateral inhibition
and autoactivation have been conjectured to increase the sharpness of boundary formation
in systems of patterned cells responding to exponential input [319] [126].
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Figure 2.8: A minimal model of gene expression demonstrates that the same input prepattern
produces di↵erent readouts depending on the interconnectivity and interaction type among
cells. The ith cell has dynamics given by (2.95) for ↵ = � = 1 with no autoregulation, i.e., Fp = 0.
Fv < 0 corresponds to inhibition of neighbors while Fv > 0 implies activation of neighbors. The filter
coe�cients are thus [S]

kk
= (1� Fv�k(M))�1. Pictured is the readout ỹ⇤ given the same perturbing input

ũ to N = 62, 500 cells arranged in a 250⇥ 250 rectangular array, with one image pixel corresponding to each
cell and the intensity of the pixel corresponding to the protein concentration. Interconnectivities vary by
column; boundary conditions in all cases are periodic. Connection strengths are identical and assumed to
incur no cost to the interacting cells (i.e., [M ]ii = 0). To best exemplify the e↵ect of the interconnections, Fv

was modified for each of the filtered images to give the highest magnitude of eigenvalues without destabilizing
the underlying dynamical system. The readout in each cell is calculated according to (2.100). If cells activate
their neighbors then the filter acts as a lowpass (attenuates short wavelengths) that blurs the underlying
spatial input along the same dimension as the interconnections. Inhibition sharpens lines orthogonal to
the interconnections by enhancing contrast parallel to the interconnections. The images are individually
normalized.
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2.5 Application: Fruit Fly Wing Veins

The Notch-Delta patterning mechanism is a lateral inhibition system that is responsible
for diverse developmental phenomena including neural and epidermal fate determination
in the fruit fly Drosophila melanogaster. Cells produce both Notch and Delta, which are
proteins found in the cell membrane. Delta on the surface of one cell binds Notch on the
surface of neighboring cells to inhibit those neighbors’ Delta production, thereby relieving
inhibition on the cell’s own Delta production by decreasing the potential for the neighbors
to bind its Notch. With the appropriate interaction strengths, such lateral inhibition will
ultimately generate a checkerboard pattern in which cells expressing high Delta are adjacent
to cells expressing low Delta. This has significant consequences for organismal development:
Notch that is bound by Delta on an adjacent cell will cleave in two—preventing it from
further signaling—and the portion left inside the cell will signal the cell to express target
genes that influence the choice of cell identity [320]. A cell whose neighbors express more
Delta is more likely to have bound Notch and therefore more likely to adopt a particular
fate [321], [116].

Patterning in a Notch-Delta system may arise spontaneously [289], [115] or through
modification of a prepattern. In the case of Drosophila wing development, the gene veinless
is expressed in an exponential gradient decreasing in either direction from what will become
the center of a vein. The level of veinless expression in a cell determines the Delta production
rate at that cell. Notch activity occurs in two peaks, one on either side of the center, where
further vein development is restricted to occur. One model of the Notch-Delta mechanism
suggests that mutual inactivation (cis-inactivation), when Notch and Delta on the same cell
inhibit each other’s activity, enables sharper and more robust patterning than is achieved
with lateral inhibition alone [126], [127]. The role of such cis-interactions is an ongoing
area of research (e.g., [322], [323], [324]), and a particularly delicate one given the apparent
context dependence of many Notch functions [320].

The authors of [126] considered a line of cells with periodic boundary conditions, corre-
sponding to the interconnection matrix

M =
1

2

2

6664

0 1 0 . . . 0 1
1 0 1 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 0

3

7775
. (2.101)

The diagonal entries are zero to reflect the fact that Notch (N) and Delta (D) interact via
contact with neighbors rather than di↵usion, while the factor of 1

2 ensures that vN is the
average Notch from neighbors and vD is the average Delta from neighbors. Because M is
circulant, the spatial modes correspond to the eigenvectors of the DFT matrix.

We discretize the input gradient of Delta production rate �D(·) into �Di , i = 0, 1, ..., N�1
and let �̄

D
be the mean of the �Di . We then define ui := �Di � �̄

D
, xT

i
:= [Ni, Di, Ri], and

vi := [vNi , vDi ] where readout R is a reporter for Notch activity (i.e., is expressed from a
target gene for Notch activity).
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Figure 2.9: Schematic of lateral inhibition and mutual inactivation in the Notch-Delta system. In the
lateral inhibition system, Notch (blue) and Delta (orange) are expressed on the surface of cells. Notch
bound by Delta cleaves in two, and the domain within the cell travels to the nucleus to drive expression of
target genes, such as reporter (yellow), and inhibit Delta production. Delta and Notch on the same cell may
inhibit each other’s activity, in a process termed “mutual” or “cis-inactivation” (see text).

The authors of [127] propose four models of the Notch-Delta patterning mechanism that
involve mutual inactivation, lateral inhibition, or both. The linearization for these models
is given in the following subsections.

Parameter Value Description Source
↵N 10 “leakiness” of Notch expression (RFU/hr) [127] Table S1 (Figure S4A)
�D0 17.5 max. Delta production rate (RFU/hr) [126] Table S3 (Figure 4C)
x0 7 number of cell diameters [126] Table S3 (Figure 4C)
�Di �D0e�|i|/x0 Delta production rate (RFU/hr) for cell i [126] (Figure 4C)
�̄
D

9.09 Delta production rate (RFU/hr) for linearization 1
N

P
N�1
i=0 �Di

�N 10 Notch production rate (RFU/hr) [126] Table S3 (Figure 4C)
�R 150 reporter production rate (RFU/hr) [126] Table S3 (Figure 4C)
� 0.1 Notch, Delta decay rate (1/hr) [126] Table S3 (Figure 4C)
�R 0.05 reporter decay rate (1/hr) [126] Table S3 (Figure 4C)
kc 0.25 inverse cis-interaction strength [126] Table S3 (Figure 4C)
kt 5 inverse trans-interaction strength [126] Table S3 (Figure 4C)
n 2 Hill coe�cient for Notch-Delta activation of reporter -
m 2 Hill coe�cient for reporter repression of Delta -
kRS 300,000 a�nity of reporter induction [127] Table S1 (Figure S4A)
kNS 5⇥ 107 a�nity of reporter induction -

Table 2.1: Parameters used in the Notch-Delta model simulations, unless noted otherwise in the text
(Figures 2.10 to 2.14).
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2.5.1 Mutual Inactivation

The system equations for the MI model (Figure 2.9) are

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Ṅi(t) = �N � �Ni(t)�
Ni(t)vDi

(t)

kt
�

Ni(t)Di(t)
kc

Ḋi(t) = �̄
D
+ ui � �Di(t)�

Di(t)vNi
(t)

kt
�

Ni(t)Di(t)
kc

Ṙi(t) = �R

(Ni(t)vDi
(t))

n

kRS+(Ni(t)vDi
(t))

n � �RRi(t)

yi(t) = Cxi(t)

wi(t) =

"
Ni(t)

Di(t)

#

v(t) = (M ⌦ I2)w(t)

(2.102)

where �, �R are decay rates, k�1
t is the rate at which Delta and Notch bind each other on

neighboring cells, k�1
c

is the strength of mutual inactivation, and kRS, n are parameters
determining how strongly bound Notch promotes reporter expression. Note that mRNA is
not explicitly incorporated into the model, such that the dynamics are e↵ectively lumped
into the production and degradation terms for the proteins.

Linearization about the steady state with all ui = 0 yields

A =

2

64
�� �

v̄
⇤
D
kt

�
D̄

⇤

kc
�

N̄
⇤

kc
0

�
D̄

⇤

kc
�� �

v̄
⇤
N
kt

�
N̄

⇤

kc
0

b1 0 ��R

3

75 , (2.103)

Bv =

2

64
0 �

N̄
⇤

kt

�
D̄

⇤

kt
0

0 b2

3

75 , Bu =

2

4
0
1
0

3

5 , G =


1 0 0
0 1 0

�
, (2.104)

where we have defined

b1 := �RnkRS

v̄⇤n
D
N̄

⇤n�1

�
kRS +

�
N̄

⇤
v̄⇤
D

�n�2 , b2 :=
N̄

⇤

v̄⇤
D

b1 (2.105)

and C is chosen depending on the readout.
For this system, we can show that the linearized dynamical system is stable for all

nonnegative and thus biologically attainable parameter values, strengthening the argument
that patterning may not require instability.

Observation 6. The dynamical system (2.102) linearized about steady state for all ui = 0
is stable when the parameter values are nonnegative.
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Derivation. We begin by explicitly calculating the steady-state values N̄
⇤
, D̄

⇤
, v̄⇤

N
, v̄⇤

D
for

u = 0. First we note that for our choice of M the homogeneous solution satisfies v̄⇤
N
= N̄

⇤

and v̄⇤
D
= D̄

⇤
. After algebra, we find that N̄

⇤
is the positive root of a quadratic, D̄

⇤
is found

in terms of N̄
⇤
, and R̄

⇤
is expressed in terms of N̄

⇤
and D̄

⇤
:

8
>>><

>>>:

�
�

K
N̄

⇤2
+
⇣

�N

K
� �2

�
�̄
D
K

⌘
N̄

⇤
+ �N� = 0

D̄
⇤
=

�̄
D

�+KN̄
⇤

R̄
⇤
= �R

�R

(N̄⇤
D̄

⇤)
n

kRS+(N̄⇤
D̄

⇤)
n

(2.106)

where K := kckt
kc+kt

.

The filter coe�cients [S]kk are given by �C (A+ �k(M)BvG)�1 Bu, k = 0, 1, ..., N � 1.
To find them we can exploit the structure of C and Bu. For the sake of demonstration we
will take the readout to be the reporter protein such that C = [0 0 1], although the procedure
applies equally well to arbitrary choices of C.

First we notate

A+ �k(M)BvG =


A1 0

[b1, b2�k(M)] ��R

�
(2.107)

and apply the matrix inversion lemma to obtain

(A+ �k(M)BvG)�1 =


A�1

1 0
1
�R
[b1, b2�k(M)]A�1

1 �
1
�R

�
. (2.108)

Observe that

A�1
1 =

1

detA1

"
�� �

N̄
⇤

K

N̄
⇤

kc
+ �k(M0)

N̄
⇤

kt
D̄

⇤

kc
+ �k(M) D̄

⇤

kt
�� �

D̄
⇤

K

#
. (2.109)

Premultiplying (2.108) by C extracts the bottom row, while postmultiplying by Bu extracts
the middle entry of that row, which is given by

1

�R detA1


b1

✓
N̄

⇤

kc
+ �k(M)

N̄
⇤

kt

◆
+ b2�k(M)

✓
�� �

D̄
⇤

K

◆�
. (2.110)

Substituting b1 and b2, we simplify the expression to

[S]kk = �
N̄

⇤
b1

�Rkc detA1


1� �k (M)

✓
1 +

�kc
D̄

⇤

◆�
(2.111)

where

detA1 =

✓
�� �

N̄
⇤

K

◆✓
�� �

D̄
⇤

K

◆
�

✓
N̄

⇤

kc
+ �k (M)

N̄
⇤

kt

◆✓
D̄

⇤

kc
+ �k (M)

D̄
⇤

kt

◆
(2.112a)

= �


N̄

⇤
D̄

⇤

k2
t

�k (M)2 + 2
N̄

⇤
D̄

⇤

ktkc
�k (M) +

✓
N̄

⇤
D̄

⇤

k2
c

� �2
�

�

K

�
N̄

⇤
+ D̄

⇤
�
�

N̄
⇤
D̄

⇤

K2

◆�
.

(2.112b)
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The dynamical system corresponding to these filter coe�cients is analytically stable for
our chosen M when the parameters in 2.1 are positive. Since A + �k (M0)BvG is a block
triangular matrix, its eigenvalues are the eigenvalues of the diagonal blocks, i.e., ��R along
with the eigenvalues of A1. Since ��R is always negative, checking for stability amounts to
checking the sign of the eigenvalues of A1.

Using the fact that v̄⇤
D
= D̄

⇤
and v̄⇤

N
= N̄

⇤
for our choice of M yields

A1 =

"
�� �

D̄
⇤

K
�

N̄
⇤

kc
� �k (M0)

N̄
⇤

kt

�
D̄

⇤

kc
� �k (M0)

D̄
⇤

kt
�� �

N̄
⇤

K

#
(2.113)

with K as and A1 as defined earlier. The eigenvalues are given by the zeros of the charac-
teristic polynomial, found by solving for s in

✓
�� �

D̄
⇤

K
� s

◆✓
�� �

N̄
⇤

K
� s

◆
�

✓
�
N̄

⇤

kc
� �k (M0)

N̄
⇤

kt

◆✓
�
D̄

⇤

kc
� �k (M0)

D̄
⇤

kt

◆
= 0.

(2.114)
The first term multiplies out to

s2 +


2� +

N̄
⇤
+ D̄

⇤

K

�
s+


�2 +

N̄
⇤
D̄

⇤

K2
+

�

K

�
N̄

⇤
+ D̄

⇤
��

(2.115)

and the second contributes the following terms, independent of s:

�

✓
N̄

⇤

kc
+ �k (M0)

N̄
⇤

kt

◆✓
D̄

⇤

kc
+ �k (M0)

D̄
⇤

kt

◆
= �

N̄
⇤
D̄

⇤

k2
c

�2�k (M0)
N̄

⇤
D̄

⇤

kckt
��k (M0)

2 N̄
⇤
D̄

⇤

k2
t

.

(2.116)
To be biologically attainable the parameters and steady-state values must all be positive,
such that the quadratic in s has positive coe�cients for the first- and second-order terms. If
the roots are complex then assuming nonzero decay and nontrivial solutions, the real part is
given by

�

h
2� + N̄

⇤+D̄
⇤

K

i

2
< 0, (2.117)

guaranteeing stability.
If the roots are real, then they will be negative if the zeroth-order term is positive.

However, if the zeroth-order term is negative, then one root will be positive and the system
will not be stable. Neglecting the expressions in �, which by observation must be positive,
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the contributions to the zeroth-order term are

N̄
⇤
D̄

⇤

K2
�

N̄
⇤
D̄

⇤

k2
c

� 2�k (M0)
N̄

⇤
D̄

⇤

kckt
� �k (M0)

2 N̄
⇤
D̄

⇤

k2
t

(2.118)

=
N̄

⇤
D̄

⇤
(kc + kt)

2
� k2

t
N̄

⇤
D̄

⇤
� 2kckt�k (M0) N̄

⇤
D̄

⇤
� �k (M0)

2 k2
c
N̄

⇤
D̄

⇤

k2
c
k2
t

(2.119)

=
N̄

⇤
D̄

⇤
(k2

c
+ 2kckt)� 2kckt�k (M0) N̄

⇤
D̄

⇤
� �k (M0)

2 k2
c
N̄

⇤
D̄

⇤

k2
c
k2
t

(2.120)

=
N̄

⇤
D̄

⇤

k2
c
k2
t

⇥
k2
c

�
1� �k (M0)

2�+ 2kckt (1� �k (M0))
⇤
. (2.121)

By our choice of M0, �k (M0) 2 [�1, 1], therefore the bottom expression is minimized to 0
by �k (M0) = 1. Since this expression contains all the possible negative contributions to the
zeroth-order term, the overall zeroth-order term cannot be negative, and hence the roots of
the characteristic polynomial must be negative, implying stability of the system with given
M0. ⌅

To examine the e↵ects of identical (correlated) vs. separate (uncorrelated) white noise
inputs to both Delta and Notch, we first modify 2.102 so that a single input appears in the
equations for both Ṅi and Ḋi in the correlated case and two independent inputs appear in
each of these equations for the uncorrelated case. Accordingly, we then calculate the H2

norm for

Bcorr

u
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1
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0

3
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u
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4
1 0
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0 0

3

5 . (2.122)

2.5.2 Lateral Inhibition with Mutual Inactivation (LIMI)

The system equations are the same as for the mutual inactivation model (2.102), except
that now Delta production is repressed by reporter protein:
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When linearized at steady state, the relevant matrices are
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(2.124c)

where b1, b2 are defined as before and

a := m
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⇤m�1

�
1 + R̄

⇤m
�2 . (2.125)

Figure 2.10: The filter coe�cients and H2 norm for the MI model of Notch-Delta interaction
reveal how changes to parameter values enhance high frequencies from an input gradient of
Delta production to readout Notch activity. The magnitude of the coe�cients decreases with greater
mutual inactivation strength (lower kc), indicating that greater inhibition reduces overall activity. The
spatial modes correspond to the DFT basis and are indexed by k such that the kth mode has frequency
2⇡k
N

. The coe�cients exhibit mirror-image symmetry about k = N

2 ; we plot only the first half of the
coe�cients to better visualize the filter’s characteristic highpass shape. The greater the mutual inactivation,
the greater the amplification of high frequencies relative to lower ones, as revealed by a plot of the coe�cients
individually normalized to the maximum in each set. The H2 norm is qualitatively similar to the highpass
filter characteristic though smaller in magnitude, with more dramatic relative di↵erences between values of
kc. Parameters are given in Table 2.1.
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2.5.3 Simplest Lateral Inhibition by Mutual Inactivation
(SLIMI)

The system equations are
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Ḋi(t) = �̄
D
+ ui � �Di �

Di(t)vNi
(t)

kt
�

Ni(t)Di(t)
kc

yi(t) = Cxi(t)

wi(t) =

"
Ni(t)

Di(t)

#
. (2.126)

When linearized at steady state, the relevant matrices are
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where now
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2.5.4 Comparison of Models

The MI, LIMI, and SLIMI models from reference [127] produce substantially similar
readouts (Figure 2.11), filter characteristics, and H2 norms (Figures 2.11 and 2.12). Mutual
inactivation (lower kc) decreases the magnitude of the coe�cients and therefore the final
Notch and Delta concentrations, but exaggerates the intrinsic highpass characteristics of the
filter, producing the sharper peaks in Notch activity predicted by [126].

Complementing the observation that mutual inactivation appears to enhance robustness
to correlated gene expression perturbations [127], our analysis of the H2 norm reveals that
regardless of readout, noise that is completely correlated between the production rates is al-
most uniformly rejected relative to uncorrelated noise. Furthermore, noise that is completely
uncorrelated between Delta and Notch production rates is favored by the same frequencies
as the system filter (Figures 2.10 and 2.12). Together, these observations suggest that time-
varying stochastic inputs—unless they are of exceptionally large magnitude—do little to
combat the intrinsic behavior of the filter, contributing to the robustness of the developmen-
tal program.
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Figure 2.11: A linearized system qualitatively reproduces the double peaks in Notch activity
predicted from full nonlinear simulations. The three di↵erent models for the Notch-Delta
interaction produce qualitatively similar filter characteristics. Top row, a two-sided exponential
input gradient of Delta production rate (solid light gray) results in two sharp bands of Notch activity (dotted
yellow) that spatially segregates steady-state levels of Notch (solid blue) and Delta (dashed orange). Curves
are normalized to their respective maxima. Note that the SLIMI model lacks a reporter protein and so does
not have an output measure for Notch activity. These plots correspond to Figure 4C in [126]. Middle row,
the magnitude of the filter coe�cients for each possible output. Because the spatial modes correspond to
the DFT basis, the coe�cients exhibit mirror-image symmetry about k = N

2 ; we plot only the first half of
the coe�cients to better visualize the filter’s characteristic highpass shape for output Notch activity, and
lowpass shape for Delta and Notch (with a pi

2 phase shift in Notch expression). Each set of coe�cients has
been individually normalized to the maximum in each set. Bottom row, the H2 norm is qualitatively similar
to the filter characteristic for the corresponding output. The coe�cients here are not normalized in order
to better visualize the large gain in Notch expression relative to Delta or activity levels. Parameters for all
models are given in Table 2.1.
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Figure 2.12: Filter behavior is robust with respect to noisy inputs to Notch or Delta, and
system responses to correlated vs. uncorrelated noise is similar across models. Noise that is
completely correlated between Notch and Delta is more strongly and uniformly rejected than completely un-
correlated noise. However, uncorrelated noisy inputs tend to emphasize the inherent highpass characteristics
with respect to output Notch activity, suggesting that moderate levels of white noise do not compromise
filter behavior. The most notable behavioral di↵erence between models is that the LIMI model rejects
uncorrelated noise slightly more strongly for readout Delta. Parameters for all models are given in Table
2.1.
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While these three models exhibit near-identical filter coe�cients for the model parame-
ters in [127], increasing the mean input Delta production rate �̄

D
causes the MI and SLIMI

systems to more strongly attenuate high spatial frequencies in Notch and Delta concentra-
tion, without much changing the filtering behavior of the LIMI system (Figure 2.14). This
observation implies the LIMI architecture is less sensitive to variations in absolute input
relative to architectures relying upon mutual inactivation alone, which suggests that lat-
eral inhibition and mutual inactivation may serve as complementary mechanisms to enhance
patterning robustness: mutual inactivation to ensure sharpness of boundary formation [127],
and lateral inhibition to bu↵er sensitivity to variation in overall Delta production rate or to
the steepness of the veinless gradient. The analysis also identifies a set of experiments to
distinguish which of the models is most reflective of the true biological mechanism. Namely,
one could introduce perturbations that increase the mean Delta production rate—e.g., in-
crease veinless expression or decrease di↵usivity of the product—and compare the measured
readouts to the model predictions.



CHAPTER 2. SPATIAL FILTERING APPROACH 67

Figure 2.13: Filter coe�cients depend on the mean value of the prepattern (ū), but some
system architectures are more robust to changes in this mean value. Here, we show the filter
coe�cients for the MI, LIMI, and SLIMI models with varying choices of �̄D used for the linearization
(corresponding to x0 = 5, 7, 9 respectively). The MI and SLIMI architectures show increasing attenuation
of high frequencies with respect to output Notch and Delta. The MI model additionally shows alterations
to how low frequencies are amplified in Notch activity levels. The LIMI model, in comparison, appears to
be relatively bu↵ered against such changes. See also Figure 2.14.
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Figure 2.14: The LIMI architecture, while more complicated than MI or SLIMI, exhibits
less sensitivity to changes in gradient steepness than the other models. Gradients correspond to
x0 = 5, 7, 9 from top to bottom, with corresponding �̄D values identified on the upper left. Di↵erences in
readout owe chiefly to the di↵erences in the filter coe�cients with changes to mean input value, as seen in
Figure 2.13.
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Figure 2.15: Schematic of the proposed Turing architecture for early gene expression patterning during
digit formation in vertebrate limbs (see text).

2.6 Application: Digit Formation

Digits in developing vertebrate embryos originate from a flat paddle-shaped layer of cells
that form the limb bud. A crucial step in digit patterning involves specifying which cells in
the paddle will become digits and which will die to create the space between digits [325], [326].
This periodic pattern of digit with interdigit has been proposed to originate with spatially
periodic expression of the gene sox9, which produces a protein that regulates transcription
of the genes wnt and bmp. In turn, these genes code transcription factors Wnt and Bmp
that regulate Sox9 production [327].

