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Abstract

Next-generation coarse-grained models for molecular

dynamics simulations of fluid phase equilibria and protein

biophysics using the relative entropy

Tanmoy Sanyal

Coarse grained models for molecular dynamic simulations of liquid structure

and protein folding and self-assembly have been the subject of decades of research

efforts. Although such models enable probing into longer length and time scales,

they are still limited in accuracy and scale poorly to thermodynamic conditions

or chemical entities beyond the ones at which they are developed. In this work, I

leverage a powerful coarse graining framework based on an information theoretic

metric known as the relative entropy to design novel coarse grained models for

equilibrium phase behavior in liquid mixtures that correctly address the relevant

manybody physics critically involved in phase behavior and thus, can provide

structurally accurate descriptions of macroscopic phase separation across a large

range of mixture compositions. I also develop protein models that are “next-

generation” in the sense that they are systematically extendable in complexity

while depending minimally on experimental data. These protein models offer

remarkable predictive accuracy for folding of single proteins and insights into large

scale protein self-assembly commonly seen in neurodegenerative pathologies such

ix



as Alzheimer’s and prion diseases. This dissertation develops and applies powerful

coarse-graining techniques to meet longstanding challenges in the field and elevate

coarse grained models from being “toy” systems to accurate, “production-level”

tools for the development of biotechnologies and advanced materials.
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Chapter 1

Introduction

1.1 Motivation and Applications

The objective of this thesis is to construct computational algorithms for de-

veloping bottom up coarse grained (CG) models for molecular dynamics (MD)

simulation, which can be broadly useful in studying two important families of

physical phenomena: phase behavior, especially in liquids and protein folding and

self-assembly. MD simulations with detailed atomistic resolution were first intro-

duced by Alder and Wainright in the the 1950s, as a simplified classical mechanical

description of nature, treating atoms as point particles and evolving their posi-

tions in time by integrating Newton’s laws of motion.2 To accurately resolve fast

degrees of freedom such as bond vibrations, and to preserve numerical stability,
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such time integration can only progress very slowly, typically using timescales of

1 fs or less. Owing to the rapid progress in hardware and algorithms, atomistic

MD has advanced greatly in terms of system size.3 However, even with today’s

resources, MD is still limited to timescales of microseconds and lengthscales of

tens of nanometers. Coarse graining MD simulations can tackle this issue by re-

ducing degrees of freedom, so that longer length and time scales can be probed.

CG models have been widely used in studying the driving forces like hy-

drophobic interactions in liquid phase equlibrium.4–6 Hydrophobic interactions

are ubiqutious in nature. They are one of the most important driving forces

for self-assembly in biomolecules like proteins and DNA. At the macroscale, hy-

drophobic interactions are responsible for phase equilibrium in multicomponent

fluid mixtures which in turn is the guiding physical principle for designing a wide

variety of everyday consumer products like shampoos, gels, toothpastes, deter-

gents, etc. Closely related to phase equilbrium is the segregation or transition

between phases, and for liquid mixtures, this forms the basis of unit operations

like liquid-liquid phase segregation which has widespread applications in food pro-

cessing, organic synthesis, petroleum refineries, renewable energy, nuclear repro-

cessing, and biotechnology. Water mediated hydrophobic interactions are mani-

fested through water’s orientational hydrogen bonds with itself and other solutes.
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CG models of water or aqueous systems often coarse grain water into spherical

isotropic particles, and in some cases completely remove water to construct what

are called “implicit water” models.7–13 Removing water completely is attractive

from a practical standpoint, since it takes up about 70% of the computational

effort even for small solutes. Single-site CG or implicit water models essentially

remove water’s orientational degrees of freedom and its hydrogens, and thus, must

necessarily renormalize these interactions suitably to ensure the correct thermo-

physical behavior of the CG model. This is challenging to do with current CG

models,the details of which are explained in section 1.2. Chapters 2 and 3 of this

dissertation introduces simple methods to solve both the problems of developing

accurate implicit water models and structurally faithful CG descriptions of phase

equilibrium in liquid-liquid mixtures.

Protein folding and self-assembly mechanisms form the basis of the cellular ma-

chinery necessary for life. They are also key in biotechnological applications such

as high throughput drug design.14–16 CG models for peptides have been mostly

useful in uncovering the driving forces responsible for the folding process, but so

far, have not achieved structurally accurate predictions of structure. Further, CG

peptide models typically embed bioinformatic and experimental data that fore-

stalls the systematic incorporation of synthetic chemical constructs or extension
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to sequences for which native structures have not been solved. Closely related

is the phenomena of protein misfolding and aggregation which is responsible for

several neuro-degenerative diseases like Alzheimer’s, Parkinson’s, ALS and a wide

family of prion diseases.17,18 The lack of an accurate CG peptide model further

complicates macrostructure prediction of protein aggregates involved in the afore-

mentioned conditions. In this dissertation, we develop “next-generation” peptide

models for structure prediction and apply CG polypeptide models to probe the

connection between monomer conformation and the shape and stabilities of fib-

rillar agglomerates that arise from their anomalous self-assembly. This may serve

as a minimal model system for investigating the recently observed conformation

dependent differences in aggregation behavior of the tau protein implicated in

Alzheimer’s and Pick’s diseases.19,20 By next-generation, we mean CG models

that can be systematically extended to include sequence specific effects and inter-

molecular interactions such as with other peptides (or ligands or surfaces) without

explicitly requring reparameterization for different sequences.

It should be noted that each of the projects addressed in this thesis illustrates

proofs of principle through candidate test systems. Scaling up these methods

will require more atomistic simulation data using preferably the most accurate

and current AA forcefields to train “production-level” CG models that can be
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used to not only rationalize the design principles for liquid phase equilibria and

protein folding and self-assembly, but also match experimental data as closely as

possible. Such scaling-up may also require using some experimental data during

the parameterization, which is briefly discussed in chapter 6.

1.2 Bottom-up coarse-graining and the problem

of transferability

The most accurate description of reality at small molecular scales is inevitably

quantum mechanics, and consequently the most detailed molecular simulation

would be one that solves Schrodinger’s equation for all the particles involved.

However, beyond simple one or two electron systems, fully quantum descriptions

embed significant manybody physics and as such is intractable by today’s com-

putes. Thus atomistic MD simulations are already a coarse grained description of

nature that renormalizes the probabilistic nature of electronic distribution around

atomic nucleii and the net nuclear-electron interaction into effective parameters

like partial charges, bond lengths and angles, and Lennard Jones interactions be-

tween point-particle like atoms. Further up this coarse graining cascade, lie the

class of CG models addressed in this dissertation. These models involve cluster-

ing groups of atoms into CG “pseudoatoms” or sites. Parameterizing such a CG

model typically amounts to “designing” the interactions between the CG sites such

5
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that the model can reproduce relevant thermophysical properties of the atomistic

system. Coarse graining can be top-down, where CG interactions are paramter-

ized by directly fitting thermophysical observables either from experiment or from

ensemble averages from all-atom (AA) trajectories, or a combination of both. In

this work, we focus on bottom up strategies where degrees of freedom are system-

atically removed from a AA system.

The two elements in bottom up coarse graining is a mapping operation R =

M(r) and a CG forcefield or Hamiltonian UCG(R). M(r) is a mapping operator

that translates atomistic degrees of freedom r to a coarse grained configuration

R. CG sites are typically placed at the center of mass of the corresponding group

of atoms which reduces M to a matrix. The CG forcefield UCG(R) is effectively a

potential of mean force (PMF) that can be written as:

UCG(R) = −kBT ln

∫
V

dre−βUAA(r) δ[R−M(r)] (1.1)

where UAA(r) is the AA forcefield, T is the ambient temperature and kB is the

Boltzmann constant. The Dirac delta projects the atomistic potential energy sur-

face on to the CG degrees of freedom R. The resulting CG energy landscape is

much smoother enabling faster equilbrium in a MD simulation. Because of the

coarse graining process, CG degrees of freedom are inherently coupled to each

other so that UCG is a highly multibody interaction. However, current CG mod-

6
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els approximate the CG PMF as a pair potential for computational expediency.

Neglecting manybody effects in CG models limits their transferability to thermo-

dynamic states (temperature, density, etc.) beyond which they are parameterized.

State point transferability of CG models not only reduces the tedium of repa-

rameterization at every state, it is necessary for simulations in the isothermal-

isobaric (NPT) ensemble. NPT simulations involve constant fluctuations in bulk

density, such that an accurate CG model must be transferable across the spec-

trum of densities sampled by the system. Since the average distance between any

two CG particles can be related to the bulk density, CG models that are built

entirely from pair potentials embded significant sensitivity to bulk density by ne-

glecting the inherently multidimensional nature of the underlying CG PMF. Fig.

1.1 shows CG pair potentials for a single site CG model of water (parameterized

with the relative entropy method, discussed in section 1.3) developed from an AA

MD simulation with the TIP4P/2005 forcefield. Three CG pair potentials are

constructed by holding the system density fixed at 1.10, 1.17 and 1.25 g/cc. The

CG pair potential is extremely sensitive even to small changes in bulk density:

the shape of the potential changes significantly from a deep inner core at lower

densities to a shoulder at higher densities. Also, the inner well depth decreases by

∼ 7.5 kcal/mol from 1.10 g/cc to 1.17 g/cc. As such, none of these potentials alone
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Figure 1.1: CG pair potentials (upair) for a single site CG model of water opti-
mized (using the relative entropy method) from a atomistic simulation using the
TIP4P/2005 water model. The box density is held fixed at 1.1, 1.17 and 1.25 g/cc.
Even for small changes in bulk density, CG pair potentials vary considerably in
shape (the inner well converts to a shoulder at 1.25 g/cc) and location of the inner
well (∼ 7.5 kcal/mol lower at 1.17 g/cc than at 1.10 g/cc)
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can be used at a density different from the one at which they were paramterized.

Chapters 2 and 3 introduce and use the LD potential as a minimal correction over

CG pair potentials to embed multibody correlations in CG models of liquids and

make them more transferable across densities.

Further, chemical transferability of peptide CG models may provide a simple

way to rationalize relevant interactions in terms of the intrinsic properties of the

peptide chain alone, and still achieve correct secondary structure prediction with-

out having to reparameterize for different sequences. In chapter 4, we develop CG

models of polypeptides that exclusively stabilize α-helical and β-sheet structures,

and subsequently combine them to produce a hybrid CG model that transfers

across both α and β regions of the space of backbone dihedrals.

1.3 Relative entropy coarse-graining

Determining an effective CG forcefield from a detailed accurate AA model is a

nontrivial inverse design problem. A natural approach is to tune CG interactions

to match specific simulation averaged properties or their distributions from the

AA system. The literature points to two major families of such efforts: struc-

ture based coarse-graining and force-matching. Structure based methods such as
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inverse Monte-carlo21 or iterative Boltzmann inversion22 try to match pair correla-

tions (or radial distribution functions (RDFs)) of the target AA system, and have

enjoyed considerable success for modeling simple polymer and lipid bilyaers.23,24

Force matching aims to match the average interatomic forces between AA and

CG models and has been developed by Voth and co-workers through their Multi-

scale Coarse-Graining (MS-CG) framework.25,26 The MS-CG approach has been

useful in generating CG potentials for phospholipids and biomolecules including

peptides and lipid membranes.27–31

In this dissertation, we use the relative entropy method pioneered by Shell

and co-workers.32–34 In this approach, instead of searching for candidate thermo-

physical properties that can be matched, one seeks to directly match the entire

microstate probability distribution pAA of the AA system with that of the CG

model, pCG. In principle, this ensures an accurate match of all relevant simula-

tion observables (averaged or distributions) from the AA system.33,35 The relative

entropt between a CG model and its reference AA system is given by:

Srel =

∫
pAA(r) ln

(
pAA(r)

pCG(M(r))

)
dr + Smap (1.2)

where, as mentioned before M(r is the mapping matrix that coarse grains groups of

atoms to representative CG sites. The integral proceeds over all AA microstates

r, though it can be recast using only the CG degrees of freedom R. Smap is a
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mapping entropy that accounts for the degeneracy of the mapping process, i.e.,

it measures the number of different AA configurations that map to the same CG

one. Smap is a function of only the mapping operator M and is independent of the

CG forcefield UCG. In the different projects addressed in this thesis, our choice of

the mapping is motivated by simple physical arguments and past literature; for

instance, removing water in implicit water models to reduce unnecessary compu-

tational cost, or coarse graining amino acids into four CG sites, which has been

shown to better capture structural properties than two or three site models for

peptides. Ultimately, determining the optimal AA to CG mapping is an open

problem that has not been completely solved. But in this dissertation, M(r) is

fixed prior to paramterizing the CG model, such that Smap is constant.

Srel is an information theoretic metric, known as the Kullback-Liebler diver-

gence in the statistics literature.36 It measures the overlap between AA and CG

microstate probability distributions and therefore quantifies the information lost

in reducing the degrees of freedom from AA to CG representations. Minimizing

the relative entropy with respect to the CG model parameters therefore provides

a natural route to estimating these parameters and consequently UCG. Relative

entropy minimization is more general than structure or force matching techniques

since the AA and CG models need not be MD simulations necessarily, e.g. either

11
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or both of them can be lattice models that utilize monte-carlo moves to sample

their corresponding energy landscapes. Importantly however, the relative entropy

method requires both AA and CG systems to be in thermodynamic equilibrium,

although Espanol and Zuniga have discussed extensions of the relative entropy

to dynamic CG simulations by minimizing a “dynamic” relative entropy (involv-

ing two time correlation functions) with respect to drift and diffusion terms in a

Fokker-Plank like CG model.37 Further, Sivak and Crooks have shown that the

relative entropy is linked to the nonequilibrium work required to convert the CG

model back to the correct AA ensemble.38 The relative entropy approach has been

used by Shell and co-workers to develop single-site CG water models that capture

several bulk properties and hydrophobic interactions.39,40 It has also been used

to develop extremely accurate CG models of polyalanine which quantitatively re-

produce folding behavior,34 and have been used to explore self-assembly in surface

tethered polyalanines conjugated with superhydrophobic polymers.41

1.4 Organization of thesis

Chapter 2 of this thesis introduces a simple and computationally efficient,

mean-field manybody CG interaction called the “local density potential” that

can supplement traditional CG pair interactions, to build back the much needed

12
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manybody effects inherent to CG models. We demonstrate the relative improve-

ment over pair-potential-only CG models by paramterizing local density (LD)

assisted forcefields for two candidate systems of small hydrophobes: an implicit

water model to study folding and collapse of a superhydrophobic alkane-like poly-

mer, and the co-operative aggregation of superhydrophobic methane like parti-

cles. Chapter 3 utilizes the LD potential to develop structurally accurate CG

models that can predict macroscopic phase separation in binary liquid mixtures,

specifically benzene in water, and are transferable across a wide range of mix-

ture compositions. In chapter 4, we extend Carmichael and Shell’s four-site CG

polypeptide model41 to construct robust CG backbone models for protein folding

simulations. The backbone forcefields are combined with idealized and simplistic

sidechain interactions, so called Gō models which depend on the native structure

as input, to correctly fold both short peptide fragments and longer globular pro-

teins, as well as very large (≥ 200 residues) sequences that is prohibitively difficult

using all-atom MD. In chapter 5, we utilize CG polyvaline models to investigate

the role of oligomer conformation on amyloid stability, in templated self-assembly

of peptides commonly seen in neuro-degenerative diseases like Alzheimer’s, ALS,

Parkinson’s, prion diseases, etc. Finally, chapter 6 summarizes the main results of

this thesis and provides future directions for refining our CG protein forcefield and

general numerical improvements to the relative entropy optimziation algorithms.

13



Chapter 2

Coarse-grained models using
local-density potentials optimized
with the relative entropy:
Application to implicit solvation

2.1 Introduction

Molecular dynamics (MD) simulations with detailed atomic resolution have

advanced greatly over the last few decades due to hardware and algorithm im-

provements, particularly in terms of tractable system size.3 However, coarse-

grained (CG) models have become essential counterparts to all-atom (AA) mod-

eling, bridging their limitations potentially in orders of magnitude further in length

and time scales through the elimination of unnecessary details and identification

of emergent physical models. In particular, “bottom-up” CG strategies seek to

systematically remove degrees of freedom by grouping two or more atoms into
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a single CG “pseudoatom” or “site.” While such methods have seen a flurry of

activity in the past two decades,21–23,25,26,32,42–46a major outstanding challenge

is achieving computationally efficient ways to represent CG interactions faith-

fully. In principle, by integrating out degrees of freedom in an AA model, the

appropriate effective interaction “potential” between the remaining CG sites is a

multidimensional potential of mean force (PMF), which is unique to an additive

constant,26,47–50

W (R) = −kBT ln

∫
V

dre−βu(r) δ[R−M(r)] (2.1)

Here, V and T are the system volume and temperature, respectively, u(r) is the

inter-atomic potential that is a function of the atomic positions r, and the integral

spans all values of r consistent with the system volume V . M(r) is a “mapping

function” that translates an atomic configuration r to a CG one R. For the spe-

cial case in which the center of mass of a group of atoms is mapped onto a single

CG site, M becomes a n×N matrix, where n is the number of atoms in the AA

system and N is the number of CG sites. The Dirac delta function within the

integral thus serves to project the AA potential energy surface along the reduced

degrees of freedom (R) of the CG model.

Bottom-up strategies seek CG forcefields that well-approximate W, but two

challenges arise. First, W is by nature a multibody interaction because CG de-
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grees of freedom are highly coupled through the AA ones that were integrated

out, and in turn, it is not well-modeled by computationally efficient (and tradi-

tionally used) pair nonbonded terms.21,23,25,26,34 Thus, while many CG models

are able to capture pair structure and related properties, higher order correlations

and cooperative effects are often poorly represented.51,52 Second, W is a free en-

ergy that has a state dependence because the integral in Eq. (2.1) involves the

temperature and volume, and it is not usually clear how this dependence can be

captured simply.53–56 This makes it difficult to transfer the CG potential to states

other than the one at which it was parameterized.

In this work, we explore the use of mean-field multibody potentials in the de-

velopment of CG force fields and characterize the extent to which they improve

on the multibody and transferability problems for systems involving the solva-

tion of hydrophobic solutes. Specifically, we use “local density” (LD) potentials

that assign an energy to a CG site based on the number of neighboring sites of a

given type that lie within a predetermined cutoff distance. Such potentials aug-

ment the usual pair nonbonded interactions but remain computationally efficient,

scaling similarly in simulation cost. This strategy is inspired by embedded atom

and bond order potentials that attempt to capture multibody electronic effects

in metal systems.57–61 Here, however, we generalize the approach in CG systems,
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describe a systematic parameterization procedure, and test its application to CG

implicit solvation models involving idealized alkane-like solutes in aqueous media.

The transferability problem, which refers to a CG forcefield’s ability to predict

thermophysical properties at states different from those at which it was parame-

terized, has been characterized by a number of groups.4,51–53,55,62–64 Proper trans-

ferability is important not because it eliminates the need to re-parameterize the

CG model at different states, but because it ensures thermodynamic consistency

and validity of the CG model in all statistical–mechanical ensembles.52 Several

attempts have addressed the specific issue of transferability in CG models of aque-

ous solutions of macromolecular solutes. Mullinax and Noid proposed an extended

ensemble approach that parameterizes a single CG model by combining informa-

tion from an “ensemble” of AA reference simulations at different state points,

thus fixing a priori the regime of transferability of the CG model in state-point

space.63 Villa, Peter, and van der Vegt used a modified iterative Boltzmann inver-

sion scheme22 to develop CG models of aqueous solutions of benzene, observing

that the use of pair potentials for intermolecular interactions limited the regime of

transferability of the models to dilute concentrations.4 Other recent developments

addressing transferability include bulk and local density based corrections to CG

forcefields as ways to account for multibody effects not taken into account by CG
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pair potentials, discussed below.64–67

Are there computationally efficient ways to incorporate multibody effects into

bottom up CG models, to improve their fidelity and transferability? One approach

adds three (or higher) body terms to the CG forcefield. Indeed, Molinero and co-

workers used three body Stillinger-Weber68 potentials to describe hydrogen bond-

ing in a single site CG model of water,69,70 which has been shown to have excellent

accuracy compared to detailed AA water models. While this approach has even

been successfully translated to non-bulk scenarios,71 CG potentials for water might

be simple to intuit and implement because of its tetrahedral geometry, whereas

general three body potentials for arbitrary interactions may prove conceptually

and computationally more difficult to parameterize.72 Moving towards broader

approaches, Voth and co-workers developed a method to systematically param-

eterize generalized Stillinger-Weber forms within the multiscale coarse-graining

force-matching framework, which they also used to create CG models of water.73

Das and Andersen later proposed an even more general three-body scheme using

adaptively applied “multiresolution” functions similar to wavelets to provide a

larger basis set for the CG forcefield.72
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Here, we explore an alternative, mean-field approach to incorporate multibody

effects, whereby a particle’s energy is modulated by the local density of neighbor-

ing CG sites around it. We are inspired by the Embedded Atom Method (EAM)

of Daw and Baskes,74 which was a historical improvement on internuclear CG pair

potentials used to model metallic cohesion.57,74 In this case, the electronic degrees

of freedom are coarse-grained out of the picture, but the contribution of the local

electronic environment is captured by assigning an effective electron density to

each nuclei that gives rise to an “embedding” energy. Such an approach is intrin-

sically multibody in nature because the embedding energy can depend nonlinearly

on the local electron density. At the same time, it is computationally efficient,

requiring only two pair interaction loops: one to compute the densities at each

nuclei and the other to evaluate energies and forces. Interestingly, Ercolessi and

Adams also used similar manybody potentials in their seminal paper that intro-

duced the force-matching algorithm.42

We propose to expand the EAM framework to “local density” potentials that

can be applied generally to CG models as a simple way to include multibody ef-

fects. In this case, a site experiences a local density energy that is modulated by

the number of sites of a given type (or types) within a cutoff radius. To parameter-

ize and develop the form of these potentials, we propose to use the relative entropy
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coarse graining framework,32,34 which provides a general optimization strategy to

minimize the information lost in a CG model, relative to a reference target AA

system.

We note several closely related efforts in the literature. Allen and Rutledge

proposed global and local density-based corrections to standalone CG pair poten-

tials in constructing implicit solvent models.65,66 They parameterized the correc-

tions in terms of the excess chemical potential for the transfer of solute groups

from a “solvent exposed state to a fully screened environment,” since the rela-

tive hydrophobicity of a solute depends on the change in chemical potential when

passing from a solvent-exposed to a solute-screened state. In addition, Izvekov

et al. proposed CG models using pair potentials whose corresponding pair forces

vary with the average local density of the two interaction sites;67 the pair forces

and potential at each local density are determined through force-matching on a

system at the same bulk density. (We note that, in a very recent work by Moore et

al., this CG model was extended to include density dependence through a form of

the CG forcefield that conserves energy and is amenable to a dissipative-particle-

dynamic treatment.75) Finally, Dunn and Noid investigated the effect of global

volume dependent corrections to pair CG potentials, determined by matching the

ensemble-averaged pressure between the AA and CG representations.64 Their
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approach was able to accurately capture the bulk density, compressibility, and

pressure in pure liquids like n-heptane and toluene.

It is instructive to compare our local density formalism with the aforemen-

tioned flavors of density dependent CG potentials. First, the above methods

involve parameterization that happens at the global level (e.g. pair interactions

are determined at a fixed bulk density). In the first two approaches, the use of

local densities then either corrects65,66 or reformulates and applies at the local

level67 these globally determined interactions (e.g. pair potentials are selected

by a local density). In contrast, the approach that we consider directly opti-

mizes all potentials from statistics of local densities in the reference ensemble,

without the need for multiple systems at varying bulk conditions and the approx-

imations/assumptions needed to translate them to the local level. Second, the

use of a mean-field term for the local density potential ensures that, formally, all

forces are at most pairwise in computation cost, as shown by Frenkel and Pag-

onabarraga.76 In cases where a pair potential is modulated by an average pair

local density,67 instead of using a separate mean-field local density additive term,

forces incur three body loops in principle to account for the influence of third-

party sites on the local density and hence interactions associated with a given pair.

Third, the robustness of the relative entropy minimization framework allows us

21



Chapter 2. Coarse-grained models using local-density potentials optimized with
the relative entropy: Application to implicit solvation

to simultaneously and generally optimize both the CG pair and the LD potential

components of the forcefield, instead of relying on different objective functions for

separate construction of the two.75

As an application of our approach, we use local density potentials to develop

bottom-up implicit aqueous solvation models. Water is a ubiquitous solvent, par-

ticularly in biology, and all-atom water in simulations of solvated macromolecules

can dominate computational effort,77–80 making it an attractive target for removal

during coarse-graining. In implicit models the effect of solvent is incorporated into

the effective solute interatomic interactions, and a wide range of approaches have

been proposed.7–13 The approach here is unique in that we use a bottom-up

coarse-graining technique to uncover the form of the potential from reference AA

simulations with explicit water. Specifically, we study the hydrophobic collapse

of a polymer and the aggregation of small hydrophobes in water, where the water

is coarse-grained out entirely.

Water-mediated, and in particular hydrophobic, interactions are critical to

many biophysical phenomena, from protein folding to membrane formation,81–83

and can be highly multibody in nature.84,85 For example, early studies reported

that free energy for trimerization of methanes in water cannot be decomposed into
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a sum of two-body terms obtained from the dimerization process.86–89 While there

has been some controversy as to whether the three-body effect has a positive86 or

an inhibitive87,88 (anti-cooperative) effect on methane aggregation, there is evi-

dence that it is non-negligible even for moderately high solute concentration.89,90

Higher order correlations may also be relevant to electrostatic interactions in wa-

ter clusters (through underlying polarization effects)91 and more generally.92

Local density potentials are one strategy to capture such multibody effects in

implicit solvation models, but they also offer the ability to directly control var-

ious particle number fluctuations in the neighborhood of a solute. This point is

key as the recent theory93,94 and simulations95 suggest that hydrophobic inter-

actions may be understood in terms of fluctuations in the local density of water

vicinal to a solute. Indeed, Garde and coworkers have shown that local water

density fluctuations are an important signature of molecular hydrophobicity and

have theoretical connections96,97 to compressibility of the solute hydration shell

of water molecules. For example, local density fluctuations in water near a sol-

vated polymer directly affect the associated hydration free energy and hence its

collapse characteristics.1,98–100 Below we explore the extent to which local density

potentials can improve on CG models of aqueous solvation of hydrophobic solutes.
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The remainder of this chapter is organized as follows. Section 2.2 presents the

mathematical structure of the local density potential and outlines its theoretical

connections to multibody effects. Section 2.3 uses relative entropy minimization to

parameterize these CG models for two hydrophobic solute systems and examines

their ability to predict structural metrics, including when transferred to systems

of different kinds. Finally, Section 2.4 concludes the chapter.

2.2 Methods

2.2.1 Theoretical formulation for local density potentials

For the purposes of illustration, we first consider a CG model consisting of a

single type of pseudoatom. In this case, we can measure the local density ρi of

a site i as the total number of neighboring sites that are within a fixed cutoff rc,

using

ρi =
∑
j 6=i

ϕ(rij), (2.2)

where ϕ(rij) is an indicator function that is 1 for neighboring site j when its pair

distance rij is within a cutoff rc. In this manner, ρi measures a local coordination

number for neighbors around site i. In turn, the contribution to the total LD
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energy, for each such atom i, is a (yet unspecified) function of the local density,

ULD =
∑
i

f(ρi) (2.3)

In practice, ϕ can be a smooth function that quickly but continuously decreases to

zero at rc to ensure the continuity of its first derivative and thus of the interaction

forces in a MD simulation. We choose a computationally convenient form that

does not require absolute pair distances or square root operations

ϕ(r) =



1, r ≤ r0

c0 + c2r
2 + c4r

4 + c6r
6, r ∈ (r0, rc)

0, r ≥ rc

(2.4)

Here, the coefficients {c} are determined by requiring continuity of ϕ and its first

derivative at the “outer” cutoff rc and at an “inner” cutoff r0 that is slightly

smaller. Throughout this chapter we maintain r0 = rc - 1.2 Å,

c0 =
1− 3r20/r

2
c

(1− r20/r2c )3
, c2 =

1− 6r20/r
2
c

(1− r20/r2c )3
,

c4 =
3(1 + r20/r

2
c )

r4c (1− r20/r2c )3
, c6 =

2

r6c (1− r20/r2c )3
(2.5)

The indicator function is illustrated in Fig. 2.1

In this approach, the calculation of local densities has a similar computational

complexity as pair potentials (O(n2), ostensibly, but less with neighbor lists). In
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Figure 2.1: Indicator function ϕ(r) for local density potentials, as given in Eq.
(2.4) ϕ goes to zero quickly and continuously between an inner cutoff r0 and an
outer cutoff rc. Here r0 = rc - 1.2 Å has been chosen.

practice, it requires two pair loops: the first calculates the local densities at each

site, and the second evaluates the energies and pair forces.

The complete CG forcefield uses ULD as an additive correction to the tradi-

tional two-body pair potentials upair and can be written as

UCG =
∑
i<j

upair(rij) +
∑
i

f(ρi) (2.6)

In our approach, we do not specify a specific functional form for the LD poten-

tial but represent it as a flexible spline whose coefficients (i.e. knot points) are

determined through the process of relative entropy optimization with respect to
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a reference all-atom ensemble.

For CG models with more than one pseudoatom type, there are multiple ways

to define a local density, depending on both the central and neighboring types,

and hence it is possible to include several distinct LD potentials. A general for-

mulation of the approach includes an arbitrary number of distinct local densities

and associated LD potentials, indexed by a variable k,

ρ
(k)
i =

∑
j 6=i

b
(k)
β(j)ϕ(rij) (2.7)

and

ULD =
∑
i

∑
k

a
(k)
α(i)f

(k)(ρ
(k)
i ) (2.8)

Here, a and b are filters for central and neighbor sites, respectively (and are func-

tions of the site atom types), while α and β denote the types of atoms i and j,

respectively: a
(k)
α(i) is 1 if the central atom i of type α is subject to a LD potential

of type k and 0 otherwise. Similarly, b
(k)
β(j) is 1 if the neighboring atom j of type β

contributes to the local density of type k around site i; otherwise it is 0.