Cell cultures from developing embryos grown on plates show Turing-like patterns where
Sox9 is out of phase with Wnt and Bmp. Turing patterns typically arise in chemical reaction
systems with at least two types of di↵usible molecules produced at every point in space,
where the activation/inhibition relationship between the types is such that the homogeneous
solution to the resulting dynamical system is unstable owing to the di↵erence in di↵usion
rates between the two molecules. Such a reaction-di↵usion model has been proposed to
generate the observed Sox9/Wnt/Bmp pattern from stochastic initial conditions within a
particular parameter range [327]. Our discretization of the model suggests that such a
pattern might be observed even if the parameters do not satisfy the conditions for di↵usion-
driven instability.

Consider the Sox9/Bmp/Wnt network with distance l between cell centers (Figure 2.15).
Let s, b, and z represent the concentrations of Sox9, Bmp, and Wnt respectively, such that
xi = [si, bi, zi] and v = [vb, vz]. Let the input be random cell-to-cell variation in background
protein production rate, i.e., the production rate of protein in the absence of promotion or
inhibition, as from cell-to-cell variability in transcription or translation rates (see Figure 1.1).
The dynamics within cell i and the coupling are given by
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Parameter Value Description
↵sox9 0 constitutive Sox9 production rate
↵bmp 16.9 constitutive Bmp production rate
↵wnt 13.7 constitutive Wnt production rate
k2 1 Bmp promotion of sox9 expression
k3 1 Wnt repression of sox9 expression
k4 1.59 Sox9 repression of bmp expression
k5 0.1 Bmp decay rate
k7 1.27 Sox9 repression of wnt expression
k9 0.1 Wnt decay rate
db 2.5 di↵usion coe�cient for Bmp
dw 1 di↵usion coe�cient for Wnt

Table 2.2: Parameters used in the simulations of digit formation, unless noted otherwise in the text (Figures
2.18, 2.16, 2.17). Values are from Table ST4 and text of [327].

where ↵ are background production rates, k are interaction rates, and d are di↵usivities.
Linearization about the homogeneous steady state yields

A =
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In this example, we consider a 2D rectangular array of evenly spaced cells interacting
only with their immediate neighbors (i.e., no diagonal interconnections). For the remainder
of this example, we will assume Neumann boundary conditions such that the spatial modes
for the rows and columns of M correspond to the DCT-2 (Figure 2.6).

2.6.1 Analysis

We pick C to monitor Sox9, Bmp, or Wnt concentration and choose s0 such that the
Turing instability conditions are not satisfied, i.e., the eigenvalues of (IN ⌦ A)+M ⌦ (BvG)
are all negative. Nevertheless, the readout still replicates the spatially periodic patterns
predicted by [327] for a range of intercellular distances (Figure 2.18) owing to the bandpass
behavior of the filter (Figure 2.16). [Sox9] is out of phase with both [Bmp] and [Wnt], as
indicated by the opposing signs of the coe�cients in the passband.

The H2 norm measurements for the readouts qualitatively emphasize the same frequency
bands as their respective filters [S]

kk
(Figure 2.17). For correlated or uncorrelated noise

sources, readouts [Bmp] and [Wnt] experience much greater magnification than does [Sox9],
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Figure 2.16: The stable, linearized reaction-di↵usion system behaves as a bandpass filter for
Sox9 (left), Bmp (center), and Wnt (right), resulting in a spatially periodic output (see Figure
2.18). Pictured are heat maps of the magnitude of the filter coe�cients for the three readouts assuming
Neumann boundary conditions (DCT-2 basis) in both dimensions, such that vertical frequency increases
down rows (higher m) and horizontal frequency increases across columns (higher n). Increasing the distance
between cells (l) increases the frequency of the passband but decreases the sharpness of the dropo↵. The
readout concentration of Sox9 is out of phase from the Bmp and Wnt concentrations due to the fact that
the coe�cients of S have an extra multiplicative factor of �1 = e

i⇡, or a phase shift of ⇡, relative to the
coe�cients when the readout is [Bmp] or [Wnt]. Parameters are as given in Table ST4 of [327] with s0 = 11
instead of 10, i.e., s0 6= s

⇤ and therefore [A]00 6= 0 (see also Table 2.2). This choice of s0 stabilizes the
dynamical system with di↵usion, thereby violating Turing conditions. Here, NR = NC = 40 for a total of
N = 1600 cells. Images are normalized to the same scale (min. 0, max. 26.6).
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Figure 2.17: The stabilized Sox9-Bmp-Wnt network emphasizes noise in the same frequency
bands as those favored by the filter. The H2 norm for correlated noise when the readout is [Sox9] is
less than 1 in magnitude, indicating noise rejection at all frequencies, while uncorrelated noise is amplified
at all frequencies for readout [Wnt]. Uncorrelated noise, despite being highly amplified for readouts [Bmp]
and [Wnt], is rejected at frequencies higher than the upper end of the filter passband for [Sox9] and only
weakly amplified at lower frequencies, perhaps as a result of the opposing influences of Bmp and Wnt on
sox9 expression. Parameters are as in 2.16 with l = 1.7 (see also Table 2.2). Images are normalized to the
same scale (min. 0, max. 111).
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Figure 2.18: A linearized, discrete 2D system with random but constant-in-time variation
between points replicates predictions from a Turing reaction-di↵usion model even when the
parameters do not satisfy the conditions for Turing-driven instability. The color-coded visual-
ization reproduces images of micromass cultures from Supplementary Figure S3 in [327], showing similar
periodic striped patterns. Higher intensity corresponds to higher concentration level and intensity is normal-
ized individually by protein species, even in the overlaid images. The expression boundaries depicted here
are not as sharp as the original Turing model due to the stability of the linearized system. The concentration
of Sox9 is out of phase with Bmp and Wnt concentrations, as seen from the overlaid images. Parameters are
as in 2.16 and 2.17 with l = 1.7 (see also Table 2.2), with a constant-in-time input background production
rate input that is shared by all reactants (as in (2.129)). For outputs [Sox9], the filter coe�cient of greatest
magnitude occurs at (14, 6) (and symmetrically also (6, 14); see Figure 2.16), corresponding to a spatial mode
comprising a sum of two cosines, the higher of which has period 25% the length of one side of the array.
As predicted therefrom, the output pattern has approximately four complete periods at an angle about 67�

from horizontal.
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Figure 2.19: Schematic of the proposed Turing architecture for early gene expression patterning during
digit formation in catfish shark fins (see text).

suggesting that the opposing e↵ects of Bmp and Wnt on sox9 expression may mostly cancel
each other out at the level of Sox9 concentration. Relative noise amplification in the same
modes favored by the [S]

kk
may ensure that stochastic influences do not counteract filter

behavior, at the same time that attenuation and evenness in the response to other modes
might reduce the relative influence of temporally varying inputs on the readout. The latter
especially may be useful to maintain consistent behavior in a process such as digit formation
that takes place over a long timespan.

While our simulations do not refute the hypothesis that a di↵usion-driven instability
constitutes the biological basis for digit formation, the fact that we can produce a similar
pattern with an externally perturbed stable system suggests that not all apparent Turing
patterns need arise from an instability. This observation could significantly ease the search
for molecules and proteins that contribute to “spontaneous” stripe and spot patterning,
as the parameter restrictions required for true Turing instabilities may not be biologically
plausible.

2.6.2 Digit Formation with a Morphogen Gradient

Expanding on the work of [327], reference [328] demonstrated that changes to the param-
eters in the proposed Turing network for digit formation in mice can produce sox9 expression
patterns matching those found in embryonic catshark fins, suggesting that the mechanism
has been evolutionarily conserved. The authors augmented the model with an exponential
gradient of fibroblast growth factor (Fgf), a morphogen originating at the fin edge that has
been experimentally demonstrated to facilitate normal digit arrangement in mice. In their
model, Fgf represses Sox9 repression of bmp expression (k4) and promotes Sox9 repression
of wnt expression (k7). In simulation, the authors observed that increasing the ratio of Wnt
production to Bmp production or decreasing Bmp promotion of sox9 expression caused the
Turing pattern to transition from stripes to spots.

We implemented the model from [328] using the following evolution equations (Figure
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2.19):
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where ↵F is the Fgf production rate, u1 represents the source of Fgf, and u2 is random
constant-in-time spatial variation in background production rate. Unlike [328], we did not
normalize F to [0, 1], but we chose u1, u1 such that 0  F̃i

⇤

+ F̄
⇤
 1 and 0  u1i � ū1.

As compared to (2.129), the equations in (2.132) are rendered as perturbations to prior
steady-state protein concentrations, therefore “negative” steady-state values should be in-
terpreted as reductions in concentration relative to preexisting levels.

To handle both background production rate and localized Fgf production we use the
generalization to L inputs

ŷ⇤ := � (IN ⌦ C) [(IN ⌦ A) + ⇤⌦ (BvG)]�1

"
LX

k=1

(IN ⌦ Buk
) ûk

#
(2.133)

where uk 2 RN is the kth input vector and

Buk
:=

@f

@uk

��
(x̄⇤,v̄⇤,ū1,ū2,...,ūL)

(2.134)

is the linearization matrix for one subsystem with respect to the kth input when all inputs
are held constant in time and space. To avoid ambiguity, the “filter” interpretation is defined
with respect to one input, i.e., as one term in the summation (2.133).

The matrices for the linearization are
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where the steady-state concentration of Fgf is F̄
⇤
= ↵F+ū1

µF
independent of the other variables.

We stabilized the homogeneous steady-state solution by setting ↵F = 0 and using a small
value of ū1 with the remaining parameters taken from Figures 4 and 5 in [328]. This choice
of ↵F completely localizes the source of Fgf to the input u2.

As in the original Sox9-Bmp-Wnt Turing model in [327], the filter coe�cients in the
Fgf-augmented model form a bandpass at mid-range frequencies, resulting in the roughly
periodic output patterning that alternates between Sox9 and Wnt (Figure 2.20). Increasing
↵wnt decreases the magnitude of the bandpass, while decreasing k2 concentrates amplification
at a small range of frequencies inside the bandpass. Either of these parameter changes tends
to shrink contiguous regions of high [Sox9], consistent with the transition from stripes to
spots observed in [328]. Parameters yielding more spotlike patterns also tend to suppress
the influence of both correlated and uncorrelated noise for readout [Sox9], though the e↵ect
on readout [Wnt] is negligible (Figures 2.21, 2.22, 2.23, and 2.24). The distal edge where the
source of Fgf is localized exhibits relatively higher Wnt than Sox9 expression, as observed
in vivo [328]; in our normalized images, the e↵ect is most visible at higher values of ↵wnt.

If we assume cells are approximately 12 to 15 µm in diameter [329], then for ↵wnt =
1.2, k2 = 1 the filter and H2 norm analysis indicate that wavelengths of about 84 to 105 µm
will be most strongly amplified in the result. The prediction is in decent agreement with
the experimental images in Figure 2 of [328], which exhibit periodicity on the order of 80 to
100 µm. Some of the error may be accounted for by the di↵erence in domain shape between
filter simulations and actual limb paddles (rhomboidal vs. elliptical) as well as the presence
of growth in the living animal. Nevertheless, this observation suggests that the framework
correctly identifies the range of spatial modes that will be most influential in forming the
“actual” biological pattern.
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Figure 2.20: Either increasing Wnt production or decreasing Bmp promotion of sox9 expres-
sion shrinks the size of contiguous high-[Sox9] regions, though filter analysis shows the two
methods act through di↵erent mechanisms. Simulations are performed for nine (↵wnt, k2) pairs on
a hexagonal lattice (NR = NC = 32) with two external inputs: a random background production rate for
Sox9, Wnt, and Bmp; and an Fgf source localized to 5 columns of cells on the left. The e↵ect of the Fgf
is visible as an increase in [Wnt] (blue) relative to [Sox9] (red) at both the left and right boundaries owing
to the periodic boundary conditions. The “actual” readouts, normalized across all images independently
by channel, are pictured above the dotted white line; readout values below the dotted line have been post-
processed to saturate at a threshold (0.005 for [Sox9], 0.3 for Wnt) and are normalized in the same fashion
as (but separately from) the “actual” readouts. For visual emphasis, saturated [Sox9] values are displayed
at 10⇥ the threshold intensity. Inset heat maps display the magnitude of the filter coe�cients around the
bandpass (from kC = 0 to kC = NR

2 and kR = 0 to kR = NC
2 ) from input background production to readout

[Sox9], each normalized to the same range (min. 0, max. 3.36). Readouts that saturate above a certain
threshold show more spotlike patterns for higher ↵wnt or lower k2, as observed in [328]. Increasing ↵wnt

decreases the overall amplitude of the filter and thereby shrinks the width of the passband, which suggests
that spots rather than stripes may emerge when fewer cells express above a threshold. In contrast, decreasing
k2 increases the maximum magnitude of the bandpass in a concentrated region, suggesting that spots may
also be obtained by exaggerating di↵erences in amplification between frequencies. Parameters unless noted
otherwise are as given in [328], Figures 4 and 5.
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Parameter Value Description
↵sox9 0 constitutive Sox9 production rate
↵bmp 0.1 constitutive Bmp production rate
↵wnt 1.2 constitutive Wnt production rate
µF 0.1 Fgf decay rate
k2 1 Bmp promotion of sox9 expression
k3 3 Wnt repression of sox9 expression
k4 6 Sox9 repression of bmp expression
k5 0.1 Bmp decay rate
k7 2.4 Sox9 repression of wnt expression
k9 0.1 Wnt decay rate
kf

2
3 strength of Fgf influence on k4, k7

db 160 di↵usion coe�cient for Bmp
dw 25 di↵usion coe�cient for Wnt
dF 600 di↵usion coe�cient for Fgf
l 4 distance between cells

Table 2.3: Parameters used in the simulations of digit formation with a morphogen gradient, unless noted
otherwise in the text (Figures 2.20 to 2.24). Values are from Methods in [328] (Figures 4 and 5).
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Figure 2.21: H2 norms with readout [Sox9] for 100% uncorrelated white noise inputs to sox9, bmp, and
wnt. Images are normalized to the same scale as Figure 2.22 (min. 0, max. 3.43). Other parameters are
from Table 2.3.
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Figure 2.22: H2 norms with readout [Sox9] for 100% correlated white noise inputs to sox9, bmp, and wnt.
Images are normalized to the same scale as Figure 2.21 (min. 0, max. 3.43). Other parameters are from
Table 2.3.
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Figure 2.23: H2 norms with readout [Wnt] for 100% uncorrelated white noise inputs to sox9, bmp, and
wnt. Images are normalized to the same scale as Figure 2.24 (min. 0, max. 2.28). Other parameters are
from Table 2.3.
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Figure 2.24: H2 norms with readout [Wnt] for 100% correlated white noise inputs to sox9, bmp, and wnt.
Images are normalized to the same scale as Figure 2.23 (min. 0, max. 2.28). Other parameters are from
Table 2.3.
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Figure 2.25: Schematic of the synthetic edge detector implemented in [166] (see text).

2.7 Application: Synthetic Edge Detector

Spatial patterning of gene expression is an area of ongoing interest to synthetic biologists
for applications in microbial consortia [330] and biocomputation, among others (see [181] and
[182] for recent reviews). A few e↵orts in particular have focused on image reproduction [167],
[331] and processing [166] in systems of light-responsive cells, where “lawns” of engineered
bacteria are illuminated with prepatterns of spatially varying intensity and/or color. We
apply the filtering approach to analyze the synthetic edge detector implemented in [166], in
which bacteria in the dark produce a di↵usible chemical, and bacteria that sense both light
and the chemical produce a pigment (Figure 2.25).

Cells in the dark produce an enzyme (LuxR) that facilitates production of X1, the dif-
fusible communication signal (AHL), which activates production of a black pigment Z that
acts as the readout. The protein X2 (Cl), also produced in the dark (inhibited by red light),
inhibits Z production. Both enzyme and X2 are inhibited by light, such that the steady-state
transfer function (in Miller units) of X1 and X2 as a function of light input L is given by

flight(L) =
K

K + L
(�max � �min) + �min. (2.137)

BothX1 andX2 bind the Plux�� promoter controlling Z production with steady-state transfer
function

flogic (x1, x2) =
c0 + c1fLux(x1)

1 + c0 + c1fLux(x1) + c2fn

Cl(x2) + c1c2fLux(x1)fn

Cl(x2)
(2.138)

where

fLux(x1) =
1
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✓
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fCl(x2) =
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+
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d
x2

◆
. (2.140)
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The authors of [166] assume AHL di↵usion is the slowest process in order to describe
the system in just three dimensionless equations for AHL and Cl production and AHL
di↵usion. Because we ultimately only care about steady-state solutions under constant
spatial perturbation, we can ignore the relative degradation rate of X2 to X1 and simply
choose dynamics for a system that will produce the correct transfer functions as steady-state
solutions. The simplest choice gives the following dynamical equations for cell i:

8
>>><

>>>:

ẋ1i = 1flight(L̄)� 2x1i +Dvi
ẋ2i = 3flight(L̄)� x2i

zi = 4flogic(x1i, x2i)

v = Mx1

(2.141)

where D is the di↵usivity of AHL and M is Laplacian, such that the homogeneous steady-
state solutions under constant-in-space light input L are

8
><

>:

x̄⇤

1 =
1
2
flight(L̄)

x̄⇤

2 = 3flight(L̄)

z̄⇤ = 4flogic(x̄⇤

1, x̄
⇤

2)

. (2.142)

Then the linearization matrices are

A =


�2 0
0 �1

�
, Bv =


D

l2

0

�
, Bu = �

K (�max � �min)�
K + L̄

�2


1

3

�
, (2.143)

G =
⇥
1 0

⇤
, C = 4

⇥
a1 a2

⇤
(2.144)

where

a1 =
@flogic
@x1

����
x̄⇤
, a2 =

@flogic
@x2

����
x̄⇤
. (2.145)

In the absence of further information about system dynamics, we assume the doubling time
of bacteria is faster than this system reaches steady state (reasonable given comparison to
the AHL half-life—see Table 2.4). Thus, we take l to be a distance reflecting discretization
in space, rather than a distance between individual cells. Then the filter coe�cients are
given by

[S]
kk

=
K (�max � �min)�

K + L̄
�2

 
a11

D

l2
�k (M)� 2

� a23

!
. (2.146)

For the remainder of this example, we use a hexagonal array of evenly spaced cells with
periodic boundary conditions.

2.7.1 Analysis

The synthetic edge detector acts as a highpass filter. Although the magnitude of the
filter coe�cients decreases with increasing average input L̄, the shape of the filter is almost
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Figure 2.26: The synthetic edge detector acts as a highpass that is su�ciently sharp to detect
edges in binary images, but too broad to distinguish edges in grayscale. Left, the light input seen
by individual cells; right, the resulting output pigment pattern. Full lattice is hexagonal with 64⇥ 64 units
as in Figure 2.7, with periodic boundary conditions. Top plots are zoomed in for clarity. Parameters are as
given in [166] and can be found in Table 2.4.
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Parameter Value Description
�max 298 Miller
�min 125 Miller
K 0.0017 Miller
D 1.67⇥ 10�7

⇥ 602 AHL di↵usivity (cm2/hr)
c0 0.04
c1 0.05 1/nM
c2 0.011 1/nMn

n 1.5
1 0.03 nM/hr
2 0.012 AHL half-life (hr�1)
3 0.8 nM/Miller
4 289 Miller

K2
A
KLuxR

D
270,000 nM3

LuxRtot 2000 nM
KCl

D
5 nM

l 1e� 1 distance between discretized units (cm)

Table 2.4: Values are from text and experimental procedures of [166].

Figure 2.27: Filter coe�cients for the synthetic edge detector, normalized separately with a range of
1.7 ⇥ 10�5 (left) and 8.0 ⇥ 10�6 (right). Note the loosely highpass behavior. Skew owes to the choice of a
hexagonal lattice. The general shape appears invariant to the mean input intensity.



CHAPTER 2. SPATIAL FILTERING APPROACH 87

completely invariant to L̄ (Figure 2.27), which is a point in favor of the system’s ability
to properly detect edges in images di↵ering in mean intensity. Owing to the di↵usion of
the communication signal, however, the filter is not a particularly sharp highpass, such that
edges are not clearly identified in “low-contrast” images with areas of middling intensity.
This is an understandable limitation given the biological components available to construct
the circuit, and may partially reflect the binary logic (IF/AND/NOT) employed by the
designers.

Partial di↵erential equation simulations, such as those used by [166] to predict patterning
in the synthetic edge detector, may be more accurate than linearization-based approaches
such as ours, but can also be time consuming and memory intensive especially as the sys-
tem increases in dimension. In comparison, to employ our approach the filter coe�cients
need only be calculated once per parameter choice, and a single matrix multiplication then
su�ces to predict readouts for a wide variety of inputs. Thus, the filtering approach may pro-
vide a foundation for e�ciently testing and evaluating putative biological image processing
circuits, particularly those with numerous components. In addition, a filter-based approach
could permit synthetic biologists to tackle more complicated image processing functions that
require finely tuned spatial frequency responses.

Lastly, filters can be serially applied (or “cascaded”) to carry out more sophisticated
image processing functionalities. In these cases, the readout pattern of one filter acts as the
prepattern input to the next layer, and the filter coe�cients of the full cascade are given
by the componentwise product of the coe�cients for each stage. Hence, synthetic biologists
could design separate filter modules to execute specific functions and then connect them
serially to carry out a more sophisticated overall program.

2.8 Conclusions

In this chapter we have presented a framework to analyze how networks of interacting
cells modify spatially varying inputs, either from environmental factors or intrinsic parameter
variation, to produce patterned outputs. Three biologically relevant examples indicate that
qualitatively similar patterns may arise from di↵erent physical implementations (Section
2.5), from both stable and unstable fixed points (Section 2.6), as well as from variable filter
behaviors when certain postprocessing steps are applied (Section 2.6.2). Furthermore, these
biological models appear robust to correlated and uncorrelated space-and-time-varying white
noise inputs—a critical feature for maintaining consistency during embryonic development.

We have demonstrated in a theoretical context how a filtering approach can o↵er insight
into system behavior at an intermediate level between the exact physical implementation
and the measured result. In an experimental context, evaluating systems at the filter level
may clarify when alterations to the input are capable of distinguishing between alternative
explanations for an observed behavior. The perturbation experiments suggested at the end
of Section 2.5 are one example. Other systems may exhibit near-identical filter coe�cients
despite drastic changes to mean input levels, suggesting that pure input-output probing is



CHAPTER 2. SPATIAL FILTERING APPROACH 88

unlikely to illuminate the underlying mechanism. Moreover, model systems with similar
coe�cients for some range of spatial frequencies and disaparate values for another range will
vary in their response to inputs with frequencies in both ranges, such that experiments in
which inputs to the real system can be finely controlled may su�ce to di↵erentiate more
accurate models from less accurate ones. Of interest in all cases is the extent to which
a particular system may impose structure upon a readout pattern as compared to how
much structure must be present in the prepattern. The inverse problem of how to infer
filter coe�cients from a given prepattern and readout pattern is also a subject for further
investigation, as such a method would ease the requirement for an extant dynamical model
in order to apply the filtering interpretation.

A critical assumption in our development of the filtering framework is that linearization
about a homogeneous steady state is su�cient to capture relevant system behavior. Future
work should focus on incorporating nonlinear dynamics as well as investigating the influence
of external inputs on spatially distributed, networked systems in the vicinity of unstable
or nonhomogeneous steady states. Additional areas for further research include system
response to non-white noise inputs and patterning in time-varying or perturbed networks
(an especially relevant consideration given that some chemical gradients appear to evolve
on the same timescale as the gene regulatory networks responding to them [25]). Lastly, we
believe the filtering framework could be especially informative for designing synthetic “image
processing” circuits such as the edge detector examined in this text. Of note, the spatial
frequency-based interpretation opens the door for synthetic biologists to leverage extant
signal processing literature based around filter designs. We encourage further application of
our tool to genetic circuits in engineered multicellular systems.

Overall, we believe a filtering approach simplifies the process of predicting how inter-
molecular and intercellular interactions a↵ect patterning mechanisms in living organisms
or communities thereof. It is our hope that the viewpoint developed here will help us to
elucidate—and elaborate upon—nature’s designs.
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Chapter 3

Contrasting Patterning through
Di↵usion-mediated Lateral Inhibition

The main contribution of this work to extant literature in synthetic biology is an ex-
perimental platform for facilitating di↵usion-based communication among bacterial colonies.
Guided by theory, we harnessed the platform to demonstrate the stability of contrasting gene
expression states between neighboring colonies linked by channels etched in polydimethyl-
siloxane (PDMS) mold, and further showed that spatial parameters such as di↵usion rates
and the distance between colonies could act as a control knob for the stability and contrast
level of the resulting patterns. Building on the original theory from [332], this chapter pro-
vides proofs for contrasting pattern emergence in the experimental setup if and only if the
full system can be reduced to a two-compartment equivalent. The importance of spatial
layout and geometry for pattern emergence are emphasized.

3.1 Introduction

Over the last two decades, synthetic biologists have sought to engineer microbes and their
consortia to execute ever more complex tasks. These range from the relatively straightfor-
ward production of valuable chemicals [333] to the computation of complex logics [334–336]
that allow the microbes to make sophisticated decisions to optimize such production [337–
339] or release therapeutics in situ [340, 341]. There has been sustained interest in both
expanding the intrinsic size of these “circuits” for implementation of even more ambitious
functions and spreading these circuits among di↵erent members of a population that dis-
tributes the production load [342, 343], allows reuse of components [344], or better utilizes
space [149,166,167,345,346] and growth [164,347,348]. Certainly, in nature, microbial pop-
ulations and consortia spatially arrange themselves to form specialized structures that have
mechanical, developmental, and chemical advantages over homogeneous distributions [349–
353].

Ideally, spatial patterning arises in a self-organized fashion from control among individual
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cells, but shaping communities of cells remains a challenge to engineer [354]. In natural
systems, this organization often relies on highly specific communication among cells and/or
among highly spatially constrained signaling such as cell contact-mediated mechanisms [180].
In bacteria, intercellular signaling systems like acyl homoserine lactones (AHL) used in
quorum-sensing (QS) tend to be fairly non-specific and long range, while contact-mediated
systems like Cdi-A/B [355, 356] are not easily programmable. However, it is possible to
experimentally explore the principles of spatial organization among microbial populations
by imposing external constraints on communication.

In this work, we designed a compartmentalized culturing platform to house multiple
spatially separated bacterial colonies harboring di↵erent genetic circuits constrained to com-
municate through specified channels on the device. To demonstrate the utility of the setup,
we adapted the theory developed in [289], [122], and [332] for spontaneous contrasting pat-
terning through lateral inhibition to the specific case of quorum sensing between colonies
of synthetically engineered bacterial cells. We found that it was experimentally di�cult to
match kinetic rate parameters across strains, leading us to harness the geometric arrange-
ment of colonies on the culturing platform as a control parameter for attaining contrasting
patterns.

In the following sections, we introduce the biological models for our experimental imple-
mentation alongside the theory predicting their behavior. We begin by developing intuition
with a two-compartment system, which we will show to be mathematically equivalent to a
larger system with a certain network structure for the purposes of assessing the existence
and stability of contrasting patterns. Once the basic theoretical results are established, we
present computational results to analyze the system followed by experimental results that
validate the theory.

3.1.1 Two-compartment system

To build intuition, we first consider a two-compartment system of mutual inhibition
comprising two colonies of bacterial cells of Strains A and B. Suppose each cell type produces
a product along with an associated signaling molecule that inhibits the other cell type’s
production of signaling molecule. Depending on factors such as the strength of inhibition
and the proximity of the colonies to each other, over time one colony may be “dominated”
by the other, which produces vastly more product. In this application, we are interested in
the situation where either colony could theoretically become the dominant colony and where
a near-homogeneous solution (in which both colonies produce intermediate levels of product)
is not stable. Such a system is considered bistable, with one stable point corresponding to
strain A high, B low and the other corresponding to strain A low, B high.

We assume the colonies communicate by way of di↵usible molecules and that signals from
one cell type inhibit cells of the other type but not cells of the same type; i.e., the cells employ
orthogonal quorum-sensing (QS) systems. Ultrasensitivity is necessary for bistability, but
most QS systems alone are not ultrasensitive, therefore we introduce a repressor such as
TetR that binds a promoter with an ultrasensitive response. A channel between the two
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Variable Description
XA HSL (A) in A (produced by A)
XB HSL (A) in B (di↵used from A)
YA HSL (B) in A (di↵used from B)
YB HSL (B) in B (produced by B)
mRA repressor mRNA in A
mRB repressor mRNA in B
RA repressor in A
RB repressor in B
mIA AHL synthase mRNA in A
mIB AHL synthase mRNA in B
IA AHL (A) in A
IB AHL (B) in B

Table 3.1: Chemical species (state space variables) whose behavior is represented by system ODEs. Brackets
denote concentration.

compartments allows di↵usion of AHL between the colonies. To prevent AHL buildup due
to its slow decay rate, we allow the possibility of adding an extra “drain” channel of the
same length as the other channels that connects each compartment to a reservoir with zero
concentration AHL. We incorporate this drainage into the overall decay rate for AHL (Table
3.2). We assume colonies are in the exponential phase of growth and incorporate dilution
directly into the decay rate of mRNA and protein within cells (Table 3.2).

The ordinary di↵erential equations governing system behavior are divided into three
boxes (modules) per cell, each describing a particular function. The state space variables
are listed in Table 3.1. The parameters are defined and values provided in Table 3.2.

The production box HA describes AHL (A) synthase production by A for a given input
concentration of repressor. Repressor inhibition of synthase expression is modeled by a
repressive Hill function:

HA :

8
>><

>>:

ṁIA = VIANIAC

0

@ 1

1+

✓
RA

KRA

◆nRA
+ lIA

1

A� �mIA
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İA = ✏IAmIA � �IAIA

. (3.1)

The steady-state concentration of synthase for a constant input R⇤

A
is then

I⇤
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✏IAVIANIAC

�IA�mIA
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⇣

R
⇤
A
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⌘nRA
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1

A . (3.2)

The transceiver box txA!B encapsulates the catalysis of AHL (A) by AHL (A) synthase
and the di↵usion of AHL (A) to B. It accepts an input IA, the concentration of AHL (A)
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produced by cell A, and outputs a vector X = [XA, XB]T , where the first entry is the
concentration of AHL (A) in A and the second is the concentration of AHL (A) in B after
di↵usion. The equations governing the behavior of this box are

txA!B :

(
ẊA = d(XB �XA)� �XXA + ⌫XIA
ẊB = d(XA �XB)� �XXB

. (3.3)

where d(XB � XA) represents the di↵usion balancing of AHL (A) between A and B (the
term d := D

l2
includes the di↵usion coe�cient D and the channel length l). The steady-state

concentration of XB in response to constant input I⇤
A
is then

X⇤

B
=

d⌫Y I⇤A
�X(�X + 2d)

. (3.4)

The receiver box rxB captures repressor production in B as a function of XA. The
upregulation of repressor mRNA transcription by AHL (A) binding to AHL (B) synthase is
modeled by a Hill function:

rxB :
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:
ṁRB = VRBNRBC
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⇣
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ṘB = ✏RBmRB � �RBRB

. (3.5)

The complementary boxes are identical in structure to those above, and are included here
only for completeness. The production box HB describes AHL (B) synthase production by
B:

HB :
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. (3.6)

Transceiver box txB!A covers catalysis of AHL (B) by AHL (B) synthase and the
di↵usion of AHL (B) to A. The output vector Y = [YA, YB]T stores the concentrations of
AHL (B) in A and B respectively:

txB!A :

(
ẎA = d(YB � YA)� �Y YA

ẎB = d(YA � YB)� �Y YB + ⌫Y IB
(3.7)

The complementary receiver box rxA is nearly identical to rxB except that it describes
repressor production in A as a function of YA, so VRBNRB is replaced by VRANRA :

rxA :
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. (3.8)
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The steady-state concentration of repressor for a constant input Y ⇤

A
is given by

R⇤

A
=

✏RAVRANRAC

�RA�mRA

0

@
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Y

⇤
A

KY

⌘nY

1 +
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Y
⇤
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KY

⌘nY
+ lRA

1

A . (3.9)

The steady-state solutions di↵er from their complements only in exact parameter val-
ues. For our experimental implementation, we selected LuxR/LuxI and LasR/LasI as the
orthogonal QS systems. The parameters are as defined in Table 3.2.

Parameter Description Value Source
D di↵usivity of HSL 4.9⇥ 10�6 cm2/s
l distance between channels 4 mm design parameter
d edge weight constant - := D

l2

� doubling time (bacterial
growth)

27.5 min -

µ dilution due to growth 0.00042 s�1 := ln 2
�

�X decay rate of C6-HSL +
drainage

0.3371⇥ 10�4 s�1

�Y decay rate of C12-HSL +
drainage

0.3371⇥ 10�4 s�1

⌫X production (catalysis) rate of
C12-HSL from LasI

1⇥ 10�4 s�1

⌫Y production (catalysis) rate of
C6-HSL from LuxI

5⇥ 10�4 s�1

VRA transcription rate of LuxI
mRNA from plux in A

0.02 s�1

VRB transcription rate of LasI
mRNA from plas in B

0.771VRA s�1 experimental fit

NRA copy number of plux in A 1 design parameter
NRB copy number of plas in B 1 design parameter
C concentration constant 1 -
KX C12-HSL dissociation

constant to LasI in B
8.335 experimental fit

KY C6-HSL dissociation constant
to LuxR in A

47.514 experimental fit

nX Hill coe�cient (cooperativity)
for C12-HSL to LasR in B

1.907 experimental fit

nY Hill coe�cient (cooperativity)
for C6-HSL to LuxR in A

1.831 experimental fit

lRA rate of leaky transcription
from plux in A

0 s�1
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lRB rate of leaky transcription
from plas in B

0 s�1

�mRA
decay rate of TetR mRNA in
A (dilution + degradation)

µ+ 0.0042 s�1

�mRB
decay rate of TetR mRNA in
B (dilution + degradation)

µ+ 0.0042 s�1

✏RA translation rate of TetR in A 0.035 s�1

✏RB translation rate of TetR in B 0.035 s�1

�RA decay rate of TetR in A
(dilution + degradation)

µ+ 1.2836⇥ 10�4 s�1

�RB decay rate of TetR in B
(dilution + degradation)

µ+ 1.2836⇥ 10�4 s�1

VIA transcription rate of mRNA
from ptet in A

0.02 s�1

VIB transcription rate of mRNA
from ptet in B

0.02 s�1

NIA copy number of ptet in A 1 design parameter
NIB copy number of ptet in B 1 design parameter
KRA dissociation constant of TetR

to ptet in A
50

KRB dissociation constant of TetR
to ptet in B

50

nRA Hill coe�cient (cooperativity)
for TetR to ptet in A

4

nRB Hill coe�cient (cooperativity)
for TetR to ptet in B

4

lIA rate of leaky transcription
from ptet in A

0

lIB rate of leaky transcription
from ptet in B

0

�mIA
decay rate of LasI mRNA in
A (dilution + degradation)

µ+ 0.0042 s�1

�mIB
decay rate of LuxI mRNA in
B (dilution + degradation)

µ+ 0.0042 s�1

✏IA translation rate of LasI in A 0.07 s�1

✏IB translation rate of LuxI in B 0.07 s�1

�IA decay rate of LasI in A (no
degradation)

µ

�IB decay rate of LuxI in B (no
degradation)

µ
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Table 3.2: Parameter definitions and values used in the ODEs for an experimental implementation using
the orthogonal QS systems LuxI/LuxR and LasI/LasR.

Depending on the exact parameter values, the same system of ordinary di↵erential equa-
tions may describe a monostable or bistable system. For the system of mutual inhibition
that we have described, one way to determine whether a certain parameter set yields a
bistable system is to count the number of steady-state points: If there is one point and it is
stable, then the system is monostable; if there are three points total, one unstable and two
stable (one each corresponding to the dominance of A or B), then the system is bistable.
While steady-state points may be located using a convenient graphical method, it can be
more di�cult to analytically determine whether they are stable. Fortunately, if the system
satisfies a set of technical conditions that classify it as monotone, then the graphical method
will also reveal whether the equilibria are stable. We now show that our system is monotone
and therefore we may use the graphical method to evaluate bistability.

In vector form, we represent the entire system with state space

Z :=

2

666666666666664

mIA

IA
X

mRB

RB

mIB

IB
Y

mRA

RA

3

777777777777775

(3.10)

as Ż = f(Z). Let J(·) be the Jacobian of f(·). For the system to be monotone, evolution of
the system with time must preserve ordering in the state space, i.e., for solutions �(·, ·) to
the di↵erential equation, x1(0) �K x2(0) =) �(t, x1(0)) �K �(t, x2(0)) for all t � 0. The
ordering is defined with respect to some positivity cone K in a Euclidean space. Although
physical concentrations cannot be negative, due to the presence of inhibition our system is
not monotone with respect to the positive orthant, but rather to a combination of positive
and negative orthants. If we redefined the state space as Z̃ := [�mIA , � IA, � XT , �

mRB , � RB, mIB , IB, Y T , mRA , RA]T , then Z̃ would be monotone with respect to R12
+ .

Hence Z is monotone with respect to the cone K spanned by all vectors Z̃ corresponding to
feasible Z (i.e., Z 2 R12

+ ).
To see that the system is monotone, we apply a graphical method for systems with state,

input, and output spaces defined by orthants [357]. We proceed by constructing an incidence
graph (signed digraph) where each node is a species and each edge describes the relationship
between two distinct species: no edge if no direct interaction; + if one promotes the other; and
- if one inhibits the other (Figure 3.1). By Zj promotes Zi we mean Jij :=

@fi

@Zj
= @

2
Zi

@t@Zj
� 0

for all Zi, Zj 2 R+ whereas by Zj inhibits Zi we mean Jij  0 for all Zi, Zj 2 R+.
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Because each chemical species in the system directly a↵ects only one other species in
the system in a sequential fashion, the Jacobian for this system is sparse. We consider the
entries corresponding to HA, txB!A, and rxA; because of the symmetry of the system, we
know the entries corresponding to HB, txA!B, and rxB will di↵er only in exact parameter
values. Then the nonzero entries in the Jacobian (except those corresponding to one species’
influence on its own concentration, which do not appear in the incidence graph) are

HA :

8
>>><

>>>:

@ṁIA
@RA

= VIANIAC
�nRA

✓
RA

KRA

◆nRA
�1

KRA

✓
1+

✓
RA

KRA

◆nRA
◆2  0

@İA
@mIA

= ✏IA � 0

(3.11)

txB!A :

8
><

>:

@ẎB
@IB

= ⌫Y � 0
@ẎA
@YB

= d � 0
@ẎB
@YA

= d � 0

(3.12)

rxA :

8
><

>:

@ṁRA
@YA

= VRANRAC
nY

⇣
YA
KY

⌘nY �1

KY

⇣
1+

⇣
YA
KY

⌘nY
⌘2 � 0

@ṘA
@mRA

= ✏RA � 0

(3.13)

along with the corresponding entries for the complementary boxes.
From a conceptual standpoint, monotonicity means that regardless of context, an element

always has the same qualitative e↵ect on itself after its influence is propagated through the
network; i.e., the influence of the element on itself is “consistent”. From the graph for
this system (shown in Figure 3.1) we see that there is only one cycle and it is positive in
parity; that is, the product of the signs of each edge traversed to complete one cycle is
positive, regardless of the direction of travel around the cycle. This implies that the graph
is consistent, and hence the system it describes is closed-loop monotone.

By Theorem 3 in [357] and [294], the equilibria of a closed-loop monotone system (system
with feedback) can be found by examining an open-loop (input-output, or I/O system)
monotone system formed by “breaking” the feedback of the original system. For fixed points
to exist the I/O system must have a static input-output characteristic.

In our case, we can define TA as the cascade of the three boxes HA, txA!B, and rxB

having input RA and output RB. With TB defined similarly for the other three boxes,
then the entire system “broken” at RA is the cascade of TA and TB. This new I/O system
accepts an input u 2 R+ and produces an output y 2 R+. If the I/O system admits a static
input-output characteristic, then the points where u = y are the steady-state solutions to
the closed-loop system.

Since HA and the combined cascade of txA!B and rxB each have a unique steady-
state solution that is a global and asymptotically stable hyperbolic equilibrium [332], then
the cascade of the three systems, i.e., TA, also has a static input-output characteristic. TB

is similarly endowed. Therefore the cascade of TA and TB also has a static input-output
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Figure 3.1: Schematic of the graph representing molecular interactions in the two-cell, closed-loop system.
Sharp arrows indicate promotion, or positive parity; flat arrows indicate inhibition/repression, or negative
parity. A cycle is any undirected sequence of edges and nodes beginning at one element and ending at the
same element (i.e., ignoring direction of arrows). The parity of a cycle is the parity of the product of the
signs of all edges traversed to complete the cycle. Since every cycle in the graph is positive in parity, the
closed-loop system is monotone. To ensure that the corresponding open-loop system is strongly monotone
we require a directed path (i.e., following the arrows) to exist between the input node and every other
node, and between every node and the output node. The input and output nodes are determined by where
the feedback loop is broken. In this system every element is reachable from every other element, so these
conditions will be satisfied regardless of where the cycle is broken. Hence the open-loop (input-output)
system is also monotone.

characteristic, and because the I/O system is also monotone, then its fixed points and the
equilibrium points of the closed-loop system correspond.

Define TA(·) : R ! R to be the static I/O characteristic of TA, i.e., for constant input
R⇤

Ai
, TA produces constant output R⇤

Bo
= TA(R⇤

Ai
), and define TB(·) : R ! R to be the

static I/O characteristic of TB for constant input R⇤

Bi
and output R⇤

Ao
. Then the static I/O

characteristic for the cascade of TA and TB is TB(TA(·)), which maps constant input R⇤

Ai

to output R⇤

Ao
. The function TB(TA(·)) is nonnegative and sigmoidal, meaning that there

must be exactly one or three intersection points between y = u and y = TB(TA(u)) (the
fixed-point solutions to the I/O system where u = y or R⇤

Ai
= R⇤

Ao
). If there is only one

intersection then the I/O characteristic at the intersection must have a slope less than unity
(T 0

B
(TA(y⇤))T 0

A
(y⇤) < 1 where y⇤ is the intersection point), implying that the corresponding

equilibrium is stable. If there are three intersections, then the middle intersection must
have a slope greater than one while the higher and lower intersections must have slopes less
than one, implying that the middle equilibrium is unstable and the other two equilibria are
stable [357]. Hence determining bistability amounts to graphically counting the intersections
between y = u and y = TB(TA(u)). (We could carry out the above analysis with equivalent
results for TA(TB(·)) mapping R⇤

Bi
to R⇤

Bo
.)
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3.1.2 Multicompartmental systems with symmetry

Up to this point we have considered a system of only two compartments, one each of
Strains A and B. The formation of an interesting pattern, however, requires more than two
elements. To that end we will now consider a class of systems with multiple compartments
of each type, where each compartment of Strain A is connected to the same number of
compartments of Strain B, and vice versa. In other words, each compartment of Strain A or
B is essentially indistinguishable from any other. The symmetry present in such a system
will allow us to apply the graphical method of analyzing bistability to sets of compartments
arranged in particular geometries.

The interior mechanics of all compartments of the same type are the same, so the ODEs
governing the behavior of the receiver boxes rx and production boxes H are the same for
compartments of the same type. Adding more compartments does, however, change the
concentration of di↵usible signaling molecules that reach the compartments, and therefore
changes the behavior of the transceiver box tx.

We begin by noting that if we define the 2⇥ 2 matrix

L2 := d


�1 1
1 �1

�
(3.14)

then we can reformulate (3.7) as

Ẏ = L2Y � �Y Y +


0

⌫Y IB

�
(3.15)

with steady-state solution

Y ⇤ = (�L2 + �Y I)
�1


0

⌫Y I⇤B

�
. (3.16)

The matrix L2 contains information on the di↵usion of HSL between compartments. We now
generalize to systems with N compartments and the corresponding N⇥N matrix LN (which
we will henceforth designate as simply L). If all compartments in the system are numbered
from 1 toN , then the element [L]ij represents the connection strength between compartments
i and j. Conceptually, the connection strength is the di↵usion into compartment j from
compartment i (or vice versa) if i 6= j, and the total di↵usion out of a given compartment to
all other compartments if i = j. Each element [L]ij is directly proportional to the di↵usivity
D of HSL and inversely proportional to the square of the distance between i and j. In the
special case where there are only two compartments, the connection strength between them
is identical, hence the elements in L2 are all of magnitude d.

Mathematically, we can represent the multicompartmental system as an undirected graph
where each vertex is a compartment and each edge is a channel. Let dij be the edge weight
between vertices i and j. L is the Laplacian of this graph:

[L]ij =

8
><

>:

�

NP
j=1

dij i = j

dij i 6= j

. (3.17)
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Let NA be the number of compartments of Strain A and NB the number of compartments
of Strain B such that NA+NB = N . Assume the di↵usivity of HSL is constant, all channels
have the same length, and compartments of the same type are not connected to each other.
Then dij = 0 if i, j are of the same type and dij = d between connected compartments i, j
of opposite strains. Assume each compartment of Strain A is connected to qB compartments
of Strain B and each compartment of Strain B is connected to qA compartments of Strain A.

Let the first NA entries of a row or column of L 2 RN⇥N designate compartments of
Strain A and the last NB entries designate compartments of Strain B. Then L has the form

L = d


�qBINA⇥NA F

F T
�qAINB⇥NB

�
(3.18)

where F is an NA ⇥ NB matrix for which [F ]ij = 0 indicates that the ith compartment of
Strain A and the jth compartment of Strain B are not connected by a channel, and [F ]ij = 1
indicates that they are.