With these forms, the forces on sites due to the LD potentials extend, as usual,

from the potential gradient. For each LD potential k, the expression for the force

fi on a central atom i, due to its neighbors, is as follows, where we have suppressed

27



Chapter 2. Coarse-grained models using local-density potentials optimized with
the relative entropy: Application to implicit solvation

the superscript k for clarity:

f
(i central)
i = −∇riU = −aα(i)

df(ρi)

dρ

∑
j

bβ(j)
dϕ(rij)

dr

ri − rj
rij

(2.9)

This has the form of a pairwise force. The force on central atom i due to neighbor

j is

f
(i central)
ij = −aα(i)bβ(j)

df(ρi)

dρ

dϕ(rij)

dr

ri − rj
rij

= −f
(i central)
ji (2.10)

An equal and opposite force applies to atom j. However, a second pair force arises

when j is the central atom and i is the neighbor,

f
(j central)
ij = −aβ(j)bα(i)

df(ρj)

dρ

dϕ(rij)

dr

ri − rj
rij

= −f
(j central)
ji (2.11)

The total pair force that must be added to i and subtracted from j is therefore

fij = −
[
aα(i)bβ(j)

df(ρi)

dρ
+ aβ(j)bα(i)

df(ρj)

dρ

]
dϕ(rij)

dr

ri − rj
rij

(2.12)

Note that the local densities must be computed in a separate, earlier pair loop in

order for the forces to be determined.

LD potentials are closely related to excess free energy terms that improve the

quality of the CG model, as suggested initially by Frenkel and Pagonabarraga.76,101

Approximating the corrective effect of the LD potential to the pair-potential as

a first order perturbation (meaningful when the correction is weak), its addition

to the CG model causes a change in free energy equal to ∆A ≈
〈
ULD

〉
CG,pair

,
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where the subscript indicates an ensemble average in the pair-only CG case. In

this sense, the local density potential captures a multibody contribution to the CG

free energy that is in addition to the dominant contribution from pair interactions.

2.2.2 Relative entropy coarse-graining

We parameterize the CG forcefield using the information-theoretic coarse-

graining framework introduced by Shell.32,35 Here, the relative entropy, or Kullback-

Liebler divergence,36 quantifies the quality of a putative CG model in comparison

to a detailed, reference AA system; one way of expressing it is

Srel =

∫
pAA(r) ln

(
pAA(r)

pCG(M(r))

)
dr + Smap (2.13)

where pAA(r) gives the equilibrium configurational probability in the AA ensem-

ble, while pCG(R) gives the corresponding CG one. As before, R = M(r) is

the mapping operation that eliminates atoms or replaces groups of them with

center-of-mass sites. The integral proceeds over all AA microstates, although it is

possible to reformulate Eq. (2.13) as an integral in the CG degrees of freedom.102

Smap is a mapping entropy that measures the number of distinct AA configura-

tions that map to the same CG one; importantly, it is independent of the CG

force field UCG such that it plays no role in the scenarios described here.
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The relative entropy measures the information “lost” upon moving from the

AA to CG ensemble and is thus strictly zero or positive.32 Its minimization

increases overlap between the two systems and suggests a natural systematic

strategy for parameterizing CG models from reference AA systems. Shell and

co-workers used this approach to construct single-site CG water models that cap-

ture a number of bulk properties and hydrophobic interactions.39,40,103 They also

showed that the relative entropy is tightly linked to errors incurred upon coarse

graining, making it an important measurement for signaling a priori the condi-

tions of validity of CG models.33

In the canonical ensemble, the relative entropy can be expressed as

Srel = β〈UCG(λ)− UAA〉AA − β(ACG(λ)− AAA) + Smap (2.14)

where UX and AX denote the potential and Helmholtz free energies in ensemble

X = AA or CG. The CG quantities are functions of its forcefield parameters

λ, which for the present problem are the unknown coefficients in the cubic spline

forms chosen for the pairwise CG potentials upair and LD potential functions f(ρ).

The coarse graining strategy then locates the minimum of Srel in λ space, which

is achieved through conjugate-gradient minimization.34 Because all optimized po-

tentials are represented by splines, and thus all parameters appear linearly in the

energy, the relative entropy contains a single basin in such a parameter space.35
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To accelerate the minimization and reduce the number of trial CG MD runs dur-

ing parameterization, we use the efficient trajectory reweighting and perturbation

strategy formulated by Carmichael and Shell that re-uses information from exist-

ing CG trajectories.34

Figure 2.2: (a) Reference AA description of the c-25 polymer with 25 methane
sized monomeric beads in 1700 water molecules, at 298 K and 1 atm. (b) Implicit
solvent CG model of the same system: the waters are coarse-grained away and
the polymer-water interactions are then embedded into effective CG potentials
between the monomers.

2.2.3 Test systems and simulation details

Our first test case involves coarse-graining a water-solvated, hydrophobic poly-

mer, as shown in Fig. 2.2 For the reference AA system, we mimic an alkane-like

polymer called “c-25” that was studied by Athawale et al.1 The polymer consists

of 25 methane-sized monomers, with diameter 3.73 Å, and equilibrium backbone
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bond lengths and angles of 1.53 Å and 111◦, respectively. Since our primary focus

is many-body solvation effects, we study a “superhydrophobic” version of the poly-

mer in which nonbonded monomers interact through Weeks-Chandler-Andersen

(WCA)104 potentials with parameters σ = 3.73 Å and ε = 0.14 kcal/mol, while

arithmetic mixing rules are used to evaluate the monomer-water parameters. Har-

monic potentials describe bond and angle interactions and are taken from Ref. [1].

We also investigate a second, comparative case in which we delete all polymer

bonds, angles, and associated interactions, to assess the effect of backbone con-

nectivity. Thus, this case consists of 25 independent solvated, superhydrophobic

methane-like particles that we term a “methane” system although in reality the

WCA potential is unrealistic because it lacks attractive interactions. Later we

examine the case of full Lennard Jones interactions in both the c-25 and methane

systems, in order to study the effect of solute-solvent attractions on the efficacy

of the CG models.

Explicit-water AA simulations at 298 K and 1 atm are carried out with the

MD engine LAMMPS,105 using the SPC/E106 model of water constrained with

the SHAKE algorithm.107 The simulation for a single 25-mer and 1700 water

molecules is first equilibrated for 1 ns in a NPT ensemble using the Parniello-
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Rahman barostat108 to determine the equilibrium system volume, followed by a

further 2 ns of equilibration under NVT conditions. Trajectory data are then

sampled from 26 ns of NVT production time. AA simulations for the methane

system involve 2 ns each of NPT and NVT equilibration stages, followed by 30 ns

of production.

The CG model for c-25 removes all water molecules, leaving only the single

25-bead polymer, with bond and angle interactions that are retained from the

explicit water version. The effect of solvent is then built into effective nonbonded

pair and local density potentials that are functions of the inter-monomer pairwise

distances and local densities, respectively. Both potentials are represented by

flexible cubic splines with unknown coefficients (knot points) that are determined

through relative entropy minimization. 40 knot points are used for CG spline pair

potentials, while 50 are used for the LD potentials.

Table 2.1: Comparison of and nomenclature for different coarse graining strate-
gies and controls

CG strategy Bonded interactions Pair interactions Local density interactions

SP Same as AA Srel optimized spline None
SPLD Same as AA Srel optimized spline Srel optimized spline
LD Same as AA Same as AA Srel optimized spline
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For both the polymer and methane systems, we optimize the CG potentials for

three different cases that provide instructive comparisons, as summarized in Table

2.1. The pair-spline-only, or SP, approach renormalizes only the nonbonded inter-

monomer interactions into an effective pair potential described by a B-spline; this

is perhaps the conventional approach to implicit solvent CG interactions. The pair

spline and local density (SPLD) approach not only renormalizes the nonbonded

interactions but also determines the form of a local density potential based on

the number of neighboring monomers surrounding each central one. Finally, the

local-density-only case, LD, keeps the WCA pair interactions from the AA system

intact as the pair potential and embeds all effects of solvation into a local density

potential. SP and SPLD, therefore, serve as negative and positive controls to

tease out the relative contribution of the LD potential, while the LD-only case

tests its capability as a single mean field representation of the complete implicit

solvent force field. Note that the control strategy, LD, should not be confused

with the acronym LD used to abbreviate the local density potential throughout

the chapter.
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2.3 Results and discussion

2.3.1 CG model of c-25

We parameterize the CG c-25 polymer through relative entropy optimization

with a LD cutoff of rc = 7.8 Å, using the three different coarse-graining routes

of Table 2.1. Here, the relevant local density is the number of monomers within

a range rc from a central monomer. This cutoff is an important free parameter

of the CG model, but before discussing its determination, we first provide some

illustrative results from the relative entropy minimization procedure.

Figure 2.3: Comparison of the local density distribution of the CG polymer for
the SPLD case, in which both the LD potential and a CG splined pair potential
are optimized with respect to the AA system. The LD potential (shown in red)
decreases with greater local crowding around the CG monomers, thus favoring
collapse of the polymer chain.
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Fig. 2.3 shows the final LD potential and distribution for the SPLD case.

First, we note that the LD potential decreases with the local density (∆ULD ∼ -

1.0 kcal/mol over the full range of the density), thus favoring aggregation of the

individual monomers and collapse of the polymer into a compact state, consistent

with the idea that the water induces an effective inter-bead attraction of these hy-

drophobic units. The LD potential is constant for densities less than 5, ultimately

due to bond length constraints; each monomer always has a local coordination

number of at least 4 due to neighboring bonded monomers and the chosen cutoff

length. Above 5, the LD potential sharply decreases, but its effect then weakens

beyond a coordination of 13-14. The high-density behavior is expected to flatten,

as the influence of additional species diminishes when a full coordination shell

around the central particle already exists within the cutoff. Formally, the LD

spline is forced to have a zero slope beyond the maximum possible density of 24

(although this is not obvious from the figure), since there is no information in the

AA reference to lead to parameterization there.

Interestingly, if we compare the spline pair potentials determined with (SPLD

case) and without (SP case) the support of a LD potential (see Figs. 2.A.1, 2.A.2,

2.A.3 in appendix), we find that the former are slightly more repulsive and less

attractive; the well-depth decreases from 0.11 to 0.04 kcal/mol for the c-25 CG
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model. This is to be expected because the LD potential shares the net attrac-

tive many-body effect of the monomers which otherwise is sustained entirely by

the pair potentials of the SP model. In both cases, however, the inter-monomer

pair correlation functions near-exactly reproduce the all-atom one, as is expected

from the relative entropy minimization procedure in conjunction with spline po-

tentials.35

In addition, we observe that the local density distribution from the reference

AA system is exactly reproduced by the LD-corrected CG forcefield. Arguably,

it is important to faithfully reproduce this distribution in an aqueous implicit

solvent, since the solute local density fluctuations are anti-correlated with the lo-

cal water density fluctuations, which in turn strongly influence the hydration free

energy of hydrophobic units.93,97,98 Here, the optimization procedure guarantees

that the AA and CG local density distributions should match near-exactly at a

relative entropy minimum because flexible splines are used for the LD potential.35

Interestingly, the LD distribution is peaked and skewed around a local density

of 20, which suggests that the polymer coils into tightly folded conformations.

The jagged peaks throughout the upper contour of the distribution are due to

the semi-discrete nature of the indicator function ϕ(r) that is used to determine

the local density. If ϕ(r) were a true Heaviside step function, the distribution
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would involve weighted delta functions at each integer value for the local density;

because we use a smooth version (Eq. (2.4)), the distribution is continuous but

still shows some of the sharp-peaked character.

We determine the LD cutoff rc, introduced in the local density indicator func-

tion (Eq. (2.4)), separately from the spline knots that govern the force field

potential energies. To fix rc, we exploit the property32,33 that optimal CG force-

field parameters should minimize the relative entropy between the CG model and

its reference AA system. Starting with an initial choice for rc, we minimize the

relative entropy Srel in the space of the other force field parameters λ; let their

final, optimal values be λ∗. Then, the variation of the minimized relative entropy

with rc follows:

dSrel

drc
=

(
∂Srel(λ

∗, rc)

∂rc

)
λ

+

(
∂Srel(λ

∗, rc)

∂rc

)
rc

(
dλ

drc

)
=

(
∂Srel(λ

∗, rc)

∂rc

)
(2.15)

where the second term vanishes because λ∗ is determined by ∂Srel

dλ

∣∣
λ=λ∗ = 0.11 We

integrate Eq. (2.15) to determine the dependence of Srel on the cutoff by finely

discretizing rc in the range 4-10 Å. The change in relative entropy ∆Srel,1→2 from

one cutoff (rc,1) to the next (rc,2) is evaluated by re-casting Eq. (2.13) as

∆Srel,1→2 = β
〈
UCG(λ∗2, rc,2)− UCG(λ∗1, rc,1)

〉
AA
− β

(
ACG(λ∗2, rc,2)−ACG(λ∗1, rc,1)

)
(2.16)
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where λk refers to the optimal set of forcefield parameters that minimize Srel,

which we separately evaluate for each cutoff rc,k. The average energy difference

〈UCG(λ∗2, rc,2) − UCG(λ∗1, rc,1)〉AA is then computed by reprocessing AA trajec-

tories and using the optimized CG parameters, while the free energy difference

ACG(λ∗2, rc,2) − ACG(λ∗1, rc,1) is estimated using MD simulations of the two CG

models and the Bennett acceptance ratio method.109

Fig. 2.4(a) shows that the (Srel, rc) space for the polymer-water system is

approximately concave and admits two local minima near 6.5 and 7.8 Å, respec-

tively. This Srel landscape does not guarantee a single minimum78 (as discussed

earlier in Section 2.2.2), since it depends on rc which affects the CG forcefield in

a non-linear manner. Note that this figure is essentially a projection of the higher

dimensional space Srel(λ, rc) along the rc coordinate with λ = λ∗(rc). Apparent

statistical noise in the calculated relative entropy likely stems from the determi-

nation of λ∗(rc), which involves a lengthy optimization in the high-dimensional

λ space separately at each cutoff value. Fig. 2.4(a) shows that low or high LD

cutoffs, which stray away from twice the diameter of a monomer, lead to higher

relative entropy values and signal a smaller role for the LD potential to improve

the CG forcefield. Intuitively, both extremes of cutoffs are undesirable: very

low values fail to capture relevant local structures and interactions near a central
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Figure 2.4: (a) Selection of the local density cutoff (rc) that minimizes the
relative entropy Srel. The local minimum near 6.5 Å is related to the first shell
of the monomer-water radial distribution function, while the minimum at 7.8 Å
includes part of the second shell (inset). Note that the relative entropy is shifted
such that its value at the lowest cutoff is zero. (b) The correlation between
monomer local density and the number of first shell waters (bivariate scatter plot
in inset) also peaks around a cutoff of 6.5 Å.
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monomer, while too high values wash out these interactions with irrelevant “bulk”

fluctuations that are far away. We pick a cutoff at 7.8 Å which, within the noise

of the calculations, seems to be near a global minimum in Srel.

It is instructive to note that the two minima of Fig. 2.4(a) embed information

about the hydration shell structure around the monomers. In particular, the min-

imum at smaller distances captures the first hydration shell and seems to produce

local monomer densities that are correlated with the number of hydration shell

waters. To quantify this connection, we calculate the correlation coefficient be-

tween the instantaneous number of first hydration shell waters (water-monomer

distance less than 5.6 Å) and the instantaneous local density of monomers around

monomers, on a frame-by-frame basis across the entire AA trajectory. Fig. 2.4(b)

shows that the squared correlation coefficient (R2) has a maximum at rc = 6.5

Å. While the correlation is not extremely high (maximum at R2 = 0.38), it is

still encouraging that some information from water density fluctuations is incor-

porated in the monomer local density distribution, which in turn bodes well for

its ability to capture features of hydrophobic interactions.93

Admittedly, constructing the entire (Srel, rc) space requires a significant effort

involving many relative entropy optimizations and CG model free energy calcu-
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lations. On the other hand, evaluating the correlation of monomer local density

with vicinal water density is a far simpler calculation using the reference AA

trajectory that can be obtained prior to parameterizing the CG model. It also

seems intuitive to infer the monomer local density from simple structural met-

rics of the surrounding water. However, the correlation approach is based on the

monomer-water two-body radial distribution functions that may neglect higher

order interparticle structural correlations of the type that the local density poten-

tial is designed to treat. Therefore, finding the minimum of Srel with respect to

rc is likely to be a more robust approach to selecting the cutoff.

2.3.2 Fidelity of the c-25 CG model in reproducing macro-

molecular properties

To benchmark the accuracy of the optimized c-25 CG model, we compare

distributions of several structural metrics to those of the reference AA system,

as shown in Fig. 2.5 In particular, the radius of gyration, Rg, and end-to-end

distance, REE, are important characterizers of polymer dimension and are often

related to the total number of monomeric units through simple scaling laws that

elucidate both intra polymer and polymer-solvent interactions. Figs. 2.5(a) and

2.5(b) show that including the LD potential in the CG forcefield helps to repro-

duce the peaks of the distributions (4.2 Å for Rg and 6 Å for REE), while only
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renormalizing the CG pair potential without a LD contribution, as in the SP case,

leads to a model that deviates more notably.

Fig. 2.5(c) shows that the distribution of per-monomer solvent-accessible-

surface-area (SASA), computed with the Shrake-Rupley algorithm,110 agrees equally

well with the all-atom reference for the three CG cases, such that the LD potential

has a smaller impact on its behavior. It is worthwhile to note that SASA is a pop-

ular proxy84,111 for the hydrophobic effect in the construction of implicit solvent

models, but is expected to break down for very small solutes where hydration

free energies scale with volume, not area, and show significant entropic driving

forces.103,112,113 Here the SASA distribution in Fig. 2.5(c) has peaks around 0

and 30 Å
2
, and a steady low tail from 50 to 80 Å

2
. The two (inner) peaks repre-

sent CG monomers that are heavily shielded from the solvent and are suggestive

of tightly coiled conformations driven by hydrophobic collapse; the first peak at

very low degrees of exposure stems from mid-chain monomers that have a large

number of nearby neighbors due to the short bond length (note that the bond

length is less than half of the monomer diameter). Thus the presence of this peak

is representative of the overall coiled structure of the WCA polymer, while its

proximity to zero likely reflects significant burial of monomers due to the dispar-

ity in bond length and monomer size. The near-constant values of the distribution
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Figure 2.5: Comparison of shape metrics between the AA and the CG polymer
systems with different nonbonded CG potentials: CG splined pair potentials (SP),
CG splined pair potentials with LD correction (SPLD), and LD potential with the
original AA nonbonded interactions (LD). Distributions of (a) radius of gyration
Rg and (b) end-to-end distance REE demonstrate that including the LD potential
in the CG forcefield improves representation of the AA system. On the other
hand, the distributions of (c) per-atom Solvent-Accessible-Surface-Area (SASA)
and (d) coefficient of relative anisotropy κ show less sensitivity to the form of the
CG potentials. Using block average analysis, the average relative errors for these
distributions (averaged over the range of the shape metrics near the histogram
peaks and across the different CG models, and reported as a fraction of the plotted
mean value) are (a) 17.6%, (b) 12%, (c) 6%, and (d) 12.6%. The order-parameter
averaged uncertainties are relatively similar for the different CG models.
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towards higher values of SASA may be attributed to the fact that the polymer

occasionally adopts a structure in which one end of the chain is collapsed, while

the other projects in an extended form into the solvent. To quantify this behavior,

we compute the coefficient of relative shape anisotropy, given by

κ =
3

2

λ4x + λ4y + λ4z
(λ2x + λ2y + λ2z)

2
− 1

2
(2.17)

where λi’s are the mutually orthogonal components of the gyration tensor. κ ∈

[0, 1] and a value closer to 0 implies greater symmetry, or an overall collapsed

conformation, while larger values typically allude to more linear chains. The

distributions of κ in Fig. 2.5(d) show that, while the predominant structures are

globular and spherical in nature, there are still notable fluctuations to asymmetric

configurations of the type described above. The addition of local density poten-

tials in the SPLD case shows just slight improvement over the SP scenario in

reproducing this distribution. On the other hand, not including renormalized pair

interactions (LD case) seems to weaken the quality of the CG model.

Overall, the metrics in Fig. 2.5 show that the SPLD strategy improves the

quality of the CG model relative to the SP case. The LD potential alone performs

similarly if slightly worse than the combined SPLD case, as it overestimates sev-

eral distribution peaks. Thus it may be the case that the functionality of an LD

potential as a proxy for an implicit solvation energy, which is a mean-field multi-
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body term, is improved when detailed (non-mean-field) pair interactions between

monomers are renormalized in the coarse graining process.

Figure 2.6: Free energy of polymer collapse as a function of the end-to-end dis-
tance (REE) and radius of gyration (Rg) for the AA system compared to the three
CG cases: SP, SPLD and LD. The red basins are the regions of most probable
conformations, and the contours are shown for 0.5 kBT and kBT above the mini-
mum. White contours indicate the AA system and black lines denote the different
CG cases. Using block average analysis, the average relative error for the PMFs
within the inner contour (as a fraction of the plotted mean value) is 21%. The
average errors within the inner contour are relatively similar for the different CG
models.

Fig. 2.6 illustrates the coupling between the Rg and REE distributions in the

form of a free energy surface, where a clear minimum is evident that corresponds
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to a globular, collapsed state. The region within one kBT extends roughly from

3.5 to 4.8 Å in Rg and 5.5 to 8.5 Å in REE for the explicit water (AA) reference.

The low Rg end of the basin ( ≈ 3.5 to 3.75 Å), where one might expect more

significant multibody effects, is not well-captured by the SP approach, which shifts

the entire basin to higher values. Both the SPLD and LD-only forcefields appear

more successful in reproducing the extents of the basin as visualized through the

contours in Fig. 2.6. However, both cases also slightly extend the basin to higher

Rg values.

2.3.3 Transferability of the c-25 CG forcefield

Another measure of the success of a CG forcefield is its transferability to

systems beyond those at which the model was parameterized, which indirectly

assesses whether or not it captures “true” driving forces in a physically realistic

manner or is simply an effective fit to the original AA reference. Here, we explore

transferability to different chain lengths, between 10 and 40 monomers (denoted by

“c-10” to “c-40”). We perform explicit-water MD simulations for each polymer

with the same pressure and temperature conditions as c-25 and then compare

structural metrics obtained from these AA trajectories to CG simulations based

on the c-25 forcefield.
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Figure 2.7: End-to-end distance (REE) transferability of the CG forcefield pa-
rameterized from the 25-mer, for the three different CG-ing schemes: SP, SPLD,
and LD. Including LD potentials (SPLD) apparently makes the forcefield more
robust than pure CG pair potentials (SP) for chain lengths both smaller (10- and
20-mers) and larger (30- and 40-mers) than the reference.

Figs. 2.7 and 2.8 show the transferability of the c-25-parameterized potentials

in terms of the REE and Rg distributions, respectively. Overall, the SPLD poten-

tial seems marginally more transferable than the other CG cases. Specifically, it

provides a better estimate of the distributions at low and moderately high chain

lengths (10, 20, 30) for both the shape metrics, but it does underestimate the

peak value of the Rg distribution for the 40-mer. This limit in transferability for

Rg at higher chain lengths is likely because the 40-mer explores regimes of local

densities that are beyond those sampled by the original system; that is, the c-25

SPLD forcefield embeds local density information only up to 25 monomers within
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Figure 2.8: Radius of gyration (Rg) transferability of the CG forcefield param-
eterized from the 25-mer, for the three different CG-ing strategies. Including the
LD potential (SPLD) in the CG forcefield reproduces the Rg distribution faith-
fully for chain lengths smaller than the reference (10- and 20- mer) but is less
representative at state points of high chain length (40-mer).

the cutoff radius (Fig. 2.4). Thus, it does not approximate local density interac-

tions for higher chain lengths that are able to sample at or beyond the high local

density edge of the original LD potential (right edge of the red curve in Fig. 2.3).

We also note that the bare LD potential (third row in Figs. 2.7 and 2.8) shows

even more pronounced errors at large chain lengths, which again is likely due to

the absence of data for its parametrization in regimes of the higher (than the c-25

case) local densities that are accessible by the longer chain length cases.
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2.3.4 Relationship to SASA-based implicit solvation

It is worthwhile to examine the relationship between the SPLD implicit sol-

vation strategy and the longstanding tradition of embedding hydrophobic inter-

actions in SASA-based energy terms. Indeed, phenomenological solvation free

energies using an effective molecular surface tension with SASA have been a pop-

ular choice for modeling macromolecules.84,111,114–116

To make the comparison, we examine the parametric relationship between the

solvation component of the CG energy and the SASA of individual conformations

in the configurational ensemble for c-25. The solvation energy is calculated by

subtracting the AA inter-monomer interactions (UWCA) from the total effective

energy due to the nonbonded part of the SPLD forcefield (USP +ULD), since this

provides the effect of the implicit solvent relative to the vacuum interactions. Fig.

2.9 shows that the solvation energy and SASA have a strong degree of correlation

(R2 = 0.86). The slope of this relationship gives an effective interfacial tension

between the polymer-water interface at 32 mN/m, which is in relatively good

agreement with a previous estimate of 41.5 mN/m for the c-25 system.73 We

perform a similar analysis on other polymer chain lengths, still using the c-25

SPLD force field, and find a 20% variation in the effective interfacial tension;
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Figure 2.9: Correlation of the total solvation energy in the SPLD CG model
with the Solvent Accessible Surface Area (SASA) for the c25 polymer. Solvation
energy is calculated as USP − UWCA + ULD, where USP and ULD are intrapoly-
meric contributions of the CG pair and LD potential parts of the CG forcefield,
while UWCA is the energy due to the original all-atom WCA pair intermonomer
interactions. An effective interfacial tension given by a linear fit is 32 mN/m, in
good agreement with 41.5 mN/m reported by Athawale et al.1 for the c-25 AA
system. The inset demonstrates that the effective interfacial tension shows a 20%
variation with chain length.

however, it is important to note that these numbers also embed any transferability

errors.

2.3.5 CG model of solvated, superhydrophobic methanes

To remove the impact of the polymer architecture and probe “inherent” hy-

drophobic interactions, we perform comparative simulations in which we delete
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the bond and angle potentials (Section 2.2.3) and construct a system of 25 sol-

vated, superhydrophobic WCA “methanes” that we coarse grain using the SP and

SPLD routes.

Figure 2.10: LD cutoff selection for the assembly of solvated methanes. Here, it
is desirable to minimize relative entropy (Srel) as a function of cutoff (rc). Both
local minima (6.0 and 7.8 Å) seem equally viable candidates, and the first seems
to indicate a cutoff for the first hydration shell radius of the methane-water radial
distribution function (inset). Note that the relative entropy has been shifted by
its value at the lowest cutoff.

Our strategy for selecting an appropriate LD cutoff remains similar to the

polymer case. Fig. 2.10 shows the structure of the (Srel, rc) space for the methanes,

in which two minima at 6.0 and 7.8 Å appear to be equally good choices for the

cutoff. Further, as seen in the inset, the first minimum has a strong relationship

with the first shell radius of the methane-water radial distribution function and
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hence, qualitatively conveys information about local water structure. To maintain

consistency with the c-25 system, we choose rc = 7.8 Å for the CG model of

implicitly solvated methanes.

Figure 2.11: Comparison of the local density potential (red) and distribution be-
tween the CG and AA methane systems. The potential suggests anti-cooperativity
for very low local coordination numbers. We have verified, through multiple op-
timization runs, that the peak structure in this regime is statistically significant
(see Fig. 2.C.1 in the appendix).

Fig. 2.11 shows the LD potential and LD distributions for the SPLD approach

for the methane-water system. As with the polymer in Fig. 2.3, the LD potential

obtained through relative entropy optimization encourages methane aggregation

(with an overall change from 0 to ∼ 15 neighbors, and of -1.2 kcal/mol.) However,

it shows a slight “repulsive” behavior at very low local densities, where it increases

upon the addition of 1-3 neighboring methanes to a lone central one, which is
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suggestive of anti-cooperativity in low-order assembly. The distribution of local

densities from the explicit-water reference is, as expected from relative entropy

theory and the use of spline LD potentials, well-matched by the SPLD CG model.

The distribution differs from its polymer counterpart (Fig. 2.3) in terms of the

location of a peak near zero local density and another around 7, and in the absence

of a tail at high local densities. Both features stem from the ability of the methanes

to cluster into a singular, dense aggregate due to the absence of backbone rigidity

and bond constraints.

To characterize aggregation in the methane system, we examine the distribu-

tion of cluster sizes and make comparisons with that of the explicit water reference

simulation. In particular, the cluster distribution can signal cooperative assem-

bly, and the potential for multibody physics to play a role, in the form of marked

populations of high-number hydrophobic solute assemblies. Fig. 2.12 shows that

due to strong hydrophobic interactions, the methanes distribute into two phases:

a methane-rich phase described by extensive aggregation (cluster size ≥ 20) and

a water rich phase characterized by sparsely distributed monomers (cluster size

∼ 1). In a larger system, these species would macroscopically phase-separate,

but here the total methane number is small and the simulation volume fixed. In

comparing the different CG strategies, the SPLD case best replicates the AA dis-
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Figure 2.12: Distribution of cluster sizes for methane aggregates in water, for
different schemes and the reference AA system of 25 solvated methanes. Large
size clusters (zoomed inset) are reproduced well only when the LD potential is
included with the renormalized CG splined pair potentials (SPLD case). Using
block average analysis, the average relative error at the lower peak (as a fraction
of the plotted mean value and averaged over the different CG models) is 17%.
The average errors near the distribution peak at high cluster size are relatively
close for the different CG models.

tribution and peak at high cluster size showing that the SPLD strategy captures

some features of multibody interactions in the aggregate phase, which are not

completely described by a pair spline potential alone. It may be noted that the

methane cluster observed here is not representative of true methane physics, but

rather of the superhydrophobic WCA particles that lack attractive van der Waals
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interactions.