As shown in the following sections, the assumed structure of the system allows us to
reduce our N-dimensional system to a two-dimensional one, which greatly simplifies the
calculations for a steady-state contrasting pattern and enables us to use the graphical method
introduced in the previous section to determine when the overall system is bistable.

Define M 2 RN⇥2 as

M :=


1NA 0NA

0NB 1NB

�
(3.19)

where 1n designates a length-n vector of all ones and 0n designates a length-n vector of all
zeros. Then because all compartments of the same type have the same number of connections
to compartments of the opposite type, there exists some L̄ 2 R2⇥2 such that

LM = ML̄. (3.20)

Let dA := dqB be the (nonnegative) total outgoing edge weight for a compartment of Strain
A and dB := dqA be the (nonnegative) total outgoing edge weight for a compartment of
Strain B. Because we have assumed no connections between compartments of the same type,
L̄ has the form

L̄ =


�dA dA
dB �dB

�
. (3.21)

We would like to solve for the steady-state value of X = [XA, XB]T 2 RN in txA!B:

(�L+ �XIN⇥N)X =


⌫XIA1NA

0NB

�
. (3.22)

We restrict our search to a subset of solutions for which the variables of interest are
identical among compartments of the same type, i.e.,

X = M


xA

xB

�
(3.23)
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for xA, xB 2 R. Let x := [xA, xB]T . We can then rewrite (3.22) as

(�L+ �XIN⇥N)Mx = M


⌫XIA
0

�
(3.24)

=) M
�
�L̄+ �XI2⇥2

�
x = M


⌫XIA
0

�
(3.25)

which implies that solutions x⇤ to

�
�L̄+ �XI

�
x⇤ =


⌫XI⇤A
0

�
(3.26)

=) x⇤ =
�
�L̄+ �XI

��1

⌫XI⇤A
0

�
(3.27)

provide solutions to (3.22) by way of (3.23). In other words, x⇤

A
is the steady-state concen-

tration of X in any compartment of Strain A and x⇤

B
is the steady-state concentration of X

in any compartment of Strain B for constant input I⇤
A
. The derivation for txB!A proceeds

similarly.
Now recall from (3.21) that the matrix L̄ has form

L̄ =


�dA dA
dB �dB

�
. (3.28)

Then the inverse matrix in (3.27) can be directly evaluated, yielding

�
�L̄+ �XI

��1
=

1

(dA + �X)(dB + �X)� dAdB


dB + �X dA

dB dA + �X

�
(3.29)

=
1

�X(�X + dA + dB)


dB + �X dA

dB dA + �X

�
. (3.30)

Since dA, dB > 0, the matrix is always invertible provided that �X 6= 0.
In essence, the new multicompartmental system is identical to the two-compartmental

system with a revision to the transceiver boxes:

txB!A :

(
ẎA = dA(YB � YA)� �Y YA

ẎB = dB(YA � YB)� �Y YB + ⌫Y IB
(3.31)

and similarly for txA!B. Since dA, dB > 0 the Jacobian equations from (3.12) maintain
their parity and the monotonicity of the system is preserved.

3.1.3 Contrasting patterns may emerge if and only if the full
system can be reduced to a two-compartment equivalent

We have just seen that if compartments of the same type have the same number of
neighbors, then the system can be reduced to a two-compartment case for the purposes of
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identifying contrasting steady states, i.e., those in which all compartments of the same type
have the same steady-state concentrations. In other words, contrasting steady states emerge
if the system can be reduced to the two-compartment case. We now show that contrasting
steady states in a full system can only emerge if that system can be reduced to a two-
compartment case. This allows us to conclude that stable contrasting steady states may
emerge if and only if the system can be reduced to an equivalent two-compartment system
that is bistable.

The first claim shows that if a steady state exists for which (a) all compartments of the
same type have the same concentrations and (b) every compartment of Strain A is connected
to at least one compartment of Strain B and vice versa, then the underlying edge weight
matrix L can be reduced to a two-compartment system. We do not need to assume that
compartments of the same type must have neighbors only of the opposite type, although
a “checkerboard” of alternating high/low immediately adjacent neighbors will require this
arrangement. We do not even require that all channels be of the same length. We only require
that for a fixed compartment type, the total incoming edge weight from other compartments
of the same type as well as the incoming edge weight from other compartments of the opposite
type is the same regardless of the choice of compartment. The second claim shows that the
(in)stability of the reduced system steady states implies (in)stability of the corresponding
full system steady states.

For both claims, by “full system” we refer to a system of N = NA + NB compartments
with NA of strain A each independently governed by equations (3.1), (3.3), (3.5) and NB of
strain B each independently governed by equations (3.6), (3.7), (3.8), with interconnection
matrix L.

Claim 1. Assume every compartment of type A is connected to at least one compartment of
type B and vice versa. If there exists a steady-state solution to the full system of the form

X⇤ =


X⇤

A

X⇤

B

�
=


1NA 0NA

0NB 1NB

� 
x⇤

A

x⇤

B

�
=: Mx⇤ (3.32)

where xA, xB 2 R as in (3.23), then there exists a unique L̄ 2 R2⇥2 such that LM = ML̄.

Proof. X⇤ a steady-state solution implies that

(�L+ �XIN)X
⇤ =


⌫XI⇤A1NA

0NB

�
(3.33)

=) (�L+ �XIN)Mx⇤ = M


⌫XI⇤A
0

�
(3.34)

since there cannot be multiple values of I⇤
A
that result in the same X⇤

A
. Now define

L =


L11 L12

L21 L22

�
(3.35)
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where L11 2 RNA⇥NA , L12 = LT

21 2 RNA⇥NB , and L22 2 RNB⇥NB , and observe that

(�L+ �XIN)M =

"
�
P

NA

j=1 [L11]j + �X1NA �
P

NB

j=1 [L12]j
�
P

NA

j=1 [L21]j �
P

NB

j=1 [L22]j + �X1NB

#
(3.36)

where [Lnm]j denotes the jth column of Lnm, n,m = 1, 2. Now define

Qi

nm
=

(
�
P

NA

j=1 [Lnm]ij , m = 1

�
P

NB

j=1 [Lnm]ij , m = 2
. (3.37)

Combining (3.36) with (3.34) yields
(
(Qa

11 + �X) x⇤

A
+ (Qa

12) x
⇤

B
= ⌫XI⇤A, a = 1, 2, ..., NA�

Qb

21

�
x⇤

A
+
�
Qb

22 + �X
�
x⇤

B
= 0, b = NA + 1, ..., NA +NB

(3.38)

and similarly for Y ⇤,
(
(Qa

11 + �Y ) y⇤A + (Qa

12) y
⇤

B
= 0, a = 1, 2, ..., NA�

Qb

21

�
y⇤
A
+
�
Qb

22 + �Y
�
y⇤
B
= ⌫Y I⇤B, b = NA + 1, ..., NA +NB

. (3.39)

Suppose we fix a and b and construct a system of four equations from (3.38) and (3.39).
In these four equations there are four “unknowns” (Qa

11, Q
a

12, Q
b

21, Q
b

22), suggesting that there
is a unique solution to

2

664

x⇤

A
x⇤

B
0 0

0 0 x⇤

A
x⇤

B

y⇤
A

y⇤
B

0 0
0 0 y⇤

A
y⇤
B

3

775

2

664

Qa

11

Qa

12

Qb

21

Qb

21

3

775 =

2

664

⌫XI⇤A � �Xx⇤

A

��Xx⇤

B

��Y y⇤A
⌫Y I⇤B � �Y y⇤B

3

775 (3.40)

provided that the LHS matrix is full rank, i.e.,
x
⇤
A

x
⇤
B
6=

y
⇤
A

y
⇤
B
. This unique solution is the same

regardless of the choice of a and b, which implies that Qa

11, Q
a

12 must be the same for all a
and Qb

21, Q
b

22 must be the same for all b (since the solution is unique). This, in turn, implies
that we can write

LM = M


Q11 Q12

Q21 Q22

�
=: ML̄. (3.41)

The only fact left to show, then, is that our system cannot admit a solution for which
x
⇤
A

x
⇤
B
=

y
⇤
A

y
⇤
B
, which will guarantee a unique solution to (3.40). Our proof leverages the lateral

inhibition structure of the system.
Suppose

x
⇤
A

x
⇤
B

=
y
⇤
A

y
⇤
B

and without loss of generality, define r :=
x
⇤
A

y
⇤
A

=
x
⇤
B

y
⇤
B
. Substituting

x⇤

A
= ry⇤

A
and x⇤

B
= ry⇤

B
into (3.38) and (3.39) for fixed a, b (equivalently (3.40)), we obtain

8
>>><

>>>:

(Qa

11 + �X) x⇤

A
+Qa

12x
⇤

B
= ⌫XI⇤A

(Qa

11 + �Y ) x⇤

A
+Qa

12x
⇤

B
= 0

Qb

21x
⇤

A
+
�
Qb

22 + �X
�
x⇤

B
= 0

Qb

21x
⇤

A
+
�
Qb

22 + �Y
�
x⇤

B
= r⌫Y I⇤B

=)

8
<

:
x⇤

A
=

�(Qb
22+�X)x⇤

B

Q
b
21

=
r⌫Y I

⇤
B�(Qb

22+�Y )x⇤
B

Q
b
21

x⇤

B
=

⌫XI
⇤
A�(Qa

11+�X)x⇤
A

Q
a
12

=
�(Qa

11+�Y )x⇤
A

Q
a
12

.

(3.42)
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The assumption that every compartment of Strain A is connected to at least one cell of
Strain B and vice versa guarantees that Qa

12 6= 0, Qb

21 6= 0. Rearranging terms, we find

(
(�Y � �X) x⇤

B
= r⌫Y I⇤B

(�X � �Y ) x⇤

A
= ⌫Y I⇤A

. (3.43)

Now we know �X , �Y , ⌫X , ⌫Y > 0 and since x⇤

A
, x⇤

B
, I⇤

A
, I⇤

B
� 0 (we cannot have negative

concentrations) we also know r � 0. Because of the mutual inhibition relationship we
further know that I⇤

A
=: h1(rx⇤

A
) is a bounded, nonnegative, nonincreasing function of x⇤

A

and I⇤
B

=: h2(x⇤

B
) is a bounded, nonnegative, nonincreasing function of x⇤

B
. If we are

concerned with a nontrivial system we must have r 6= 0 because otherwise

r = 0 =) x⇤

A
= 0 =) I⇤

A
= 0 =) h1(0) = 0 =) h1(z � 0) = 0 8z, (3.44)

i.e., cells of Strain A are insensitive to inputs. Similarly, we must have r finite because we
could as easily have set up the system in terms of y⇤

A
and y⇤

B
with 1

r
as the ratio of interest,

and following the same logic we would have (with slight abuse of notation) 1
r
6= 0.

Since r > 0, then from (3.43), nonnegative x⇤

B
, I⇤

B
requires �Y � �X while nonnegative

x⇤

A
, I⇤

A
requires �X � �Y . These two conditions can only be satisfied if �X = �Y , which

implies that I⇤
A
= I⇤

B
= 0. But this is impossible from the definition of h1, h2 in (3.2) (except

in the limit as R⇤

A
, R⇤

B
! 1, which is anyway unattainable because R⇤

A
, R⇤

B
are bounded).

Hence we cannot have a steady-state contrasting solution for which
x
⇤
A

x
⇤
B
=

y
⇤
A

y
⇤
B
, implying that

the matrix in (3.40) will have a unique solution. This completes our claim. ⌅

We now show that the local stability or instability of a steady state in the reduced
system implies local stability or instability of the state in the full system, and therefore we
can continue to use the graphical intersection method to determine when the system admits
a solution where all cells of the same type are identically (and reversibly) high or low.

Claim 2. Let J represent the Jacobian at a steady state in the full system and J̄ represent
the Jacobian for the corresponding steady state in the reduced system. If J̄ is contractive,
then J is also contractive, thus the steady state is locally stable in both reduced and full
systems. Otherwise, the reduced steady state is unstable, and the corresponding state in the
full system is also unstable.

Proof. Let Z 2 R6N
+ be the vector of states for the full system where Ż = f(Z). Let Z⇤

be a steady state where all cells of the same type have identical states, i.e., a steady state
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identified in the reduced system. Assume the states are ordered such that

Z⇤ :=

2

666666666666664

Y ⇤

m⇤

RA
1NA

R⇤

A
1NA

m⇤

IA
1NA

I⇤
A
1NA

X⇤

m⇤

RB
1NB

R⇤

B
1NB

m⇤

IB
1NB

I⇤
B
1NB

3

777777777777775

. (3.45)

Define

KA1 :=
@ṁRA

@YA

����
Y

⇤
A

= VRANRAC
nY

⇣
Y

⇤
A

KY

⌘nY �1

KY

⇣
1 +

⇣
Y

⇤
A

KY

⌘nY
⌘2 (3.46)

KA2 := �
@ṁIA

@RA

����
R

⇤
A

= VIANIAC
nRA

⇣
R

⇤
A

KRA

⌘nRA
�1

KRA

⇣
1 +

⇣
R

⇤
A

KRA

⌘nRA
⌘2 . (3.47)

KB1 and KB2 are defined analogously with the appropriate subscripts for cell B. Then the
Jacobian of the full system evaluated at the steady state Z⇤ is given by

J =


SA PY

PX SB

�
(3.48)

where J 2 R6N⇥6N , SA 2 RN+4NA⇥N+4NA , SB 2 RN+4NB⇥N+4NB , PY 2 RN+4NA⇥N+4NB , and
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PX 2 RN+4NB⇥N+4NA , defined as

SA :=

2

66664

L� �Y IN 0 0 0 0⇥
KA1INA 0

⇤
��mRA

INA 0 0 0
0 ✏RAINA ��RAINA 0 0
0 0 �KA2INA ��mIA

INA 0
0 0 0 ✏IAINA ��IAINA

3

77775
(3.49)

PY :=

2

4 0N⇥N+3NB


0

⌫Y INB

�

04NA⇥N+3NB 04NA⇥NB

3

5 (3.50)

PX :=

2

4 0N⇥N+3NA


⌫XINA

0

�

04NB⇥N+3NA 03NA⇥NA

3

5 (3.51)

SB :=

2

66664

L� �XIN 0 0 0 0⇥
0 KB1INB

⇤
��mRB

INB 0 0 0
0 ✏RBINB ��RBINB 0 0
0 0 �KB2INB ��mIB

INB 0
0 0 0 ✏IBINB ��IBINB

3

77775
(3.52)

The matrix measure of a matrix M with respect to the one-norm is defined as

µ(M) := max
j

(
Mjj +

X

i 6=j

|Mij|

)
. (3.53)

If there exists an invertible diagonal matrix D such that

µ(DJD�1) < 0, (3.54)

then the mapping described by J is contractive. This implies that the eigenvalues are
negative, which for our nonlinear system means that the steady state around which J is
linearized is locally stable.

Consider the reduced version of the full system, which has a Jacobian J̄ identical in form
to (3.48) for NA = 1, NB = 1, and

L = L̄ :=


�dA dA
dB �dB

�
(3.55)

where dA is the total (nonnegative) outgoing edge weight for a cell of Strain A and dB is the
total (nonnegative) outgoing edge weight for a cell of Strain B.

Let D̄ take the form

D̄ = diag (l1A, l1B, a1, a2, a3, a4, l2A, l2B, b1, b2, b3, b4) (3.56)
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where l1A, l1B, a1, a2, a3, a4, l2A, l2B, b1, b2, b3, b4 2 R are arbitrary constants. For D̄ to satisfy
(3.54), we require

��Y +
a1
l1A

KA1 � dA +
l1B
l1A

dA < 0 (3.57)

��Y � dB +
l1A
l1B

dB < 0 (3.58)

��mRA
+

a2
a1

✏RA < 0 (3.59)

��RA +
a3
a2

KA2 < 0 (3.60)

��mIA
+

a4
a3

✏IA < 0 (3.61)

��IA +
l2A
a4

⌫X < 0 (3.62)

and analogously for columns corresponding to compartments B.
We can combine the inequalities to obtain a single expression if we rearrange them to

reflect the relative sizes of certain constants. Then we obtain

a1KA1 + l1BdA
�Y + dA

< l1A (3.63)

l1A <
�Y + dB

dB
l1B (3.64)

a2 <
�mRA

✏RA

a1 (3.65)

a3 <
�RA

KA2
a2 (3.66)

a4 <
�mIA

✏IA
a3 (3.67)

l2A <
�IA
⌫X

a4. (3.68)

We can rearrange (3.63) and (3.64) as

a1 <
�Y (�Y + dB + dA)

KA1dB
(3.69)

whereupon the combination of inequalities yields

l2A <
�IA�mIA

�RA�mRA
�Y (�Y + dB + dA)

⌫X✏IAKA2✏RAKA1dB
l1B =:

1

C1
l1B. (3.70)

Similarly, for compartments B,

l1B <
�IB�mIB

�RB�mRB
�X(�X + dB + dA)

⌫Y ✏IBKB2✏RBKB1dA
l1A =:

1

C2
l2A (3.71)
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such that

l2A <
1

C1C2
l2A =) C1C2 < 1. (3.72)

Incidentally,

C1C2 =

 
✏IAKA2

�IA�mIA

! 
✏RBKB1

�RB�mRB

!✓
dB⌫X

�X(�X + dA + dB)

◆
⇥ (3.73)

 
✏IBKB2

�IB�mIB

! 
✏RAKA1

�RA�mRA

!✓
dA⌫Y

�Y (�Y + dA + dB)

◆
(3.74)

can be written as
 

dI⇤
A

dR⇤

Ai

����
R

⇤
A

dX⇤

B

dI⇤
A

����
I
⇤
A

dR⇤

B

dX⇤

B

����
X

⇤
B

! 
dI⇤

B

dR⇤

B

����
R

⇤
B

dY ⇤

A

dI⇤
B

����
I
⇤
B

dR⇤

Ao

dY ⇤

A

����
Y

⇤
A

!
=

dR⇤

Ao

dR⇤

Ai

����
R

⇤
A

, (3.75)

where R⇤

Ai
is a constant input and R⇤

Ao
is the associated output. Hence (3.75) is the slope

of the I/O system evaluated at the steady state R⇤

Ai
= R⇤

A
, which matches the graphical

stability test.
Now consider the full system with Jacobian (3.48) corresponding to the reduced system

for which D̄ satisfies (3.54). We construct a D for the full system that has diagonal entries

[l1AINA , l1BINA , a1INA , a2INA , a3INA , a4INA , l2AINB , l2BINB , b1INB , b2INB , b3INB , b4INB ]
(3.76)

where the constants are the same as for D̄. DJD�1 is then e↵ectively organized into “blocks”
that correspond to columns of D̄J̄D̄�1. Let

mj(M) := Mjj +
X

i 6=j

|Mij| , (3.77)

i.e., µ(M) = max
j

mj(M). Because J is linearized about a reduced-system steady state, it is
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straightforward to see that

mj(J) =

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

m1(J̄), j = 1, 2, ..., NA

m2(J̄), j = NA + 1, NA + 2, ..., N

m3(J̄), j = N + 1, N + 2, ..., N +NA

m4(J̄), j = N +NA + 1, ..., N + 2NA

m5(J̄), j = N + 2NA + 1, ..., N + 3NA

m6(J̄), j = N + 3NA + 1, ..., N + 4NA

m7(J̄), j = N + 4NA + 1, ..., N + 5NA

m8(J̄), j = N + 5NA + 1, ..., 2N + 4NA

m9(J̄), j = 2N + 4NA + 1, ..., 3N + 3NA

m10(J̄), j = 3N + 3NA + 1, ..., 4N + 2NA

m11(J̄), j = 4N + 2NA + 1, ..., 5N +NA

m12(J̄), j = 5N +NA, ..., 6N

. (3.78)

(Note that the equivalence of mj(J) to m1(J̄), m2(J̄), m7(J̄), and m8(J̄) for appropriate j
arises out of the form of L, which has diagonal entries �dA and �dB repeated NA and NB

times respectively, with non-diagonal entries summing to dA for the first NA columns and
dB for the last NB columns.)

Because mj(J̄) < 0 for j = 1, 2, ..., 12, then mj(J) < 0 for j = 1, 2, ..., 6N . Therefore
for J linearized about a given reduced-system steady state, the conditions required for J to
be contractive—and therefore for the full system to be locally stable at the steady state—is
the same as the graphical condition for the reduced system to be stable or unstable at that
steady state, namely, that the slope of the I/O system must be less than 1. Conversely, if
(3.75) is greater than 1, the steady state in the reduced-system subspace is unstable and so
the full system (which contains the reduced-system subspace) cannot be stable. Therefore
the graphical test for the stability or instability of steady states in the reduced system is
su�cient to determine the local stability or instability of corresponding steady states in the
full system. ⌅

Note that when J is a contractive map, the steady state is locally exponentially stable
because the real parts of all eigenvalues are negative, therefore su�ciently small perturbations
to system behavior will not destroy the stability of the steady state.

We note this proof only su�ces to show local stability of the steady state in the full
system. Other solutions representing di↵erent spatial patterns may exist and be stable in
the full system even though the system reduction as performed herein would not identify
them. Equivalently, the fact that the bistable steady state is global in the reduced system
but only local in the full system exemplifies how introducing more compartments enlarges
the space of possible solutions beyond those that exist in lower-dimensional regimes.
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3.1.4 Finite di↵erences within channels

Thus far, implicit in our definition of L is that we approximate di↵usion between com-
partments using the method of finite di↵erences for a step size of l, the channel length.
Specifically, we have taken Fisk’s di↵usion equation in one dimension

dX

dt
= D

d2X

dr2
(3.79)

where X is the concentration of some species and r is distance. Under the finite di↵erences
approximation, we discretize space along r and approximate the change in concentration at
each point as

dX

dt
⇡ D

(X(r +�)�X(r)) + (X(r ��)�X(r))

�2
. (3.80)

In the process of discretizing r we pick two boundary points. To model a single channel
connecting a cell of type A to one of type B we simply pick one end, say r = 0, to correspond
to A and the other end, r = l, to correspond to B. We assume no di↵usion outside the
channel. Since X(0) has no neighbors r < 0 and X(l) has no neighboring points r > l,
the approximation at the boundaries is performed using only one di↵erence. At the r = 0
boundary we have

dX(0)

dt
⇡ D

X(�)�X(0)

�2
(3.81)

and at the r = l boundary

dX(l)

dt
⇡ D

X(l ��)�X(l)

�2
. (3.82)

If we let � = l, X(0) = XA, and X(l) = XB, we recover the familiar
(

dXA
dt

= D

l2
(XB �XA)

dXB
dt

= D

l2
(XA �XB)

. (3.83)

If l is su�ciently small, this approximation is appropriate. In practice, however, if the
channel is too long, then setting � = l produces an extremely coarse approximation that
may not be an accurate description of the physical process. Suppose now we discretize r
such that there are NL points between r = 0 and r = l, with a step size of � = l

NL+1 . The
equation to describe di↵usion is written in matrix form as

2

66666664

Ẋ(0)
Ẋ(�)
Ẋ(2�)

...
Ẋ(l ��)

Ẋ(l)

3

77777775

=

2

66666664

�1 1 0 0 ... 0 0 0
1 �2 1 0 ... 0 0 0
0 1 �2 1 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... 1 �2 1
0 0 0 0 ... 0 �1 1

3

77777775

2

66666664

X(0)
X(�)
X(2�)

...
X(l ��)

X(l)

3

77777775

. (3.84)
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Note that this describes only the di↵usion, not the reactions that occur within X(0) and
X(l).

We can accommodate multiple cells with multiple channels by adding more terms and
associated concentration variables. Imagine that we number the discretized points within a
channel from 1 to NL where 1 is the point nearest to a cell of type A and NL is the point
nearest to a cell of type B. Then we assume all channels with the same number form a
similar class; i.e., if we have NC channels we define M 2 RN+NCNL⇥NC+2 as

M :=

2

666664

1NA 0NL 0NL ... 0NL

0NL 1NL 0NL ... 0NL

0NL 0NL 1NL ... 0NL

...
...

...
. . .

...
0NL 0NL 0NL ... 1NB

3

777775
(3.85)

such that

L̄ :=
D

�2

2

66666664

�qB qB 0 0 ... 0 0 0
1 �2 1 0 ... 0 0 0
0 1 �2 1 ... 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ... 1 �2 1
0 0 0 0 ... 0 �qA qA

3

77777775

(3.86)

where as before, qB and qA are the number of compartments to which Strains A and B
respectively are connected. We then rewrite (3.22) as

�
�L̄+ �XI

�
X =


⌫XIA

0NLNC+1

�
. (3.87)

The equation takes a similar form for Y .
In the above discussion we have assumed that production takes place only in single com-

partments, which shrink in size with increasing NL. Let w be the width of a cell colony.
To accurately reckon with arbitrary l and NC we would have to either (a) dilute the con-
centrations of intercellular components (l > w); or (b) designate multiple compartments as
production compartments, which would rapidly increase the size of the ODE system (l < w).
To avoid these situations we set � = w such that l = kw where k � 0 is an integer. This
limitation in the considered range of l is justified by the small range of l that we implement
expermientally as well as the minimal e↵ect of l on the theoretically evaluated bistability of
the system (for systems with and without multiple di↵usive compartments).

3.2 Computational Results

Contrasting patterns result from disparity in the steady-state target gene expression
between cross-repressive strains in a DLI system. We assessed the e↵ect of changing the pa-
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rameters in Table 3.2 on patterning in the system for a given connectivity of compartments—
hereafter referred to as a geometry—satisfying the conditions for reduction to an equivalent
two-compartment model. The types of changes leading to bifurcations in the two-strain
circuits are summarized in Figure 3.3.

Ultrasensitivity (cooperativity) in TA(·) and TB(·) is necessary for bistable contrast.
Proper kinetic rate matching ensures that ultrasensitivity is preserved in the feedback loop
[358]. This equates to a condition on dynamic range matching between two bistable switches:
the minimum output from one switch should be low enough to induce close-to-highest ex-
pression levels of the second switch while the maximum output should be high enough to
induce close-to-lowest expression levels, and vice versa. The curves in Figure 3.2 show in-
put/output curves (nullclines) for the first switch with input XB and output YA (boxes
rxB ! HB ! txB!A) and the second switch with input YA and output XB (boxes
rxA ! HA ! txA!B).

Figure 3.2: Kinetic rates determine whether the cross-repressive switches operate in the appropriate regime
to turn each other on and o↵. Changes in relative output ranges between the two on/o↵ switches for

di↵erent values of (a) aIA :=
VRA

NC✏IA
�I�m

and (b) the leakiness of plux (lRA). Remaining parameters are as
given in Table 3.3. The intersections between two transfer functions XB ! YA and YA ! XB indicate the
steady states of the full system. As aIA scales, so does the maximum and minimum output of LasI, which
geometrically translates the composite transfer function YA ! XB . Increasing the leakiness increases the
minimum output of LasI, which decreases the dynamic range of the composite transfer function YA ! XB .
Leakiness reduces ultrasensitivity of YA ! XB , which leads to loss of bistability. The translational movement
of YA ! XB causes mismatched tuning between XB ! YA and YA ! XB also leads to loss of bistability.

In addition to ultrasensitivity, DLI systems must have su�ciently similar inhibition
strength between strains to be bistable. When the system loses bistability due to unbal-
anced inhibition strengths, monostable contrast emerges, with the extent of the contrast
depending on the degree of imbalance). Changing spatial configuration triggers a bifurca-
tion by modifying the e↵ective inhibition strength between strains (Figure 3.3).

For the parameters as given in Table 3.2, the system is bistable across a range of geome-
tries including checkerboards and asymmetric lattice arrangements. Of particular theoretical
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Figure 3.3: Schematic qualitatively identifying parameter changes that lead to bifurcation in two-strain
circuits in isogenic (parameters identical between strains) and nonisogenic (parameters di↵er between strains)
cases. Yellow background identifies systems that form contrasting patterns. In a balanced system, the cross-
representative compartments exhibit identical transfer functions (TA(·) = TB(·)), while in an unbalanced
system, the transfer functions di↵er. Monostable isogenic populations are homogeneous while nonisogenic
populations exhibit contrast in the one-to-one geometry. Geometry may introduce imbalance or o↵set the
biochemical di↵erence, depending on the arrangement. Contrast in balanced systems is only attainable
through bistability.
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interest are “star” geometries in which one center colony is surrounded by a ring of colonies
of the opposite type such that the overall spatial arrangement exhibits radial symmetry.
Investigating stars of di↵erent sizes gives insight into how changes to the ratio of A compart-
ments to B compartments a↵ect the system’s location on the stability diagram. Our results
indicate that the growth rates of the cells and the length of the channels have little e↵ect on
the bistability of the system.

Theory predicts that the system is bistable for rings from 1 to at least 8 surrounding
colonies for both central A/surrounding B and central B/surrounding A. Stability diagrams
reveal that changing the number of colonies in the ring preserves the overall shape of the
bistable region (plotted on a log scale) but shifts the system location relative to the edge of
the bistable region (Figure 3.4).
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Figure 3.4: Patterning mechanisms and contrast levels determined by biochemical parameters and geome-
tries in simulation. (A) Star geometries with varying numbers of surround compartments. Throughout the
figure, ratios of colony numbers are given as NA : NB . (B) Character legend for plots in (C) and (D). (C)
Overlaid stability plots show biochemical parameter ranges for which the system is monostable (white) and
bistable (shaded, colors corresponding to center compartment of appropriate geometry in (A). Parameters
on the axes are maximum steady-state production rates for LasI (x-axis) and LuxI (y-axis). Remaining
parameters are as given in Table 3.2 where corresponding biochemical parameter values are equal between
strains. As the number of points in the star changes, the shape of the bistable region remains the same
(relative to log-scale axes) but shifts relative to the exact biochemical parameter values (insets show the full
shape of the bistable region). ⇥ indicates an arbitrary set of fixed biochemical parameters that is bistable
in the 1:1 and 4:1 cases but monostable for the 8:1 case. (D) For the biochemical parameters indicated by
⇥ in (C), a graphical test reveals that contrast may arise from a bistable system (1:1 and 4:1) or from a
monostable system with imbalance (8:1) between the input/output characteristics of strains in the reduced
systems. Steady states are indicated by N (high expression) and H (low expression) for the bistable case
or ⌅ for the monostable case. In the bistable case with imbalance (4:1), the contrast level ($) is greater
when expression in the center compartment (dashed red) is high than when expression in the surrounding
compartments (solid blue) is high. Small insets show corresponding configurations and possible steady-state
solutions.
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Parameter Description Value
D di↵usivity of HSL 5⇥ 10�4

l distance between channels 5⇥ 10�5

d edge weight constant := D

l2

µ dilution due to growth 0.1
� decay rate of HSL + drainage 0.01
⌫ production (catalysis) rate of HSL 1
V transcription rate 1
N copy number 1
C concentration constant 1
K HSL dissociation constant 10
n Hill coe�cient (cooperativity) for

HSL
2

lR rate of leaky transcription from
plux/plas

0

�mR decay rate of TetR mRNA (dilution
+ degradation)

0.105

✏R translation rate of TetR 1
�R decay rate of TetR µ
KR dissociation constant of TetR to ptet 10
nR Hill coe�cient (cooperativity) for

TetR to ptet
4

lI rate of leaky transcription from ptet 0
�mI decay rate of LasI/LuxI mRNA 0.01
✏I translation rate of LasI/LuxI 1
�I decay rate of LasI/LuxI (no

degradation)
µ

Table 3.3: Parameter definitions and values used in the toy system with even parameters, i.e., corresponding
parameters between Strains A and B are equal.

3.3 Experimental Results

Detailed experimental methods can be found in Appendix A.

3.3.1 DLI network design and implementation require di↵usible
cross-repression and a geometric culturing platform

Two Escherichia coli strains, A and B, were constructed using a pair of orthogonal QS
systems [359] and a highly cooperative repressor, tetR [360] (Figure 3.5A). In both strains,
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Figure 3.5: Schematic designs of the DLI system. Arrow-headed lines indicate activation and bar-headed
lines indicate inhibition. (A) Genetic circuit diagram of cross-repressive strains. (B) Channel length l is
chosen such that AHL di↵usion establishes communication between adjacent compartments, but not between
non-adjacent compartments with distance � 2l. (C) Each compartment of the DLI device is inoculated with
one strain type. PDMS mold (indigo) is placed on a tissue culture plate to shape solid medium (yellow) into
compartments and channels. Contrasting patterns emerge when two strains have di↵erent sfGFP-tagged
TetR levels, either high (represented by green or magenta colored colonies) or low (represented by gray
colonies).
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tetR is translationally fused to the green fluorescent protein reporter, sfGFP , with LAA
ssrA degradation tag in the C-terminus to allow dynamic tracking of the cell state [361].

The length of the channel (l) between compartments determines the AHL concentration
in the neighboring compartments as well as the inter-compartmental communication lag time
(Figure 3.5B). A partial di↵erential equation (PDE) model of AHL production, degradation,
and di↵usion is used to optimize l for su�cient di↵usion of AHL to the immediate neighbors
while preventing communication between nonadjacent compartments (Appendix A). Since
AHLs can be stable with a half-life of 6 hours up to days [362], an e✏ux channel is added
to each compartment to match the dilution rate of AHL to the degradation rates of other
proteins in the DLI circuit (Figure §5B, Table S3). We use polydimethylsiloxane (PDMS)
as the mold to shape solid medium into compartments and channels in specific geometries
(Figure 3.5C).

3.3.2 Bistable and contrasting gene expression was observed for
DLI circuit in liquid coculture

Before testing pattern formation in compartmental structures, we verified the predicted
bistability of the constructed circuits in liquid coculture. Numerical parameters required for
biochemical modeling were determined by experimental measurements of individual modules
of AHL reception/activation, transcriptional repression, and AHL synthesis and di↵usion in
the DLI circuit (Figures S7-9).

Single-cell reporter gene expression was measured using flow cytometry. To examine
the existence of two stable steady states, the cocultures were biased with varying external
concentrations of 3OC6HSL or 3OC12HSL. While the external AHL inductions in mono-
cultures of Strains A (Figure 3.6A diamonds and the solid line for the Hill equation fit)
and B (Figure 3.6B diamonds and the solid line for the Hill equation fit) resulted in gently
sloped sigmoid responses, the coculture showed a sharp transition in steady state at 10 nM
3OC6HSL (Figure 3.6 squares), which is a characteristic for a bistable feedback loop [145].

Another characteristic of bistable systems is hysteresis. To investigate whether our sys-
tem can reach two heterogeneous steady states in the same culture condition depending on
initial conditions, we pre-conditioned Strains A and B monocultures with the saturated con-
centration (1 µM) of either 3OC6HSL or 3OC12HSL prior to mixing them into a coculture.
The cocultures maintained the distinct gene expression states determined by pre-conditions
over time, while the similarly pre-induced monocultures lost the pre-conditioned state and
exhibited sigmoidal induction curves when the cultures were transferred to the fresh media
(Figure 3.6 asterisks).

The appearance of both the sharp transition and hysteresis confirms that cross-repression
between Strains A and B produces an e↵ective intercellular bistable switch.
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Strain B in coculture, B pre-induced with 1µM 3OC12HSL
Strain A in coculture, B pre-induced with 1µM 3OC12HSL

Strain B in monoculture, 1µM 3OC12HSL pre-induction
Strain B in coculture, 0 µM pre-induction
Strain A in coculture, 0 µM pre-induction

Strain B in monoculture, 0 µM pre-induction

Strain A coculture, A pre-induced with 1 µM 3OC6HSL
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Figure 3.6: Steady states of the cross-repressive circuit characterized using flow cytometry measurements
in liquid cultures. Strain B was identified using constitutively expressed mRFP1. Varying concentrations of
(A) 3OC6HSL or (B) 3OC12HSL were externally added to the liquid medium (x-axis) and the medians of
sfGFP fluorescence after 8 hours of growth were recorded (y-axis). Error bars represent 1st and 3rd quartiles
of sfGFP fluorescence. All of the multi-strain cocultures, each indicated by ⇤, �,⇥, exhibited contrasting
expression profiles between Strains A and B. While the monocultures of strains A and B showed gently
sloped responses to external AHL with Hill function fits of Kd ' 50 nM and Kd ' 20 nM (solid lines),
the two-strain coculture showed a switch-like response at threshold [3OC6HSL] = 10 nM . Hysteresis was
tested by pre-inducing one of the strains with appropriate AHL prior to washing and mixing the strains into
a coculture with fresh medium. The two-strain cocultures maintained pre-induced states after 8 hours of
growth even without external AHL whereas the monocultures lost their pre-induction states. Bottom scatter
plots show similarity in gene expression patterns between Strain-A-biased coculture ( , �) and Strain-A-pre-
induced coculture at 8 hours of growth after removing external AHL (↵,�), and Strain-B-biased coculture
(⇣, ⌘) and Strain-B-pre-induced coculture at 8 hours of growth after removing external AHL (�, ✏).
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3.3.3 Bifurcation is observed for cells grown on the geometric
culturing platform
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Figure 3.7: Contrasting pattern formation in various DLI devices. The fluorimeter images were taken after
12 hours of growth in room temperature. ⇤indicates pre-induced strains with 1 µM AHL and † indicates
strains that were biased to be fluorescent by externally added AHL in medium. (A) 1:1 spatial configuration
seeded with cells that had di↵erent initial conditions and strain combinations. Devices were seeded with a pair
of complementary strains (left), negative controls consisting a single strain (middle), and positive controls
of complementary strains where either 1 µM 3OC6HSL or 1 µM 3OC12HSL was mixed in solid medium
(right). (B,C ) 1:1 (left), 1:4 (middle), and 1:6 (right) spatial configurations seeded with Strain A at the
center surrounded by Strain B (B) or Strain B surrounded by Strain A (C). Top panel shows the fluorimeter
images and the bottom panel shows predicted steady-state pattern from computational simulations with the
parameter values given in Table S3. When multiple equilibria exist, the predicted patterns are plotted in the
order of “A high”, “B high”, and “unstable”. (D) Simulated one-dimensional bifurcation diagram in which
the ratio of compartments of Strain A:B is used as the bifurcation parameter. The remaining parameters
are given in Table S3. Brighter color indicates higher steady-state [sfGFP].

Theoretically, the DLI system with two compartments with proper channel length should
behave similarly to the liquid coculture. To investigate bistability and hysteresis in the ge-
ometric platform, we plated Strains A and B pre-conditioned with either 1 µM 3OC6HSL
or 1 µM 3OC12HSL on solid medium after washing the pre-conditioning media and ob-
served their gene expression over time using the plate fluorimeter. The two-compartments
geometry plated with complementary strains maintained the pre-conditioned states over 12
hours whereas the single-strain systems on the same setup quickly lost the pre-induced gene
expression (Figure 3.7A). When 3OC6HSL pre-induced Strain A was seeded adjacent to
Strain B, Strain A showed high reporter expression while Strain B showed basal expression
comparable to the single-strain control, and this persisted in time. Similarly, 3OC12HSL
pre-induced Strain B seeded adjacent to Strain A showed high reporter expression in Strain
B and low reporter expression in Strain A, indicating that contrasting patterns depended on
initial conditions.
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Next, we evaluated DLI systems in star geometries (Figure 3.7B, C). We experimen-
tally observed that the system that was bistable in the two-compartments geometry became
monostable as the number of outer compartments of Strain B surrounding Strain A increased
to four or more (Figure 3.7B). The monostable contrasting pattern exhibited high reporter
fluorescence in the center Strain A regardless of the initial cell states. Strain B, on the other
hand, did not shift from monostable to bistable in our experimentally tested geometries,
but rather augmented the bistable expression as the number of surrounding A increased.
Although the experimental setup cannot physically accommodate > 6 compartments, the
mathematical simulation suggests that further increasing the number of surrounding com-
partments would shift the system from bistable to monostable contrast with Strain B ex-
pressing high reporter (Figure 3.7D).

Our results show that we can easily control the geometry of the DLI system to a↵ect the
circuit behavior and trigger a bifurcation. Geometry may also o↵set imbalance in biochemical
parameters and improve the stability of bistable steady states (Figure 3.7C).

3.4 Discussion

Recent advancement in high-throughput sequencing has revealed that an astonishing
range of microbial biodiversity may exist in a single ecosystem [363]. For the analyzed DLI
system, we explored the role of geometry in system behavior. Although the implementation
was done in multi-strain bacterial colonies, our theory can be applied to isogenic populations
as well. Here, the units of interest are individual cells rather than colonies and communica-
tion must be contact-mediated since di↵usion-based signaling would form self-loops. Dimen-
sionality reduction still applies when cells can be categorized into two separate “classes” by
virtue of spatial configuration. Replacing the Laplacian matrix with the adjacency matrix
simulates cell-to-cell contact rather than di↵usion. The remainder of the analysis then pro-
ceeds as before. Extensive and detailed research has been performed to accurately model the
developmental processes in metazoans [289, 364, 365], and a handful of recent studies have
highlighted that spatially relevant parameters such as the number of neighbors or the contact
area between them can influence patterning activity even in genetically isogenic cell popu-
lations [123, 163, 366]. Our work o↵ers a unified interpretation of these results with respect
to the imbalance in transfer functions between pairs of representative cells. With su�cient
imbalance, the system becomes monostable, essentially guaranteeing the fate of the involved
cells, and in fact only spatial control knobs can introduce monostable contrast in isogenic
populations, since changes to biochemical parameters a↵ect all cells equally. Furthering
our understanding of micro-scale pattern formation would require experimental implementa-
tion of controllable contact-based systems. In bacteria, several contact-dependent inhibition
systems have been discovered [355, 356] in which potential harnessing strategies have been
discussed [367].

Genetic circuit design and implementation are hampered by context-dependent gene ex-
pression [368]. Spatial control has advantages over biochemical parameter modification in
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that it can linearly modulate the e↵ective interaction strength (Figure 3.7D) via the number
of connected channels, and the modulation is robust to intracellular conditions. Furthermore,
physical separation of the composite strains reduces resource competition among di↵erent
strains [352] to stabilize the intercellular network. However, spatial control is constrained
by structural limitations, such as the maximum number of compartments that fit on the
mold or whether the layout of the desired communication network can be laid out without
channels intersecting each other. Thus, synthetic biologists should exploit both biochemical
and spatial control knobs for precise design of microbial consortia engineering.
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Chapter 4

Cell-in-the-loop Patterning with
Optogenetically Emulated Cell-to-Cell
Signaling

In Chapter 3, we tested theory for spontaneous contrasting pattern formation in lat-
eral inhibition systems using a purely biochemical system of bacterial colonies interacting
through di↵usible molecules. In the course of our experiments, we found that it was chal-
lenging to match biochemical parameters between the two engineered strains, and we were
ultimately unable to show spontaneous patterning without preinduction. Furthermore, due
to spatial constraints, we were restricted to systems with seven colonies or fewer. Inspired
in part by the challenges presented by this setup, we sought to validate the same original
theory from [289] and [122] using a “cell-in-the-loop” approach, in which physical or chemical
cell-to-cell signaling is substituted with inputs calculated and controlled in silico. Cells were
engineered to increase gene expression in response to light. Then, a computer-controlled
system automatically measured the gene expression levels of individual living cells and ad-
ministered new light inputs to the cells based on those measurements. Certain parameters
such as the strength of inhibition could be easily tuned and tested by programming them
directly into the computer without going through the e↵ort and expense to implement them
fully in vivo. Using this new setup, we showed spontaneous emergence of contrasting gene
expression patterns in systems of sixteen interacting components. We showed that our theory
qualitatively predicted patterning outcomes and quantitatively predicted overall brightness
(for non-patterning) or contrast level (for patterning) on average across experiments. In ad-
dition to testing theories, the cell-in-the-loop approach has potential practical applications
as a prototyping tool or as a control unit to drive real-world results.
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4.1 Introduction

There are a number of challenges associated with engineering spontaneous gene expression
patterning into biochemical systems, including how to facilitate interaction among cells [369]
and achieve spatial precision in the resulting patterns [150,163,307]. Even when successful,
these implementations are still constrained by time, expense, and the availability of biological
parts satisfying parameter requirements [172,370]. Moreover, it may be di�cult to measure
or monitor particular system components in real time, which can hinder “debugging” and
slow down the design-build-test cycle [173].

While numerical simulation is an important method for e�cient prototyping, simulations
are only as valid as the models underlying them, and simplifications or faulty assumptions
can limit the experimental applicability of simulation results. We propose that future e↵orts
in synthetic patterning would benefit from an intermediate step between pure simulation and
full biochemical implementation, which could be used to validate theories or incrementally
test synthetic designs before they are fully incorporated into the organism. Inspired by
“human-in-the-loop” approaches for engineering systems that must interact with complex,
living individuals [371], we propose a “cell-in-the-loop” approach in which physical signaling
among cells is substituted with computer-controlled inputs calculated in silico from real-
time measurements of gene expression. Cell-in-the-loop, by incorporating live cells into
the “simulation”, eliminates the need to make assumptions about individual cell behavior
during dynamic evolution, while retaining flexibility in testing parameters that remain under
computational control. These benefits are particularly essential for patterning systems, in
which the large number of interacting cells can make detailed simulations prohibitive or
impossible.

We implemented cell-in-the-loop using optogenetics, which have been shown to a↵ord ex-
cellent spatiotemporal precision in applications including feedback control [372–375], and
which were previously used to emulate cell-to-cell signaling for oscillatory synchroniza-
tion [376]. We engineered Saccharomyces cerevisiae to respond to blue light [377] by in-
creasing gene expression as measured by a fast-acting fluorescent reporter [378]. We used an
optogenetic platform capable of targeting individual cells independently of each other [375],
such that the light input to any given cell could be calculated based on the gene expression
levels of other cells that were interacting with the target cell. Both the network architecture
(which cells interacted with which) as well as the exact form of interaction were programmed
into the computer, allowing us to precisely modulate system parameters related to cell-to-cell
signaling.