Fig. 2.13 highlights the transferability of the CG forcefields in the cluster

distributions, using different total methane numbers at the same pressure and

temperature. Additional explicit water simulations are carried out with 10, 20,

and 30 methanes for comparison. Fig. 2.13 shows the high cluster part of the

distribution (similar to the zoomed inset of Fig. 2.12) for CG simulations using

the SP and SPLD forcefields parameterized from the 25 methane case. The SPLD

potential shows much better reproduction of the large-size cluster distribution

than the SP potential, while the SP potential appears too weak at smaller methane

numbers and too strong at higher ones—a possible signature of the need for a

multibody potential.

2.3.6 Effect of attractive hydrophobe interactions

So far, we have investigated solutes that are “superhydrophobic” in nature,

described by purely repulsive monomer-monomer and monomer-water WCA in-

teractions, where multibody effects in hydrophobic driving forces should be pro-

nounced. However, it is now well-established that even weak solute-water attrac-

tive interactions can produce significant effects and sometimes even qualitatively
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Figure 2.13: Cluster size distribution transferability of the CG forcefield pa-
rameterized from the system of 25 solvated superhydrophobic (WCA) methanes.
The distributions are zoomed to display only the relevant methane-rich phase
with large-size clusters. For low methane numbers such as 10, aggregation does
not occur. But with increasingly higher methane concentration (20, 30), large
size clusters form and are correctly described by the LD-corrected CG forcefield
(SPLD). The average relative errors at the distribution peaks (as a fraction of
the plotted mean value and averaged over the different CG models) are 13.5%
for 10 methanes, 35.5% for 20 methanes, 17% for 25 methanes, and 24.6% for 30
methanes The average errors across the different CG models are quite close.

distinct behavior.117–119 For a brief comparison, therefore, we characterize the LD

approach for the polymer and methane systems when the AA reference model

includes a full Lennard-Jones (LJ) potential, with all other conditions unchanged.

Fig. 2.14 shows the free energy of c-25 as a function of Rg and REE. The

basin within roughly 1 kBT of the minimum represents the region of most proba-

ble polymer conformations and is the focus of our analysis. Note that, compared

to the PMF for the superhydrophobic polymer (Fig. 2.6), the basin for the LJ

polymer in the AA simulation has a larger Rg (∼ 3.5–5 Å) and smaller REE (≈
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Figure 2.14: Free energy of polymer folding as a function of end-to-end distance
(REE) and radius of gyration (Rg) for a hydrophobic polymer with attractions
(LJ rather than WCA potential) using the different CG-ing strategies, SP, SPLD,
and LD. The basins represent the regions of most probable conformations (inner
and outer contours mark the 0.5 kBT and kBT levels, respectively), and all three
CG approaches model the inner contour equally well. White contours indicate the
AA system and black lines denote the different CG cases. Using block average
analysis, the average relative error for the PMFs within the inner contour (as a
fraction of the plotted mean value) for the PMFs is 21%. The average errors
within the inner contour among the different CG models are comparable.

5-7.5 Å) range. In the CG models, the high end of the basin in Rg is slightly

overestimated in all cases. More significant differences exist at the basin’s high

REE end, which is overestimated by 13 % for the SP and 10 % for the SPLD

cases but underestimated by roughly 3 % for the LD-only case. However, the
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lowest lying portions of the basin (≤ 0.5 kBT ) seem equally well modeled by each

of the CG scenarios, and so the overall differences are not as dramatic as in the

superhydrophobic case. It is interesting to note that the LD potential alone, for

the attractive polymer, is able to well-describe all of the implicit solvation effects,

even without renormalizing the inter-monomer pair potentials.

For the methane AA system modeled with a LJ potential, the distribution of

cluster sizes is less interesting than the WCA case, as shown in Fig. 2.15. One

only observes a single peak at a cluster size of 1 implying that the presence of

weak solute-water attractions leads to a significant weakening of hydrophobicity

and cooperative self-assembly such that large clusters do not form at all. Both

the SP and SPLD potentials, therefore, capture the single methane peak well.

Taken together, the results above show that the addition of local density poten-

tials to CG force fields has a weaker effect on their performance when hydropho-

bic driving forces for self-assembly are less pronounced. Presumably, in these

cases, multibody interactions are weaker in magnitude and most of the effective

solvent-mediated attractions can be subsumed into renormalized pair potentials.

Interestingly, a local density potential in the polymer case alone does an excellent

job of describing the complete solvation effects; this is likely due to the fact that
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Figure 2.15: Distribution of cluster sizes for solvated methanes described by a
LJ rather than WCA potential. Weak van der Waals attractions are sufficient to
suppress cooperative assembly and manybody interactions, such that both the SP
and SPLD techniques collapse on the same distribution, with only a single peak
near dispersed methanes. Using block average analysis, the average relative error
near the distribution peak (as fraction of the plotted mean value and averaged
over the different CG cases) is 8.9%. The average errors for the different CG
models are close in magnitude.

all of the solvent mediated interactions are so weak that they are relative easy to

capture with a variety of functional forms (i.e. basis sets) in the CG forcefield.

2.4 Conclusion

In this work, we introduced local density (LD) potentials as a simple and com-

putationally fast mean field approach to capturing multibody effects in coarse-

grained (CG) models that may improve transferability. While conventional CG
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models use effective pair potentials to describe nonbonded interactions, such ap-

proaches neglect potentially significant multibody effects that naturally arise dur-

ing the coarse-graining process. LD potentials thus seek to approximate these

interactions through an energetic contribution at each site that depends non-

linearly on the number of neighbors (of a given type) within a cutoff distance.

We have shown that the relative entropy coarse graining framework of Shell and

co-workers32–34 offers a systematic and transparent way to fully parameterize LD

potentials in CG forcefields, given fully atomistic reference simulations, without

needing approximations to adapt global density-dependent potentials at a local

molecular level.

The present work also examined the utility of LD potentials in the development

of implicit solvation models, with a specific focus on hydrophobic interactions. We

selected two examples that demonstrate cooperativity in water-mediated interac-

tions: the collapse of a superhydrophobic polymer and the assembly of superhy-

drophobic methane-sized particles. In both cases, the addition of a LD potential

generally improves the ability of the CG models to capture distributions of struc-

tural metrics like radius of gyration and cluster size. At the same time, the LD

potential improves the transferability of the CG model to related systems with

different polymer lengths or concentrations. In many cases, the optimization of a
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LD potential alone seemed sufficient to capture the solvent-mediated component

of the effective CG force field; however, the optimization of renormalized pair in-

teractions, along with a local density potential, seemed to offer slightly better CG

models and transferability. In addition, the superhydrophobic case studies point

towards significant multibody interactions that would suggest a role for the LD

potential to improve the CG models. However, when the systems are only mildly

hydrophobic—accomplished by introducing weak van der Waals solute-water in-

teractions—the improvement afforded by LD potentials is less significant.

It is interesting that such a simple CG potential, based on a single mean-field

(the local density), is capable of capturing higher order cooperativity inherent

to hydrophobic interactions—without being pre-informed about the microscopic

network-forming, tetrahedral, open nature of water structure, or about the unique

entropic-enthalpic balance of hydrophobic solvation from a macroscopic point of

view. This feature suggests that bottom-up coarse graining techniques using LD

and other non-traditional potential forms may offer robust strategies for implicit

solvation models that incorporate the hydrophobic effect.82,85,120 More generally,

local density potentials also appear to be a promising tool in the relatively sparse

repertoire of methods for developing fast and efficient CG descriptions of phase

transitions, where density and concentration-dependent CG interactions are sig-

62



Chapter 2. Coarse-grained models using local-density potentials optimized with
the relative entropy: Application to implicit solvation

nificant. Further, LD potentials can be easily applied to arbitrary CG models of

systems, beyond those involving solvation and may have a wide role for improving

the ability of CG forcefields to capture multibody effects that emerge as a result

of integrating out degrees of freedom.

Appendix

2.A Relative sensitivity of the CG pair potential

to inclusion of a local density field

Fig. 2.A.1 (upper panels) shows the sensitivity of the pair potential part of

the CG forcefield for the superhydrophobic (WCA) polymer and methanes. The

inclusion of the LD potential (SPLD model) makes the pair potential part of

the forcefield less attractive, which is expected since the LD potential shares the

(net) attractive manybody effect of the monomers that was previously sustained

entirely by the pair potentials of the SP model (blue line). The lower panels

demonstrate the intra-monomer pair correlation functions for the AA system and

the different CG models. The SP and SPLD models capture these correlations

equally well for both the polymer and the methane. For the polymer, even the

LD model, in which pair potentials are not optimized, is able to reproduce the

radial distribution function quantitatively. Note that the LD-only model was not
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Figure 2.A.1: Upper panels show the pair part of the CG forcefield for the su-
perhydrophobic polymer and free methane systems. For both, the inclusion of the
LD potential (SPLD model) makes the CG pair potentials less attractive. Lower
panels present a comparison of the intra-monomer radial distribution function be-
tween the AA system and the different CG models. For the polymer, even the
LD-only model with no CG pair potential accurately reproduces the pair structure.
(Note that all radial distributions approach zero because neither the monomers
nor the methanes are bulk dispersed, the latter forming a dense cluster.)

optimized for the free methanes, based on our observation that the LD potential

functions best only when supported by CG pair potentials.

Fig. 2.A.2 compares the REE transferability of the SP and SPLD models to the

pair component of the SPLD model (labelled SPLD’). Clearly, the pair component

alone is incapable of producing good transferability for REE. Similar results are
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Figure 2.A.2: Comparison of the relative transferabilities of the c25 superhy-
drophobic WCA polymer end-to-end distance for a special forcefield (labelled
SPLD’) that considers only the CG pair component of the SPLD forcefield, with
that for the SP and the SPLD models. Clearly, the pair component, although
different from the SP model, produces poor transferability by mispredicting the
distribution peaks.

noted (not shown here) for Rg transferability with this forcefield. It may be noted

that though the SP and the CG pair component of the SPLD models in Fig 2.A.1

(top left panel) are similar in shape (other than the difference in well depth) for

low and moderate distances, they are remarkably different at distances near the

cutoff. This may explain why the pair part of the SPLD model produces vastly

different transferability from the SP model. In general, while the sensitivity of

the renormalized pair potentials to the local density field may be straightforward

to predict (typically), transferability of thermophysical properties derived from
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different CG models is usually highly nontrivial to anticipate.

Figure 2.A.3: Sensitivity of the renormalized CG pair potential to the inclusion
of the local density field for the LJ polymer (left) and free methanes (right). For
the polymer, this sensitivity is low, presumably due to the lack of manybody
effects. For the LJ methanes, however, relative entropy minimization produces a
relatively repulsive LD potential (not shown here), which leads to more attractive
character in the CG pair component of the SPLD model to maintain the same
overall level of inter-monomer repulsion as that in the explicit water AA reference.

Fig. 2.A.3 compares the pair potential part of the SP and SPLD CG models

for the LJ polymer and the LJ free methanes. Due to the absence of significant

manybody effects, the SP and SPLD pair potentials for the LJ polymer are nearly

the same, i.e. the renormalized pair potential of the SP model (blue line) does not

change much after incorporating the local density field. For the case of the free

methanes, however, inclusion of the LD potential (green line) makes the renor-

malized pair part more attractive. This likely stems from the need to maintain

a (net) repulsive inter-monomer potential similar to that in the AA system, in
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the absence of bonds (which provide a natural separation e.g. between the beads

in the polymer). The LD potential for the free LJ methanes optimized through

relative entropy minimization (not shown here), is largely repulsive at higher local

densities and so the CG pair component compensates to control the overall repul-

sive behavior and keep it close to that of the original methane-water interaction

in the AA system.

2.B Local density distribution in c-25 versus c-

40

Figure 2.B.1: Comparison of the inter-monomeric local density distribution for
the all atom trajectory of the superhydrophobic 25-mer with the all-atom and the
SPLD models for a superhydrophobic 40-mer. The 25-mer embeds information
about local density only up to 25 monomers which is significantly less than that
conveyed by the 40-mer. The SPLD model is designed from the CG forcefield
parameterized from the all atom 25-mer and thus fails to capture the peak of the
true LD distribution for the 40-mer.
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Fig. 2.B.1 compares the distribution of local densities of the monomers for all

atom c25 with the all atom and SPLD CG models for c40 (using the same LD

cutoff, rc = 7.8 Å). Although both the c25 and c40 LD distributions peak near

25 monomers, a significant portion of the distribution (∼ 50 %) for c40 contains

information about more than 25 monomers. Since the LD potential is multibody,

the difference in spread (standard deviation) between the c25 and c40 distributions

(in spite of possible agreement in the mean local densities) leads to non-trivial and

difficult-to-intuit differences between their folding behavior. The SPLD model for

c40, simulated using the forcefield parameterized from the all atom c25 trajectory

lacks information beyond 25 monomers, which leads to inaccurate location of the

distribution peak (green line).

2.C Statistical uncertainty for the LD potential

in the CG model of superhydrophobic methanes

The variation in the LD potential at low density in Fig. 2.11 is significant

and does not reflect statistical uncertainty. To confirm, we re-optimized the LD

potential for the SPLD model of the superhydrophobic methanes, starting from

different initial values for the spline knots that describe the LD potential. Fig.

2.C.1, presents the mean value of the LD potential from these runs, zoomed in

on the low local density region. The two peaks are clearly outside the relative
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Figure 2.C.1: Statistical uncertainty of the local density potential in the SPLD
model of the free methane system. The presence of the peaks at low local densities
is not statistical artifact.

statistical uncertainty, which has an average value of 15% (standard deviation

normalized by the mean and averaged over the entire range of local densities).

This has also been stated in the caption for Fig. 2.11.
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Chapter 3

Transferable coarse-grained
models of liquid–liquid
equilibrium using local density
potentials optimized with the
relative entropy

3.1 Introduction

Equilibrium fluid phase transitions play a pivotal role in many technologies,

ranging from complex fluids in consumer products to separation strategies in large-

scale chemical processing. Particularly for liquid mixtures, phase transition forms

the basis of liquid-liquid extraction, a unit operation with widespread applications

in food processing, organic synthesis, petroleum refineries, renewable energy, nu-

clear reprocessing, and biotechnology, for example. Molecular simulation methods

for predicting phase equilibria for small, relatively rigid molecular species are now
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well established121,122 and typically require clever sampling Monte Carlo (MC)

techniques123,124 such as Gibbs-ensemble MC,125 multiple histogram reweight-

ing,126,127 or transition-matrix MC.128 Tackling the phase equilibrium problem

for large, flexible, or asymmetrically sized species remains a critical challenge and

a major research effort. Coarse-grained (CG) models potentially offer a promising

route for complex phase equilibrium calculations through simpler representations

that are dramatically easier to sample, particularly for MC algorithms that in-

volve particle insertions but also for direct interfacial simulations using molecular

dynamics (MD) that require long equilibration run times.

Indeed, the past decade has seen significant progress in CG model development,

with a particular effort directed toward biomacromolecular systems (e.g. polypep-

tides and polynucleotides) and their folding and self-assembly. CG descriptions of

biomolecules have been motivated both by bottom-up methods that parametrize

on the basis of small representative all-atom models and by top-down approaches

that tune CG interactions to match macroscopic thermophysical properties. A

number of these approaches have proven successful in capturing first-order-type

structural and thermodynamic transitions. A few examples include morphological

phase transitions in membranes and bilayers24,129–131 (e.g. using the MARTINI

CG model132), and studies of folding–unfolding transitions in proteins and pep-
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tides.133–140 Despite the burgeoning success in the biomolecular realm, CG models

do not yet seem widely capable of capturing fluid phase equilibria (although there

are notable efforts along this direction, as we shortly describe), which has limited

their routine application to chemical thermodynamics problems.

The main roadblock in developing CG models of equilibrium fluid phase behav-

ior stems from their lack of transferability, i.e. their limited ability to translate to

thermodynamic states (density, composition, etc.) different from the one at which

they were parametrized. This prevents accurate realization of phase behavior that

inherently spans the range of states encompassing the phases of interest, and is

a particular problem for bottom-up CG strategies. One contributor to transfer-

ability issues is neglect of the strong coupling between the reduced CG degrees

of freedom in the model. In principle, an “ideal” bottom-up CG force field is

represented by a highly multidimensional free energy function W (R), constructed

by projecting the all-atom (AA) potential UAA(r) on the CG degrees of freedom

R:52

W (R) = −kBT ln

∫
V

dre−β UAA(r) δ[R−M(r)] (3.1.1)

Here, M is a “mapping function” that translates an AA configuration r to a CG

one R, and β = 1/kBT . Unfortunately, W (R) is highly multibody and difficult

to implement practically; instead, CG force fields typically contain pairwise non-
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bonded interactions between CG sites (in addition to conventional bonded terms),

effectively ignoring true higher order many-body correlations in the underlying po-

tential of mean force.21,22,26,32,44,141 In turn, this tends to make the CG model

sensitive to the thermodynamic state (density and/or composition) at which it

is developed, and limits not only the model’s capability to scale to other states

but also its ability to simultaneously reproduce different properties even at the

reference state, as discussed extensively in the works of Louis, Head-Gordon, and

co-workers.51,62

One resolution that has been particularly successful for CG water models has

been to include explicit three-body terms.69,72,73 However, such approaches may

become computationally expensive to parametrize and use in general, particu-

larly if the form and order of the physically relevant interactions are not known.

A second approach has been to include information about the local environment

around a pair of CG particles to modulate the pair potential between them.65–67,75

Recently, Voth and co-workers developed a theory of ultra-coarse-graining (UCG)

that produces low resolution CG models where CG sites embed discrete internal

states that are in a state of local quasi-equilibrium.142 They used this technique

to mix separate CG force fields for different phases in a phase-separated liquid

mixture, based on the location of the phase interface as well as a local-density
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parameter that can discriminate between the two phases. These authors applied

the approach to vapor–liquid equilibrium in a Lennard-Jones fluid and the cooper-

ative aggregation of neopentane in methanol. Noid and co-workers also developed

transferable CG models of heptane–toluene mixtures by expanding the force field

with global volume-based corrections, such that the model reproduces correct

NPT fluctuations in density and pressure and consequently the pressure–volume

equation of state.143

Here, we take a distinct approach and use so-called “local density” potentials

to expand the CG force field with mean-field representations of multibody effects

that in turn improve transferability. In this case, the CG potential is inspired

by mean-field embedded-atom models of metals,57 in which sites have energies

that directly depend on the local density of neighboring CG sites (within a cutoff

radius), and these potentials serve as an additive correction over traditional pair

interactions.144 Such potentials are mean-field in nature, which allows them to

remain inexpensive, but they account for higher-order interactions beyond pair

in a manner modulated by the local environment of a particle, such as the lo-

cal coordination number or composition. Allen and Rutledge initially explored

a similar approach in which they supplemented conventional solute–solvent pair

interactions with effective solvent-mediated intersolute interactions.65,66,145 They
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expressed these additional interactions in terms of the excess chemical poten-

tial associated with transferring a solute from a solvent-exposed to a completely

solute-locked state, and parametrized the excess chemical potential as functions

of both the global and local solute density.

In the previous chapter, we introduced a general approach to CG local density

potentials that we tested in model aqueous solutions, where water was coarse-

grained away to an implicit description with only effective intersolute interactions

remaining.144 In that effort, we found that both the fidelity of the CG model

and its transferability significantly improved with the addition of local density

potentials. Voth and co-workers subsequently employed local density dependent

interactions to improve the characterization of vapor–liquid interfaces in methanol

and acetronitrile.5 Noid and co-workers also found that local density dependent

potentials improved CG models of methanol, allowing parametrization in the bulk

liquid that transfer well to the vapor–liquid coexistence.6

Here, we extend our previous work on local density potentials to outline a

general strategy for transferable CG models suitable for phase equilibria, using

a coarse-graining theoretical framework based on the relative entropy.32,34 As

with conventional bottom-up coarse-graining, we use an underlying AA reference
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simulation to parametrize CG pair interactions between species, but we also si-

multaneously parametrize intra- and interspecies local-density potentials. While

our previous work showed that local density potentials aid in capturing cooper-

ative folding and association like behaviors for solutes in implicit solvent,144 the

present work explores the generality of local density potentials in mixtures capa-

ble of macroscopic phase separation into chemically distinct environments.

As a case study, we investigate macroscopic phase separation in benzene–water

mixtures, which provides an excellent and challenging test system because of the

water–benzene size asymmetry and the intrinsically multibody nature of water-

mediated hydrophobic interactions.86,88,146–149 An earlier study of this system

by Villa et al.4 examined the transferability of single-site CG representations

of benzene and water parametrized from very dilute benzene solutions (0.1 M),

and using an advanced implementation of the iterative Boltzmann inversion tech-

nique. These CG models demonstrated transferability in describing structural

and thermodynamic metrics like pair correlations and the chemical potential at

low concentrations but produced qualitatively incorrect behavior at high benzene

concentrations (∼ 9.5 M) that missed the macroscopic liquid–liquid phase sep-

aration, illustrating inherent challenges in capturing this system’s composition
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transferability.

In this chapter, we develop force fields for single-site CG models of ben-

zene–water mixtures that augment CG pair interactions with local density po-

tentials. Here, we add four distinct such potentials that modulate the energy of

a CG molecule based on its identity (benzene or water) and its average (mean-

field) concentration of either species within a short-range distance cutoff. We

parametrize CG models from AA reference systems at several distinct composi-

tions to investigate the effect of AA reference on model quality. Subsequently, we

benchmark the structural and thermodynamic transferability of the CG models

across composition space, spanning both sides of the phase transition point pre-

dicted by the reference AA force field. We discuss both the improvements the

local density strategy enables and the limitations that we find.

3.2 Methods

3.2.1 CG model and force field design

The CG model, as illustrated in Fig. 3.2.1, maps benzene and water molecules

to single sites and, in that sense, is an explicit water CG model unlike our previous

test of local-density CG interactions.144 In the present case, the local density is
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Figure 3.2.1: Atomistic system (left) and single site CG model (right) of a 10%
mole fraction benzene / 90% water solution, with a total of 500 molecules. The
cubic box length of 27.45 Å is tuned to achieve 1 atm pressure in the AA system
at 300 K. In the CG model, molecular orientational degrees of freedom are coarse-
grained away and effective intermolecular interactions are determined by relative
entropy minimization.

essentially a local coordination number, and is given for a central CG site i of

type α with neighboring sites j of type β by

ραβi =
∑
j 6=i
j∈β

ϕ(rij) (3.2.1)

where varphi(rij) is an indicator function based on the pair distance rij, that

sharply but smoothly interpolates to zero at a cutoff radius rc. We use the com-

putationally efficient form

ϕ(r) =



1, r ≤ r0

c0 + c2r
2 + c4r

4 + c6r
6, r ∈ (r0, rc)

0, r ≥ rc

(3.2.2)
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The coefficients c0, c2, c4, and c6 are determined? by imposing continuity of ϕ and

its first derivatives at the cutoff rc and a slightly smaller inner-cutoff r0, which we

fix as rc − 1Å for the this work. The LD potential of type αβ due to all central

CG sites of type α and neighbors of type β then follows

Uαβ
LD =

∑
i∈α

fαβ
(
ραβi
)

(3.2.3)

where the summation proceeds only over atoms of type α. The functions f(αβ)

are yet unknown and are determined as splines by optimizing the CG model.

Although Uαβ
LD is a mean-field many-body potential, it gives rise to a pair-additive

force

fαβi = −
∑
j 6=i

i∈α,j∈β

[
dfαβ

(
ραβi
)

dρ
+
dfβα

(
ρβαi
)

dρ

]
dϕ(rij)

dr

ri − rj
rij

(3.2.4)

The reader is referred to Section 2.2.1 in chapter 2 for further details on the for-

mulation of LD potentials, including expressions for the coefficients in Eq (3.2.4).

We consider several illustrative cases for CG force fields. Each contains three

distinct CG pair interactions modeled by splines, in addition to potentially four LD

interactions between all possible species and environment types. For convenience,

the CG pair potentials are referred to as simply pair-αβ or αβ pair potentials,

while the LD potentials are annotated as LD-αβ, where α, β = B (benzene) or W
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Figure 3.2.2: Schematic representations of central (α) and neighboring (β)
species configurations for the different types of LD potentials outlined in Table
3.2.1. Yellow CG sites denote benzene, and blue CG sites are water.

(water). Note that pair-αβ and pair-βα denote the same potential, while LD-αβ

and LD-βα do not, given the asymmetric role between central and neighboring

site types. Fig. 3.2.2 schematically shows the different types of possible LD-αβ

potentials. If all possible LD potentials are included with the three pair poten-

tials, the overall CG Hamiltonian reads as
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UCG =
∑
i<j
i,j∈B

uBB
pair(rij) +

∑
i<j
i,j∈W

uWW
pair (rij) +

∑
i<j
i∈B
j∈W

uBW
pair(rij)

+
∑
i∈B

[
fBB

(
ρBB
i

)
+ fBW

(
ρBW
i

)]

+
∑
i∈W

[
fWW

(
ρWW
i

)
+ fWB

(
ρWB
i

)]
(3.2.5)

We study a total of six distinct force fields, which are summarized in Table

3.2.1. This includes the control with only pair potentials, the full potential of Eq.

(3.2.1) involving all four local density potentials, and four subsets in which only

one of the local density terms is used. The cutoffs for determining local densities

for the like LD potentials (LD-BB and LD-WW) are chosen to include the first

coordination shell from their first minimum in the respective radial distribution

functions; these distances are arithmetically averaged to determine the cutoffs for

the unlike potentials (LD-BW and LD-WB).

Admittedly, including all four LD potentials (the pair + LD-all force field)

may contain redundant information, since local densities essentially measure co-

ordination numbers and these are subject to geometric constraints in condensed,

incompressible fluids. To illustrate this point using simple lattice statistics, con-

sider zBB, zWW, zBW, and zWB as the average nearest-neighbor coordination num-
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Table 3.2.1: Case studies for local density potentials examined in this work*

CG forcefield case Pair potentials LD potentials

pair-only pair-BB, pair-WW, pair-WW None
pair + LD-WW pair-BB, pair-WW, pair-BW LD-WW
pair + LD-BW pair-BB, pair-WW, pair-BW LD-BW
pair + LD-WB pair-BB, pair-WW, pair-BW LD-WB

pair + LD-all pair-BB, pair-WW, pair-BW
LD-BB, LD-WW,
LD-BW, LD-WB

*We consider cases involving zero, one, or all possible (total of four) local
density potentials that differ in the central and neighboring molecule types.

bers of the different types, for N total CG particles (benzene and water) with xB

benzene mole fraction (and xW = 1− xB water mole fraction) on a lattice with N

sites. One might think of zαβ = 〈ραβ〉, where 〈 〉 denotes ensemble averaging. If

each molecule occupies a single lattice site and the total lattice nearest neighbor

coordination number is z (e.g. z = 6 for a cubic lattice), balances on connections

between sites produce z = zBB + zBW = zWW + zWB and xBz
BW = xWz

WB. These

three constraint equations show that, at most, one of the four possible local densi-

ties are independent once the mole fraction is specified. Of course, the off-lattice

nature of the actual CG model means that the local coordination shell is not truly

constrained to a fixed number of neighbors, and of course, the benzene-water size

asymmetry introduces additional complications. Still, this analysis illustrates that

the addition of all four local density potentials may not be necessary to cover the

functional space or basis that these interactions provide beyond pair potentials, as
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long as the system remains in a condensed phase. In particular, this analysis also

motivates consideration of CG force fields using a single LD potential, namely,

the second, third, and fourth rows of Table 3.2.1

In our approach, we represent all CG interactions: both pair and local den-

sity—by cubic B-splines. The spline knots form the optimizable parameters of the

model and are determined by minimizing the relative entropy between the model

and its atomistic reference.32,34 The relative entropy provides a way to quantita-

tively compare the quality of a CG model by measuring the loss in information

upon coarse-graining the AA system to a reduced set of CG degrees of freedom

with a particular CG force field. Minimizing the relative entropy increases the

overlap between the ensemble microstate probability distributions of the AA and

CG models, and provides a natural strategy for parametrizing CG force fields. In

the canonical ensemble, the relative entropy takes the form32

Srel = β〈UCG(λ)− UAA〉AA − β(ACG(λ)− AAA) + Smap (3.2.6)

where UX and AX are the potential and Helmholtz free energies in ensemble X

= AA or CG, which are functions of the CG force field parameters λ, namely, in

this case, the spline knots of all component potentials. Here, Smap is a mapping

entropy that measures the degeneracy associated with the AA to CG mapping; it

is independent of the CG potential and thus does not depend on these parameters.
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The derivative of the relative entropy in λ space (for the full potential with all

LD terns) can be written as

∂Srel

∂λ
= β

∑
(α,β)
∈

(BB, WW, BW)

∑
i<j

{〈
∂uαβpair(rij)

∂λ

〉
AA

−

〈
∂uαβpair(rij)

∂λ

〉
CG

}

+ β

∑
(α,β)
∈

(BB, WW, BW, WB)

∑
i∈α

{〈
∂fαβ

(
ραβi
)

∂λ

〉
AA

−

〈
∂fαβ

(
ραβi
)

∂λ

〉
CG

}
(3.2.7)

where the set of local density potentials given by atom-type combinations (α, β)

would differ across the different cases in Table 3.2.1. The coarse-graining algorithm

proceeds by locating the minimum of Srel in λ space, i.e. the zeros of Eq. (3.2.1),

using a combination of nonlinear conjugate gradient and quasi-Newton methods.