We adapted a general theory for pattern emergence in large-scale lateral inhibition sys-
tems [122, 289] to inform our designs and predict steady-state outcomes. Lateral inhibition
regulated by the Notch-Delta signaling pathway is responsible for patterning in a range of
developmental contexts, including proneural stripe formation [130] and subsequent neural
precursor selection [116] in fruit flies, as well as patterning in the central nervous system [120],
inner ear [118, 119], and intestine [121] of vetebrates [320]. Inspired by these systems, we
programmed a computational signaling relation to emulate mutual inhibition among groups
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group into patches to
reduce stochastic influences

induce gene expression
optogenetically

use light signal to mediate
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CELL-IN-THE-LOOP EXPERIMENT
cell-to-cell signaling with light

THEORY
cell-cell interaction

grid layout permits model
reduction to 2-cell system

theory predicts patterning

Figure 4.1: Spontaneous checkerboard patterning with optogenetically emulated cell-to-cell
signaling. Optogenetically responsive cells signal to each other through computer-controlled light inputs
that vary in intensity based on the gene expression levels of other cells. We enact lateral inhibition according
to the theory in Section 4.2.1 that predicts when cells will spontaneously separate into two classes of high
and low gene expression. In all figures, red denotes in vivo and blue denotes in silico components.

of cells and varied the strength of the inhibition by tuning a single digital bifurcation param-
eter. Once the network architecture and signaling relation were defined, inputs to cells were
calculated solely based on measurements of those cells without any further external control,
creating a self-contained dynamical system. Using this setup, we visualized gene expression
levels of real cells by the brightness of square patches on a virtual grid (Fig. 4.1). We
showed spontaneous emergence of contrasting “checkerboard” patterns in which neighboring
patches alternated between expressing high and low levels of gene. The theory accurately
predicted which values of the bifurcation parameter would produce patterns, and on average
across experiments the theory also quantitatively predicted contrast levels and overall patch
brightness. Our results demonstrate the utility of a cell-in-the-loop approach for designing
and evaluating systems of interacting cells, as well as probing the limits of deterministic
theory in the face of stochastic influence.

4.2 Results

4.2.1 Theory predicts patterning using a test for bistability

We developed theory to predict the emergence of stable contrasting patterns in determin-
istic systems of laterally inhibiting cells [122,289]. Here, we adapt the theory to the present
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Figure 4.2: Spontaneous contrasting patterning in a large lateral inhibition system can be
predicted from bistability in a 2-cell system. The bistability of a 2-cell system can be used to evaluate
contrasting patterning in a full network of isogenic, mutually inhibiting cells arranged in a grid with periodic
boundary conditions. Bistability of the corresponding 2-cell system implies contrasting patterns exist in the
full system (see box entitled “Summary of theory”). Bistability can be assessed through an analytical test in
which the closed-loop dynamical system is “opened” into an input/output system by breaking the feedback
loop. If a constant-in-time input to the open-loop system produces a steady-state output value equal to the
input value, then that value is a steady state for the corresponding closed-loop system.

optogenetic implementation. We emphasize how our system was decomposed into in vivo
and in silico components, each of which corresponds to a particular element in the theory,
and how this correspondence enables empirical measurement and experimental design.

Consider a system of N isogenic cells signaling to each other. Suppose we measure for
each cell a scalar output such as fluorescence that correlates positively with gene expression
level and is designated by wi for the ith cell. The input ui to a cell a↵ects output levels with
an empirically characterizable dose response, which describes the steady-state level of wi for
a constant-in-time input. In our setup, the input ui is light, and increasing input intensity
increases gene expression. This portion of the theory represents the in vivo component of
the system.

To synthesize ui, we first average the measured gene expression, wj, over all cells j
signaling to cell i, and denote this average as vi. We then set the input to the ith cell to
ui = h(vi), where h(·) is the signaling relation programmed into the computer. To enact
mutual inhibition, increasing gene expression in one cell must decrease gene expression in
neighboring cells. Therefore, since higher-intensity light induces higher gene expression, we
select h(·) to be decreasing.

We chose a grid layout with periodic boundary conditions in which each cell signals four
other cells reciprocally. This layout satisfies all assumptions discussed in the box entitled
“Summary of theory”, therefore we can predict contrasting patterning in a full system of N
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cells based on the bistability of an equivalent 2-cell system. If the 2-cell system is monostable,
then both cells express the same level of gene, and the N -cell system also has a stable state
in which all cells express the same level of gene. Inversely, if the 2-cell system is bistable,
then one of the stable states corresponds to one cell expressing high levels of gene and the
other, low, and the other stable state corresponds to the opposite situation. In this case,
two stable, contrasting steady-state patterns also exist for the N -cell system; that is, one
subset of the N cells expresses identically high levels of gene, and the remaining cells express
identically low levels of gene (or vice versa). Contrasting steady states can be visualized as
checkerboards in which neighbors alternate between high and low. The 2-cell system can be
assessed for bistability using a standard technique illustrated in Figure 4.2 and described in
Section 4.2.1.

To apply the theory, we must know (1) the dose response, in our case in vivo gene
expression levels under varying intensities of light; and (2) the form of the signaling relation,
here programmed in silico. Thus, to carry out lateral inhibition experiments, we needed to
measure an empirical dose response of cells to light, and define the computational signaling
relation controlling light inputs such that intensity was inversely related to the responsiveness
of cells interacting with the target.

Summary of theory

Consider a system of N identical cells modeled as single-input, single-output dynamical
systems. Biochemical concentrations xi(t) 2 Rn

+ in the ith cell evolve according to

d

dt
xi(t) = f(xi(t),ui(t)). (4.1)

Each cell has output wi(t) = g(xi(t)) 2 R+ and input ui(t) 2 R+. Let the vector x(t) 2 RNn

+

be the vertical concatenation of the vectors xi(t) for all N cells, and similarly for w(t) 2 RN

+

and u(t) 2 RN

+ . We assume each cell has a static input-output characteristic T (·), that is, if

a cell is given constant-in-time input ui(t) = u†

i
, it will reach a globally asymptotically stable

hyperbolic equilibrium x†

i
solving 0 = f(x†

i
, u†

i
) with output w†

i
= T (u†

i
) = g(x†

i
). We assume

T (·) is bounded and increasing, meaning that increasing the input increases the output. In
our setup, the static input-output characteristic corresponds to the empirically measured
dose response.

Suppose the outputs of cells are connected to the inputs of other cells, forming a network.
We capture information about which cells signal to which by way of the interconnectivity
matrix M 2 RN⇥N

+ with entries [M ]
ij
= 0 if cell j does not signal to cell i and [M ]

ij
> 0

otherwise, with the value [M ]
ij

indicating the strength of signaling. We require that the
sum over all entries in a row equal the same constant, µ 2 R+, regardless of the row, i.e.,P

j
[M ]

ij
= µ for all i. In our setup each cell receives signals from four other cells with equal

weights 1
4 , therefore µ = 1. Defining v(t) = Mw(t), we model lateral inhibition by letting

the input to cell i be given by ui(t) = h(vi(t)), where h(·) : R+ ! R+ is bounded and
decreasing.
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Model reduction theorem: Let 1m represent the length-m column vector of all ones,
and similarly for 0m. If there exists a matrix M̄ 2 R2⇥2

+ such that

ML = LM̄ where L =


1m 0m

0N�m 1N�m

�
(4.2)

for some indexing of cells, then M̄ is an interconnectivity matrix for an equivalent 2-cell
system whose steady-state solutions correspond to steady states of the N-cell system with
interconnectivity matrix M . In other words, if w̄⇤

2 R2
+ is the output corresponding to a

steady-state solution to the 2-cell system, then w⇤ = Lw̄⇤ is a steady-state output to the
N-cell system. ⇤

Note that the cells indexed 1 through m take on steady-state output values w̄⇤

1 while
those indexed m + 1 through N take on steady-state output values w̄⇤

2. Condition (4.2) is
satisfied when cells can be grouped into two subsets within which nodes are interchangeable;
that is, reindexing nodes within a subset will not change M [122].

When

M̄ =


0 1
1 0

�
, (4.3)

the steady states of the 2-cell system are determined graphically from the fixed points of
h(T (h(T (·)))), as shown in Figure 4.2 and explained in Section 4.2.1. For the reduced
2-cell system the graphical test also ensures stability of the points corresponding to the
lower/upper intersections in Figure 4.2, and instability of the point corresponding to the
middle intersection, when the cellular dynamics are monotone in the input/output sense
[357]. The stability properties established graphically for the 2-cell system are preserved
in the full N -cell system when additional assumptions hold. Our setup satisfies one such
assumption from [289], which stipulates cells within a subset not signal to each other. Thus,
if w̄⇤ is the output corresponding to a stable state in a bistable 2-cell system, then in the
N -cell system, cells in one subset have higher output than cells in the other subset. If the
cells belonging to di↵erent subsets are spatially interlaced or alternating, then the high/low
dichotomy produces a spatially contrasting pattern such as a checkerboard.

Graphical test for bistability

Consider a 2-cell system of mutual inhibition with dynamics (and notation) as given in
Section 4.2.1, in which u2(t) = h(v2(t)) = h(w1(t)) and similarly u1(t) = h(v1(t)) = h(w2(t)).
Now break the loop such that u1(t) becomes the input and y(t) = h(w2(t)) the output of
a the open-loop system. The static input-output characteristic for the cascade, given by
y† = h(T (h(T (u†

1)))), is increasing. The points where u
†

1 = h(T (h(T (u†

1)))) (i.e., intersections
of the static input-output characteristic with a line of slope 1) are the steady states of the
corresponding closed-loop system in which u1(t) = y(t) (and we still have u2(t) = h(w1(t))).
We will designate values at such intersections by superscript asterisks (e.g., u⇤

1). When cell
dynamics are monotone, then the steady state corresponding to u⇤

1 is stable if the slope of
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h(T (h(T (u⇤

1)))) is greater than 1 and unstable if it is less than one. In particular for our
setup, this implies that if there is one intersection, the closed-loop system is monostable,
and if there are three intersections, the system is bistable, with the homogeneous solution
(u⇤

1 = u⇤

2) being unstable and the other two stable points corresponding to w⇤

1 high, w⇤

2 low,
and vice versa [294].

4.2.2 Empirical characterization informs computational
parameters

We combined the blue light-inducible VP-EL222 expression system [377,379] with a fast-
acting nuclear translocation reporter (dPSTR) [378] to control and measure gene expression
in Saccharomyces cerevisiae. In the dark, constitutively expressed red fluorescent protein
(RFP) fused to the synthetic bZip domain SZ2 [380] is equally distributed between nucleus
and cytoplasm due to passive di↵usion through the nuclear membrane. Under exposure
to blue light, VP-EL222 molecules dimerize and bind the cognate promoter to activate
expression of a protein comprising two nuclear localization signals (NLS) and SZ1 [380]. This
protein then forms a heterodimer with the RFP reporter, thereby localizing fluorescence in
the nucleus. We quantitated the degree of nuclear localization (nuclear localization score)
as the di↵erence between mean cytoplasmic and mean nuclear fluorescence normalized to
the mean fluorescence across the entire cell. In principle, the score is 0 if cells are not at all
responding (there is no nuclear localization) and positive otherwise (Figure 4.3a,b).

We characterized the dose response of individual cells to constant, targeted blue light
exposure (Figure 4.3b,c). On average, cells exhibited a graded response to light intensity
well described by a Hill function (Figure 4.3c). Variability from cell to cell was greater than
for individual cells across time, perhaps owing to variation in cell cycle state [381]. As the
theory is deterministic, for patterning experiments we ultimately substituted single cells with
computationally defined patches of 4 or 6 cells, with the patch response determined as the
average response of the constituent cells. Generating score distributions for such patches by
bootstrapping from the single-cell dose response data shows reduced temporal and patch-
patch variability as well as reduced di↵erence between temporal and patch-patch variability
relative to the single-cell case (Figure 4.3d, Figure 4.4).

Based on the range of cellular response scores, we defined the signaling relation h(·) for
use in patterning experiments, which determined the light input administered to a patch
as a function of the average scores of neighboring patches at each time step. We chose
an inhibiting Hill function with fixed Hill coe�cient n = 2 and a single free parameter K
with smaller values corresponding to sharper inhibition. We combined the empirical dose
response with the computational signaling relation to generate theoretical predictions for the
mono- or bistability of a 2-cell lateral inhibition system as K was varied between 0 and 1,
corresponding to non-patterning or patterning outcomes in a full system.
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Figure 4.3: Experimental characterization of cellular dose response curves shows population-
level gradedness. (a) Blue light induces gene expression in optogenetically responsive Saccha-
romyces cerevisiae via the VP-EL222 system [375], as measured by a nuclear translocation
reporter (dPSTR) [378]. Cells constitutively express RFP fused to SZ2. In the dark, RFP is distributed
equally between nucleus and cytoplasm due to di↵usion. Blue light induces VP-EL222 dimerization, which
activates expression of an NLS fused to SZ1. SZ1 binds SZ2, such that the NLS promotes localization of RFP
in the nucleus, increasing nuclear fluorescence relative to cytoplasmic fluorescence. (b) For a single dose,
individual cells were illuminated for 80 min with constant-intensity light. Single-cell responses to a single
intensity were calculated as the average score over the last 40 min. Pictured in the schematic are average
input intensities and responses for approx. 700 cells for 3 consecutive doses. (c) Although individual
cell responses vary, on the population level nuclear localization is graded with respect to the
intensity of the light input. Responses of single cells to single doses were pooled across 3 experiments
(no outline). A Hill function was fit to the quantile means (180 or 181 samples per quantile) to generate
the final dose response (solid outline). (d) Grouping cells into patches reduces both cell-cell and
temporal variability. Scores were binned by projected intensity (blue shaded bar) to generate histograms
of score distributions for given input levels (samples per bin left to right: 344, 183, 69, 108, 102, 57, 35,
26). Bin cuto↵ is twice the maximum projected intensity used in final patterning experiments. Histograms
for 6-cell patches were generated by bootstrapping from individual cell scores within a bin for a total of 200
bootstrapped patches per intensity level. For an ergodic process, cell-cell and temporal variation would be
equal (gray dotted line); here, responses appear to be more variable from cell to cell than for single cells
across time. Grouping cells into patches of 6 across which response scores are averaged (triangles) reduces
the magnitude of di↵erence between cell-cell or patch-patch and temporal variability. Error bars are s.e.m.
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Figure 4.4: Cell-cell and patch-patch variability in cell response score for 4-cell patches at
di↵erent illumination intensities. Plots correspond to those in Figure 4.3d, but for 4-cell instead of
6-cell patches. Scores were binned by projected intensity (increasing from black to light blue) to generate
histograms of score distributions for given input levels (samples per bin left to right: 344, 183, 69, 108,
102, 57, 35, 26). Bin cuto↵ is twice the maximum projected intensity used in final patterning experiments.
Histograms for 4-cell patches were generated for each bin by bootstrapping from individual cell scores within
that bin for a total of 200 bootstrapped patches per intensity level. Circles indicate cell-cell variability;
triangles indicate patch-patch variability. Error bars are s.e.m.

4.2.3 Cell-in-the-loop generates spontaneous checkerboard
patterns

We ran a series of patterning experiments emulating lateral inhibition. Cells were ran-
domly assigned to patches such that cells belonging to the same patches were not necessarily
neighbors in physical space, thereby reducing spurious correlations that might arise from
spatially dependent factors other than the targeted light input. Once assigned, cells re-
mained in the same patch throughout the duration of an experiment. Patches were arranged
to neighbor each other in “virtual space” as visualized on a checkerboard (Figure 4.5).

During patterning experiments, we took measurements and calculated new light inputs
every 10 min, about the same rate as the estimated time constant for cell response to a switch
in illumination intensity (Section B.3.1). This choice allowed us to avoid adjusting inputs
more frequently than responses to the previous input could be detected. We tested systems
of 16 patches with 6 cells per patch for four values of K between 0.1 and 1. Spontaneous
patterning was always achieved in the K = 0.1 case and never in the K = 1 case, with
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Figure 4.5: Schematic of automated workflow for patterning experiments. Cells growing in a
monolayer were placed under the microscope, which was connected to a computer system that controlled the
camera and blue light projection system. Cells were segmented and tracked in brightfield images and scored
in fluorescence images (here, false-colored red). After the first image was acquired, cells were randomly
assigned to patches to which they belonged for the remainder of the experiment. The grid visualizes scores
at a single time step, with each square representing one patch of cells. The brightness of a square corresponds
to the average score of the constituent cells in the corresponding patch. The signaling relation, defined before
experiment start, determined the input light intensity administered to patches for the next time step (10
min) based on the scores of neighboring patches to the north, south, east, and west, with periodic boundary
conditions. The relation h(·) was chosen to be an inhibiting Hill function with a minor correction to better
utilize the range of available illumination intensities (i.e., a patch received maximum illumination intensity
if the average score over its neighbors was at or below smin = 0.05). The Hill coe�cient was fixed at n = 2
for all experiments. The bifurcation parameter K was fixed for each experiment at a value between 0.1 and
1. Cells in the same patch received the same input intensity targeted individually to each cell, as shown in
the projected image. Scale bar in fluorescence and brightfield images is 10 µm.

mixed results for K = 0.2, 0.3, near one of the theoretically predicted critical points (Figure
4.6a). Sample time traces at K = 0.1 and K = 1 show, respectively, the gradual deviation
in score between sets of alternating patches that characterizes a contrasting pattern, or a
rapid adoption of a non-patterning state. Visualizing the checkerboard at individual time
points or averaged over the last hour clearly depicts the distinction between the two cases
(Figure 4.7a). In the bistable case, which of the two possible checkerboards emerged in a
given experiment depended on the stochastic initial conditions and continued noisy influences
during system evolution (Figure 4.6).

When averaged over the last hour and across experiments, the contrast level (mean scores
of sets of alternating patches) was quantitatively well predicted by theory in the bistable re-
gion and the overall brightness (mean score across all patches) was well predicted in the
monostable region (Figure 4.7b). When considering individual experiments, the variability
in overall brightness increased with increasingK. In the predicted monostable cases, stochas-
ticity also introduced a di↵erence between the means over alternating patches, though sta-
tistical analyses confirm that the di↵erence was indistinguishable from random (Table 4.1).
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Figure 4.6: Checkerboards observed in all experiments. Visualizations are rendered from scores
averaged over the last hour for (a) 16-patch and (b) 36-patch (K = 0.1) patterning experiments. Although
the 36-patch experiments did not achieve global checkerboard patterning, one experiment showed persistent
local patterning in which two small checkerboards appeared in opposing corners. The local patterns were
inverted relative to each other and did not resolve before the end of the experiment. (c) 2D Fourier transforms
conducted on the checkerboard averages from (1) reveal that the greatest weight is given to the highest-
contrast spatial mode in all 4 experiments with K = 0.1, 2 out of 3 experiments with K = 0.2, 1 out of 3
experiments with K = 0.3, and none of the 3 experiments with K = 1. Pictured are the spectral components
(horizontal frequency increasing top to bottom, vertical frequency increasing left to right) that contribute to
last-hour checkerboards for each experiment. The intensity of each component indicates its weighting relative
to other components in the same experiment. Note also the relatively higher weighting for lower-frequency
spatial modes in the K = 0.3 and K = 1 cases relative to the K = 0.1 and K = 0.2 cases.
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Taken together, these results suggest that the deterministic theory calibrated to popula-
tion averages is an excellent quantitative predictor for mean system behavior across time,
patches (cells), and experiments, while at the same time even small amounts of cell-cell
variability and temporal stochasticity may cause a given experiment to deviate considerably
from quantitative forecasts.

K trial1 trial2 trial3
0.1 0 0.0002 0
0.1 0 0 0
0.1 0 0 0
0.1 0 0 0
0.2 0.0006 0.0008 0.0008
0.2 0.4422 0.4348 0.4356
0.2 0.0234 0.0226 0.017
0.3 0.0158 0.0156 0.0164
0.3 0.1262 0.1282 0.1322
0.3 0.146 0.1348 0.1388
1 0.6516 0.6444 0.645
1 0.4108 0.4116 0.4018
1 0.1966 0.1942 0.2144

Table 4.1: Di↵erences in mean score between alternating sets of patches exceeded di↵erences
between random sets of patches. Two-tailed permutation tests for di↵erence in mean score averaged
across the last hour between sets of alternating patches, conducted against empirical distributions constructed
from N = 5000 relabelings for each experiment individually. The empirical distributions of di↵erence in means
between relabeled sets of patches were randomly drawn three times per experiment and the resulting p-value
calculated for the alternating patch allocation. Tests were performed against the null hypothesis that scores
were drawn from the same distribution for all patches. For K = 0.1, the null hypothesis was rejected at
a p-value of 0.0002 in all four experiments. For K = 1, the null hypothesis failed to be rejected at any
reasonable p-value. Results were less clear for values close to the critical point, for which one experiment
with K = 0.2 (theoretically bistable) failed to reject at any reasonable p-value, and one experiment with
K = 0.3 (theoretically monostable) rejected at a p-value of 0.02.