Details are provided in earlier work34 and in Chapter 2.

3.2.2 Simulation details

Atomistic simulations of aqueous benzene solutions are carried out at 300

K and 1 atm pressure, with 500 molecules, spanning a range of benzene mole

fractions from xB = 10 to 90%. For these, we use the MD engine GROMACS

(version 4.6.5)150,151 and employ the GROMOS 53a6 force field152 for benzene

and the SPC/E model of water.106 All bonds are constrained using the LINCS

algorithm.(57,58) The system is first equilibrated in an NPT ensemble using the
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Parinello–Rahman barostat108 and Nosé–Hoover thermostat153,154 for 44 ns to de-

termine the equilibrium bulk density (data from the last 4 ns is used to estimate

average equilibrium box volume) followed by a further 60–80 ns of equilibration

under NVT conditions, the last 40 ns of which is used to collect trajectory data.

It should be mentioned that a previous study inferred that the AA force field

overpredicts the solubility of benzene in water by almost an order of magnitude;4

while the experimental solubility is 0.02 M,155 benzene and water were still found

to be miscible at 0.5 M, which likely stems from the reported underestimation of

benzene hydration free energy by the GROMOS 53a6 force field.156 However, the

present study is only interested in the ability of optimized CG systems to reca-

pitulate correct AA properties, no matter how accurate these may be relative to

reality; thus, this particular AA reference serves as an instructive model system.

It is also worth noting that the AA systems are at concentrations higher than

either the experimental or the AA solubility limit, so that the reference solutions

are already phase separated. However, because of the small system size, the in-

terfaces encompass a significant fraction of molecules, which allows the references

to sample cross-interactions between the demixed species.

To study the effect of reference state point on the transferability, CG models

are parametrized from 10, 50, and 90% benzene solutions, respectively. All CG
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pair potentials and BB, BW, and WB LD potentials are developed using cubic

B-splines with 30 knot points, while the LD WW potential uses 60 knots (chosen

higher initially to accommodate potentially complex water–water interactions). A

cutoff of 10 Å is used for the pair potentials. Outer cutoffs for LD-BB and LD-WW

potentials are estimated from the first solvation shell radii of B–B and W–W radial

distribution functions, respectively (7.5 Å for B–B and 3.5 Å for W–W), while

those for LD-BW and LD-WB potentials are computed as the arithmetic average

of the above two (5.5 Å). The inner cutoff for all LD potentials is 1 Å less than

these. MD simulations of the CG models are carried out in the NVT ensemble

using the LAMMPS MD code,105 modified to include local density potentials. We

find that the LD-augmented CG systems provide at least a 15-fold speedup over

the AA simulations; this might be further increased with optimization of the LD

code.

3.3 Results and discussion

3.3.1 CG forcefields

We parametrize three versions of the six force fields introduced in Table 3.2.1,

involving distinct atomistic references at compositions of 10, 50, and 90% benzene

mole fraction, respectively. Fig. 3.3.1 compares the potentials for the pair-only
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and pair + LD-all force fields, as described in Table 3.2.1. For all of the references,

the BB pair potentials with and without the use of LD potenteials have similar

forms and are largely repulsive; only for the dilute 10% reference solution do they

exhibit a slightly attractive (∼ -0.2 kcal/mol) around 6.5 Å. It is instructive to

note that this attractive well is not as significant as the value -0.6 kcal/mol reached

for a pair-only CG BB potential reported previously that was developed from an

even more dilute benzene solution (xB ≈ 0.002).(52) On the other hand, the BB

LD potentials are largely all attractive, and the version parametrized from the

50% solution shows the largest decrease of around 2.5 kcal/mol over the entire

range of the BB local density.

In contrast to the benzene self-interactions, the WW pair potentials show sig-

nificant attractive interactions; many have a typical double-well form. This outer

wall near 6.5 Å is weakly attractive (∼ -0.4 kcal/mol) and remains similar in mag-

nitude regardless of the presence of LD potentials and parameterization reference.

On the other hand, the depth of the inner well increases (to ∼ -0.5 kcal/mol) for

the 50 and 90% references without LD potentials.When reoptimized with all LD

terms, the inner core converts into a repulsive shoulder for the 90% reference but

becomes very attractive (∼ -0.8 kcal/mol) for the 10% solution. The LD-WW

potential seems to compensate for these changes: it exhibits attractive behavior
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Figure 3.3.1: Intra- and intermolecular local density potentials (top row) and
pair potentials (bottom row) optimized with the relative entropy from reference
atomistic benzene solutions at 10% (orange and blue), 50% (red and purple), and
90% (black and green) benzene mole fraction. The BB and WW pair potentials
show the most significant differences when optimized simultaneously with all the
four LD potentials. Unlike LD potentials, potentials of types BW and WB are
likely modulated by the small number of intermolecular multibody correlations
at the interface, characterized by the low range of local density (∼ 2) over which
they change.

around a local density of 4 (∆ULD-WW ≈ -2 kcal/mol) at 10 and 50% reference

compositions and becomes the strongest of all four LD potentials for the 90%

solution, decreasing by 12 kcal/mol. It is interesting to note that the minimum

in the LD potential of the former two cases occurs near a coordination of four,

consistent with the stabilization of water’s tetrahedral coordination.
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The BW pair potential is strictly positive but nonetheless contains a high-

energy inner minimum within the core-repulsive region at 3 Å and a shallow outer

minimum or shoulder near 4.5 Å. The pair distances of these features remain

constant across all reference solutions and are agnostic to the inclusion of LD

potentials. When parametrized without LD potentials, the inner minimum in the

BW pair potential decreases (by ∼ 0.5 kcal/mol) when moving from the 10 to 90%

reference systems, but this variation vanishes when LD potentials are included.

The corresponding optimized interspecies LD potentials depend on reference com-

positions, but both the LD-BW and LD-WB interactions are relatively small in

magnitude. The LD-WB potential is always completely repulsive, increasing up to

1.2 kcal/mol over a short range of the W–B local density. The LD-BW potential is

overall the weakest, and manifests both attractive and repulsive forms that seem

specific to the inclusion of LD potentials and the particular reference composition.

All three pair potentials exhibit either multiple wells or a well-and-shoulder

structure, which is commonly seen in CG models that coarse-grain away di-

rectional interactions like hydrogen bonds into spherically symmetric interac-

tions.39,157,158 The balance between the inner and outer wells in the WW interac-

tion is well-known for water and, on the basis of the ratio of these characteristic

distances, promotes tetrahedrally enriched liquid-phase correlations.39,159 The
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shoulder feature in the BB potentials likely also promotes specific geometries that

result from the significant size asymmetry and packing due to benzene’s aspect

ratio. The addition of LD potentials, which extend only until the first coordina-

tion shell of the corresponding types, rather naturally then seems only to modify

the inner well or shoulder of the corresponding pair potential.

It is instructive to note the possibility of interaction redundancies between the

CG pair and LD potentials, which is distinct from redundancies within the set of

LD potentials discussed in section II. In particular, if the LD potential is linear

in the coordination number, then it can mimic the behavior of a short-range pair

potential (i.e. with an energy that scales with the number of nearest neighbors),

leading to the possibility that effective interactions might shift between the LD

and pair potentials. We see this in the pair + LD-all CG models from the 90%

reference solution case, where the WW interactions involve an entirely repulsive

pair potential such that all short-range attractions shift into an almost linear LD

WW potential. This may be due to the small number of water molecules in that

case and consequently insufficient local crowding and reduced multibody correla-

tions that weaken the role of the LD potential.
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It may be noted that each LD potential acts at relatively low local density

values, corresponding to small changes in local coordination number, before satu-

rating to constant values for larger variations. The LD-BB and LD-WW potentials

saturate near 5–6 benzene and water neighbors, respectively, while the LD-BW

and LD-WB potentials show variation only largely between zero and two neigh-

bors (except for the LD-BW potential from the 10% solution). These results may

suggest that most of the needed multibody correction needed occurs at low local

densities, while the optimized pair potentials are able to capture remaining inter-

actions. Indeed, the calculated local density distributions (discussed shortly) show

that the biggest corrections occur at low coordination numbers. Interestingly, the

unlike LD potentials (LD-BW and LD-WB) have much smaller magnitudes com-

pared to the like-species potentials, perhaps because B-W and W-B interactions

are limited to the thin interfaces in the phase separated AA reference solutions.

Ultimately, the same-species local density interactions, i.e. LD BB and LD-WW,

seem to capture the most important multibody effects in this system.

It should be mentioned, however, that the choice of knot density in the cubic

B-splines that represent the LD potentials can slightly influence the magnitudes

and shapes of all of the LD potentials. In principle, a very large number of knots

will approach a limiting form for each LD potential; however, because some of
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them vary significantly over small ranges of local density, even a relatively dense

number of knots may not quite reach this limit. In the present investigation, we

use 0.3 Å/knot for the pair splines, 0.66 local density per knot for the BB, BW,

and WB potentials, and a finer spline of 0.1 local density per knot for the LD-WW

interactions. Even with this relatively high knot resolution, we still detect some

minor challenges in modeling sharp peaks that appear in the LD distributions

at low coordination numbers. However, further increases in resolution make the

relative entropy minimization more difficult, and thus, we remain with the present

parametrization as a balance of accuracy and efficiency.

3.3.2 Structural transferability

We first evaluate the relative transferabilities of the CG models in Table 3.2.1

by comparing structural properties across the entire composition spectrum, be-

yond the specific compositions at which they are parametrized. We consider the

radial distribution functions (RDFs or gαβ(r), where αβ = BB, WW, and BW) as

well as the local-density distributions (PLD(ραβ), where αβ = BB, WW, BW, and

WB). For the sake of brevity, two examples of structural correlation functions are

presented here; the remainder have qualitatively similar behavior and are given

in the Appendix (Figures 3.A.1 - 3.A.5).
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Fig. 3.3.2 shows the transferability of B-W pair correlations and local density

distributions across benzene compositions for the different CG model. For the

RDFs, all CG models show good representability at the composition at which

they were developed, as expected from the relative entropy strategy, which should

match pair correlations when finely discretized and flexible spline pair potentials

are used.33 At other compositions, the pair-only models fare poorly: the one

from 10 and 50% solutions overestimates the RDF peaks at higher compositions,

while that developed from the 90% solution underpredicts the RDF peak at 10%

composition. The pair + LD-BB and pair + LD-WB models seem equally limited

in their ability to capture states beyond the reference composition. On the other

hand, the models with LD-WW and LD-BW potentials perform much better

and the pair + LD-all CG model is nearly quantitatively transferable to all of

the compositions in terms of RDF reproduction. A similar trend emerges in the

LD distributions, where the pair-only model shows limited fidelity, even at the

reference composition, and grossly overpredicts both the peak and the spread of

the distribution at other compositions. Once again, better transferability in the

LD distribution results from the inclusion of the LD-WW potential, and the pair

+ LD-all model scales reasonably well across the entire composition space.

93



Chapter 3. Transferable coarse-grained models of liquid–liquid equilibrium using
local density potentials optimized with the relative entropy

Figure 3.3.2: Transferability of B-W RDF (top panel) and LD distribution
(bottom panel) between AA (represented by black dots) and CG models for the
different CG force fields in Table 3.2.1. CG models for various combinations of
these LD potentials are parametrized from reference compositions of 10, 50, and
90% benzene mole fraction (dark framed plot marked “ref”, along the rows). CG
models constructed at a particular AA reference are simulated at compositions
spanning 10-90% benzene (along the columns), which are used to calculate and
compare RDFs and LD distributions with corresponding AA MD simulations
at these compositions. The pair + LD-all CG model is nearly quantitatively
transferable for both metrics at every composition.
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Fig. 3.3.3 summarizes the overlap of all three RDFs and four LD distributions

for the different classes of CG force fields across composition space and for dif-

ferent parametrization references. Here we compute the root-mean-square (RMS)

differences between the AA and CG versions of these metrics, averaged over the

distinct species combinations and weighed by composition

RMS[g(r)] =
[
x2B
〈
∆g2BB

〉
+ x2W

〈
∆g2WW

〉
+ 2 xBxW

〈
∆g2BW

〉] 1
2

RMS[PLD(ρ)] =
[
x2B
〈
∆P 2

LD, BB

〉
+ x2W

〈
∆P 2

LD, WW

〉
+ xBxW

(〈
∆P 2

LD, BW +
〉

+
〈
∆P 2

LD, WB +
〉)] 1

2
(3.3.1)

where for
〈
∆X2

αβ

〉
= 1

N

∑(
XAA
αβ − XCG

αβ

)2
, Xαβ = gαβ(r) or PLD(ραβ) and N

numbers the discrete values of the arguments (r or ρ).

Fig. 3.3.3a demonstrates that all of the CG models are accurate in predicting

the RDFs at the reference composition at which they are parametrized, but the

pair-only and pair + LD-BB force fields worsen significantly at other composi-

tions. For calibration, a RMS error of 1.2 for the pair-only CG model at 10%

composition corresponds to an overprediction of the WW RDF peak by 300% and

BW peak by 113%, on average. On the other hand, the pair + LD-WW and pair

+ LD-all CG models have very low RMS errors across all of composition space.

Remarkably, the high transferability of these models is not affected by the refer-
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Figure 3.3.3: Composition weighted RMS overlap for (a) pair correlations and
(b) local density distributions, between AA systems and CG models parametrized
from 10, 50, and 90% reference compositions (along the vertical subpanels). The
LD-WW potential is arguably the most important many-body interaction, and
CG model transferability is significantly improved when it alone is included. CG
models with only pair potentials or with intrabenzene LD potentials have poor
transferability. The 50% reference CG model with all LD potentials performs
best, being transferable to both more dilute and more concentrated solutions for
both structural metrics.

ence composition. Particularly for the pair + LD-all case, models parametrized at

either very high or low benzene concentrations perform well. The transferabilities

in LD distributions in Figure 3.3.3b have a similar trend, but the RMS error is

nonzero everywhere including the reference composition. This is likely because

the absolute RMS metric used in Eq. (3.3.2) is sensitive to the large variation in
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the range of the (normalized) LD distributions across BB, WW, BW, and WB

types, and very high-resolution splines for LD interactions would be needed to

capture some sharp features of the LD distributions (which pose numerical chal-

lenges in the relative entropy minimization). Fig. 3.B.1 in the Appendix presents

an alternate version of Fig. 3.3.3 where the RMS errors are normalized relative

to the AA distribution for both pair and LD.

The poor performance of the pair + LD-BB force field and the high trans-

ferability of CG models that include the LD-WW potential show that, although

the BB and WW LD potentials are comparable in magnitude (as observed in Fig.

3.3.1), the LD-WW potential is the more important multibody contribution. Ad-

mittedly, the reference solutions used in this study are already phase-separated,

unlike previous efforts to parametrize benzene-water CG models from much more

dilute conditions.4 Intra-water local many-body correlations are likely particularly

important to hydrophobic-mediated interactions and phase separated conditions,

which we believe underlie the success of the LD-WW potential.

It should be mentioned that it is not clear if the LD strategy improves the struc-

tural transferability of the CG models across bulk density (or pressure). Figure

3.C.1 in the Appendix shows that LD potentials sometimes improve reproduction
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of pair correlation functions at slightly higher or lower densities, compared to

pair-only models, but the effect is not uniform.

3.3.3 Thermodynamic transferability

We also consider the extent to which the CG models reproduce selected ther-

modynamic properties in addition to structural correlation functions. As a first

example, we calculate the excess chemical potential due to inserting a hard sphere

of radius R in benzene solutions of composition 10-90%, µex(R). Since a hard

sphere interacts simply by excluding other particles within a threshold volume,

µex(R) = −kBT lnPcav is calculated from the probability of finding a cavity of

radius R in the equilibrium solution within the simulation box. For pure solvents,

the hard sphere solvation chemical potential is directly related to the equilibrium

fluctuations in local density of the solvent around solutes, which is an impor-

tant measure of solute hydrophobicity in aqueous solutions.160 In this case, we

introduce hard spheres within the entire aqueous benzene solution and thus the

resulting excess chemical potential is related to the species-averaged density fluc-

tuations.

Fig. 3.3.4 compares the fractional error between AA and CG predictions of

µex(R), i.e.
(
1−µexCG

µexAA

)
, for the different CG models. Direct comparison between AA
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and CG excess chemical potentials can be found in the Appendix (Fig. 3.D.1).

The AA and CG predictions match nearly exactly for hard spheres of radius

≤ 1.5Å for all force fields. For R ≥ 1.5Å, the pair + LD-WW and pair + LD-all

models produce ∼ 10-15% deviation from the AA predictions at the reference

compositions. This error is magnified at compositions away from the reference for

the 10 and 50% reference solutions but interestingly decreases to 8% when the pair

+ LD-all force field from the 90% reference is used at lower compositions. The

pair-only, pair + LD-BB, pair + LD-BW, and pair + LD-WB force fields have

higher error (∼ 20-30%) regardless of the composition. In most cases, µex
CG ≤ µex

AA,

as can be intuitively expected, since coarse-graining multiple atoms into single,

isotropic CG point molecules opens more effective free volume in the solution.

However, the pair-only model from the 50% reference and several models from

the 90% reference predict positive errors, i.e. µex
CG ≥ µex

AA, when applied to lower

compositions.

It is well-known from scaled-particle theory that µex for a hard sphere solute

of radius R is related to the solute contact density161,162

d

dR
µex(R) =

4π

β
R2[ρsolventG(R)] (3.3.2)

where G(R) is the first-peak value of the hard-particle-solvent RDF. Although

this result strictly holds for pure solvents, it remains conceptually similar for liq-

uid mixtures.161 Therefore, hydrocarbon solvents, with typically lower contact
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Figure 3.3.4: Fractional errors between AA and CG predictions of excess chemi-
cal potential for inserting a hard sphere with diameters ranging from 0 to 5 Å, for
the different CG model force fields per Table 3.2.1. CG models are parametrized
from reference compositions of 10, 50, and 90% benzene mole fractions (dark
framed plot marked “ref” along the rows). Excess chemical potentials are calcu-
lated using the Widom test particle insertion method. Including W-W multibody
interactions is essential for CG model transferability, as all models without this
interaction predict insertion free energies (for R ≥ 1.5Å) incorrectly modulated
by composition.

densities for hard-particle solutes, are expected to exhibit smaller excess chemical

potentials.162 For most of the benzene solutions upward of 50% composition, it

is likely that cavity volumes are much more frequent in the benzene phase, thus

decreasing the free energy of insertion. CG force fields that do not include W-W

multibody interactions (namely, pair-only, pair + LD-BB, pair + LD-BW, and
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pair + LD-WB) are sensitive to the system composition: when parametrized from

the 10% reference and transferred to higher benzene compositions, they predict

lower µex, and when constructed from the 90% reference and transferred to dilute

solutions, they produce systematically higher µex. Thus, it appears that capturing

W-W self-interactions accurately is crucial to model transferability.

To investigate the macroscopic phase separation between benzene and water

and the associated equilibrium interfacial behavior, we perform MD simulations

with 380 benzene and 1000 water molecules in a periodic box that is extended

(∼ 129 Å) along the z axis. The volume of this system is nearly 5 times larger

than those of the parametrization references. The solution composition was cho-

sen such that the equilibrium box volume determined through an initial (40 ns)

NPT simulation produces an overall concentration of ∼ 7 M, which is close to the

highest concentration limit (∼ 9.5 M) at which pair-only CG models studied in

ref. 4 fail to capture the macroscopic phase separation. Bulk density profiles are

subsequently computed from sampling equilibrated trajectories (∼ 60 ns) in the

constant volume NVT ensemble, along the z direction.

Fig. 3.3.5 compares the bulk density profiles of benzene and water for the

different CG models from the 10, 50, and 90% reference compositions. The AA
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system and all of the CG models demonstrate macroscopic phase segregation in

which the benzene and water phases move to opposite sides of the box along the

longest dimension. The pair-only, pair + LD-BB, pair + LD-BW, and pair +

LD-WB models systematically predict up to 10% lower bulk densities for benzene

and up to 40% higher ones for water, when parametrized from the 90% solution.

Consequently, these force fields also produce a larger size of the benzene phase.

While CG models that include the LD-WW potential reproduce the bulk densities

nearly correctly, the pair + LD-all model from the 90% reference does not replicate

the sharp segregation along the interface seen in the AA system, and leads to a

longer benzene phase and a slight nonzero concentration of benzene in the water

phase. It is worth noting that this particular model displayed a significantly

different character in the water-water pair and LD potentials, as shown in Fig.

3.3.1 It may be difficult for this model to capture the sharp local density gradients

across the phase interface.

The behavior of the benzene-water interface can be further quantified by cal-

culating the interfacial surface tension (γ), calculated by the Kirkwood–Buff for-

mula(73)

γ =

∫ ∞

−∞
dz

(
pzz −

pxx + pyy
2

)
(3.3.3)
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Figure 3.3.5: Macroscopic phase separation in large systems and transferability
of density profiles of benzene (top panel) and water (bottom panel) at an overall
composition of 27.5% benzene mole fraction in a long rectangular box, using the
different CG models parametrized from 10, 50, and 90% reference compositions
(across the columns). CG models without LD contribution of water (pair-only,
pair + LD-BB) underpredict the equilibrium density of benzene and overestimate
that of water, with the deviations increasing when the parameterization reference
is more extreme in composition. Dotted lines are the experimental bulk densities
of benzene (top panel: ∼ 0.89 g/cm3) and water (bottom panel: ∼ 1.0 g/cm3).

where pii is the diagonal component of the pressure tensor along the i axis (i =

x, y, z) and ±∞ represents the benzene and water bulk phases. Our AA simu-

lations and most of the CG models reveal two nearly sharp planar interfaces (as

shown in Fig. 3.3.5) so that the difference between the pressure normal to the

interface (pzz) and the total tangential pressure

(
pxx+pyy

2

)
is nearly zero every-

where except the interface, and pzz remains roughly constant along the z axis.
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For a finite box of length Lz in the z direction, the discrete version of Eq. (3.3.3)

gives the interfacial tension (averaged over two interfaces due to periodic boundary

conditions) as163–165

γ =
Lz
2

(
〈pzz〉 −

〈pxx〉+ 〈pyy〉
2

)
(3.3.4)

where 〈 〉 denotes spatial averages along the z coordinate. Eqs. (3.3.3) and (3.3.4)

can be sensitive to the cutoff for truncating pair potentials.166 We perform AA

simulations with nonbonded pair cutoffs of 10, 11, and 12 angstrom, and find

that the interfacial tension does not change within statistical certainty between

the last two cutoffs, with a value of 43.7 mN/m at 12 Å. Fig. 3.3.6 compares the

AA surface tension with that of the different CG models in Table 3.2.1 and from

the three parametrization references. The AA surface tension is ∼ 43.7 mN/m

which overestimates by 36% the experimental value (32 mN/m);167 this deviation

is likely due to the overprediction of the solubility of benzene in water by the

GROMOS 53a6 AA force field, as discussed in section 3.2.2. However, we note

that our focus here is the ability of the CG models to capture the given reference,

regardless of their absolute accuracy.

All CG models in Fig. 3.3.6 embed significant transferability errors such that

predicted γ values systematically increase from low to high benzene concentra-

tions. The absolute errors in the interfacial tension are lowest for the 50% refer-
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Figure 3.3.6: Comparison of benzene-water interfacial tension between the AA
system and the different CG models from 10, 50, and 90% reference solutions,
for a 27.5% benzene solution in a long rectangular box. The AA system over-
predicts the experimental surface tension (∼ 32 mN/m) of the benzene–water
interface,(78) but regardless of its absolute accuracy, all CG models embed dif-
ferent amounts of transferability errors relative to it. The pair-only and pair +
LD-WW models parametrized from the 50% solution come closest to reproducing
the AA surface tension. CG models from more concentrated reference solutions
predict increasingly high surface tensions.

ence solution; under these conditions, the pair-only and pair + LD-WW models

come closest to matching the AA value, underestimating it by 1%. CG models

from the 10 and 90% references give values off by approximately 37 and 175%,

respectively. It should be noted that the pressure tensor components for calcu-

lating the surface tension are obtained from constant volume (NVT) CG MD

simulations (box dimensions are taken from the equilibrated AA simulation). We

verified that the ensemble averaged pressure has no correlation with the surface

tension, so that the differences in γ values are due to differences in the CG force
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fields and not differences in state.

Although the differences in bulk density profiles predicted by the LD-augmented

CG models are small, they perform poorly in reproducing the thermodynamic

pressure and consequently the interfacial tension. The average CG pressure varies

between 4500 and 7000 atm with a 3% average (RMS) fluctuation from the mean.

This is not terribly surprising, as bottom-up CG models are well-known to have

difficulty capturing correct pressure, as has been explored in a number of pa-

pers.22,51,62,168–171 Das and Andersen56 and more recently Noid and co-workers6,64

have suggested that, to predict the pressure correctly, CG models might incorpo-

rate additional volume-dependent terms in the interaction potential; by then sam-

pling AA simulations under constant pressure conditions, where volume fluctuates,

the CG volume-dependent energy term can be parametrized in a bottom-up fash-

ion.

As a further investigation of thermodynamic properties of the liquid mixtures,

we consider Kirkwood-Buff integrals. The theory of solutions pioneered by Kirk-

wood and Buff and later worked out in detail by Ben-Naim provides an important

link between microscopic structure and macroscopic thermodynamic observables

of solutions.47,172 The central elements of Kirkwood–Buff (KB) theory are inte-

106



Chapter 3. Transferable coarse-grained models of liquid–liquid equilibrium using
local density potentials optimized with the relative entropy

grals that depend on the RDFs as

Gαβ(R) =

∫ R

0

dr 4πr2 [gαβ(r)− 1] (3.3.5)

where gαβ(r) is the RDF between species α and β (αβ = BB, WW, BW) and R

is a correlation distance beyond which the RDF becomes flat and the integrand

in Eq. (3.3.5) vanishes. The Kirkwood-Buff integral (KBI) is related to the

excess coordination number around a particle relative to a flat density profile.

Thus, a positive value of Gαβ signifies a higher propensity of molecule type β

around α (within a correlation radius of R), whereas a negative value indicates

low intermolecular affinity. Solute-solute, solute-solvent, and solvent-solvent KBIs

can be additively combined into a preferential solvation parameter

∆ = GBB +GWW − 2 GBW (3.3.6)

which quantifies the mutual affinity between the solute and solvent and provides

a gateway between microscopic structure and macroscopic thermodynamic prop-

erties through its connection to chemical potentials and activity coefficients. In

particular, the composition derivatives of the benzene chemical potential (µB)

and activity coefficient (γB) at temperature T and pressure P , for a solution with

benzene and water concentrations (in M) ρB, ρW and mole fractions xB, xW, re-

spectively, follow (
∂µB

∂xB

)
P,T

=
[
βxB (1 + ρWxB∆BW)

]−1
(3.3.7)
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and (
∂ ln γB
∂ lnxB

)
P,T

= − ρWxB∆BW

1 + ρWxB∆BW

(3.3.8)

It should be noted that, for small values of r and/or small system size, the RDFs

are insufficiently sampled at low interparticle distances, which can lead to con-

vergence issues in KBIs and impart oscillatory character to these integrals when

considered as a function of R. The convergence properties of KBIs and corrections

to adapt them for small system sizes have been of interest in the recent literature

and have been studied by van der Vegt and co-workers173,174 and Schnell and co-

workers.175

We evaluate the transferability of KBIs calculated using CG models developed

from the 50% benzene solution, under extreme composition conditions at 0.2 and

99.8% benzene mole fraction that lie outside of the phase separation envelope. It

should be noted that Eq. (3.3.5) is exact only for MD simulations in the grand

canonical ensemble, and holds approximately for closed systems in a manner that

becomes increasingly accurate with larger system sizes. Therefore, we carry out

atomistic simulations with 5000 molecules and larger equilibrium cubic box di-

mensions (≈ 53 Å for the 0.2% solution and 89 angstrom for the 99.8% solution).
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Fig. ?? compares the B-B, W-W, and B-W types of KBIs as a function of the

correlation length from among the CG models of Table 3.2.1 for xB = 0.002 (left

panel) and xB = 0.998 (right panel). In the 0.2% solution, the BB KBI fails to

converge at large R for the pair-only CG model, and when LD potentials are used,

it converges on values that are different from the AA system (black line). For the

WW and BW KBIs, CG models with only pair potentials and/or lacking the LD-

WW potential also perform worse. The pair + LD-all force field comes closest

to predicting all three KBIs, reproducing the converged values to within 41, 1.8,

and 1.6% accuracy, for BB, WW, and BW, respectively. On the other hand, for

the 99.8% solution, the BB KBI barely converges and is captured similarly by all

of the CG models. Both the WW and BW KBIs do not converge for this case.

KBI values for the AA, pair-only, and pair + LD-all models, averaged over the

correlation length for the different CG force fields, are compared in Table 3.3.1

The BB KBIs for all of the CG models at 0.2% mole fraction have high positive

values pointing toward higher benzene aggregation at very dilute benzene compo-

sition than predicted by the AA model. This is likely due to transferability errors

stemming from the choice of the parametrization reference of 50% mole fraction,

which is significantly more concentrated than the phase separation point of the

system (xB = 0.0095, as predicted by the AA force field(55)). It should be kept in
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Figure 3.3.7: Comparison of the Kirkwood–Buff integrals (KBIs) of types B-B,
W-W, and B-W (along the vertical subpanels) shown as a function of correlation
length between AA and CG models for a very dilute solution at 0.2% mole fraction
of benzene (left panel) and a superconcentrated solution at 99.8% (right panel).
The CG models are parametrized from a 50% reference solution. All CG models
have poor transferability for the BB KBI at dilute composition and for the WW
KBI at very high composition. CG models with all LD potentials come closest to
reproducing the WW and BW KBIs at low composition.

mind that converged KBIs calculated according to Eq. (3.3.5) are highly sensitive

to small variations in the RDFs, especially over the correlation lengths that are

chosen to report the average converged value. While Fig. reffig3.5 shows that

the transferability errors for RDFs using local density-assisted force fields are low,

it may be that such small variations are more difficult to capture quantitatively
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Table 3.3.1: Comparison of the values of the KBIs (averaged over correlation
lengths in the interval 14-18 Å for the 0.2% solution and 35-40 Å for the 99.8%
solution) between the AA System, pair-only, and pair + LD-All CG models*

xB Force field type GBB(Å
3
) GWW(Å

3
) GBW(Å

3
)

0.002 AA 305 ± 66 -23.96 ± 0.02 -124.58 ± 0.85
0.002 pair-only 102100 ± 2400* -8.12 ± 0.29 -1310 ± 25
0.002 pair + LD-all 179 ± 14 -23.55 ± 0.03 -122.5 ± 1.1
0.998 AA -97.55 ± 0.17 2000 ± 1100* -24.0 ± 3.3*
0.998 pair-only -93.92 ± 0.17 -4600 ± 1200* -32.3 ± 2.1*
0.998 pair + LD-all -86.92 ± 0.26 4050 ± 620* -209.8 ± 2.7*

*Values marked with an asterisk (*) have not converged.

through the approach used here, and additional constraints may be useful to help

optimize CG models to correctly predict the KBIs.176

Arguably, this test of transferability is somewhat extreme because it attempts

to bridge both sides of the phase transition. Previous studies of this system have

sought the opposite route, i.e. constructing CG models at very dilute composi-

tions and observing their transferability to extremely high concentrations.4 Intra-

and interspecies many-body effects are typically absent in dilute solutions, so

perhaps mean-field approaches like the LD potential necessitate the use of a refer-

ence AA composition that is concentrated enough to demonstrate sufficient mul-

tiparticle interactions through macroscopic aggregation and/or consequent phase

separation behavior.
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3.4 Conclusion

In this chapter, we used local density (LD) potentials as a simple and compu-

tationally inexpensive way to develop transferable CG models of molecular liquid

solutions and hence their equilibrium phase behavior. Specifically, we used rela-

tive entropy minimization to develop CG models of aqueous benzene solutions that

map benzene (B) and water (W) molecules to single CG sites, thus coarse-graining

away orientational degrees of freedom that heavily mediate the unique geometric

and hydrogen bonded interactions governing liquid phase properties. We explored

the ability of LD potentials to capture the multibody impact of these interactions

and their mediation by the local solution environment. In combination with three

CG pair potentials (BB, WW, BW), we tested the relative roles of the four pos-

sible LD potentials (BB, WW, BW, WB) by combining them zero, one, and all

at a time, and we evaluated the sensitivity of the models to different reference

all-atom system compositions spanning low to high benzene mole fractions. Here,

the relative entropy minimization strategy provided a straightforward and simple

way to parametrize both the conventional pair interactions and the more novel

local-density potentials, all modeled by flexible splines.
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Our results show that CG models built entirely out of pair potentials have

limited transferability and poorly reproduce structural and thermodynamic prop-

erties at compositions far from the parametrization conditions. On the other

hand, we find that CG models including LD potentials show improved structural

transferability, in some cases dramatically so: including all four LD interactions

allows quantitative reproduction of radial distribution functions and coordina-

tion number distributions across all of the composition space. Of the different

LD potentials, the LD-BB interaction appears the least important to improving

transferability, while the LD-WW potential has the strongest effect, suggesting

that water-water interactions comprise the dominant multibody force in the sys-

tem. This highlights the role of water’s unique structural correlations and its

tetrahedral hydrogen bonded network39,69,177 in mediating its interactions with

other water molecules as well as hydrophobic interactions with the much larger

benzene molecule. Ultimately, the unlike LD potentials have an important role too

in characterizing the B-W segregation under phase separated conditions, so that

the CG force field including all four LD potentials is always the most transferable

in terms of both structure and thermodynamics, regardless of the AA reference.

In terms of other thermodynamic properties, we also found that the LD strat-

egy improved macroscopic simulations of phase separations, allowing individual
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phases to equilibrate at correct bulk compositions. However, even with the LD

strategy, CG models produced more diffuse benzene-water interfaces than ex-

pected from all-atom results, likely due to the significant gradients in local com-

position that are not addressed by LD potentials. All CG models showed difficulty

in capturing correct bulk pressures and interfacial tensions, likely connected to the

difficulty in resolving the interfacial profile but also to the well-known problem of

recapitulating pressure with bottom-up CG models.22,51,62,168–171 Moreover, we

found that the LD strategy generally improved the ability of CG models to cap-

ture Kirkwood-Buff integrals at very dilute compositions, although no one model

was able to completely reproduce the corresponding AA results.

This chapter illustrates a proof of principle for using LD potentials in bottom-

up CG models capable of improving transferability and thus capturing phase sep-

arated systems. It is interesting to note that all models were developed from

relatively small reference systems, yet translated well to larger-scale simulations.

Indeed, here the small system size magnified the effect of interfacial and cross-

species interactions, which provided sampling of local composition fluctuations

important for model parametrization by relative entropy minimization. The de-

termined forms of the local density interactions were also informative: the self-LD

interactions (LD-BB, LD-WW) showed the most significant energy variations and
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impact. This may suggest the possibility of tabulating self LD interactions for

different species independent of any particular mixture, such that these might

be combined in arbitrary mixtures to create transferable force fields; we leave

this idea for future directions. However, one surprising result was the significant

variation in the form of the LD potentials determined at distinct reference compo-

sitions, even though each model still showed excellent transferability in structural

properties across composition (particularly for the LD-all case). Perhaps even

with LD potentials, the CG force field still admits some flexibility that could be

adjusted to target reproduction of other properties, for example, those relevant to

solvation thermodynamics.

In chapter 2, we used a single type of LD potential between CG monomers

of a superhydrophobic polymer to construct implicit-water solvent models that

led to a much-improved description of the conformational space sampled by the

polymer.144 Hydrophobic polymer collapse and benzene clustering in water both

share common themes of higher-order cooperativity inherent to hydrophobic inter-

actions, which can be modulated by the size asymmetry of the involved species.149

It seems that, by accounting for local structure, even if simply in terms of coordi-

nation numbers without explicitly including orientational degrees of freedom, LD

potentials can capture the delicate balance between entropy-driven hydrophobic
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forces around small solutes and enthalpy-driven hydrophobic interactions around

large macromolecules and macroscopic interfaces. Thus, the corrective effect of

the LD potential over traditional CG pair interaction may be broadly useful for

improving a wide variety of CG models of fluid phase physics characterized by

short ranged forces. In turn, the use of CG models may significantly enable the

application of rigorous Monte Carlo phase equilibrium calculations125,128 that in-

volve insertion and deletion moves. While the minimal set of LD potentials needed

for good transferability in a CG model may be difficult to predict a priori, it is

useful to note that water is a very common solvent and retaining its local struc-

tural correlations in CG models is arguably important for a large class of fluid

mixtures.

Appendix

3.A Transferability of pair correlations and lo-

cal density distributions using different CG

models

Fig. 3.A.1-3.A.5 present the comparison between all-atom (AA, black dots) and

CG radial distribution functions (RDFs, of types BB and WW) and local density

(LD) distributions (of types BB, WW and WB) for the different CG forcefields in

Table 3.2.1 in the section 3.2.1. CG models for various combination of these LD

116



Chapter 3. Transferable coarse-grained models of liquid–liquid equilibrium using
local density potentials optimized with the relative entropy

potentials are parameterized from reference compositions of 10%, 50% and 90%

benzene mole fraction (dark framed plot, along the rows). CG models constructed

at a particular atomistic reference are used in MD simulations of mixtures from

10% to 90% composition (along the columns), which are then used to calculate

and compare RDFs and LD distributions with corresponding AA MD simulations

at these compositions.

Figure 3.A.1: B-B RDFs

All CG forcefields, even the ones with only pair interactions, demonstrate

excellent transferability for the BB pair correlations. This is consistent with the
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fact that the BB pair potential changes only slightly when re-parameterized in

the presence of the LD-BB potential (Fig. 3.3.2).

Figure 3.A.2: W-W RDFs

The W-W pair correlations have more pronounced changes in transferability

when going from a CG model with only pair potentials to those with LD poten-

tials. The small effect of the B-B many-body interactions is demonstrated by

the poor transferability of the pair + LD-BB model, similar to that of the pair-

only CG model. Both of these models have good representability at the reference

composition but under-predict the significant water-water association at higher
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compositions. The unusually high magnitudes of the RDF peak at all compo-

sitions ≥ 30% reflect the formation of tight water clusters, modulated by the

overall bulk density of the system. The LD-WB potential also under-predicts the

distribution peaks in dense solutions. The pair + LD-WW and pair + LD-all CG

models have the best transferability, quantitatively reproducing the RDFs at all

compositions.

Figure 3.A.3: B-B LD distributions

Transferability for the B-B LD distributions follow similar trends to those

for the corresponding pair correlations. However, there are some differences in
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representability. The pair-only CG model fails to represent the distribution even

for the composition at which it was parameterized. All CG models that include one

or more LD potentials have similar transferability, for each reference composition.

The jagged peaks throughout the upper contour of the distribution at 10% are due

to the discrete nature of the indicator function ϕ (Eq. (3.2.2)) used to determine

the local density, as discussed in detail in Chapter 2. Higher benzene compositions

add more counts to the LD BB histogram, thus further smoothening out these

jagged peaks. The typical number of benzene neighbors around a CG benzene

site grows from ∼ 6 in the 10% solution to ∼ 11 in the 90% solutions. From this

and from the B-B RDFs in Fig. 3.A.1, we hypothesize that B-B pair structure in

the more concentrated solutions (≥ 30%) closely mimics that of a simple liquid.

This might explain why this BB LD distribution or the BB RDF (Fig. 3.A.1)

are reproduced reasonably across most of the composition space by the pair-only

model alone without the need for multibody interactions to accurately represent

the missing orientational degrees of freedom.

The W-W LD distribution is particularly sensitive to the presence of the LD-

WW potential. For each parameterization reference, only two CG models, pair +

LD-WW and pair + LD-all can reproduce the distribution across the entire range

of compositions. All other CG models severely under-predict both the location
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Figure 3.A.4: W-W LD distributions

of the peak and its spread. As discussed throughout this chapter, the LD-WW

potential is arguably the most important LD potential to retain in CG models

presented in this work. Also notice that the peak values are ∼ 1.5-2 times larger

than the B-B LD distributions in Fig. 3.A.3, thus pointing to very tight water

clusters, compared to benzene association.

Transferability of the W-B LD distribution is best for the pair + LD-all force-

field and reasonably good for the pair + LD-WW. The pair-only and pair + LD-

BB forcefields produce distributions that scale very poorly across composition
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Figure 3.A.5: W-B LD distributions

space. The distributions are also reproduced moderately well by the forcefield

that includes only the LD-BW potential, which may be intuitive. It is therefore

interesting to see that the same does not hold for the pair + LD-WB model, which

transfers poorly, significantly under predicting both the peak and the spread at

high concentrations.
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3.B RMS errors between AA and CG predic-

tions of pair correlations and local density

distributions using a relative deviation met-

ric

Fig. 3.3.3 in section 3.3.2 employs an average RMS error between AA and

CG pair correlations and LD distributions characterized by absolute deviations

i.e.
〈
∆X2

αβ

〉
= 1

N

∑(
XAA
αβ − XCG

αβ

)2
, Xαβ = gαβ(r) or PLD(ραβ) and N is the

number of discrete histogram bins. Using absolute deviations makes this error

metric sensitive to the range of the normalized histogram bin values, especially

for the LD distributions. When RMS errors for different LD types (BB, WW,

BW and WB) are added, models from 10% and 50% references produce a lower

average error at compositions away from the reference, that can be erroneously

interpreted as meaning increasingly higher transferability at state points further

away from the reference. Further the average RMS errors for PLD are non-zero at

the reference compositions, where the AA and CG LD distributions are expected

to overlap quantiatively,35 especially for the pair + LD-WW and pair + LD-all

forcefields (Figs. 3.3.2, 3.A.1-3.A.5).
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To remove the sensitivity of the absolute RMS error to the histogram peak

values, we construct an alternate RMS metric that uses relative mean square

deviations normalized by the AA histogram value, namely

RMS[g(r)] =
[
x2B
〈
∆g2BB

〉
+ x2W

〈
∆g2WW

〉
+ 2 xBxW

〈
∆g2BW

〉] 1
2

RMS[PLD(ρ)] =
[
x2B
〈
∆P 2

LD, BB

〉
+ x2W

〈
∆P 2

LD, WW

〉
+ xBxW

(〈
∆P 2

LD, BW +
〉

+
〈
∆P 2

LD, WB +
〉)] 1

2
(3.B.1)

where 〈
∆X2

αβ

〉
=

1

N

∑(
XAA
αβ −XCG

αβ

XAA
αβ

)2

(3.B.2)

and Xαβ = gαβ(r) or PLD

(
ραβ
)
.

Fig 3.B.1 recapitulates the composition weighted RMS errors, but this time

using the relative mean squared deviation in Eq. (3.B.2) above. The Y-axis ranges

for the RDFs in panel (a) remain the same as in section 3.3.2, but the ranges of

panel (b) increase significantly. Using relative deviations essentially magnifies the

errors so that it is apparent at once that forcefields other than pair + LD-WW

and pair + LD-all produce very large relative errors. For the LD distributions,

these errors decrease by ∼ 50% across the range of compositions, regardless of

the reference composition. But the pair + LD-WW and pair + LD-all models

produce average errors that are 300% lower for the RDFs and 1400% for the LD
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Figure 3.B.1: Composite-weighted relative RMSD overlap for (a) pair correla-
tions and (b) local density distributions, between AA and CG models parameter-
ized from 10%, 50% and 90% reference compositions (along the vertical subpan-
els). Choosing a relative RMS metric reduces the sensitivity of the errors to the
peak values for different types of RDFs and LD distributions and brings out the
superior performance of the pair + LD-WW and pair + LD-all forcefields

distributions and change by ∼ 50% (similar to Fig 3.3.3 in section 3.3.2) across

the entire range of compositions.

3.C CG model transferability across different bulk

densities

To test the transferability of the CG models across bulk density, we perform

both AA and CG simulations of a 50% benzene mole fraction mixture using (cu-

bic) boxes that are 10% smaller and larger than the original equilibrium dimension
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(L0 = 35.2 5 Å). Although these simulations are in the NVT ensemble, they pro-

vide an idea of the model transferability across different bulk densities and thus

also at different average pressures.

Fig. 3.C.1 presents a comparison of the BB, WW and BW radial distribution
functions (RDFs) between the AA and CG models at these box sizes, for the 6
different forcefields outlined in Table 3.2.1 in section 3.2.1 parameterized from
the 50% mixture reference. The relative RMS errors (RMSE) between the AA

and CG RDFs are calculated according to (RMSE)(X) =
〈(

1− XCG

XAA

)2〉
, where

X = gBB, gWW or gBW. All the CG forcefields perform better at lower bulk
densities as evidenced by the lower RMSE for the larger box. Interestingly, the
pair + LD-all model retains nearly the same low RMSE (∼ 20-30%) for the BB
and BW RDFs across the higher and lower densities but has a very high RMSE
for the BW RDF at higher densities.

3.D Hard sphere excess chemical potentials for

the different CG models

Fig. 3.D.1 compares the excess chemical potential due for inserting a hard

sphere (µex(R)) for the AA system and different CG models, at 10%, 50% and

90% references. Fig. 3.3.4 in Section 3.3.3 presented fractional errors between

AA and CG predictions of µex, while Fig. 3.D.1 presents the absolute AA and

CG excess chemical potentials side by side. For R ≥ 1.5Å, the excess chemical

potential decreases (the most apparent change is ∼ 2 kcal/mol for the 5 Å sphere)

from low to high benzene composition, which is expected from how the hard

sphere contact density is modulated by increasing the benzene fraction in the
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Figure 3.C.1: BB, WW and BW radial distribution functions for the 50% ben-
zene mole fraction at box dimensions 10% smaller (column 1) and larger (column
2) from the one tuned to produce correct equilibrium bulk density of benzene and
water, i.e. at different effective pressures. Column 1 and 2 visually compare the
different RDFs (each row is a different RDF type) between the AA system and
the different CG models of Table 3.2.1 in section 3.2.1, while column 3 quantifies
this comparison through a relative RMS error metric. Most CG models seem to
be more transferable for the larger box size, i.e. at lower bulk density

liquid mixtures, and is elaborated in the section 3.3.3 (Eq. (3.3.2)). The errors

between AA and CG models are difficult to see in this representation and are

better represented as fractional deviations presented in Fig. 3.3.4 in section 3.3.3.
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Figure 3.D.1: Excess chemical potentials for inserting a hard sphere with diam-
eters ranging from 0- 5 Å, for the different CG models forcefields in Table 3.2.1
in section 3.2.1, parameterized from reference compositions of 10%, 50% and 90%
benzene mole fractions (dark framed plot marked “ref” along the rows). AA values
are marked with black dots.
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Chapter 4

A bottom-up,
structurally-accurate, Gō-like
coarse-grained protein model

4.1 Introduction

It was established over half a century ago that folding of protein and other

biomolecules form the foundations of structural biology by linking structure to

function for molecular-level biological processes.178,179 With some exceptions, the

biological mechanism of a protein is determined by its three dimensional (3D)

native structure which is encoded in the particular permutation of amino acid

monomers that make up its sequence. Due to the remarkable progress in experi-

mental techniques for protein structure determination over the last two decades,

such as crystallographic methods, NMR spectroscopy, cryo-electron microscopy,

and other nonlinear optical techniques,,180–185 we now have an extensive database
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of more than 130,000 3D protein structures or their complexes.186 Computational

models of protein structure are not only essential for supporting experimental

methods of solving native structures from amino acid sequences, they are also

crucial for mechanistic investigations into the driving forces for folding and assem-

bly, and in biotechnological applications such as high throughput drug-design.14–16

Molecular Dynamics (MD) simulations of protein folding using atomistically de-

tailed models can in principle address these applications. However, all-atom (AA)

MD is typically limited to time scales of tens of microseconds, while the character-

istic folding time for even small (∼ 50 amino acid residues) proteins is on the order

of millseconds and upwards. Except in very special cases, using custom-built hard-

ware187 or globally-distributed computing strategies,188 so far it has been nearly

impossible to break the millisecond barrier. This barrier has motivated the de-

velopment of coarse-grained (CG) protein models which reduce the number and

complexity of the degrees of freedom in MD simulations thus allowing a faster

sampling of conformational space.

One of the principal aims of CG peptide models has been to study of the driv-

ing forces behind protein folding. The first CG peptide models were developed

more than three decades ago by Warshel and Levitt, acheiving a resolution of 6.5 Å

backbone RMSD for folding the bovine pancreatic trypsin inhibitor protein PTI,189
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and since then there has been considerable progress in their development.190–193

Here we mention a few selected examples. Owing to the continued increase in com-

putational resources, CG protein models have steadily become more sophisticated

both in resolution as well as complexity of interactions. Early efforts like HP mod-

els focused on simple lattice chains described by a binary alphabet of amino acids:

hydrophobic (H) and polar (P) to demonstrate that structure is uniquely modu-

lated by sequence.83,133 However, lattice frameworks restrict orientational degrees

of the peptide chain, so that subsequently developed intermediate resolution mod-

els containing three or more CG backbone sites describing at least an α carbon

and a CG carbonyl group, were much more successful.34,194–203 E.g., The four-site

PRIME CG model by Hall and co-workers was succesfully used to investigate large

scale self-assembly behavior or polyalanine and polyglutamine oligomers.194,204,205

A similar resolution CG model developed by Deserno and co-workers was used to

predict structure and kinetics in three-helix bundles and transmembrane helical

peptides.196,206 The extremely popular MARTINI CG model developed by Mar-

rink and co-workers, provides a large set of amino acid specific parameters that

can be strung together to create forcefields for different peptide sequences.132,198

MARTINI has been used extensively to probe protein-lipid interactions.207
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Most of the approaches enumerated above are top-down in that they utilize

experimental data or trajectory-averaged metrics from atomistic simulations to

inform CG models. In contrast, bottom-up CG protein models systematically

remove degrees of freedom from detailed atomistic simulations and utilize statis-

tical mechanical principles to inverse design simpler potentials that renormalize

the entire set of atomistic interactions such that the correct folding behavior (as

seen in the atomistic system) is emergent in CG model simulations. A notable

effort within this class of CG models is the Multi-Scale Coarse-Graining (MS-CG)

method by Voth and co-workers, which parameterizes CG interactions by match-

ing forces at CG sites between AA and CG resolutions.25 The MS-CG approach

was used to design four-site CG models of (helical) polyalanine and the (hairpin)

sequence V5PGV5 which preserved their native states (as seen in the reference

AA simulations) within 1 Å backbone RMSD in CG simulations.28 Rudzinski and

Noid used the MS-CG method to parameterize implicit water C-α models from

atomistic polyalanine systems, and found that, while order parameters like the

radius of gyration and helix propensity were reproduced accurately, the low CG

resolution and a simple basis consisting of three types of nonbonded CG poten-

tials were insufficient to capture helix-coil transitions seen in AA polyalanine.138

Mullinax and Noid used the Extended-Ensemble-Coarse-Graining method63 (de-

tailed in section 4.2.1 and the appendix) to construct statistical potentials for a
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three-alphabet CG model (hydrophilic, hydrophobic and neutral CG sites) from a

model databank populated with near native conformations of candidate α, β and

mixed α/β sequences.208 Peter and co-workers used iterative Boltzmann inversion

to develop an intermediate resolution CG model for the short amphiphilic EALA

peptide specifically to investigate its pH induced helix-coil transition.209

Despite many successes of both top-down and bottom-up CG peptide mod-

els in the literature, a main intent so far, especially for bottom-up models, has

been to understand general features of the folding mechanism rather than accu-

rate structure predictions. Although some of the top-down efforts have resulted in

structurally robust models, they typically combine physics based forcefields with

bioinformatic terms often derived from structure databases, and even then only

typically resolve structures within 4-6 Å backbone RMSD as opposed to 1-2 Å

that is generally considered correct.195–197,202 Thus, the ideal CG model is one

that is (a) independent of bioinformatically obtained constraints, (b) bottom-up,

and hence leverages the entire underlying folding free energy surface to automati-

cally design CG interactions and, (c) provides high resolution structure prediction.

Such a model can also enable the systematic inclusion of non-natural and synthet-

ical chemical constructs for which experimental data would be either difficult or
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nearly impossible to generate.

This work explores the ability of a recent bottom-up coarse-graining strategy

to develop a generic CG protein model that folds arbitrary protein structures to

high accuracy at 1-2 Å resolution. Our investigation is motivated by the earlier

effort of Carmichael and Shell that developed a bottom-up four-site CG model

for polyalanine from a reference atomistic polyalanine simulation.41 This earlier

CG model demonstrated surprising accuracy and transferability, whereby both the

free energy landscape and temperature-dependent folding behavior were quantita-

tively captured relative to atomistic simulations. Interstingly, though this model

was developed from a mostly helical single polypeptide reference simulation, it

also produced β-rich amyloid structures in self-assembly simulations, with correct

sheet alignment, packing and twist. Here, we investigate whether it is possible to

extend Carmichael and Shell’s approach to capture native structures of arbitrary

globular proteins. Ideally, one would seek a sequence-flexible model with distinct

sidechain parameters for all twenty amino acids, but as a necessary first step to-

wards that grand goal, here we consider the creation of native-structure-informed

Gō type models in a bottom-up fashion. Thus, the CG model we develop includes

favorable sidechain interactions between amino acids known to be in contact in

the native structure. In this sense, this effort is a test of whether or not bottom-

134



Chapter 4. A bottom-up, structurally-accurate, Gō-like coarse-grained protein
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up methods can produce accurate backbone interactions and secondary structures

even when “ideal” sidechain interactions are present, exploring their ability to cap-

ture wide range of protein folds. Similar to the Carmichael and Shell model, we

develop CG polypeptide forcefields from reference AA polypeptide simulations,

but subsequently parameterize sidechain potentials to reproduce native contact

interactions. While a twenty-alphabet model with distinct sidechain parameters

for all twenty amino acids is our eventual goal, we break this task into several

incremental stages to validate and refine the strategy. In this chapter, we limit

ourselves to the first stage which involves native-sentient Gō-like models.

Long studied in the protein folding community since their introduction,210 Gō

models modulate sidechain interactions between residues depending on whether or

not they are in contact (i.e., within a threshold proximity) in the experimental na-

tive structure; contact residues are given an attractive interaction while all other

non-native residue pairs merely experience excluded volume interactions. Such

models are motivated by the principle of minimum frustration, which postulates

that proteins were evolved towards sequences with the ability to fold into low-

energy conformations, while actively selecting against local minima traps on the

energy landscape by avoiding misfolding and non-native contacts.211 Gō models

take this idea a step further by treating native contacts as the sole driving force
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for the folding process. Although such models are not de-novo, (i.e., they cannot

be used to predict structure from sequence alone), they have proven useful for

understanding functional protein conformational fluctuations and generic aspects

of folding pathways, and may also rapidly provide structural ensembles consistent

with experimentally-determined native contact information (e.g. via NMR) to

improve structure prediction efforts.212–216 Over the last decade, several flavors of

Gō-like and other native-structure based CG models have been proposed which

utilize various physical and bioinformatic data like the distribution of hydrogen-

bonds, homologous sequences or solvation transfer free energies of amino acids,

in addition to the native structure.217–220 In contrast, our approach here does

not include any experimental data beyond the native structure. Specifically, we

parameterize both generic (i.e., amino acid unspecific) backbone interactions and

Gō-like native interactions in a bottom-up fashion directly from small-scale atom-

istic simulations. The Gō-like interactions pursued here are meant to serve as ideal

sidechain potentials that enforce a minimal set of restraints (native contacts) on

the folding process that bring out the intrinsic capability of the backbone in sam-

pling the correct conformational space.

Our premise is based on the observation that backbone interactions are key

to the landscape of folds: even simple sequences that do not fold to unique struc-
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tures (e.g., homopolymeric peptides) can explore a wide range of realistic folds,

involving both α and β secondary structure elements. An early study by Head-

Gordon and Stillinger et al. found that polyalanine can mimic the secondary

structures of several globular proteins such as PTI, crambin, ribonuclease A and

superoxide dismutase. Specifically, the authors observed that the potential en-

ergy landscapes of alanine polymers of different lengths have local minima close

to the global free energy minima at the native structures of different proteins of

equivalent sequence length.221 More recent work by Laio and co-workers found

that an atomistic 60-mer of polyvaline was able to produce practically all compact

folds (∼ 300) observed in nature for proteins of comparable length, including α,

β and mixed-content structures.222 A similar conclusion was reached through CG

polyvaline simulations by Vendruscolo and co-workers, where they recovered 135

folds from the ensemble of structures generated by the valine 60-mer, out of the

265 folds reported in the CATH database223 for proteins containing between 40

and 75 residues.224 These studies suggest a picture whereby backbone interactions

such as hydrogen bonding, dihedral energetics and excluded volume interactions,

together with the inherent geometrical constraints of the backbone, define the con-

formational landscape for a protein chain, while the side chains then adjust the

energetic favorability of different structures so as to select a single fold.225–228 Thus

a fundamental challenge that we test in this chapter is the ability of a bottom-up
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strategy to generate computationally fast, generic CG backbone interactions that

correctly reproduce the structural landscape. Gō-like interactions provide a natu-

ral context to establish an upper bound on the quality of CG backbones developed.

4.2 Methods

We use a four-site CG model motivated by the Carmichael and Shell41 four-site

polyalanine model and by early work by Carmichael and Shell which showed that

a higher resolution polyalanine CG model with three CG sites per residue was

more representable and transferable among other one- and two-site variants.34,229

This is also consistent with earlier four-site model development efforts by the

Hall and194 and Deserno groups.196 As shown in Fig. 4.2.1(A) with an exam-

ple polyleucine 15-mer, the CG mapping ignores hydrogens and discretizes each

amino-acid into CG sites corresponding to four heavy atom centers: nitrogen (N),

α-carbon (C), carbonyl carbon and oxygen (O) and sidechain (S). Admittedly,

larger amino acids, especially those with one or more aromatic rings (HIS, PHE,

TYR, TRP, etc.) may need a higher sidechain resolution, but we shall not pursue

that here and leave it for a future endeavor.
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Figure 4.2.1: Left: leucine is mapped to four heavy atom centers N, C, O, S that
sit at the centers-of-mass of the amino, α-carbon, carbonyl carbon and oxygen,
and the side-chain groups respectively. Right: The CG model of a 15-mer leucine
polypeptide is parameterized by minimizing the relative entropy from a reference
atomistic simulation.

In this chapter, we develop CG peptide models by combining CG backbone

forcefields with Gō-like interactions. Backbone forcefields and Gō potentials are

both developed in a bottom-up manner from atomistic reference simulations of

candidate peptides, by using the relative entropy minimization method.32 The

relative entropy between an AA system and its corresponding CG model is an

information theoretic measure that encodes the overlap between AA and CG mi-

crostate probability distributions.32 Minimizing the relative entropy with respect

to forcefield parameters of the CG model guarantees a maximal overlap of AA and

CG microstate probability distributions, such that the CG model may be able to
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recapitulate important thermophysical properties (such as secondary structure)

of the atomistic system.35 This technique requires atomistic trajectory data to

calculate the relative entropy between an AA and a proposed CG model, and

iteratively minimizes it by searching for the zeroes of its derivative in the space

of CG forcefield parameters. The relative entropy between an AA polypeptide

reference and its corresponding CG model is given by:

Srel =

∫
pAA(r) ln

(
pAA(r)

pCG(M(r))

)
dr + Smap (4.2.1)

where, r and R represent AA and CG configurations respectively, and M(r) is a

mapping operator (typically a matrix) that replaces groups of atoms in the AA

representation with center-of-mass sites in the CG model. p
X

gives the equilibrium

conformation probabilities for the ensembles X = AA or CG. The integral in Eq.