Because our setup allowed us to monitor both gene expression levels and cell signaling
levels, we were able to assess convergence to (quasi-)steady state by comparing instanta-
neous input-output curves (patch score vs. administered intensity) to the steady-state dose
response (Figure 4.7c). Specifically, since the time for cells to converge to steady state under
exposure to light of constant intensity (40 min) was longer than the time between changes to
input intensity during experiments (10 min), the instantaneous input-output curve during a
patterning experiment would only match the empirical dose response curve if the adminis-
tered intensity remained relatively constant for several frames before a given time point—i.e.,
if there was little temporal variability for at least 40 min preceding the frame. Directly plot-
ting the temporal variability in administered input to individual patches does indeed reveal
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Figure 4.7: Theory quantitatively predicts spontaneous patterning and patch intensity during
cell-in-the-loop experiments. (a) Sample time traces show emergence of a contrasting pattern
(K = 0.1) or convergence to a non-patterning state (K = 1). Gray lines correspond to score traces for
individual patches; green lines indicate the mean scores of sets of alternating patches. Checkerboards visualize
scores at single time points (bottom) or averaged over the last hour (top). (b) Theory quantitatively
recapitulates experimental results for mean patch response score. Black lines denote theoretical
steady-state points as a function of the bifurcation parameter K, with solid indicating stable and dashed,
unstable. All points are averaged over the last hour. Faded points correspond to individual experiments;
solid outlines are averages across experiments (N = 4 for K = 0.1, N = 3 for K = 0.2, 0.3, 1). Magenta
circular points are averages over all patches. Green points are averages over sets of alternating patches,
with upward- and downward-facing triangles denoting the higher and lower of the two means respectively.
Stochasticity in the experimental system introduced contrast between the average means of sets even in
regions that were deterministically suggested to be monostable. As predicted, the contrast level (di↵erence
between means of sets of alternating patches) was higher for lower K. Experiment-to-experiment variation
in overall brightness (score averaged across all patches) was greater for higher K, an e↵ect that cannot
be accounted for in a purely deterministic theory. (c) The 16-patch system with 6 cells per patch
converges to a steady state by about 2 hr into patterning experiments. Solid outline, score values
averaged over the last hour for individual patches and split into quantiles by administered intensities show
decent agreement with the empirical steady-state dose response curve. Error bars are s.e.m. Circles without
outlines are quantiles at individual time points pooled from N = 13 experiments (darker red at later times).
For comparison, the dose response curve fit to empirical data is plotted in gray.
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Figure 4.8: Temporal variability in administered intensity during first or last experimental
hour. (a) Temporal variability in score and administered intensity to individual patches decreased from
the first to the last experimental hour for all 16-patch patterning experiments, while temporal variability in
score remained relatively constant. The result is not surprising if cells were comparably variable regardless of
input intensity, in which case convergence of the mean score need not imply reduction in temporal variability.
The administered intensity may also appear less variable since it was calculated based on an average over the
scores of 4 neighbors, which at a given time step would have a variance 1

16 that of an individual patch. (b)
In four experiments with 36 patches and 4 cells per patch, temporal variability in administered intensity and
score for individual patches remained equally high throughout the experiment duration (3 hr), suggesting
steady state was not reached in that time.

a decrease from the first to the last experimental hour regardless of K value (Figure 4.8a).
Lastly, we examined the e↵ect of patch number on patterning outcomes through four

experiments with 36 patches, 4 cells per patch, and K = 0.1. None of the experiments
spontaneously achieved a checkerboard pattern across the whole board in 3 hr, although
a control experiment preinduced with the pattern showed that it was indeed persistent
(Figure 4.9). The input/output curve did not approach the empirical dose response (Figure
4.10) and temporal variability in administered intensity was the same during the first and
third experimental hour (Figure 4.8b), further supporting the conclusion that the system
never reached steady state. Interestingly, one experiment produced two checkerboards in
opposite corners that persisted throughout the last experimental hour, but were inverted
relative to each other and did not resolve before the end of the experiment (Figure 4.6b).
Other experiments also exhibited transient local patterning, although to a lesser degree. The
local patterning and the increased convergence time are consequences of the fact that a 36-
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patch system admits a much larger space of possible configurations than a 16-patch system.
Although variability in 4-cell patches was only modestly larger than in 6-cell patches (Figure
4.4), the stochasticity may also have contributed to a longer convergence time. These and
related challenges will require further investigation in future e↵orts to synthetically generate
gene expression patterns with single-cell granularity.
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Figure 4.9: Control experiment verifying persistence of checkerboard pattern in full lateral
inhibition system with 36 patchs, 4 cells/patch. Patches were preinduced for 20 min to display a
checkerboard pattern. From 20 to 70 min, the system was run in closed-loop with lateral inhibition signaling
relation K = 0.1. Pictured is the time course for individual patch scores (gray) with averages over sets of
alternating patches in red (as in Figure 4.5). Board is visualization for individual patch scores averaged over
the last 50 min.

4.3 Discussion

In this work, we employed cell-in-the-loop, a closed-loop, hybrid in vivo/in silico ap-
proach, to validate a theory for spontaneous gene expression patterning among laterally
inhibiting cells. We engineered S. cerevisiae to respond optogenetically to light inputs, then
emulated cell-to-cell signaling in real time by modulating the intensity of light inputs to cells
based on real-time measurements of gene expression. The theory made accurate quantita-
tive predictions for average steady-state patterning outcomes across a range of parameters.
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Figure 4.10: Administered input vs. measured patch score over time in the 36-patch experi-
ments. The scatterplot does not show convergence to the steady-state dose response curve in 3 hr, unlike
in the 16-patch case (Figure 4.7). Points are quantiles across N = 4 experiments with K = 0.1 for single
time points, with more opaque (darker) points corresponding to later times.

Increasing system size—by increasing the space of possible dynamic behaviors—diminished
the probability of achieving global patterning on short timescales in the absence of initial or
external bias. Further theroetical research should explicitly incorporate cell-cell variability
and temporal stochasticity in order to improve our understanding of variation in individual
experimental outcomes, patterning robustness, and the link between individual-level and
population-level behavior.

Prior work using optogenetics to generate persistent spatial patterns in living cells has
focused on reproducing [167, 177, 331] or processing [166] pre-existing images projected by
the light input. In comparison to these studies, light in our system does not a priori encode a
pattern to which the cells conform; rather, light acts as a virtual signal transmitted from cell
to cell. The input intensity is determined by cellular responses that are in turn influenced
by the received intensity, establishing a closed-loop relationship independent of external
control. That similar patterns are ultimately observed in both the cellular responses and the
optogenetic inputs arises as a consequence of their mutual dependence.

Depending on the application, cell-in-the-loop o↵ers benefits over purely biochemical or
purely computational approaches. First, it reduces the number of components that must be
engineered into cells. We integrated a single optogenetically induced promoter and a single
reporter, and were able to modulate patterning outcomes simply by reprogramming the com-
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puter. In this way, we circumvented issues associated with synthetic cell-to-cell signaling,
including parameter matching and crosstalk [175,307], and alleviated complications such as
burden [382,383] that arise from integrating complex networks into cells [172,173]. We were
also able to achieve spatiotemporal control over the whole population of interacting individ-
uals and probe stochasticity at a finer level than would be attainable with a conventional
biochemical implementation.

Compared to a computer simulation, cell-in-the-loop makes no assumptions about cell
behavior or the form of biological noise, since the cells themselves are incorporated into the
system. Although we used this setup to test the validity of a theoretical principle, one could
also envision testing the accuracy of a full model for cell-to-cell signaling by simulating a
proposed physical mechanism of interaction, then comparing the outcome of such a system
to the outcome of a purely physical system. Cell-in-the-loop also allows one to track system
components that might otherwise be inaccessible or di�cult to measure. For example, we
were able to monitor the levels of both gene expression and virtual signal simultaneously,
which could be di�cult to achieve in a solely biochemical setup.

Once established, a cell-in-the-loop system could couple with more complex cellular pro-
cesses to achieve real-world results. One could also envision using cell-in-the-loop as a rapid
prototyping platform or “stepping stone” to a fully biochemical implementation. In this
paradigm, one would begin with minimally engineered cells and then sequentially replace
in silico components with biochemical ones, testing at each stage whether the remaining
portions of the network ought to be modified in structure or value before the next compo-
nent is incorporated into the cell. As an illustration, suppose one were to implement lateral
inhibition with the basic transcriptional repressor circuit from [163], in which cleaved intra-
cellular Notch domain activates a repressor for expression of Delta, the target molecule of
Notch recognition domain. One might employ the synNotch toolbox for mammalian cells,
which includes as design choices the recognition domain/target molecule pair and the tran-
scription factor constituting the intracellular synNotch domain [369]. One might begin with
a cell-in-the-loop approach by engineering just the repressor under optogenetic control, and
define computational variables for the concentrations of recognition domain, transcriptional
activator (cleaved synNotch intracellular domain), and target molecule (plus intervening
pathway components) in each cell. Using calculated activator concentration to modulate
the light input, one could simulate di↵erent parameters for the remaining components to
decide upon an activator. One could then engineer a circuit with repressor controlled by
the chosen activator and place the activator under optogenetic control. With another round
of cell-in-the-loop, one could further restrict the range of parameters for the combination of
target molecule and recognition domain that would produce the desired e↵ect in vivo, and
use these numbers to guide construction of the final biochemical circuit in live cells.

Although the above example has relatively few components and therefore few design
choices, the benefits of cell-in-the-loop should scale with circuit complexity as the parameter
space—and therefore the potential number of full circuits to test—increases with each added
component. The approach could also reveal shortcomings in proposed designs: for example,
in our setup, 36-patch systems failed to produce spontaneous patterns on our experimental
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timescale even with “perfect” deterministic signaling, suggesting that it could be challenging
to achieve large-scale lateral inhibition patterning biochemically in a similar context. Thus,
the addition of cell-in-the-loop to the biological engineering process could greatly decrease
the time, expense, and e↵ort required to develop synthetic multicellular systems for an
increasingly rich and promising array of applications.
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Chapter 5

Conclusion: Multicellular Patterning,
Evolved and Engineered

“The living organism is so complicated that we seldom have enough data to be able to work

out exactly what is happening by means of the mathematics the engineer uses. Up to the

present, the general ideas and terminology used by these engineers have been of more use to

biologists than have the detailed application of their techniques.”

– J. Z. Young, in [384]

In this thesis, I have explored multicellular gene expression patterning in biological sys-
tems using a combination of theoretical and experimental approaches informed by networked
dynamical systems theory. First, I presented a general tool for analyzing prepattern pro-
cessing from the perspective of spatial filtering. I demonstrated how this approach might
be used to predict qualitative patterning outcomes, suggest experiments for discriminat-
ing among proposed genetic network architectures, and probe the robustness of outcomes to
noisy biochemical components. I also showed that random, constant-in-time spatial variation
can generate Turing-like patterns when system dynamics are stable; conventional wisdom
requires an instability to observe such patterns.

Second, I adapted theory for spontaneous contrasting patterning to two distinct exper-
imental setups in synthetic biology. Both setups verified aspects of the theory, lending
credence to its validity and generality in practice. Both setups demonstrate how theory
can analogize a known concept to classes of unconventional systems—in one case, lateral
inhibition among spatially separated colonies instead of individual cells in physical contact,
and in the other case, inhibition among cells that are not physically communicating or even
physically neighboring each other. Finally, both setups permit further applications beyond
the theory, and may thus be of some interest to the synthetic biological community.

The work presented in this thesis focuses on patterning at steady state. It is not clear,
however, that biological systems in nature operate very often at steady state, and the dy-
namics of patterning networks in particular may have enormous consequences. In fact, both
of the experimental studies in this thesis evidenced situations where practical constraints
prevented theoretically predicted patterning behaviors from emerging on an experimental
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timescale. The compartmental lateral inhibition system failed to spontaneously pattern
before colonies outgrew their compartments, although patterns could be retained through
preinduction. Similarly, the largest tested networks in the cell-in-the-loop setup could also be
preinduced to retain a contrasting pattern, but did not spontaneously pattern because local
defects failed to resolve into a globally consistent pattern before cells outgrew a monolayer.
Future theoretical work should focus on incorporating an understanding of patterning dy-
namics at a level more rigorous than simulation. I expect such research would be of particular
relevance to developmental biology with regard to the process of pattern refinement.

A central theme throughout this thesis is how engineering approaches can provide new in-
sights into the structure and function of living systems—actual or potential—by considering
them with a di↵erent perspective from the usual. It is my belief that continued cross-
disciplinary dialog among engineers, biologists, mathematicians, physicists, and others will
facilitate our e↵orts to uncover the conceptual and molecular mechanisms behind patterning
in the natural world. This work is just one such attempt to bridge the gap between theory
and practice, between evolved and engineered, that we may one day better comprehend the
“endless forms most beautiful” [385] of life on Earth.
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Appendix A

Di↵usion-mediated Lateral Inhibition:
Materials and Methods

This appendix describes the detailed materials and methods for the experiments in Chap-
ter 3, based on material published in [307].

Bacterial strains, plasmid construction, and growth conditions

Escherischia coli strain DH10B (NEB) was used for cloning. PCR amplifications were
performed using Phusion High-Fidelity DNA Polymerase (Thermo) and oligonucleotides
(IDT). BsaI (NEB) and T7 DNA ligase (NEB) were used to construct plasmids using parts
obtained from the MIT Registry of Standard Biological Parts, JBEI registry [386], or syn-
thesized gBlocks (IDT). RBS calculator [387] was used to generate balanced RBS strengths
for luxI and lasI. TR117 (gift of Thomas L. Ruegg) is a DH10B variant with genomically
integrated mRFP1 driven by a constitutive promoter. MOPS EZ Rich Medium (Teknova)
and MOPS with 1.5 % UltraPure agarose (Thermo) were used for liquid and solid medium.
When appropriate, 50 µg/mL Kanamycin or 20 µg/mL Chloramphenicol were added to
medium.

Plate reader assays

Overnight cultures of cells in MOPS were washed three times and diluted to fresh MOPS
at OD600 of 0.3. After 8 hours in 30�C at 750 rpm, cells were washed three times and diluted
to OD600 of 0.025 in a 96 well flat clear bottom black polystyrene microplate (Corning)
containing 196 µL MOPS and appropriate concentrations of AHLs (Sigma) dissolved in 4 µL
of dimethyl sulfoxide (DMSO) for Fig. A.1, or 192 µL MOPS and appropriate concentrations
of AHLs in 4 µL DMSO and anhydrotetracycline (aTc) (Sigma) in 4 µL ethanol for Fig. A.2.
Synergy 2 (Biotek Instruments) was used to measure cell density (OD600) and fluorescence
of growing culture every 8 min for 12 hours at room temperature. The BioTek excitation
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and emission wavelengths were 485 nm, 528 ± 20 nm for sfGFP and 560 nm, 620 ± 20 nm
for mRFP1.
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Figure A.1: Plate reader assays of output steady-state TetR-sfGFP fluorescence in response to input AHL
concentration for the reception modules of Strains A and B in liquid (A) and solid (B) medium. The strains
used for reception module characterization lack ptet ! luxI or lasI. Steady-state sfGFP fluorescence (t =
10 h) divided by OD600 in liquid medium and steady-state sfGFP fluorescence (t = 10 h) at the center of
colonies on solid medium were each normalized to the maximum steady-state values across strains and input
AHL conditions. Strain A receiver showed similar threshold AHL concentrations regardless of medium and
Strain B receiver showed more AHL-sensitive response in solid than in liquid medium. In both conditions,
the approximated Kd of Strain A reception module was higher than Strain B, suggesting higher sensitivity
of plas in Strain B than plux in Strain A. Error bars show standard deviation and solid circles show the
average of the measurement (n = 2). The solid curves show best-fit models when measurements were fit to

activation Hill functions in the form of a [AHL]
([AHL]+K

n
d
, where a denotes the maximal production of TetR-sfGFP,

Kd denotes the apparent dissociation constant of AHL binding to the promoter and n denotes the apparent
Hill coe�cient. The following equation parameters were used for the best-fit models: a = 1 (Strain A) and
0.771 (Strain B), Kd = 47.5 nM (A) and 8.33 nM (B), n = 1.91 (A) and 1.83 (B) for liquid medium, a =
0.9423 (A) and 0.6269 (B), Kd = 34.71 nM (A) and 0.577 nM4(B),n=4 1.088 (A) and 1.556 (B) for solid
medium.
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Figure A.2: Plate reader assays of output ptet ! mRFP1 fluorescence in response to input TetR-sfGFP
fluorescence for the repression modules of Strains A (A) and B (B). The strains used for repression module
characterization contain ptet driving mRFP1 instead of AHL synthases. Steady-state sfGFP fluorescence
and steady-state mRFP1 fluorescence (t = 10 h) were divided by OD600 and then each fluorescence was
normalized to the maximum steady-state values across all conditions within the same strain. Di↵erent levels
of input TetR-sfGFP were induced by AHL to repress mRFP1. As the leaky expression of tetR � sfGFP

caused significant repression of mRFP1 even in the absence of any AHL, a range of aTc was added to the
medium to sequester basal level of TetR. Re-measurement of mRFP1 fluorescence showed a broad output
range when at least 3.1 ng/mL aTc was added to medium. Unexpectedly, aTc also repressed TetR-sfGFP
production in Strain A at high concentrations, which constrained viable aTc concentration to be less than
10 ng/mL. Solid circles show the average and error bars show standard deviation of the measurements (n =
2). The solid curve represents the best-fit model when the measurements were fit to repressive Hill function
in the form of 1

1+xmax
[TetR]/Kt

1+[aTc]/KaTc
.n
, where KaTc = 0.098 nM , KaTc = 0.27 nM as determined in Table 3.2.

The resulting fit had a range of Hill coe�cient between 1.7 to 2.8 and xmax ranged from 1100 nM to 1621
nM across di↵erent aTc concentrations.
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Flow cytometry

Overnight cultures of Strains A and B in MOPS were washed three times and diluted
to OD600 of 0.03 in fresh MOPS added with 5 ng/mL aTc and 0 or 1 µM AHL for pre-
induction. After 6 hours of shaking at 750 rpm in 30�C, cells were washed three times and
diluted to OD600 of 0.025 in a 96 well deep well plate (Green BioResearch) containing 196
µL MOPS, 5 ng/mL aTc, and appropriate concentrations of AHLs (Sigma). After 8 hours
of shaking at 750 rpm in 30�C, cells were analyzed using BD LSRFortessa (BD Biosciences).
Blue (488 nm) and green (561 nm) lasers were used in combination with 530/30 nm and
610/20 nm filters.

Construction of DLI device

The compartments and channels in the patterns were cut into 1/8 inch acrylic sheet (Mc-
Master Carr) using a laser cutter (Universal Laser Systems) and then filled with SYLGARD
182 Silicone Elastomer (Dow Corning). PDMS molds were attached to the bottom of 6 well
clear flat bottom cell culture plate (Falcon), and 3.4 mL of MOPS solid medium was poured
into each mold to create DLI devices. aTc in ethanol was added to the final concentration
of 5 ng/mL (Fig. A.3).
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A.

B.

Figure A.3: Schematic of DLI device preparation. (A) PDMS molds are attached to the bottom of a
culture plate and 3.4 mL of 1.5 % agarose-mixed medium is poured into the devices. After solidifying, 0.5
µL of 2.0 OD600 cells are pipetted at the center of each compartment and allowed to grow for 10-12 hours
in room temperature to study pattern formation. (B) Various spatial configurations are prepared as PDMS
molds. A central compartment with di↵erent number of neighbors can be manufactured.
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DLI assays

Overnight cultures of Strains A and B in MOPS were washed three times and diluted to
OD600 of 0.03 in fresh MOPS added with 5 ng/mL aTc and 0 or 1 µMAHL for pre-induction.
After 8 hours of shaking at 750 rpm in 30�C, cells were washed three times and rediluted to
OD600 of 2.0 in fresh MOPS. 0.5 µL of the culture was seeded onto each compartment of
the DLI devices. Gel Doc XR+ System (Bio-rad) was used to image bacterial colonies every
30 min for 12 hours in room temperature. The blue epi illumination at 488 nm and 530/28
nm filter was used for sfGFP and the green epi illumination at 532 nm and 605/50 nm filters
were used for mRFP1. Camera exposure time of 100 ms was used for all images.

apFAB340 apFAB342apFAB154

apFAB340apFAB323 apFAB342

Figure A.4: Plate fluorimeter assay of AHL production and reception by Strains A and B. On a well of 3.4
mL of MOPS EZ Rich solid medium with 5 ng/mL aTc, the complete strains with di↵erent ptet promoter
strength [388] were seeded at the center, surrounded by receiver strains (Strain A receiver in horizontal
direction and Strain B receiver in vertical direction). The top row is seeded with Strain A variants at the
center and the bottom row is seeded with Strain B variants at the center. The promoter strength of ptet
seems to have little e↵ect on AHL production, as receiver strains showed similar levels of activation regardless
of promoter variants within the same strain type.



APPENDIX A. DIFFUSION-MEDIATED LATERAL INHIBITION: MATERIALS AND
METHODS 176

Computational modeling and simulation

We used custom code for computational modeling and data analysis in Matlab (Math-
works).

Channel length optimization

We optimized the channel length l to mimic close-range lateral inhibition with the
di↵usion-based system using a PDE model of AHL production, degradation, and di↵usion.
The goal was to allow su�cient di↵usion of AHL to the immediate neighbors ([AHL] � Kd

at �x = l) while restricting di↵usion among nonadjacent compartments ([AHL] < Kd at
�x � 2l).

Let ✓(t) be AHL concentration over time at the center of an AHL-producing colony
(x = 0). During exponential growth (t  10h), the concentration of AHL can be expressed
using parameters defined in Table 3.2 as

✓̇(t) = ⌫I⇤P0 exp(µt)�
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res
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where P0 is the initial population size of the colony and lres is the length of channels that
connect compartments to reservoir.

Now, consider di↵usion of AHL across a channel. Define [AHL](x, t) = ✓(x, t) in a one-
dimensional, infinite-length channel, with the following boundary conditions:

8
>><

>>:
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Assume the degradation of AHL in the channel is negligible. Then, from Fick’s second law,
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Using the boundary conditions A.5,
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Since there is no simple solution to inversely transform A.10, for the optimization we instead
replace the boundary conditions with an upper bound for AHL concentration.
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Using the upper-bound concentration, we determine the optimum channel length for

short communication time T1/2 (defined as the time for a compartment to reach half the
concentration of the center) between the adjacent colonies and long the communication time
between the non-adjacent compartments. T1/2 at location x can be calculated as

x

2
p
DT1/2

= erfc�1(0.5),

thus,
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4D
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◆2
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We set the objective function and the constraints as follows:

min
L

T1/2(x = l) + (⌧f � T1/2(x = 2l)), such that (A.15)

✓C6(L, ⌧f ) � KC6!A

d
, (A.16)

✓C6(L, ⌧f ) < KC6!B

d
, (A.17)

✓C6(2L, ⌧f ) < KC6!A

d
, (A.18)

✓C12(L, ⌧f ) � KC12!B

d
, (A.19)

✓C12(L, ⌧f ) < KC12!A

d
, (A.20)

✓C12(2L, ⌧f ) < KC12!B

d
(A.21)
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where

[3OC6HSL](t) = ✓C6(x, t), (A.22)

[3OC12HSL](t) = ✓C12(x, t), (A.23)

t = [0, ⌧f ] is the time period when cells are in the exponential growth, (A.24)

KC6!A

d
is the dissociation constant of 3OC6HSL on plux, (A.25)

KC12!A

d
is the cross-talk dissociation constant of 3OC12HSL on plux, (A.26)

KC12!B

d
is the dissociation constant of 3OC12HSL on plas, (A.27)

KC6!B

d
is the cross-talk dissociation constant of 3OC6HSL on plas. (A.28)

With the parameter values in Table 3.2, the optimum channel length was determined to
be 4.5 mm  l  9 mm (Figs. A.5, A.6).
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Figure A.5: PDE simulation for DLI device design to optimize the inter-compartmental channel length
(l) and the channel length connecting a compartment and reservoir (lres). (A) Graphical representation of
constraints on l. The inter-compartmental channel length should allow su�cient AHL di↵usion in directly
adjacent compartments while keeping the AHL concentration in the second closest compartments (distance
2l) to be below the threshold (Kd of AHL-inducible promoters). A constraint can be represented as an
area under or above a function, and the l values where all areas overlap indicates appropriate channel length
range. The smallest l value satisfying the criteria is optimized for shortest communication time, while largest
l value is optimized for longest non-neighbor communication time. 4.5mm < l < 9 mm satisfies the criteria
with the experimentally evaluated parameters given in Table 3.2. (B) Characterization of lres length and
decay time. The channel length connecting a compartment and a reservoir adds extra decaying mechanism
for AHL by allowing AHL e✏ux from every compartment to the bulk solid medium of AHL ' 0. The
e✏ux di↵usion rate from the compartment to medium depends on the length of the channel. The left plot
shows the portion of AHL di↵used out with respect to time, normalized to the AHL concentration inside
the compartment at t = 0. The right plot shows the time constant for a portion of the AHL concentration
inside the compartment to di↵use outside with respect to the channel length.
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* pre-induced with 1 µM 3OC6HSL (A) or 3OC12HSL (B)
† media contains 1µM 3OC6HSL (A) or 3OC12HSL (B)

A B*

Blank media

A* B

Blank media Blank media

A* A

Blank media

BB*

3OC6HSL media

BA†

3OC12HSL media

A B†

Figure A.6: A plate fluorimeter image of the 1:1 spatial configuration devices with channel length of 9 mm.
The image was taken after 12 hours of growth at room temperature. ⇤indicates pre-induced strains with 1
µM AHL and † indicates strains that were biased to be fluorescent by externally added AHL in medium. A
9-mm channel length was too long to establish communication between the adjacent compartments, deviating
from predictions based on computational optimization. Positive controls were prepared by mixing either 1
µM 3OC6HSL or 3OC12HSL in solid medium on the right-most devices in order to bias the gene expression
pattern to be either Strain A fluorescent or Strain B fluorescent. The deviation is possibly caused by the
approximation to boundary conditions in the PDE solution using the upper bound of AHL concentration.