(4.2.2) proceeds over all AA conformations, although it is possible to cast it in

terms of the CG conformations.102 Smap is a “mapping entropy” that accounts for

the degeneracy in the AA→ CG mapping, i.e., it measures the number of distinct

AA configurations that map to the same CG one. However, it is independent of

the CG forcefield, and because we fix the CG resolution to four sites per amino

acid, Smap can be treated as a constant that plays no role in this work. In the

canonical ensemble, the derivative of the relative entropy for the CG polypeptide
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model with respect to the CG forcefield parameters λ can be written as:

∂Srel

∂λ
= β

[〈
∂Upoly

CG

∂λ

〉
AA

−
〈
∂Upoly

CG

∂λ

〉
CG

]
(4.2.2)

where Upoly
CG is given by Eq. (4.2.3), β represents the inverse temperature (1/kBT )

and 〈 〉X represents averaging over all conformations in the model X = AA or

CG. The parameterization of the CG model proceeds by minimizing Srel, i.e., it-

eratively solving the equation ∂Srel

/
∂λ = 0. In practice, we use a combination

of perturbation theory and conjugate gradient minimization to preform the mini-

mization efficienty as described in Ref. 34

4.2.1 CG backbone forcefields

Similar to Carmichael and Shell’s previous work,41 we parameterize CG mod-

els from atomistic polypeptides and extract “backbone” forcefields from these

models as the sum of intra-backbone and backbone-sidechain interactions. CG

polypeptide forcefields (Upoly
CG ) are represented using bonded (Ub), angular (Uθ),

torsional (Uϕ,ψ) and non-bonded pair potentials (Upair) which are applied to intra-

backbone (BB), backbone-sidechain (BS) and inter-sidechain (SS) CG sites. The

bond potentials are harmonic while all other potentials are represented as cubic

B-splines whose knot points are optimizable parameters of the CG model. The
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non-bonded pair potentials are cut off at 10 Å. Angle, torsion and pair poten-

tials use 40 knot points each with densities of 1.4 ◦/knot, 0.22 ◦/knot and 0.25

Å/knot respectively. The full CG polypeptide model for a reference AA peptide

is constructed through relative entropy minimization: subsequently the backbone

forcefield (UBB
CG) for the CG model simply amounts to taking all CG interactions

except for the inter-sidechain pair potentials.

Upoly
CG =

(
UBB
b + UBB

θ + UBB
ϕ,ψ + UBB

pair

)
+
(
UBS
b + UBS

θ + UBS
ϕ,ψ + UBS

pair

)
+ uUpairSS

UBB
CG =

(
UBB
b + UBB

θ + UBB
ϕ,ψ + UBB

pair

)
+
(
UBS
b + UBS

θ + UBS
ϕ,ψ + UBS

pair

)
(4.2.3)

An important design criterion for a transferable CG peptide backbone forcefield

is an appropriate balance between α helical, β-sheet and extended conformations,

such additional protein- or sequence-specific sidechain interactions will “steer”

the peptide chain towards the correct fold. As mentioned in section 4.1, proteins

achieve this balance through geometrical constraints, steric repulsions, hydrogen

bonds, electrostatic interactions and hydrophobic effects.225–228 CG backbones

developed in this effort do not encode such interactions explicitly, but instead,

critically depend on the sampling of conformation space by the reference AA

polypeptides to “learn” effective coarse interactions within functional form of

the potentials described in Eq. (4.2.3). Further, to retain computational effi-
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ciency, we do not incorporate either explicit solvent or explicit intra-peptide and

peptide-solvent electrostatics in our CG models. Thus, we focus on moderate-

length polypeptides generated from hydrophobic amino acids alone, as putative

AA references.

A critical choice that influences the secondary structure balance is the refer-

ence AA system from which to develop the CG backbone model. We examine four

such references to explore and identify cases with a good balance of α, β and flex-

ible conformational propensities, as summarized in Table 4.2.1. It is non-trivial

to quantify such a balance a-priori and ultimately we characterize the success of a

reference in terms of its later performance in folding known structures. While an

equal sampling of primary dihedral conformations in a Ramachandran plot230 may

seem attractive, it is not clear that this is realistic or necessary for correct folding.

Thus, in a bottom-up CG approach, relevant secondary structure information nec-

essarily comes from the choice of AA reference. We first develop CG backbones

from two homogeneous polypeptides which capture either α and β conformations,

and subsequently discuss two strategies to design hybrid references that encode

both these secondary structure elements. In all cases, we parameterize the CG

models at the folding temperatures of the AA references to sample both folded
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and extended conformations.

Among the hydrophobic amino acids, alanine has been suggested as a useful

reference for building polymers that can approximate heteropeptide chains, due

to its small size and the ability of alanine polymers to mimic the correct tertiary

structure of several proteins of equivalent length.221 However, our preliminary

tests (not reported here) revealed that a polyalanine 15-mer is not sufficiently

stable in either of α and β folds. It has a large degree of unstructured confor-

mations and for a variety of force fields (including implicit and explicit solvent

atomistic simulations), less than 4% exist in fully α-helical states at physiological

temperatures. Gō-like models later built out of these polyalanine-derived back-

bone forcefields were unable to fold small mini-proteins and did not well capture

α and β structure.

Instead we use polyleucine and polyvaline peptides as our first two refernce AA

simulations. Both have sidechains that are larger than alanine but still smaller

than other hydrophobic amino acids and devoid of aromatic groups. These systems

provide excellent contrasts because leucine has a reasonably high helix propen-

sity,231 while valine has very high stability for β-sheets.232 We parameterize CG

models from atomistic polyleucine (LEU15, Fig 4.2.1) and from polyvaline (VAL15)

15-mers, at their folding temperatures, using relative-entropy-minimization. We
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expect the LEU15 CG model to preferentially stabilize only α helices and the

VAL15 model to be more biased towards β conformations.

In addition, we examine two additional reference cases that are designed to hy-

bridize secondary structure preferences from the leucine and valine systems. The

first strategy investigates AA leucine-valine copolymers. We tested four randomly

generated 15-mer sequences with ∼ 30-60% Leucine (L) and ∼ 70-40% valine (V)

content and found that the sequence LVVVVVVVLLLVVLL (LEU6VAL9) has

the most balanced helical (cluster fraction ∼ 36% at 270 K) and hairpin (cluster

fraction ∼ 42% at 270 K) conformations in AA simulations. Clearly there may be

other sequence combinations that may produce even closer α and β populations,

but we proceed with this particular case. The second hybrid strategy and the

fourth reference AA case, involves directly combining information from multiple

atomistic reference simulations into a single CG model. This approachs is moti-

vated by the extended-ensemble coarse-graining concept of Mullinax and Noid,63

in which a CG model can be parameterized simultaneously against an ensemble

of AA references. While originally developed in the context of force-matching,

we adapt that approach to the relative entropy framework. Here, an extended

ensemble can be formulated as follows: the optimal CG model that minimizes

information loss simultaneously from N AA references also minimizes the sum
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of individual relative entropies between the model and each AA member of the

ensemble, i.e.,

Srel =

N∑
i

S
(i)
rel (4.2.4)

where S
(i)
rel is the relative entropy between the CG model and the ith AA refer-

ence. Motivation for the form of Eq. (4.2.4) can be found in the appendix. The

extended-ensemble strategy was originally introduced for developing models that

are independent of the thermodynamic state point at parameterization and hence

transferable across a range of states,63 but more generally, the ensemble AA mem-

bers can also be chemically distinct,63,233 such as different peptide sequences.208

In this chapter, we leverage the extended-ensemble relative entropy method by

parameterizing a hybrid CG polypeptide model (LEU15 + VAL15) simultaneously

from the polyleucine and polyvaline AA simulations. It is unclear how an overall

folding temperature should be defined for the extended AA ensemble, so we main-

tain the hybrid CG model at room temperature by parameterizing it now from

polyleucine and polyvaline references at room temperature . Table 4.2.1 outlines

the four different CG backbone forcefields studied in this work.
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Table 4.2.1: Nomenclature for different CG peptide backbone forcefields*

Forcefield Reference sequence/(s) Parameterization temperature

LEU15 L15 407 K (folding temperature)
VAL15 V15 367 K (folding temperature)
LEU6VAL9 LVVVVVVVLLLVVLL 360 K (folding temperature)
LEU15 + VAL15 L15, V15 300 K (room temperature)

*Gō models derived from these backbone forcefields are also named similarly.

4.2.2 CG sidechain forcefields (Gō models)

The final CG strategy pursued here utilizes a Gō model for the sidechains,

which requires the native structure of the target protein sequence as input. Residues

that are in contact (i.e., within a certain threshold proximity) in the native struc-

ture are supplied attractive (or “native”) interactions while others are provided

with excluded volume (or “nonnative”) interactions. In this work a cutoff of 8

Å between the residue centers-of-mass is used to determine contacts. Residues

within a contact order of 3 along the sequence are considered chain-adjacent and

native potentials are not applied to them. The non-bonded native interaction(
uSS, nativepair

)
is represented using a spline (with a cutoff of 10 Å). Non-bonded

non-native interactions
(
uSS, non-nativeWCA

)
are represented using a constant Weeks-

Chandler-Andersen (WCA)104 potential with ε = 4.2 kBT and σ = 3.8 Å, which

mimics the inner repulsive core region of the optimized native potentials (see sec-

tion 4.3.2). The overall CG forcefield is given by:
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UCG =
(
UBB
b + UBB

θ + UBB
ϕ,ψ + UBB

pair

)
+
(
UBS
b + UBS

θ + UBS
ϕ,ψ + UBS

pair

)︸ ︷︷ ︸
min. Srel from AA polypeptide

+ USS, native
pair︸ ︷︷ ︸

min. Srel from AA peptide

+ USS, non-native
WCA

(4.2.5)

We parameterize the native interactions by minimizing the relative entropy be-

tween an AA simulation of a candidate peptide and the CG model represented

by the forcefield UCG in Eq. (4.2.5). Note that this constitutes a second round of

relative entropy optimization, post CG backbone parameterization. In this case,

the backbone potentials are held fixed at their optimized values obtained from the

reference AA polypeptide, and only the spline knots in USS, native
pair are allowed to

vary. Fig. 4.2.2 provides a flowchart for the overall two-step parameterization of

the CG forcefields.

Specifically, we use an AA trajectory of the 20-residue trp-cage miniprotein

(PDB code: 1L2Y) to parameterize the native interactions. 1L2Y is a synthetic

protein that folds rapidly to a globular structure representative of larger proteins.

Its small size (the smallest protein like construct) and fast folding times make it an

ideal model system for experimental and computational studies of protein folding

mechanisms.234 1L2Y folds extremely fast (∼ 4.1 µs in-vitro235) such that short

nanosecond implicit solvent MD trajectories centered around the native structure
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Figure 4.2.2: CG backbone potentials (UBB
CG) are first extracted from CG

polypeptide models parameterized by minimizing relative entropy from AA
polyleucine (red), polyvaline (dark yellow) and a mixed leucine-valine sequence
LVVVVVVVLLLVVLL. A Hybrid CG backbone embedding both α helical (from
polyleucine) and β-sheet (from polyvaline) characteristics is also parameterized by
simultaneously minimizing the total relative entropy from both AA leucine and
valine polymer references. Gō models are developed for each of these backbone
forcefields, by parameterizing native interactions USS, native

pair through a second round
of relative entropy minimization with a AA simulation of the trp-cage miniprotein
(1L2Y). Lines across 1L2Y connect the native contacts.

are sufficient for calculating the relative entropy during the iterative optimization

procedure. The trp-cage protein has well defined helical and flexible regions but

no β sheets. Thus, in our Gō model, the task of capturing β-sheets is largely

shouldered by the CG backbone forcefield, consistent with our hypothesis that

the backbone interactions define the a landscape of putative folds. Alternatively,

one might develop native interactions from either a more α− β balanced protein
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(e.g. protein G) or using an extended ensemble of two (or more) short peptides

that selectively stabilize α and β conformations, but due to added computational

complexity, we leave these directions for future work. It is instructive to note that,

beyond the native structure, we do not incorporate any other bioinformatic-type

information in the Gō model. This contrasts with other Gō models in the literature

which include e.g., additional hydrogen bond potential functions and parameterize

them using secondary structure databases or fragment libraries.197,212,214

In the developed CG models, glycine must be treated specially because it

lacks a sidechain site for native-contact interactions. We tested a preliminary Gō

model (not reported here) that omitted native-contact interactions for glycine,

and found poor folding performance for 1L2Y (≥ 5 Å) in the flexible regions.

Instead, we supply glycine residues in the CG model with a pseudo sidechain that

permits native contact interactions with other amino acids. Such a treatment

is reasonable since hydrogen bond lengths (between glycine and other residues

along the backbone) are typically less than the 8 Å cutoff used to determine

native contacts. Glycine has two equivalent hydrogens on its α carbon, either

of which can be mapped to the CG pseudo sidechain. We select the prochiral-L

hydrogen, whose substitution with a higher group can result in a chiral L-center

(further details can be found in the appendix). It is also worthwhile noting that
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glycine’s lack of a sidechain should also affect the backbone dihedral and secondary

structure preferences.236 Proline would also expected to have distinct preferences.

Thus a key assumption in our models is that a single, amino-acid-unspecific set

of backbone paramters is sufficient for the success of the CG model.

4.2.3 Simulation details

All simulations employ Replica Exchange Molecular Dynamics (REMD) for

enhanced sampling of conformational space.237 Atomistic polypeptide simula-

tions are carried out using an in-house python wrapper for the Amber-16 MD

engine.238 In each simulation 16 replicas spaced exponentially in temperature be-

tween 270-500 K run for 60 ns each with 5 swap attemps between neighboring

repliacs every 20 ps. Most simulations employ the Amber ff96 forcefield239 with

a modified version of the igb5 implicit solvent model,240 which we have found to

correctly fold a variety of helical and sheet-like secondary structures.241,242 Atom-

istic simulations of 1L2Y (60 ns) at 300 K are taken from a previous study using

the Amber ff14SBonlysc forcefield243 with a modified version of the igb5 implicit

water model,240 which was reported to produce the best top-cluster structure pre-

diction among other Amber forcefields tested.244 Data from the last 20 ns is used

to generate statistics.
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CG models are simulated using the Lammps MD package.105 CG simulations

of polypeptides during relative entropy minimization and subsequent structure

prediction runs using Gō models are performed for 500 ns / replica and the last 100

ns are used to collect statistics. Relative entropy runs use 8 replicas and structure

prediction runs are simulated with 10 replicas, both types using temperatures

distributed exponentially in the range 270-500 K swapping every 10 ps. Data from

replicas is reweighted using the Multi-state Bennett Acceptance Ratio (MBAR)

as implemented using the pymbar package.245 Top-cluster structures from both

atomistic and CG simulations are determined using a hierarchical K-Means like

clustering algorithm based on the RMSD241 and aligned with native structures

using the well-known Kabsch algorithm.246 Cartoon representations of protein

secondary structures are rendered using both Pymol247 and VMD.248

4.3 Results and discussion

4.3.1 Folding behavior of CG polypeptide models

Fig. 4.3.1 presents a comparison of the folding curves between AA and CG

simulations of polyleucine and polyvaline. These curves are calculated from the

fractions of temperature reweighted trajectories that fold to within 3 Å RMSD

of the atomistic top cluster structures at 270 K (polyleucine: 97% top cluster
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Figure 4.3.1: Comparison of folding curves between atomistic (blue) and CG
(red) simulations of 15-mers of leucine (left panel) and valine (right). The
folding fraction at a particular temperature is calculated as the fraction of the
(reweighted) trajectory that is within 3 Å RMSD of the reference atomistic top-
cluster structure at 270 K (helix for polyleucine and hairpin for polyvaline). The
CG LEU15 model has nearly similar (within 5 K error) folding temperature as its
atomistic counterpart while the VAL15 model has a ∼ 27 K error in the folding
temperature, underestimating it.

fraction for a near-ideal helix, polyvaline: 59%: top cluster fraction for a hairpin

with a slightly twisted loop). The AA folding temperatures for both polypeptides

are quite high (407 K for polyleucine and 367 K for polyvaline) which indicates

the high stability of their corresponding folds. However, this is expected since the

reference atomistic simulations use implicit solvent. CG polyleucine reproduces

the temperature dependent folding behavior for helix formation of its AA reference

reasonably well with a ∼ 5 K deviation from the AA folding temperature, while

CG polyvaline has ∼ 50% lesser folding fraction than its AA counterpart and
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incurs a ∼ 27 K error in the folding temperature.

Figure 4.3.2: Comparison between AA and CG simulations of folding free energy
surfaces (∆F ) at 280 K, as functions of radius of gyration (Rg) and RMSD from
the atomistic top-cluster structure at 270 K, for LEU15 (top panel) and VAL15

(bottom panel) CG models. While the LEU15 CG model exclusively stabilizes an
ideal helix similar to its AA reference, the VAL15 AA and CG models have sig-
nificant populations of two closely similar hairpins that are register-shifted from
each other. In either case, the top cluster structures are reproduced nearly quan-
titatively (RMSD ≤ 1 Å). AA structures are shown in blue, while CG structures
are colored red.
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Fig. 4.3.2 compares the free energy of folding at 280 K between the AA and CG

models for polyleucine snd polyvaline, as a function of radius of gyration (Rg) and

RMSD from the atomistic top-cluster structures. Both AA and CG polyleucine

models exclusively stabilize a near-ideal helix (see inset in Fig. 4.3.1), while those

for polyvaline are centered around two closely similar hairpin (∆F ≤ 2.5 kBT )

conformations that are register shifted from one another. Interestingly, both the

helix and the hairpin have a similar Rg ∼ 7.2-7.5 Å. Both the folding curves

in Fig. 4.3.1 and the free energy surfaces in Fig. 4.3.2 show that the polvaline

hairpin is harder to stabilize than the polyleucine helix. However, the free energy

surfaces are very similar for both leucine and valine polymers and the top cluster

conformations are captured nearly quantitatively in the CG model. The only

major difference is that CG polyvaline has a broader sampling of large Rg (upto

9 Å) and RMSD (upto 6 Å) structures relative to its AA counterpart, although

still these are ∼ 7 kBT above the minimum and hence rarely visited. Further,

it should be noted that classifying folded vs. unfolded states in the CG valine

polymer is based on examining alignment with the particular 270 K atomistic

hairpin. If one were to look solely at the β-content, the second and third clusters

with relative populations of ∼ 16%, and 6.5% respectively, are all hairpins that

are register-shifted from the AA reference.
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Figure 4.3.3: The LEU15 + VAL15 CG polypeptide model constructed using the
extended-ensemble method, by combining data from AA leucine and valine 15-
mers: Both the (A) free energy surface as a function of Rg and RMSD from the
polyleucine top cluster structure (near perfect helix), and (B) Ramachandran plot
at 280 K, reveal the presence of basins dominated by both helices and hairpins
separated by a ∼ 7.5kBT barrier. (C) Folding curves (constructed by considering
trajectory fractions within 3 Å of the top clusters of AA polyleucine and polyva-
line) show that β-fractions remain consistently lower than 5%. (D) However, when
used in a self-assembly simulation of six polypeptide chains, the LEU15 + VAL15

forcefield produces an expected antiparallel zipper structure (in the inset) with ∼
80% β-content, attested by the dominant off-diagonal patterns on an inter-residue
contact map (A-F refers to the 6 peptide chains).
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As mentioned in section 4.2.2, we investigated two approaches to design a hy-

brid leucine-valine CG backbone: by parameterizing a CG polypeptide directly

from a leucine-valine copolymer reference, and by parameterizing simultaneously

from separate polyleucine and polyvaline references, so as to minimize the sum of

relative entropies between the model and each reference. Fig. 4.3.3 presents the

folding behavior of the extended ensemble CG polypeptide model LEU15+VAL15.

Panel (A) shows the free energy surface (at 280 K) as a function of Rg and RMSD

from the AA polyleucine helical top cluster structure at 270 K. The free energy

surface has two minima separated by a 7.5 − 10kBT barrier. Both minima have

Rg ∼ 7.5 Å; the low RMSD minima represents helical states while the other one

represents hairpin conformations. A Ramachandran plot in panel (B) shows the

free-energy landscape in the space of dihedral angles (ϕ, ψ) along the polymer

backbone and shows the relatively higher stability of α-helical over β states in

this CG model. Interestingly, there is a low fraction of highly unstructured con-

formations (≥ 15kBT ) in the ϕ ∈ [60◦, 90◦], ψ ∈ [−90◦,−60◦] region which is likely

contributed by the more flexible polyvaline. Folding curves in panel (C) relative

to the AA top-cluster structures of polyleucine and polyvaline (similar to the pro-

cedure used in Fig. 4.3.1) reinforce the relative stability of helical states in this

mixed CG model as the β folding fraction is consistently less than 5% across all
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temperatures.

Although it seems like the LEU15 + VAL15 CG model prefers α-helices over

β sheets, we re-iterate that folding behavior in Fig. 4.3.3 (as also in Figs. 4.3.1

and 4.3.2) is characterized with reference to a single conformation and may not

necessarily reflect true β content. Panel (D) presents a more stringent test of

the β-like behavior of this CG polypeptide model by using it in a self-assembly

simulation of six polypeptide chains. Panel (D) demonstrates that the trajectory

averaged inter-residue “global” contact map across all polymer chains contains

exclusively parallel and anti-parallel β sheets characterized by contact patterns

that are off-diagonal and orthogonal to the main diagonal respectively. Peptide

assemblies have enhanced inter-strand hydrogen bonded interactions relative to a

single hairpin, and as such are expected to typically stabilize β-rich structures,

unless the underlying forcefield has an inordinate amount of helical or flexible

character. In fact, a clustering analysis reveals that the dominant self-assembled

oligomer is an antiparallel steric zipper, which is known to be one of the most

stable motifs that can result from an assembly of short peptide fragments.249 The

self-assembly behavior of this CG polypeptide thus provides good evidence that

it contains α − β balance which when aided by suitable side chain interactions,

may fold heteropeptides.
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4.3.2 Native and non-native Gō interactions

Fig. 4.3.4 demonstrates the native Gō interactions optimized from the atom-

istic trp-cage miniprotein (1L2Y), after fixing the backbone parameters, for the

different forcefields summarized in Table 4.2.1. All native potentials have nearly

Figure 4.3.4: Native interactions optimized from the atomistic trp-cage minipro-
tein (1L2Y) at 300 K, for the different backbone forcefields in Table 4.2.1. All
native potentials have an inner repulsive core near ∼ 3.8 Å and are cut off at 10
Å. The non-native interaction is fixed as a WCA potential with σ = 3.8Å and
ε = 4.2kBT

similar forms, with a minima near ∼ 3.8 Å (except the LEU15 model, which has a

minimum at ∼ 4.5 Å), followed by an approximately linear slope until the cutoff

of 10 Å. The LEU15 + VAL15 native interaction optimized from the extended

leucine-valine ensemble has the largest inner-core depth ∼ 9.5kBT and is also
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somewhat flat between 4-5 Å. The well-depth of this potential is interesting be-

cause it exceeds that of both the LEU15 and VAL15 derived potentials, and since

the LEU15 + VAL15 backbone forcefield was parameterizd from both polyleucine

and polyvaline AA references. Near the cutoff of 10 Å, all the potentials exhibit

a small repulsive bump instead of flat-lining. To assess if the jump results from

cutting off the potential prematurely, we re-optimized the LEU15 + VAL15 native

interaction using larger cutoffs of 15 and 20 Å (not reported here), but still ob-

served this behavior. Perhaps, the optimal native interaction (i.e., at minimum

relative entropy) is indeed repulsive near the cutoff, such that the overall shape

produces a highly confining effect for native contacts, reminiscent of harmonic

restraints commonly used in elastic network models.215

For the repulsive non-native interactions, we use a WCA potential. Based

on the location of the inner core for the native potentials, we set the σ for this

potential to 3.8 Å. The ε for the non-native WCA potential is set to 4.2 kBT to

match the ε of pure Lennard Jones type native interactions (∼ 4 - 4.4 kBT ) which

we optimized in a preliminary study (not reported here) by following a relative

entropy minimization using the 1L2Y reference, similar to the development in this

chapter. Unlike the native interactions, the non-native potential is not parame-
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terized from the 1L2Y reference. However, its exact form is likely unimportant in

the Gō model, since it is applied to residues that are not in contact.

4.3.3 Gō model performance

We use the Gō models from Table 4.2.1) in folding experiments on two sets of

peptides / proteins, starting all simulations from fully extended conformations (all

dihedral angles set to 180◦). The first set is a balanced collection of short peptide

fragments (∼ 11-20 residues) with both helical and hairpin structures used in the

study in Ref. 244. The second set is a collection of moderately large globular

proteins (26-73 residues) taken from Ref 250. Table 4.3.1 provides more details

on these sequences.

Fig. 4.3.5 shows the fraction of sequences whose structures are predicted within

a given threshold for α, β and α+ β sequences outlined in Table 4.3.1, in REMD

simulations of the CG Gō models of Table 4.2.1. The LEU15 + VAL15 model

is most consistent in producing faithful native structure alignments. It predicts

80% of the pure helical and pure β sequences and 50% (one of the two) mixed

α + β sequences within 2 Å RMSD (details follow in Figs. 4.3.6 and 4.3.7). The

LEU6VAL9 copolymer model is a close second best with 60% helical, 40% β and

40% mixed sequences predicted within 2 Å RMSD. Models derived from pure
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Table 4.3.1: Target peptide sequences used for validating the Go-models in this
study (shorter sequences are tabulated above the dividing line)

Name PDB code Length Structure* CG folding temp.**

1CB3 1CB3 11 α n.a.
1L2Y 1L2Y 20 α n.a.
2I9M 2I9M 17 α n.a.
C Peptide † 13 α n.a.
EK Peptide † 12 α n.a.
15-β † 15 β n.a.
1GB1 1GB1 16 β 419 K
1E0Q 1E0Q 17 β 419 K
1LE1 1LE1 12 β n.a.
1J4M 1J4M 14 β ∈ [380 K, 419 K]
Protein A 1BDD 46 α n.a.
Albumin
binding
domain

2FS1 49 α n.a.

α3D 2A3D 73 α n.a.
YJQ8 WW
(res 7-31)

1E0N 27 β n.a.

FBP28 WW
(res 6-31)

1E0L 26 β n.a.

Ubiquitin
(res 1-35)

1UBQ 35 α + β n.a.

Protein G 1PGB 56 α + β n.a.
α-spectrin SH3 1SHG 57 β ∈ [419 K, 457 K]
src-SH3 1SRL 56 β ∈ [450 K, 500 K]
bacterial
Flavodoxin

1FUE 163 α + β ∈ [331 K, 345 K]

TIM barrel
monomer

8TIM 247 α/β ∈ [305 K, 318 K]

*α and β are simplified structure classifications that neglect finer details like
3-10 helices, β bulges, turns, coils and loops.

**Using the LEU15 + VAL15 CG model

† Details of the native structure can be found in Ref. 244

n.a. : Sequences exhibit > 50% folding fraction across all temperatures in
REMD simulations.
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Figure 4.3.5: Assessment of the accuracy of Gō-like models developed from the
different backbone forcefields (along the X axis) in Table 4.2.1, for predicting
the structure of α-helical (top panel), β-rich (middle panel) and α + β (bottom
panel) sequences (detailed in Table 4.3.1. In each panel, stacked bar charts show
the fraction of sequences (along the Y axis) that fold to within 2 Å (green), 2-4
Å (teal), and > 4 Å (brown) RMSD from the native structure. The LEU15 +
VAL15 CG backbone at 300 K, derived from an extended ensemble of polyleucine
and polyvaline AA references, has relatively better prediction rates across all
sequences. All RMSDs are ensemble-averaged values from trajectories at 290 K.

polyleucine and pure polyvaline references, unsuprisingly, are biased towards α

and β sequences respectively: LEU15 resolves 80% of helical sequences within

2 Å, and VAL15 captures 90% of β sequences within 2-4 Å. Interestingly, the

polyleucine model also allows for some β character since it correctly predicts one
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of the two mixed sequences (protein G) barely within 2 Å, while the polyvaline

model has the worst overall accuracy, consistently straying from the desired ≥

2 Å RMSD alignment even for β-rich sequences. However, it is remarkable that

most of the models produce reasonably close alignment for the shorter peptides.

Native interactions in Gō models are essentially a set of restraints dependent on

native contact information, so the ability to accurately fold shorter peptides with

fewer contacts, is arguably an important performance metric for such models.

Success with the shorter peptides is thus directly linked to the efficiency of the

backbone/(s) in exploring the relevant dihedral space and reflects considerable

promise for the first stage of the bottom-up peptide model.

Figs. 4.3.6 and 4.3.7 show the structures of target sequences, predicted with

the LEU15 + VAL15 Gō model, superposed on the corresponding native structures

of these sequences. All CG REMD simulations were initialized from fully ex-

tended states. It is remarkable that such a simple CG model parameterized from

single polypeptide references is able to correctly predict 74% (14 out of 19) of all

the target sequences within 2 Å, attesting to an overall high prediction accuracy.

The reported RMSDs are all ensemble averaged from the 290 K trajectory of the

corresponding REMD simulation. Note however, that the folding temperatures

reported in Table 4.3.1 for the CG models are very high and in some cases above
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Figure 4.3.6: Top cluster structures for short sequences (11-20 residues) pre-
dicted by the Gō model derived from the extended-ensemble LEU15 + VAL15

backbone. Native structures are in blue while simulated ones are in red. The
RMSD (averaged from the trajectory at 290 K) from the native structure is re-
ported beside the sequence name. The average standard error (standard deviation
/ mean) in calculating the RMSDs is ∼ 6.5%

the maximum replica temperature, preventing their exact calculation. While this

certainly disagrees with experiment or atomistic simulations, it shows that the

bottom-up procedure with a Gō strategy embeds highly stabilizing native contact

interactions that are biased towards the native state. Typically a Gō model pro-

vides faster access to the native structure by smoothening amd exaggerating the

energy landscape.215 The disagreement may also partially result from the use of

implicit water reference polypeptide simulations for parameterizing the backbone

CG model, which have high folding temperatures (refer to Fig. 4.3.1). There

165



Chapter 4. A bottom-up, structurally-accurate, Gō-like coarse-grained protein
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Figure 4.3.7: Top cluster structures for longer sequences (26-73 residues) pre-
dicted by the Gō model derived from the extended-ensemble LEU15+VAL15 back-
bone. Native structures are in blue while simulated ones are in red. The RMSD
(averaged from the trajectory at 290 K) from the native structure is reported be-
side the sequence name. The average standard error (standard deviation / mean)
in calculating the RMSDs is ∼ 6.5%

166



Chapter 4. A bottom-up, structurally-accurate, Gō-like coarse-grained protein
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are, however, native-centric models in the literature that use experimentally ob-

served folding temperatures to fit the native interactions and by design, provide

quantitative agreement with experimental folding temperature.212 One can en-

vision a constrained relative-entropy-minimization protocol where experimentally

obtained folding temperatures can be included as constraints during backbone

or sidechain parameterization to provide a closer match to experimental folding

behavior. Alternatively, the attractive wells in the currently derived CG native

contact potentials might be scaled systematically to obtain better agreement for

folding temperatures. However, we leave these directions to future work.

Differences from native structures in Figs. 4.3.6 and 4.3.7 result mostly from

mis-predicting flexible regions (turns and loops) with the exception of 1L2Y, α-

spectrin SH3 and src-SH3. It is no surprise that the flexible region for 1L2Y is

captured entirely, since the native interactions are optimized from a 1L2Y refer-

ence. The only sequence that does not fold well with this Gō model is α3D, where

large mis-alignment in the interconnecting turn regions (residues 20-26, 46-53)

leads to different major axis vectors for two of the helices (residues 1-19, 54-73).

The fraction of native contacts satisfied for this sequence is 87% (calculated from

the top-cluster) as opposed to 97 % (averaged over all targets) for the other se-

quences. Other major mis-alignments in turn regions include the 35-mer fragment
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of Ubiquitin (residues 8-11), 1GB1 (residues 7-10) and 15-β (residues 7-10). The

frequency distribution of amino acids in these four sequences reveals 23% glycine

and 11% proline in the hard-to-capture flexible regions as opposed to 3% glycine

and no proline in regions with well defined secondary structures. This indicates

that a more accurate CG model should incoroprate special backbone interactions

(angular and dihedral) for glycine and proline residues. We note that these pa-

rameters may be parameterized from an extended ensemble of AA references that

contain glycine and proline polymers.

The CG REMD simulations of the target sequences are ostensibly ∼ 30 times

faster than their corresponding atomistic counterparts for the short fragments in

Fig. 4.3.6, while the longer sequences in Fig. 4.3.7 take ∼ 10 hours of total CPU

time, starting from fully extended states. While not an entirely fair comparison, it

is worth noting that implicit water MD simulations of (NuG2 variant of) atomistic

protein G have been reported to take∼ 54 µs of simulation time and approximately

54 hours of real time with the Amber14 MD software on GPGPUs251 while explicit

water MD simulations of protein G can take as long as 1154 µs of simulation time

on the Anton supercomputer designed specifically for fast MD simulations.252

While the efficiency in our simulations is expected since Go forcefields are known

fast, unfrustrated folders,215 it nevertheless provides an important upper bound
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on the expected speed-up over AA forcefields using these four site CG models.

Figure 4.3.8: Top cluster structures for bacterial flavodoxin (163 residues) and
the TIM barrel protein (247 residues) predicted by the Gō model derived from
the extended-ensemble LEU15 + VAL15 backbone. Native structures are in blue
while simulated ones are in red. The RMSD (averaged from the trajectory at 290
K) from the native structure is reported beside the sequence name. The average
standard error (standard deviation / mean) in calculating the RMSDs is ∼ 6%

As a final set of structure prediction tests, we use the LEU15+VAL15 Gō model

to fold two much longer sequences, namely a 163 residue flavodoxin encoded in

the H.pylori genome (PDB code: 1FUE) and a 247 residue Triose-Phosphate-

Isomerase (TIM) barrel monomer (PDB code for the dimer: 8TIM). Flavodoxin

is characterized by a five-stranded parallel β sheet core sandwiched by α helices,

while the TIM barrel is one of the most common folds found in nature, consisting
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of eight overlapping, alternating β − α − β supersecondary structures. Starting

with fully extended conformations, the Gō model achieves remarkable prediction

accuracies in each case, scored by trajectory averaged RMSDs of 1.8 Å for flavo-

doxin and 2.3 Å for the TIM barrel, after 500 ns of REMD simulation taking ∼

8 days of total CPU time. To the best of our knowledge, CG Gō models have

not been used in structurally-accurate folding experiments for such large proteins.

This shows promise for the LEU15 + VAL15 Gō model in reproducing local con-

formational fluctuations of large macromolecules. So, for instance, this Gō model

may be useful for efficiently capturing the fluctuations of large proteins in docking

simulations instead of keeping them rigid, which may increase the accuracy of the

computational screening process without significantly increasing the computation

overhead.

4.3.4 Fault tolerance of the LEU15 + VAL15 Go model

As mentioned previously, a Gō model essentially encodes a set of experimen-

tally determined restraints on the positions of native contact residues. This in-

formation can entail error depending on the experimental / atomistic simulation

method used to solve the structure. To simulate the effect of such error, we ran-

domly delete a fraction of the native contacts and apply the Gō potentials (Fig.

4.3.4) to the reduced set of contacts. Fig 4.3.9 shows the prediction quality for
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protein G with an increasing fraction of deleted contacts using the LEU15+VAL15

model. The prediction quality deteriorates from 2 Å with complete native struc-

Figure 4.3.9: A test of robustness for the Gō model derived from the extended
ensemble LEU15 + VAL15 backbone forcefield. This model is used in CG REMD
simulations of protein G while reducing the available native-contact information
by deleting zero to 20% of the native contacts. The RMSD (ensemble averaged
from the 290 K trajectory) with the native structure varies between 2-5.6 Å and
has a standard error (standard deviation / mean) of ∼ 6.5 %. The prediction
quality does not decrease monotonically since contacts are removed randomly.
Native and predicted structures are colored blue and red respectively.

ture information to 5.6 Å when 20% of native contacts are removed. The fraction

of the reduced set of native contacts satisfied, fluctuates between 76-80% (98%

when all contacts are retained). However, the prediction quality does not decrease

monotonically since the contacts are removed at random, and the ones that are

relatively more important, such as those closer to the folding core may be better

retained in some cases even when a larger overall number of contacts are removed.

It is interesting to note however, that the simulated structures retain the helix in

all cases with relatively high native alignment, while the β character fluctuates.

Moreover, even when 20% of the contacts are removed, the Gō model still gives
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a structural collapse that achieves the correct spatial proximity of the helical and

hairpin regions. We will not probe further into which contacts are more important

to retain over others, or what the critical fraction of retained contacts needs to

be for a desired accuracy, but such directions may be interesting to study. Nev-

ertheless, Fig. 4.3.9 shows that at least for protein G, the extended ensemble CG

backbone produces Gō models that can reasonably tolerate low to moderate levels

of missing information.

4.3.5 Conclusions

In this chapter, we developed four-site CG polypeptide models through rela-

tive entropy minimization using atomistic single peptide references. Supplemented

with suitable sidechain interactions, these models serve as CG backbone force-

fields for folding short fragments as well as large globular proteins. Specifically,

we parameterized polypeptide backbones separately from atomistic references of

leucine and valine 15-mers and then simultaneously from both, by minimizing the

relative entropy with an extended ensemble containing both these references. We

augmented the backbone interactions with simple Gō-like sidechain potentials that

are modulated by the proximity of residues in the native structure. We optimized

the functional form of these native interactions by further minimizing relative

entropy from a short native-centric AA simulation of the trp-cage miniprotein
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(1L2Y). Gō-like sidechain interactions require the native structure as an input

and thus, do not produce de-novo structure predictions. However, they furnish

an excellent upper bound for the capability of CG backbone interactions in sam-

pling the relevant dihedral space, which is the focus of this work. We used the

extended-ensemble backbone in conjunction with inter-sidechain Gō potentials to

perform folding experiments on both short fragments (11-20 residues), globular

proteins (26-73 residues) and two examples that would be intractable with AA

forcefields, with sequences that contained α, β and α− β mixed structures.

Our results show that CG models derived from pure polyleucine and poly-

valine are biased towards the secondary structure propensities of the references.

Thus, the LEU15 model did not predict the correct native structures for sequences

with high β content, while the VAL15 backbone failed to produce high resolu-

tion predictions for both α and β sequences. While combining leucine and valine

chemistries by using a 40% leucine - 60% valine coopolymer improved structure

prediction to some extent, a better strategy proved to be an extended-ensemble

approach to parameterize a CG polypeptide forcefield simultaneously to two ref-

erence simulations: leucine and valine. Our final model is the LEU15 + VAL15

extended-ensemble model, which could ultimately resolve simulated structures

within 2 Å of the native conformations, when used in conjunction with Gō-like
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sidechain interactions.

It is remarkable that such a simple bottom-up CG backbone without any

bioinformatic assistance, is transferable enough to be able to resolve up to ∼ 247

residue globular proteins within 2.5 Å. This chapter underscores the importance

of the backbone in defining the fold landscape, and of the sidechain interactions

in filtering for specific conformations.225–228 Our results also show that sidechain

interactions can be perhaps described at a lower level of detail than that required

for the backbone. For instance, we maintained a uniform resolution of a single

bead for all sidechains in the Gō model and ignored differences in sidechain size,

which is arguably important to consider for de-novo folding. Nevertheless, it is

quite compelling that the backbone interactions play such a significant role in sam-

pling the relevant dihedral space. Thus, relative-entropy-optimized, bottom-up,

four-site CG models of peptides hold considerable promise as putative CG pro-

tein forcefields that can offer predictive insight into folding and oligomerization

processes. Moreover, while native-aware sidechain potentials do not offer de-novo

capabilities, we believe that the Gō model presented in this chapter is at a level

of sophistication to be readily applicable to cases where one needs a quick enu-

meration of conformations with the correct local fluctuations around the native

state. For instance, this Gō model can be employed as a very rigorous, physics-
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model

based scoring function for a a preliminary screening of allowed conformations of

flexible peptide ligands docking on to large macromolecules. The Gō model can

be especially useful to structure prediction if contact and /or secondary struc-

ture constraints are available, e.g. through experiments or bioinformatics. This

could be extremely helpful to quickly narrow down NMR-compatible ensembles

of structures, given NOE constraints.

The Gō model presented in this chapter has a total of 808 parameters, most in

the form of spline knots and of which 40 knots correspond to the splined native-

contact potential. This set might be reduced by using two-parameter Lennard

Jones functions for the native potentials. Other immediate areas of improvement

include (a) incorporating a richer variety of secondary structural elements in the

training set for (extended-ensemble) optimization of both backbone and/or Gō-

like native interactions, (b) accounting for glycine and proline through special

backbone potentials, and (c) including experimental data such as folding temper-

atures through generic constraints in the relative entropy minimization algorithm,

perhaps by using Bayesian inference based approaches.192,253

This work presents a proof-of-principle of CG peptide models derived directly

from the underlying folding free energy landscapes, such that most of the macro-

scopic structural properties including self-assembly behavior are emergent and

don’t need to be fit separately. The results presented in this chapter serves as the
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starting point for more refined, sequence-chemistry based peptide models that will

need minimal or no additional bioinformatics and be truly predictive, not only for

the now-well-studied, protein folding problem, but also for complex self-assembly

phenomena such as those in cancerous or neuro-degenerative disease pathophysi-

ology.

Appendix

4.A Reformulation of the extended-ensemble CG

algorithm within the relative-entropy frame-

work

Consider N atomistic reference simulations, such that simulation k has nk

number of snapshots. While parameterizing a CG model from any one of these at

a time, the likelihood of the model, given the reference is simply:
∏

i P (Ri | λ),

where Ri is the set of atomistic degrees of freedom from snapshot i projected or

mapped on to the reduced set of CG degrees of freedom, and {λ} is the set of

parameters describing the CG forcefield. Since the N simulations are independent,

the likelihood for the model given the extended-ensemble of all N references is:

L =

N∏
k=1

nk∏
i=1

P (Ri | λ)
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Maximizing the log-likelihood, one gets

arg max
λ

logL = arg max
λ

N∑
k=1

nk∑
i=1

logP (Ri | λ)

The inner summation can be manipulated as:

∑
i

logP (Ri | λ) = nk

[
1

nk

∑
i

logP (Ri | λ)

]

≈ nk
〈

logP (R | λ)
〉
k

= −nk
〈

log
Pk(R)

P (R | λ)

〉
k

+ nk
〈

logPk(R)
〉
k

Here, in the second step, we take the thermodynamic limit nk →∞, i.e., we have

a large number of snapshots from all the ensemble members, which allows us to

replace the sum with a expectation over the (atomistic) microstate probability

distribution of system k, denoted by 〈 〉k. Note that we can avoid such approxi-

mation by using a more precise multinomial expression to compute the likelihood

as demonstrated in Ref. 32 However, the present approach still provides a reason-

ably correct proof. The next step involves multiplication and division by Pk(R),

which is the atomistic probability distribution function of system k. Thus, the

sum splits up into two parts, the first of which can be identified as the negative

of the relative entropy (S
(k)
rel ) between the CG model and reference k, while the

second term is the Gibbs entropy of reference k and does not depend on the CG
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model parameters. This results in,

arg max
λ

logL =

N∑
k=1

arg min
λ

〈
log

Pk(R)

P (R | λ)

〉
k

= arg min
λ

N∑
k=1

S
(k)
rel

which completes the proof. Thus, simultaneous relative entropy minimization

from multiple reference simulations guarantees maximal overlap of microstate

probabilities irrespective of thermodynamic state or chemical dissimilarities be-

tween the references.

4.B Selecting a pseudo-side chain for glycine

Glycine has two equivalent hydrogens which make it achiral. The Gō models

presented in this chapter assume one of these hydrogens as a pseudo sidechain for

glycine to prevent missing any native contact pairs where glycine participates. The

location of the pseudo sidechain is determined as the hydrogen whose substitution

with a higher group converts the stereochemistry to the L form which is the typical

conformation for all naturally found amio acids. Such a hydrogen is known as a

prochiral-S hydrogen (S equivalent to L here) and can be determined from the

Cahn Ingold Prelog rules as the one that points away from the outward normal

to the peptide bond plane.
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Figure 4.B.1: The geometry of atomistic glycine in the reference plane of the
sp2 carbonyl carbon. Glycine has two equivalent hydrogens pointing along the
outward (marked n̂) and inward normals to this plane. The Cahn-Ingold-Prelog
stereochemical rules reveal the prochiral-S hydrogen as the one whose projection
along the inward normal has a positive component.

4.C The LEU15 + VAL15 CG backbone and Gō-

like sidechain forcefields

The Go-like native interactions for the various backbones have been presented

in section 4.3.2. Here, we show the results of the relative entropy optimized CG

polypeptide forcefield parameterized from the joint ensemble of Leucine and Va-

line 15-mer atomistic references. Fig. 4.B.1 shows that (and this is theoretically

guaranteed35) at a minimum of relative entropy, the atomistic and CG distribution

functions for arguments of the different potential functions (i.e., bond lengths and
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angles, dihedral angles and pair distances) match quantitatively. The only excep-

tion is the α carbon - sidechain or CS bond potential (2nd row, 3rd column) where

the optimal CG bond-length distribution lies in between the bimodal atomistic

counterpart. This is expected since it is not possible to capture a non-parabolic

bond-length distribution using a harmonic bonded potential, and minimizing rel-

ative entropy guides the optimal CS bond length to an average between the two

atomistic modes that represent the Leucine and Valine bond CS bond lengths.

Similarly, all interactions (bond, angle and nonbonded pair) involving side-chains

admit several peaks in their corresponding distributions due to contribution from

both Leucine and Valine polymers.
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Figure 4.C.1: Optimized interactions (intra-backbone, backbone-sidechain and
inter-sidechain) for the LEU15+VAL15 extended-ensemble CG polypeptide model.
Potential functions are in red, while black (atomistic) and blue (CG) lines show
that at a relative entropy minimum, the atomistic and CG distribution functions
for the argument of the potential function (bond lengths, bond angles, dihedral
angles, pair distances) match quantitatively. Potentials are reported in kcal/mol.
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Chapter 5

Self-propagating propensities of
polypeptide oligomers in
templated assembly

5.1 Introduction

Aggregation of partially folded or misfolded proteins into fibrillar super-structures

has been identified as the underlying mechanism for a host of neuro-degenerative

diseas such as Alzhiemer, Parkinson, Huntington, ALS, prion diseases like CJD,

and others like type II diabetes. The fibrillar assemblies formed under such

pathogenic conditions are generically called amyloids that manifest macroscop-

ically as plaques on tissues and organs in the body.17,18 The process of aggrega-

tion was first illustrated with prion proteins over three decades ago. The “prion

hypothesis” posits that fibril formation is a protein-based replication process that

propagates relentlessly, whether initiated by an infectious inoculum or through
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the spontaenous development of pathogenic aggregates.254,255 It is now widely ac-

cepted that amyloid formation is essentially a nucleation-polymerization process,

where the rate limiting step is the formation of small metastable aggregates which

then grow rapidly through subsequent monomeric attachment.256–258 Thus, small

soluble peptide aggregates are amyloidogenic precursors, contributing to cellular

toxicity.257,259 In this chapter, we focus on such small oligomers in the context of

their ability to seed or template amyloid formation. Specifically, we ask: are cer-

tain templates inherently more capable of inducing spontaneous aggregation than

others? There is experimental evidence that amyloid aggregates can be poly-

morphic to the extent that there may be significant correlations between fibril

topology and variations in disease development.260 Very recent investigations into

the structure of the tau protein have taken this idea one step further, to reveal

that the filamentous shapes of tau protein monomers implicated in Pick’s disease

and Alzheimer’s are significantly different.19,20 This suggests that there may be

a unique relationship between different tau conformers and the neurodegenera-

tive pathologies they lead to through continuous fibrillarization. In this chapter,

we present a minimal test of this hypothesis by investigating how differences in

the shape of starting templates (monomers and short protofibrils) may give rise

to polymorphism in the corresponding self-assembled fibrils. While peptide folds

are now well classified,223,261 similar efforts for amyloidogenic superstructures are
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only at their nascent stage.249,262 Thus, this chapter may form a first step towards

mapping the space of oligomeric folds prone to self-propagation.

Experimental techniques like X-ray scattering, solid-state NMR, infra-red spec-

troscopy, fluoresence spectroscopy, electron microscopy, atomic force microscopy,

and computational studies typically utilizing molecular dynamics (MD) have shown

that amyloids are enriched in β-sheet content with a typical cross-β architec-

ture.249,263–266 In spite of these developments, high resolution structure detection

through experiments remains somewhat challenging for amyloids due to their non-

crystallinity and high insolubility, such that MD simulations can be used to pro-

vide important structural, thermodynamic and kinetic insights into amyloid for-

mation.204,267–270 For instance, early atomistic simulations by Ma, Nussinov and

co-workers investigated the structural stabilities of amyloidogenic fragments such

as the AGAAAAGA region of the Syrian hamster prion protein, the GNNQQNY

region of the yeast prion sup-35, various regions from the β-amyloid (Aβ) protein

associated with Alzheimer’s and the DFKNF region (residues 15-19) from the hu-

man calcitonin hormone.271–274 They found that a functional aggregation seed or

nucleus typically requires 8 monomers (from the AGAAAGA study)271 but can

also be as small as 3-4 monomers (from the GNNQQNY study)272 . Further, the

authors also found that the stabilities of different β-sheet motifs can be sequence-
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dependent: antiparallel conformations were most stable for Aβ16−22 oligomers273

while parallel strands were more ordered and resistant to high-temperature dis-

sociation for the DFKNF fragment.274 However, these studies probed only the

early stages of fibril formation because detailed atomistic MD simulations are

limited to length and time-scales of nanometers and tens of microseconds respec-

tively. While this is already less than the characteristic millisecond (and greater)

timescales for protein folding, amyloid formation is slower. MD simulations of

amyloid self-assembly starting from random monomeric configurations amount to

a blind conformational search on energy landscapes much more complicated than

folding funnels for single proteins. The energy landscape for protein aggregation

is not fully understood, but as such it should account for both soluble monomers

and oligomers as well as the competition between native-contact-enabled folding

and intermolecular non-native driving forces in crowded environments containing

these species.259,275 This necessitates coarse-grained (CG) peptide models that

can reduce degrees of freedom and help probe deeper into long-timescale pro-

cesses.190,193,276

CG studies of aggregation typically utilize polypeptides as model systems for

self-assembly, since it is well established that amyloid formation is a very gen-

eral phenomenon independent of sequence or even fold-type of the proteins in-
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volved across different proteopathies, such that fibril assembly may be governed

by simple physiochemical properties of the peptide chain like charge distribution,

permutations of hydrophobic and polar residues and β-sheet propensity.277,278

For instance, Hall and co-workers developed and used the PRIME CG model

to characterize the concentration and temperature dependendent amyloid forma-

tion in polyalanine monomers.204 Dobson, Vendruscolo and co-workers utilized

a tube-like CG representation of the peptide backbone supplemented by explicit

hydrophobic, hydrogen-bond and excluded volume interactions to illustrate the

transition from initial aggregation into disordered globular states to reordering

into ordered fibrils in model polypeptides.279 Caflisch and co-workers constructed

an intermediate resolution CG model which modulated backbone dipoles through

partial charges to describe a disordered (“amyloid-protected”) and a β-sheet state

(“amyloid-competent”) and used it in simulations of model amphiphatic polypep-

tides to find that changes in β-sheet propensity can modulate the heterogeneity

of aggregation pathways: amyloid protected monomers progressed through the

formation of proto-fibrillar intermediates to give rise to less ordered assemblies

while amyloid competent monomers could bypass intermediate aggregates and

produce highly ordered amyloids.280 In a similar study, Bellesia and Shea used a

two-site CG model with an explicit dihedral term in the Hamiltonian for control-

ling the β-sheet propensity of monomers, to characterize the phase space of fibril
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polymorphs ranging from double and triple layered steric zippers to barrel-like

formations as a function of temperature and the β-tendency. They also exam-

ined the order-disorder transition during amyloid formation using liquid structure

theories of isotropic-nematic phase shifts.281 Statistical mechanical theories using

analytical expressions of the aggregation free energy have also been used to model

order-disorder transition in protein aggregation.282–284

In this chapter, we characterize oligomeric templates built from valine polypep-

tides on the basis of their ability to self-propagate into amyloids, using a CG

polyvaline model developed earlier in chapter 4. We paramterized the model in

a bottom up fashion directly from an all-atom (AA) implicit water polyvaline

MD simulation by minimzing the relative entropy. The relative entropy measures

the likelihood that the of reproducing the AA microstate probability distribution

using the CG model.32 Minimizing the relative entropy automatically guarantees

a maximum in this likelihood and consequently an optimal recapitulation of rele-

vant thermophysical properties of the atomistic system.35 Our choice of valine is

motivated by its very high stability for β-sheets.232 Further (atomistic and CG)

polyvaline was found to exhibit considerable sampling of the space of backbone

dihedral angles in folding simulations, by producing a large number of stable,

compact folds that could be identified with native structures of known proteins of
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equivalent sequence length.222,224 We study the abilities of oligomeric polyvaline

templates (monomers and dimers) to form amyloids by inducing fibril formation

in unstructured peptides and characterize the fibril shapes and stabilities in terms

of the template shape.

We note a recent and closely similar study by Laio and co-workers, where

they characterized a complex nucleation pathway for amyloid formation from a

disordered aggregate using a model system of atomistic polyvaline monomers.268

The authors performed self-assembly simulations directly from the dispersed state

for polyvalines in different parallel and antiparallel β-sheet conformations and ex-

tracted an aggregation free-energy landscape that revealed that aggregation is

initially dominated by antiparallel motifs but the eventual oligomer conformation

rests on a balance between parallel and antiparallel structures. Another notable

effort by Hall and co-workers investigated the amyloid core structures in different

prion strains, specifically in terms of the parallel β sheet content.270 Our work

differs from these examples and others mentioned earlier in that we focus on the

connection between the template shape and the corresponding fibril conformation

and stability, and illustrate it with candidate shapes such as hairpins, steric zip-

pers and zippers with three fold symmetry. Other computational efforts have not

yet probed the relative self-replicating abilities of different template motifs beyond
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steric zippers and in some-cases have looked at the stabilities of a specific fibril

conformation such as β solenoids.285 To the best of our knowledge, an investiga-

tion of amyloidogenic signatures in template conformations and the consequent

polymorphism in the emergent fibrils have not yet been undertaken. Thus, our

work may provide more insight into the dependence of pathogenic conditions on

monomer conformation such as those observed for the tau protein mentioned ear-

lier.

5.2 Candidate Backbone Templates

In this work, we focus on four families of β sheets: steric zippers (Z), β hairpins

(H), hairpin-like zippers (H’) and β-amyloids with three-fold symmetry (BA).

Steric zippers are one of the most common motifs seen in large amyloid plaques,

and so forms a natural choice for a template. In Fig. 5.2.1, the steric zippers

in panel (a) are taken from structures reported through atomic resolution crys-

tallography by Eisenberg and co-workers.249 Z1, Z4 and Z7 are respectively the

“Class 1”, “Class 4” and “Class 7” structures, out of eight classes of zipper motifs

reported in this study. Z1 is a tetramer of the GNNQQNY region of the yeast

prion sup-35, with parallel in-register strands within a sheet with their same sides

facing each other and both sheet edges facing in the same direction. This causes
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Z1 Z4 Z7 H1 H3 H5

H’1 H’3 H’5

BA1 BA2

(a) (b)

(c) (d)

Figure 5.2.1: Backbone templates used in this work. Panel (a) shows steric
zippers (Z) that are parallel (Z1, Z4) or antiparallel (Z7) within the same β sheet.
Panel (b) shows hairpins H1, H3 and H5 with 1, 3 and 5 turns respectively. Tem-
plates in panel (c) are called ”hairpin-like zippers” (H’1, H’2, H’3) in this work;
they are basically zippers with a strand-arch-strand shape and (1, 3 and 5) flexible
regions between the sheets. Panel (d) shows single (BA1) and double (BA2) sheet
units with three-fold symmetry, from the Aβ1−40 protein involved in Alzheimer’s
disease. Monomers in each template have been “mapped” to polyvalines of equiv-
alent length. CG valine sidechains (shown in yellow) interdigitate between the
sheets.

each sheet to be antiparallel to its complementary sheet such that the sidechains

between the sheets are staggered or interdigitated. The authors found Z1 to be

the most abundant type of motif, covering ∼ 46% of the total motifs isolated. Z4

is a tetramer of the GGVVIA fragment of the β-amyloid protein, with parallel

inter-sheet strands that pack with opposite facing sides. Z7 corresponds to the

tetramer from the VEALYL fragment of human insulin and consists of inter-sheet

antiparallel β strands in register that pack with similar sides facing each other.
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Hairpins H1, H3 and H5 in panel (b) form meanders and are named according

to the number of hairpin turns between β strands. The motifs are taken from

residues 480-500, 480-526 and 480-548 of the outer-surface protein A which is an

immunogenic lipoprotein associated with Lyme disease causing bacteria.286 Our

choice of hairpins is motivated by the fact that top-cluster structures for both

AA and CG polyvaline 15-mers examined in chapter 4 were hairpins. Shea and

co-workers found that β-hairpins have a dual role in amyloid formation. They sta-

bilize the sheet through inter-strand hydrogen bonds, but also destabilize through

addition to a growing fibril just enough to present an unstructured backbone frag-

ment that can serve as a latching point for solvated monomers to promote further

self-assembly.287 This destabilization effect is arguably important for fibril growth

such that spatially restrained hairpins such as the templates H1, H3 and H5 may

not directly spawn amyloid fibrils from a terminal strand.287,288 Still, it is in-

teresting to see whether these restrained hairpin templates can induce at least

a single hairpin from the free monomers which can then carry on the amyloid

growth process as described above.

Aggregates formed from hairpins have been typically observed to be not ex-

actly hairpins themselves but rather adopt a strand-arch-strand architecture.287

held together by hydrogen bonds between β strands in distinct sheets instead of
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laterally between strands within the same sheet. Further, formation of the flexible

turn region in a hairpin is well known to be the rate limiting step in assembling

the entire structure.289,290 Motivated by these observations, we study a third

family of templates (panel (c)) that we call hairpin-like zippers (H’) as a control

against true hairpins of the H family. These have the strand-arch-strand motif,

with flexible U-shaped region between intra-sheet strands. H’1, H’3 and H’5 are

respectively monomeric, trimeric and pentameric zippers (1, 3 and 5 flexible re-

gions) corresponding to residues 6-28, 6-28 + 38-61 + 69-93, and 6-28 + 38-61 +

69-93 + 99-124 + 131-156 respectively of the Aβ1−40 fibril structure reported by

Tycko et al.291

Finally, in panel (d), we consider templates with three-fold symmetry such

that looking down the fibril axis presents a triangular cross-section. BA1 and

BA2 represent one- and two-sheet zippers with three-fold symmetry taken from

the amyloid structure of the full 40-residue Aβ protein, resolved through solid

state NMR and electron microscopy techniques by Tycko and co-workers.291 The

authors found that solvated monomeric Aβ1−40 under quiescent conditions pro-

duce striated fibrils reminscent of simple steric zippers of the Z family in panel

(a), while agitating the solution influences nucleation and fragmentation rates to

stabilize a twisted zipper with a triangular cross section. Highly symmetric fib-
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rils are arguably not governed by simple β sheet forming hydrogen bonds alone,

but also includes intricate intra-sheet interactions necesary to stabilize the quar-

ternary structure. So, it may be instructive to see if such complicated interactions

can be self-propagated even in simple polypeptide assemblies, such that they may

be rationalized in terms of fundamental peptide chain properties.