180

Appendix B

Cell-in-the-loop: Materials and
Methods

This appendix describes the detailed materials and methods for the experiments in Chap-
ter 4, based on material published in [CITE].

B.1 Plasmid and yeast strain construction

Escherichia coli TOP10 cells (Invitrogen) were used for plasmid cloning and propagation.
The dPSTR reporter plasmid (pDB161) contains the coding sequences of UbiY-2xSV40NLS-
SynZip1 [378], expressed from an EL222-responsive promoter (p5xBS-CYC180) [377], and
mCherry-SynZip2 [378], expressed from the constitutive ACT1 promoter. It was constructed
by first replacing the promoter pRPL24A in the plasmid pDA183 [378] by pACT1 using SacI-
XbaI cut sites and subsequently replacing the promoter pSTL1 by P5xBS-CYC180 using
PCR and SapI-based Golden Gate cloning [389].

The yeast strain used in this study (DBY165) was constructed by transforming the PacI
digested plasmid pDB161 into DBY41 [377], a strain with BY4741 background expressing
VP-EL222 [379] from the ACT1 promoter. The transformation was performed using the
standard lithium acetate method [390].

B.2 Culture preparation

Cells were grown at 30�C in synthetic medium (SD) consisting of 2% glucose, low fluo-
rescence yeast nitrogen base (Formedium), pH 5.8, 5 g/l ammonium sulfate, and complete
supplement of amino acids and nucleotides. Cultures were started from plate, diluted, and
maintained at OD600 < 1.5 between 24 and 32 hr before an experiment. For each experiment,
between 3 and 5 mL of cell culture were centrifuged at 20, 3000 RCF for 6 min and enough
supernatant was removed to achieve an approximate OD600 of 4 after resuspension. Cells
were then immediately placed on agarose pads.
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B.2.1 Agarose pad preparation

Figure B.1: Example agarose pad used in experiments.

Two 2-slide-tall stacks of microscope slides were placed 1 cm apart parallel to each other
on top of a single microscope slide. 70 µL of 2% agarose (UltraPureTMAgarose, Invitrogen)
and SD medium solution were pipetted between the two stacks. A square 18 mm ⇥ 18 mm
cover slip was gently placed on the top. The pad was solidified for 1 hr. Immediately before
placement under the microscope, the stacks and cover slip were removed and the ends of
the pad were sliced o↵ with a scalpel such that the final pad was about 15 mm ⇥ 15 mm
and level across the top. 3 µL of cell suspension were pipetted in increments of 1 µL onto
three separate areas of the pad to ensure that at least one would have the correct density
for use in the experiment. The pad was overturned into a circular tissue culture dish with
cover glass bottom (35 mm FluoroDishTM, World Precision Instruments) lined inside with
a strip of damp paper towel to maintain humidity throughout the course of the experiment.
The dish was closed and sealed with a strip of parafilm, then placed in the microscope’s
environmental box (Life Imaging Services, Switzerland). Cells were allowed to settle for 30
min before experiment start.

B.3 Imaging

Images were taken under a Nikon Ti-Eclipse inverted microscope (Nikon Instruments)
with a 40x oil-immersion objective (MRH01401, Nikon AG, Egg, Switzerland), pE-100
bright-field light source (CoolLED, UK), and CMOS camera ORCA-Flash4.0 (Hamamatsu
Photonic, Solothurn, Switzerland) water-cooled with a refrigerated bath circulator (A25 Re-
frigerated Circulator, Thermo Scientific). The temperature was maintained at 30�C by an
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opaque environmental box (Life Imaging Services, Switzerland), and a dark cloth was addi-
tionally placed over the microscope to fully shield cell samples from external light. Experi-
ments were conducted with a di↵usor and a green interference filter placed in the bright-field
light path, with the Nikon Perfect Focus System (+/- 5 AU) enabled. Fluorescence images
were acquired using a Spectra X Light Engine fluorescence excitation light source (Lumen-
cor, Beaverton, USA), filter cube with excitation filter 565/24 nm, emission filter 620/52 nm,
and beam splitter HC BS 585 (AHF Analysetechnik AG, Tübingen, Germany). The final
fluorescence images used for analysis were maximum projections across z-stacks of 5 images
spanning 0.6 µm.

During experiments, the microscope was operated by the open-source software YouScope
[391]. Cell segmentation and tracking were performed on brightfield images using software
tools developed by [375] based on [392] and [393]. For each cell, the mean fluorescence in the
nucleus, cytoplasm, and across the entire cell were automatically calculated using custom
Matlab R� (MathWorks) scripts.

B.3.1 Scoring

0 min 10 min 20 min 30 min

Figure B.2: Representative time lapse of reporter system. Pictured are maximum projection
fluorescence images for cells under constant illumination, taken from one of four preliminary dose response
experiments (see Section B.5.1). Scale bar is 10 µm.

We assessed induction of gene expression using a fast-acting, nuclear translocation-based
reporting system [378], where higher responses corresponded to greater fluorescence in the
cell nucleus. Accordingly, we defined the scoring scheme as

score =
mean fluorescence in nucleus�mean fluorescence in cytoplasm

mean fluorescence across entire cell
(B.1)

such that a score of 0 indicates no di↵erence between nuclear and cytoplasmic fluorescence.
Our experiments required us to calculate the response score automatically at each time

step. The score for each automatically segmented cell was calculated for an approximated
location of the nucleus, determined as follows: First, an image was formed by taking a box
around the segmented cell in the maximum projection fluorescence image and converting
the non-cell pixels to black. A black border 5 pixels wide was added around the image.
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Then the image was blurred with a Gaussian filter of standard deviation 2 pixels and the
brightest pixel in the blurred image was located. This point was considered to be the center
of the nucleus. We noted by observation that the nucleus was almost always 5 pixels in
radius, therefore the pixels falling within a circle of radius 5 pixels around the center were
presumed to belong to the nucleus and were subsequently used in the calculations of the
mean fluorescence. All remaining pixels belonging to the cell were considered to belong to
the cytoplasm. The score was then calculated as indicated above.

We estimated the time constant for cell response as the time to reach half the maximum
score, calculated from an average score over cells. For these experiments, we sampled cells
every 2 min for a step input from zero to the maximum intensity delivered during patterning
experiments, and obtained a time constant of 10.9 min (N = 63 cells). We also calculated
the time constant based on an input drop from maximum intensity to zero, and obtained a
similar time constant of 10.3 min (N = 65 cells).

B.3.2 Segmentation/tracking errors

The automated imaging pipeline occasionally failed to identify cells in particular frames.
In the majority of cases the system was able to recover the cell within one or two frames.
In dose response experiments, cells that were not tracked for the entirety of a dose were
discarded. During patterning experiments, cells that were not tracked in a frame did not
receive input for the following 10 min, and scores for their corresponding patches were
calculated as averages over the scores of the remaining cells. In no experiments were all cells
in a patch simultaneously dropped in the same frame.

B.4 Light-delivery system

Optogenetic inputs were delivered to cells using the setup developed in [375], in which
images generated on the computer are projected by a digital mirror device through a system
of lenses that focuses the light onto a microscope slide. Two neutral density filters (Thorlabs,
25 mm absorptive, optical densities 0.5 and 1.3) were placed serially to achieve a total density
of 1.8.

To ensure light mapped properly from the projector to the cell, images were modified
prior to projection in order to map pixels on the DMD to pixels in the camera images.
The mapping was determined through the procedure outlined in [375], Figure S6B. The
procedure was performed immediately before experiment start on an area of the agarose pad
unoccupied by cells.

Custom Matlab R� code was used for manually calibrating projector intensity before ex-
periment start and for automatically carrying out experiments.



APPENDIX B. CELL-IN-THE-LOOP: MATERIALS AND METHODS 184

16-patch

K Fraction Dropped Measurements
0.1 0.041666667
0.1 0.029605263
0.1 0.049342105
0.1 0.026864035
0.2 0.038377193
0.2 0.038377193
0.2 0.091557018
0.3 0.10252193
0.3 0.097039474
0.3 0.064144737
1 0.029057018
1 0.04879386
1 0.090460526

36-patch

K Fraction Dropped Measurements
0.1 0.094298246
0.1 0.041666667
0.1 0.119152047
0.1 0.148391813

Table B.1: Fraction of all measurements that were dropped per experiment. One measurement
is a single cell in a single frame.

B.4.1 Ensuring uniform illumination intensity

We observed that there was a sigmoidal relationship between the administered illumina-
tion intensity and the measured illumination intensity in the projection images, and also that
images of uniform intensity did not evenly illuminate the sample plane. To compensate for
these e↵ects, we modified images before projection to linearize the administered-to-measured
intensity relationship and also to reduce the intensity of overilluminated regions to match
the level attained by underilluminated regions.

We calculated our intensity corrections based on the following model: If u is an N ⇥N
input image (normalized to [0, 1]) and ur is that image magnified to size M ⇥M , then the
measured intensity y (normalized to [0, 1]) is an M ⇥M -dimensional image given by

y = s(v(ur)) (B.2)

where s(·) is a sigmoidal function applied identically to each pixel, and v(·) is a function
that varies by pixel to represent the uneven illumination intensity. This suggests that, to
achieve a desired yd, an input image should be calculated as

ur = v�1(s�1(yd)) (B.3)
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(which can be appropriately resized to obtain u).
s�1(·) was already determined from previous experiments with the setup [375]. This

correction was calculated once, as it did not appear to change between experiments. v�1(·)
was calculated before each experiment by sampling the measured intensity at a number of
points spaced across the sample plane when the administered intensity was maximized. To
do so, one hundred circles arranged in a grid were projected one at a time onto the slide
at maximum administered intensity and the reflected images for each circle were measured.
The mean measured intensity of all the pixels in a single circle was treated as a sample
of the “true” illumination intensity at the point on the sample plane corresponding to the
center of the circle, such that a 2D quadratic polynomial surface could be fit to all mean
circle intensities in order to interpolate the illumination intensity at all points on the sample
plane. These sample points were normalized to the maximum and a second 2D quadratic
polynomial surface was fit to the inverse sigmoid of these normalized sample points. A target
intensity value was chosen and the surface fit was renormalized relative to this intensity value
to obtain a matrix V representing the factor by which bright areas were overilluminated
relative to areas of underillumination, such that the matrix Ṽ consisting of the element-by-

element inverse of V (i.e.,
h
Ṽ
i

ij

= 1
[V ]ij

) was normalized to [0, 1]. Subsequently, inputs ur

were calculated to achieve the desired output yd as

ur = Ṽ � s�1(yd) (B.4)

where � indicates element-by-element multiplication.
The sigmoidal intensity correction was used for all experiments. The flattening correction

procedure was carried out before experiment start on an area of the plate unoccupied by
cells, and was performed for all experiments except the dose response experiments.

B.5 Dose response

The theory relies on a deterministic dose response curve in which the expected steady-
state response score of a cell increases as a function of constant input intensity. We performed
a series of dose response experiments to verify that these conditions held for our yeast strain
and then calculated a dose response curve from the average response of cells to varying
measured projected intensities.

B.5.1 Preliminary dose response experiments verify gradedness
and independence of dose history

In order for the theory to apply, we needed to verify (a) that the magnitude of cell
response increased with received light intensity; and (b) that the dose response would be
independent of dose history for the duration of the final patterning experiments. By “dose
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history”, we refer to the number, intensity, and order of doses administered to cells prior to
a particular time of interest.

The following experiments were performed with an ND filter of optical density 2 (Thor-
labs, 25 mm absorptive). Cells were illuminated for 10 min with uniform light, then left in
the dark for 20 min before doses were administered. Cells were imaged every 10 min. Doses
were administered for 40 min and the administered intensity of a dose varied for di↵erent
collections of cells on the same plate simultaneously. Hereafter, we use “dose response ex-
periment” to refer to a particular collection of cells on the same plate receiving the same
series of administered doses. Two dose response experiments were conducted simultaneously
per plate, with four or five doses per experiment. For a single time point, the measured
projected intensity received by a cell was calculated as the average of the mean measured
projected intensity across all pixels occupied by the cell.

A series of general linear models were fit to the data for each cell. The natural log
of the score (response variable) was treated as a function of the agarose pad, frame, dose
number (ordered by time of appearance during experiment), frames since dose start, current
measured illumination intensity, and the measured illumination intensity for all frames up
to the minimum experimental duration (16 frames) before the current frame. Intensities for
time points before the start of the experiment were set to 0. An analysis of deviance for the
full model (Table B.2) suggests that the illumination history past the current illumination
contributes little to the current score.

Furthermore, we determined by observation that cells had reached a quasi-steady state
response before 30 min, and found that fitting a general linear model to steady-state times
only (30 min and 40 min into a dose) greatly diminishes the importance of plate, frame, dose
number, and frames since dose start (Table B.3). Moreover, a reduced model for the steady-
state score that includes only the current intensity has an AIC substantially similar to that
of the full steady-state model (2675 for the reduced vs. 2622 for the full). Together, these
analyses suggest that it is reasonable to consider steady-state dose response as a function of
current illumination intensity alone.

B.5.2 Procedure for final dose response experiments

Cells tended to respond much more strongly and unpredictably to the first administered
input than to later inputs regardless of the intensity of the first input. Therefore, before
administering any doses, all cells on the dish were illuminated for 10 min with uniform,
middling intensity light, then left in the dark for 20 min to allow the response to decay.
Multiple doses were then administered in immediate succession to cells on the plate. For a
single dose, cells were illuminated with individually targeted light with constant administered
intensity per cell. Cells were imaged every 10 min. Cells that were not successfully segmented
and tracked at all sampled time points in a dose were discarded. The steady-state response of
a single cell was calculated as the average of the scores from 40 to 80 min under illumination.

The final dose response curve was fit to data aggregated from three experiments. In-
dividual cell responses were binned by projected intensity into 6 quantiles. The final dose
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Variable Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL NA NA 4117 3905.828561 NA
Im0 1 1051.353764 4116 2854.474798 0
Im1 1 148.2219005 4115 2706.252897 1.65E-53
Im2 1 0.229287964 4114 2706.023609 0.544725097
Im3 1 4.35808067 4113 2701.665528 0.008275942
Im4 1 1.320218071 4112 2700.34531 0.146119572
Im5 1 0.074542198 4111 2700.270768 0.729833304
Im6 1 0.240410136 4110 2700.030358 0.535126523
Im7 1 1.161222828 4109 2698.869135 0.17286582
Im8 1 0.187482186 4108 2698.681653 0.583904657
Im9 1 2.286447549 4107 2696.395205 0.055792838
Im10 1 0.249079692 4106 2696.146126 0.527855487
Im11 1 0.596308281 4105 2695.549817 0.328685196
Im12 1 0.142415919 4104 2695.407402 0.633115034
Im13 1 0.323652973 4103 2695.083749 0.471767645
Im14 1 0.836572299 4102 2694.247176 0.24730139
Im15 1 1.060493657 4101 2693.186683 0.192713497
Im16 1 3.170352656 4100 2690.01633 0.024309053

FramesSinceDoseStart 1 106.9288382 4099 2583.087492 4.29E-39
Pad 1 13.86651829 4098 2569.220973 2.47E-06

Frame 1 0.002190109 4097 2569.218783 0.952796489
DoseNumber 1 9.159326761 4096 2560.059457 0.00012912

Table B.2: General linear model of cell response score at all points in time. Model was calculated
using data from four preliminary dose response experiments. ImX indicates the measured projected intensity
preceding the current by X frames (0 is current frame). The AIC for this model is 9745. As expected, the
time since dose start contributes a large drop in deviance, as cells did not instantly settle to a new steady
state when the intensity was changed.

response curve in the form of a leaky activating Hill function

f(x) = a+ b
xn

cn + xn
(B.5)

was fit to the mean score values within each quantile vs. the mean measured projected
intensity within that quantile.

B.5.3 Patch-level dose response

The deterministic theory operates under the assumption that the dose response curve
is identical for all cells and therefore all patches. To examine the similarities between the
empirical fitted dose response curve and actual patch-level dose responses, we bootstrapped
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Variable Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL NA NA 1185 1140.234564 NA
Im0 1 481.0998049 1184 659.1347596 1.03E-201
Im1 1 15.65834255 1183 643.476417 4.58E-08
Im2 1 0.206888356 1182 643.2695287 0.529734222
Im3 1 1.351828641 1181 641.9177 0.108199518
Im4 1 1.058581525 1180 640.8591185 0.155179456
Im5 1 0.658939118 1179 640.2001794 0.262075464
Im6 1 0.111574008 1178 640.0886054 0.644450512
Im7 1 0.009561578 1177 640.0790438 0.892536317
Im8 1 2.783572744 1176 637.2954711 0.021164596
Im9 1 1.374292916 1175 635.9211782 0.105311673
Im10 1 3.334521299 1174 632.5866569 0.011640495
Im11 1 1.633214394 1173 630.9534425 0.077459177
Im12 1 0.519193207 1172 630.4342493 0.319493668
Im13 1 0.000278015 1171 630.4339712 0.981621402
Im14 1 3.592110318 1170 626.8418609 0.008831956
Im15 1 2.201528614 1169 624.6403323 0.040371525
Im16 1 3.868935675 1168 620.7713966 0.006577405

FramesSinceDoseStart 1 4.202474492 1167 616.5689221 0.004622429
Pad 1 0.000989428 1166 616.5679327 0.965336552

Frame 1 6.225817085 1165 610.3421156 0.000566296
DoseNumber 0 0 1165 610.3421156 NA

Table B.3: General linear model of cell response score during steady state. Model was calculated
using data from four preliminary dose response experiments for steady-state frames (30 and 40 min after
dose start) only. ImX indicates the measured projected intensity preceding the current by X frames (0 is
current frame). Note that the frames since dose start, pad, frame, and dose number are less significant in
this model relative to the full model in B.2. The AIC for this model is 2622.

from a single dose response experiment for N = 100 patches with 4 or 6 cells per patch.
Our final setup did not permit us to construct full dose response curves for individual cells
or patches, as we could administer a maximum of four doses per experiment, which is not
su�cient to fit a curve with four degrees of freedom. Therefore, we visually compared a linear
interpolation of bootstrapped dose responses to the administered doses with the empirical
fitted dose response curve (Figure B.3). The patch-level dose responses do exhibit some
level of variation (higher for higher projected intensity), which probably manifests in the
experiments as systematic variation in average patch intensity. This patch-patch variation,
in turn, may be the most notable contributor to the experiment-to-experiment variation in
exact contrast level and overall brightness observed in our patterning system (Figure 4.7,
Figure 4.6).
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Figure B.3: Patch-level dose responses approximate empirically fitted dose response. Fitted
dose response (red) vs. 100 bootstrapped dose responses (blue) for patches of 4 or 6 cells, drawn from a
single dose response experiment. Note that the fitted response is a curve, while the bootstrapped responses
are linear interpolations over four points.

B.6 Patterning experiments

Before experiment start, all cells on the plate were illuminated for 10 min with uniform,
middling intensity light, then left in the dark for 10 min such that responses would not fully
decay, allowing for some initial variation in nuclear localization score. Experiments lasted
3 hr, during which cells were imaged and their inputs adjusted every 10 min. Preliminary
experiments confirmed that cells were alive and responsive up to 6 hr after placement under
the microscope, although final experiments were constrained to 3 hr to ensure cells remained
in a monolayer.

B.6.1 Patch construction

Cells were randomly assigned to groups with a fixed number of cells per group. Each
group corresponded to a single computationally defined “patch”. The score for a patch was
calculated as the average of the scores of the cells comprising the patch. By “administering
an input to a patch”, we mean the cells in that patch were individually targeted with the
same administered input. Most experiments were performed with 16 patches of 6 cells per
patch. Higher-dimensional experiments were performed with 36 patches of 4 cells per patch.

Patches were arranged in “virtual space” into a square grid where each patch was con-
nected to (interacted with) each of the patches to the north, south, east, and west, with
periodic (wrap-around) boundary conditions such that each patch interacted with four other
patches (its “neighbors”). Note that, because cells were randomly assigned to patches, cells
to neighboring patches in virtual space were not necessarily adjacent in real space.
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B.6.2 Input adjustment time

The frequency of input adjustment was lower bounded by the amount of time it took for
image acquisition and analysis (minimum ⇠2 min, somewhat longer the more cells were in
the field). Adjustment time was also loosely upper bounded based on the practicality that
cells would eventually grow out of a monolayer, which mandated that inputs be adjusted
with enough frequency for a pattern to appear within 3 or 4 hours.

Within these constraints, we chose the frequency of input adjustment to be on the same
order of magnitude as the response time of the cells. Specifically, we decided to adjust inputs
faster than the ⇠20 or 30 minutes for individual cells to reach steady state so that we could
(a) ascertain when the full system (not just individual cells) had reached steady state by
plotting the instantaneous input/output relation during the experiment, and (b) subject the
theory to a more stringent test (i.e., make sure transient patch dynamics could still a↵ect the
dynamics of the full system without nullifying predictions made from single-cell steady-state
behavior alone).

B.6.3 Signaling relation

Every imaging period (10 min), the input to each patch was adjusted according to the
signaling relation, which was chosen to be a Hill function with a minor computational ad-
justment to better utilize the available range of illumination intensities. Specifically, the
relation was given by

h(v) =
Kn

Kn + (max(smin, v)� smin)n
(B.6)

where v was the average score across all four neighbors of a patch, n was fixed at 2, and the
minimum score smin := 0.05 was the cuto↵ to deliver maximum illumination intensity. The
bifurcation parameter K was fixed within a given experiment at a value between 0.1 and 1,
with higher K corresponding to weaker repression.

In particular, let xi

k
be the score of the ith patch in the kth frame, and ui

k
be the input

to the patch between the kth and (k + 1)th frames. Then ui

k
was calculated as

ui

k
= h

 
X

j

xj

k

!
(B.7)

where the summation is taken over the neighbors of patch i and L(·) is as given in equation
(B.6).
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