The net concentration of free peptides is maintained at 3 mM which is close

to the in-vitro concentrations observed for Aβ1−42 aggregates.292,293 While in-vivo

and in-vitro critical aggregation concentrations of soluble amyloidogenic proteins

like Aβ1−42 are typically in the order of nM,294,295 such low concentrations would

be prohibitively expensive for MD simulations even with our CG model. Further,

the exact quantitative effects of concentration on aggregation behavior and fibril

shape is not the focus of this study. Table 5.2.1 provides details of the different

templates studied in this chapter. Nx and nx are the number of monomers and

number of valine residues per monomer, respectively, where x = t for template or

x = f for free monomer.
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Table 5.2.1: Nomenclature of templates and details of the simulation setup

Template PDB code Conc. BoxL N∗t n∗∗t N∗f n∗∗f

Z1 2OMM 3 mM 164.20 Å 4 7 8 7
Z4 2ONV 3 mM 164.20 Å 4 7 6 7
Z7 2OMQ 3 mM 164.20 Å 4 7 6 7

H1 1OSP (res 480-500) 3 mM 164.20 Å 1 20 8 24
H3 1OSP (res 480-526) 3 mM 164.20 Å 1 46 8 24
H5 1OSP (res 480-548) 3 mM 164.20 Å 1 68 8 24

H’1 2LMP (res 6-28) 3 mM 164.20 Å 1 ∼ 24 8 24
H’3 2LMP (res 6-28, 38-61, 69-93) 3 mM 164.20 Å 3 ∼ 24 8 24

H’5 2LMP
(res 6-28, 38-61, 69-93,
99-124, 131-156)

3 mM 164.20 Å 5 ∼ 24 8 24

BA1 2LMP (chains A, G, M) 3 mM 188.00 Å 3 40 12 30

BA2 2LMP
(chains A, G, M and
B, H, N)

3 mM 188.00 Å 6 40 12 30

5.3 Methods

In this work we focus on the ability of the template to induce conformation

changes in free peptides. Thus, we restrain the template to a fixed point in space,

while mobile polypeptide chains are dispersed around it to represent a disordered,

solution-like state for the entire system. The objective is to see which templates

can “recruit” the dispersed peptide chains from solution to coalesce into a strongly

ordered fibrillar structure, and then characterize the emergent fibril shapes. Re-

straining the template effectively removes the possibility of changes in its confor-

mation induced by the self-assembly process, although the restraints are designed
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to allow ∼ 1 Å fluctuation in template atomic positions. For the remainder of this

chapter, we will refer to the entire assembly including the template and the mobile

peptide chains as an oligomer, and individual polypeptide chains as monomers.

Each atomistic template is first “mutated” to an atomistic polyvaline structure

with the same number of monomers (chains: N) and sequence length (number of

valine residues: n) per monomer, by aligning polyvaline monomers of equivalent

length to template monomers using the well known Kabsch algorithm,246 followed

by an additional rotation of all backbone dihedral angles along each monomer to

match those in the template. The template is then relaxed through a short energy

minimization. This energy minimized atomistic polyvaline structure represents

the final template that is incorporated as a seed in the self-assembly simulation.

Post energy minimization, the template is centered within a cubic simulation box

with periodic boundary conditions, and all atoms on the template are tethered

to their current positions through harmonic restraints. Free polyvaline chains are

distributed randomly on the surface of a sphere inscribed within the simulation

box, and centered on the template center-of-mass. As summarized later in Table

5.2.1, the number of free peptides and their initial structures as well as the box

length are adjusted to be commensurate with the desired concentration, and to

prevent unwanted interactions between peptide chains and their periodic images.

195



Chapter 5. Self-propagating propensities of polypeptide oligomers in templated
assembly

Finally, the entire assembled initial topology is mapped to a four site CG repre-

sentation and MD simulations are launched using a CG forcefield described in the

following section.

5.3.1 CG model

The CG polypeptide model we use here, was developed in chapter 4 from a

reference AA system of a valine 15-mer simulated using the ff96 Amber forcefield239

with a modified version of the igb5 implicit solvent model.240 As shown in Fig.

5.3.1, this CG model reduces an atomistic amino acid to four CG sites based on

the heavy atoms: a nitrogen (N) site, an α-carbon (C) site, a sidechain (S) site,

and an oxygen (O) site which lumps together the carbonyl carbon and oxygen.

The CG forcefield is represented using bonded (Ub), angular (Uθ), torsional (Uϕ,ψ)

and nonbonded pair-wise interactions (Upair) that are intra-backbone (BB), inter-

sidechain (SS) and inter-backbone-sidechain (BS) in nature:

UCG =
(
UBB
b + UBB

θ + UBB
ϕ,ψ + UBB

pair

)
+
(
UBS
b + UBS

θ + UBS
ϕ,ψ + UBS

pair

)
+ USS

pair (5.3.1)

Bond potentials are harmonic in nature while all other potentials are represented

using cubic B-splines. All pair potentials are cut off at 10 Å. This forcefield con-

sists of ∼ 800 parameters, which are optimized by minimizing the relative entropy

between the CG model and the reference atomistic polyvaline simulation. This
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Figure 5.3.1: Left: valine is mapped to four heavy atom centers N, C, O, S that
sit at the centers-of-mass of the amino, α-carbon, carbonyl carbon and oxygen,
and the side-chain groups respectively. Right: The CG model of a 15-mer valine
polypeptide is parameterized by minimizing the relative entropy from a reference
atomistic simulation.

technique minimizes the information loss upon coarse graining and guarantees a

maximal overlap between AA and CG microstate ensemble probability distribu-

tions, such that structural correlations (such as secondary structure propensities)

may be adequately replicated in the CG model.32,34 Further details can be found

in chapter 4 and Refs. 34, 41. In chapter 4, AA and CG polyvaline models

demonstrated high β-hairpin character which was stable across a wide range of

temperatures from 270 K to at least 350 K.
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5.3.2 Order parameters for assessing template stability

While the RMSD to a reference structure is a very useful metric for assessing

structure prediction for the folding of single proteins, we do not have such ref-

erences available for self-assembling oligomers examined in this chapter. Even if

we can determine a putative reference, the RMSD may embed significant errors

for homogeneous oligomers built completely from smilar polypeptides. A single

homoegeneous polypeptide chain does not have directional preference and looks

the same from both the N-terminal or the C-terminal end. While the Kabsch

algorithm246 for determining RMSD accounts for a bi-directional symmetry for

single strands, a homogeneous oligomer may admit multidirectional degeneracy in

shape, i.e., it may look visually similar from many different angles. Thus oligomers

with similar fibril shape can have very different RMSDs from a single reference

structure. Hence, in this chapter we employ different order parameters to assess

oligomeric stabilty.

We calculate the “β content” (fβ) of an oligomer as the fraction of residues

belonging to β sheets (both intra- and inter-strand). fβ encodes information

about both inter-residue contacts as well as the propensity of backbone dihedral

angles to lie in typical β rich regions on the Ramachandran plot. In general,

determining if a CG residue contributes to a particular type of secondary struc-
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ture is a non-trivial classification problem that may require searching for known

secondary structure patterns in inter-residue contact maps and Ramachandran

plots.296 However, our four-site CG model has the advantage of being sufficiently

close to an atomistic backbone resolution, such that the CG O site can be reverse-

mapped to approximately predict the carbonyl carbon and oxygen. The presence

of an amino center (N) and a carbonyl oxygen atom is sufficient for available

bioinformatic algorithms to infer the strength of inter-residue hydrogen bonds

along the backbone as well as dihedral angles, and accordingly classify residues

into particular secondary structures. Again, while sophisticated algorithms exist

for backmapping CG peptide structures of arbitrary resolution to full atomistic

detail,297–300 owing to the near-atomistic backbone resolution of our CG model,

we use simple geometrical constraints, namely the planarity of the sp2 hybridized

carbonyl carbon, and the average bond length and bond angle around the peptide

linkage. Further details can be found in the appendix.

To characterize fibrillar shapes, we examine an orientational order parame-

ter that has been succesfully used in the literature for describing anisotropy of

CG protein agglomerates.281 The orientation order S is defined as the largest
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eigenvalue of the diagonalizable, second rank tensor:

Qij =
1

2N

N∑
k=1

(
3uki u

k
j − δij

)
(5.3.2)

where, i, j = x, y, z are Cartesian axes, δij is the Kronecker delta, and N is the

total number of polypeptide monomers (including the template). uk is the princi-

pal axis vector of the kth monomer, given by uk = rk1 − rkn, where rkm denotes the

center of mass of the mth residue within the kth monomer and n is the sequence

length of this monomer. Qij is commonly used as a measure of isotropic to ne-

matic transitions in liquid crystal systems and can easily detect uniaxial order in

a system.301 S varies between zero for isotropic globular aggregates, to one for

fibrillar oligomers with all monomers perfectly aligned along a preferred spatial

direction. Trajectory-averaged values of S can be used to detect the temperature

dependent order-disorder transition from compact fibrils to dispersed monomeric

assemblies.281 However, in this chapter, we use the joint distributions of fβ and S

to cluster the ensemble of emergent oligomers, and identify the dominant struc-

tures.

5.3.3 Simulation details

Initial AA topologies are assembled using PACKMOL.302 Angle, torsion and

pair splined potentials in the CG polyvaline model use 40 knot points each, with
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densities of 1.4 ◦/knot, 0.22 ◦/knot and 0.25 Å/knot respectively. CG model

simulations are run in the canonical ensemble with the LAMMPS MD engine,105

using periodic boundary conditions. Particle positions are evolved in time using

a Langevin dynamics integrator with a timestep of 1 fs and a damping coefficient

of 10 ps−1. We perform Replica Exchange Molecular Dynamics (REMD) which

allows greater sampling of the conformation space,237 using 10 replicas with an

exponential temperature schedule between 260-400 K. Each replica is simulated

for 1 µs, and data from the last 400 ns is used for calculating statistics. Replica

swaps are attempted every 10 ps. Templates are spatially locked using harmonic

restraints on each template CG site with a force constant of 1 kBT and mean dis-

tance of 1 Å. Secondary structures of reverse-mapped CG structures are calculated

using the STRIDE algorithm.303 Data from the different replicas is reweighted

using the Multi-state Bennett Acceptance Ratio (MBAR) algorithm, and imple-

mented using the pymbar package.245 Top-cluster oligomers are determined at 280

K, using the K-Means clustering algorithm. Cartoon representations of secondary

structures are rendered in VMD.248
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5.4 Preliminary results and future objectives

Fig. 5.4.1 shows the free energy landscape of fibril formation AT 280 k, as

a function of the orientational order parameter S and the β content fβ, for the

antiparallel steric zipper Z1, hairpins H1, H3 and H5, and the single Aβ1−40 sheet

with three-fold symmetry. The dominant structures obtained by clustering along

S and fβ are shown in the bottom panels. Z1 induces exactly self-similar antipar-

allel zippers with a ∼ 70% β content and orientational order between 40-85%,

although some unstructured agglomerates with a ∼ 6 kBT barrier are found oc-

casionally. Hairpins H1, H3 and H5 template fibrils with β content progressively

decreasing from 85 to 75%, while sampling lower orientational orders of 30% for H5

as opposed to 50-70% for H1. Interestingly the fibrils all pack like steric zippers,

remaining antiparallel to the hairpin strands, such that the average orientational

order for H motifs (50%) is somewhat close to that for Z1 (62%). It is likely that

lower values of S for hairpin templates with more turns results from the twist in

the induced zipper. For instance, fibrils H1 to H5 increasingly twist away from

the plane of the template, lowering preference for the axis parallel to the hair-

pin plane and thus decreasing S. Fibrils induced by templates with higher turn

numbers may have barrel forming propensities, but this needs to be verified with

further simulations. The BA1 template exhibits two minima on the aggregation
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Figure 5.4.1: Aggregation free energy landscapes as a function of the orienta-
tional order parameter S (along the X axis) and the β content fβ along the Y
axis for templates Z1, H1, H3 and H5, and BA1 as notated in Table 5.2.1. These
two metrics are used to cluster the aggregates observed in the last 200 ns from
700 ns/replica of REMD simulation, which are shown with the free energy sur-
faces. Templates are colored in red and free peptides in green. The antiparallel
steric zipper is seen to be very stable, since even hairpin templates lead to Z-like
topologies.

free energy surface, characterized by fβ values of 60% and 40% respectively, and S

ranging between 20-50% for the basin at higher fβ, and 30-55% for the one at lower

fβ. Low orientation order is to be expected for a system with three-fold symmetry

but it is unclear at the moment if this symmetry can enforce three states with

distinct S values or if two of those states are nearly similar in free energy to each
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other. Further simulations are required to verify this. Note that BA1 enforces

nearly self-similar assembly where the free peptides line up to form antiparallel

zippers at each arm of the triangle. However, in this preliminary simulation, BA1

was locked spatially using a low harmonic restraint with a force constant of 1

kBT/Å
2
, so that the sheets in each arm have been somewhat “pulled out” of their

β conformations. We need to rerun this simulation using stricter restraints.

Fig. 5.4.2 compares the folding curves by plotting the (replica reweighted) β

content with temperature for the templates Z1, H1, H3 and H5, and BA1. The

Figure 5.4.2: Folding curves illustrating the temperature dependence of the β
content, fβ (along the Y axis) for templates Z1 (left), H1, H3 and H5 (middle)
and BA1 (right). Hairpin induced fibrils appear to be the most stable with folding
temperatures close to 380 K.

steric zipper Z1 has the lowest folding temperature ∼ 320 K, among all the tem-

plates studied so far, while BA1 has a moderately higher folding temperature of
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345 K. All three hairpins however induce zippers that are tremendously stable

with a folding temperature of ∼ 380 K for all three cases H1, H3 and H5. In-

terstingly, the folding curves for all three hairpins indicate a sharp cusp between

360-380 K, and the location of the cusp shifts to higher values while going from

H1 to H5. Is it possible that the aggregation process for these templates can be

represented with simple two-state models? One way to find out would be to fit a

simple van’t Hoff like relation derived from mass-action kinetic considerations.

Appendix

5.A Reverse mapping the CG O site to the AA

carbonyl group

As discussed in section 5.3.2, the CG O site needs to be reverse mapped to the

full AA carbonyl group, so that STRIDE can infer secondary structures from this

higher resolution representation. We do this using simple geometry arguments.

Consider the peptide bond between any two residues in semi-atomistic resolution,

shown in Fig. 5.A.1 N and Calpha are the usual CG N and C sites (of adjacent

residues) respectively, while C̃ and Õ are carbonyl group atoms which were coarse

grained into the CG O site, shown here schematically with a bounding ellipse.

Let rCα , rO, rN be the position vectors of the CG sites which we know and rC̃ , rÕ
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Figure 5.A.1: Peptide bond plane in semi-atomistic resolution. N and Cα are the
CG N and C sites (of adjacent residues) respectively, while C̃ and Õ are reverse
mapped atoms of the carbonyl group. The CG O site sits at the center of mass
of C̃ and Õ. n̂ represents the outward normal from the plane.

be those of the carbonyl group atoms that we have to determine. Center of mass

coarse graining gives us the relation:

rO =
(mC rC̃ +mO rÕ)

mC +mO

(5.A.1)

where mC and mO are the masses of carbon and oxygen respectively. Since rO

is known, the only remaining task is to determine either of rC̃ or rÕ. Here we

evaulate rC̃ . If dCαC̃ represents the bond length between the alpha-carbon and

the carbonyl group, then our task reduces to simply finding the vector rCαC̃ , so

that:

rC̃ = rCα + dCαC̃
rCαC̃
||rCαC̃ ||

(5.A.2)
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The outward normal to the peptide bond plane in terms of known vectors can be

written using the cross-product as:

n̂ =
(rCα − rO)× (rN − rO)

|| (rCα − rO)× (rN − rO) ||

while, ∠NCαC̃ can be evaulated usng the sine rule as:

∠NCαC̃ = sin−1
(

dC̃N
||rN − rCα||

sin∠CαC̃N

)

Here, dC̃N and ∠CαC̃N are the bond length and angle respectively around the

peptide bond which are typically conserved for protein chains (plus our CG model

is already near AA resolution, so we don’t expect these quantities to change

significantly) and hence known quantities, but can also be determined from their

AA distributions. For the polyvaline CG model developed in chapter 4, we find

dC̃N = 1.32Å and ∠CαC̃N = 114◦. Finally, then evaulating rCαC̃ amounts to

rotating the vector rN − rCα in the peptide bond plane by ∠NCαC̃about the

normal axis n̂, which can be achieved using the well-known Rodrigues’ rotation

formula:

rCαC̃ = (rN − rCα) cos∠NCαC̃ + [(rN − rCα)× n̂] sin∠NCαC̃

+ n̂ [n̂ · (rN − rCα)] (1− cos∠NCαC̃)

Once, rCαC̃ is determined, it is straightforward to apply Eqs. (5.A.1) and (5.A.2)

to fully determine the carbonyl group at a near-atomistic resolution.
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Conclusion

6.1 Implications

In chapter 2, we introduced local density (LD) potentials as a simple and com-

putationally fast strategy to incorporate manybody effects into CG models, which

may improve transferability. Traditionally CG models have been built in the im-

age of atomistic systems. This approach has traded off the inherent multibody

nature of CG interactions due to coupling between the CG degrees of freedom, for

computational speed, by approximating the manybody CG potential of mean force

with pairwise nonbonded potentials. Inspired from mean-field electronic theories

of metals,57,74 LD potentials aim to build back such missing manybody interac-

tions through mean-field potentials that account for the energetic contribution to
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a CG site from its neighboring sites within a threshold distance. We demonstrated

that Shell’s relative entropy framework32,34 enables a systematic parameterization

of LD interactions from reference atomistic simulations. Subsequently, we investi-

gated the utility of LD potentials in the development of implicit water models for

two candidate systems characterized by hydrophobic interactions: hydrophobic

collapse of an alkane-like superhydrophobic polymer and assembly of superhy-

drophobic methane sized partices. Our results in chapter 2 that in both of these

test systems, augmenting traditional CG pair interactions with LD potentials gen-

erally improved the ability of water-free CG models to capture the co-operativity

of water-mediated interactions in the corresponding explicit-water atomistic simu-

lations. Thus CG models assisted by LD potentials could replicate polymer folding

or (superhydrophobic) methane clustering nearly quantitatively, as opposed to CG

models built entirely from pair interactions. More importantly, these improved

CG models were transferable across a wide range of polymer lengths and methane

bulk densities.

Our results from chapter 2 revealed that LD potentials may be promising tools

for constructing computationally fast and accurate CG models of phase transi-

tions, which necessitate proper transferability to span across phases with widely

different local structure. Accordingly, in chapter 3 we extended the pevious work

209



Chapter 6. Conclusion

on LD potentials to develop CG models of liquid mixtures which are transferable

in the space of compositions. Specifically, we used relative entropy minimization to

parameterize LD-interactions-assited CG models of benzene-water mixtures, map-

ping benzene and water to single CG sites. In combination with the usual intra-

and inter-species pair potentials between benzene and water we tested the relative

capabilities of intra- and inter-species LD potentials to capture the orientational

degrees of freedom afforded by benzene-water and water-water hydrogen bonds

which are primarily responsible for the macroscopic benzene-water phase split.

Our CG model that combined all four possible LD potentials between benzene

and water with the pair interactions showed improved structural transferability

(pair correlations and local co-ordination numbers) over pair-only models across

a wide range of benzene mole fractions and was relatively agnostic to the ben-

zene composition at which it was parameterized. Even when parameterized from

relatively small system sizes, this CG model exhibited macroscopic phase segrega-

tion in larger systems while quantitatively predicting the location of the interface.

We also learnt that the intra-water LD potential was the dominant multibody

interaction in the system, thus highlighting the role of water’s distinct structural

correlations and tetrahedral network in mediating self and cross interactions with

much larger asymmetric species like benzene which has been challenging to cap-
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ture in CG models so far.

Our investigations in chapters 2 and 3, revealed an important requirement for

the role of LD potentials to be meaningful, namely sufficiently high multi-body

correlations in the physics of the system under consideration. E.g. in chapter 2,

when the polymer and/or the methane-like particles were made somewhat less

hydrophobic by using attractive intra-particle Lennard Jones interactions com-

mensurate with those of true methane, the LD-augmented CG models presented

no significant improvement over pure pair interaction based models. Similarly, in

chapter 3, we noted the relative dominance of intra-water LD interactions over

intra-benzene and even benzene-water interactions. Benzene does not hydrogen

bond appreciably with itself thereby decreasing the overall manybody character of

self interactions. Thus CG models both with and without LD potentials reproduce

the bulk benzene radial distribution functions and co-ordination number distri-

bution equally well. Based on these results, we recommend a prior-assessment

of the relative strength of multibody interactions in the physics of a system be-

fore using parameterizing CG models for such systems that include LD potentials.

In chapter 4, we employed relative entropy minimization to construct four-site

CG models of polypeptides (four CG sites for amino, α-carbon, carbonyl and side
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chain groups) that can serve as putative backbone forcefields, and subsequently we

added native-centric sidechain interactions to construct Gōmodels for MD simula-

tions of protein folding. This work extended the Shell and Carmichael’s previous

parameterization of very accurate CG poly-alanine models41 to heteropeptides

with arbitrary sequence complexity. Specifically, we developed standalone CG

models from polymers of leucine and valine by minimizing relative entropy from

atomistic polyleucine and polyvaline simulation. Later, we parameterized a CG

model simultaneously from both of these atomistic references by minimizing the

sum of relative entropies with each reference simulation, following the extended-

ensemble protocol of Noid and co-workers.63 The extended ensemble approach

was able to combine the α-helix and β-hairpin propensities of polyleucine and

polyvaline respectively, into a hybrid model that correctly addressed the balance

between α and β behavior. Simplistic native-centric sidechain potentials added

to the hybrid backbone resulted in a Gō model that could resolve native struc-

tures of both short sequences and globular proteins to within 2 Å. While Gō

models require the native structure of the target protein as input and are there-

fore not entirely predictive, the role of the Gō-like sidechain interactions in this

work was somewhat passive, serving as a test for the quality of the CG backbone

forcefield. The results in chapter 4 demonstrate that four site CG polypeptide

models optimized with the relative entropy are promising tools for building high
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quality protein backbones, which can be ultimately refined using chemistry-based

sidechain interactions for different amino acids, and employed in folding and self-

assembly simulations.

In chapter 5, we performed CG MD simulations of templated protein aggrega-

tion commonly seen in neuro-degenerative diseases, to elucidate the connections

between template topology and self-propagating ability during oligomerization.

Specifically, we used a β-rich CG polyvaline model developed in chapter ?? to

simulate the assembly of polyvaline strands around a given template or seed struc-

ture (also built entirely from polyvaline units). Our preliminary results show that

antiparallel steric-zipper like motifs are exceptionally stable across a wide range of

temperatures and can be induced even by non-zipper like motifs such as hairpins.

Further work is necessary to study a broader range of template conformations to

distinguish templates that can replicate nearly self-similarly from those that lead

to ordered but self-dissimlar aggregates.

The methods developed in this thesis are broadly useful for developing new and

powerful CG models for studying important phenomena in chemical engineering

like hydrophobic interactions and phase transitions in liquids on one hand, and

protein folding and self-assembly on the other. The accuracy afforded by CG mod-
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els developed in the various chapters go beyond simple academic investiagations

into the driving forces and may be implemented (with appropriate computational

resources) on large-scale systems to make structurally and thermodynamically

accurate predictions, which can supplement and guide experimental efforts.

6.2 Improvements in numerical algorithms

A major outcome from this thesis has been a robust relative entropy based

coarse-graining algorithm with the ability to handle relatively large numbers of

force field parameters and, importantly, to include arbitrary force field types.

This lets us throw a large variety of CG interactions into the mix, develop parallel

families of force fields for the same system, and gauge the relative significance of

one or more of these interactions over the others. The relative-entropy optimiza-

tion package is hosted on a private GitHub account and can be accessed through

requests to the author of this thesis or Prof. M. Scott Shell at University of Cal-

ifornia Santa Barbara. The key features incorporated into the group-software as

a result of projects addressed in this thesis are:
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6.2.1 LAMMPS LD potential

The LD potential was added as a separate manybody potential to the MD

software LAMMPS,105 and we are currently in the process of submitting it to the

LAMMPS repository. This not only enables fast CG MD simulations with the

LD potential, but also allows the construction of CG models from large systems,

where the most computationally expensive steps are on-the-fly CG MD simulations

with the LD potential, that are necessary for calculating successive iterates of the

relative entropy during the course of minimization.

6.2.2 Optimization convergence

We briefly discuss two approaches that were necessary to ensure a smoother

convergence of the relative-entropy optimization, especially when working with

non-standard function spaces like the local density, or handling very large param-

eter sets such as in the CG peptide models.

Treatment of inner-core regions in nonbonded potentials

We found that the treatment of the inner core region of spline-based pair po-

tentials, where the pair distance approaches zero, requires careful conditioning to

optimize. In this regime, the potential should grow to a large value to prevent

core overlaps, but at the same time there is little to no sampling of the corre-
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sponding distances in the reference atomistic trajectory and so there is sparse

data to dictate “how large” the potential should be and what form. If we did not

treat this issue at all, potentials in our algorithm varied wildly in this regime, and

sometimes manifested unphysical minima at r = 0. Our initial treatment was to

simply constrain the inner core region to have a fixed negative slope, but this led to

artifacts for complex systems. Fig. 6.2.1 gives an example with benzene-benzene

Figure 6.2.1: Artifacts for our early approach to determining pair spline poten-
tial “inner core” regimes where the pair distance approaches zero. Pair potentials
are shown in red, the corresponding all-atom distance distribution is in black, and
the CG distribution is dotted blue. Spline pair potentials that constrain the slope
in the inner core region lead to artifacts near the first distribution peak, as shown
in both cases. The solution has been a staged optimization procedure.

and benzene-water CG pair potentials. These are preliminary (and suboptimal)

versions of the potentials presented in section 3.3.1. Over-constraining the inner-

core part of the potential by fixing the slope lead to artifacts in the first shell

distribution / correlation function, which are arguably important to reproduce
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quantitatively due to the influence of local structure on thermodynamic proper-

ties. Our solution, which now works reliably, was to stage the optimization in

several successive rounds: fixed inner slope, followed by slope variation during the

minimization, followed by full unconstrained relaxation.

Incorporating memory effects

The relative entropy minimization algorithm requires an estimate of the rel-

ative entropy at every optimization step. This is achieved by running MD sim-

ulations with current estimates of the CG forcefield and exploiting Eq. (??) to

calculate the relative entropy from simulation observables. Trial MD simulations

are the indeed most computationally intensive part of the overall optimization al-

gorithm. Carmichael and Shell improved on the overall computational efficiency

and reduced inherent stochasticity in the algorithm by reusing old trial CG sim-

ulations through reweighting techniques.34 Specifically, they ran a trial MD sim-

ulation with guess CG model parameters λ0, following which, instead of directly

minimizing the relative entropy Srel, they addressed the quantity:

∆Srel = Srel(λ)− Srel(λ
0)

= β
〈
∆UCG

〉
AA

+ log
〈

exp (βUCG)
〉
CG,λ0 (6.2.1)
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where, ∆UCG = UCG,λ0 −UCG,λ is the difference in potential energies between the

trial MD trajectory and its reweighted version at new CG forcefield parameters

λ. Eq. (6.1) employs the classic Zwanzig free energy perturbation304 to reweight

snapshots from a trial MD simulation with CG forcefield parameters λ to updated

parameters λ. Minimizing ∆Srel directly leads to fewer MD simulations and thus

reduces stochasticity. However, free energy perturbation is valid only when the

ensemble probability distributions of the target state (UCG,λ) and the reference

state (UCG,λ0) have sufficient overlap. Shell and Carmichael developed a simple

metric to monitor how far the target strays from the reference and launch a new

trial MD simulation with the CG forcefield UCG,λ when the target has moved too

far. They monitored the effective fractional number of frames from the reference

trajectory that contribute to reweighting.34

Launching a new trial MD simulation at any point during the optimization

effectively destroys the memory of the path taken so far on the relative entropy

hypersurface. For instance, prior to the trial simulation, we could be at a local

minima. Using observables (potential energy, free energy differences) solely from

the new trajectory will not “remember” this information and consequently provide

an effective reset to the algorithm, which may cause it to spend more time in the

local minima instead of moving downhill faster. To alleviate this issue and make
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the convergence process free of resets, we combine both the old and new trajec-

tories into a hybrid timeseries that may retain long-term memory of the iteration

process hitherto. This combination is acheived by calculating the effective cross

configurational weights between the two trajectories using Bennett’s algorithm109

and gluing together frames from each trajectory with probability proportional to

its weight.

6.3 Future directions

In this section, we make a note of future goals, both general objectives for

bottom-up coarse graining with a focus on the role of the relative entropy, as well

as specific future deliverables for the projects discussed in chapters 2-5.

6.3.1 Assessing transferability a-priori

This thesis demonstrates two important techniques to improve transferability

of CG models across thermodynamic state points (density, temperature, etc.):

the LD potential to account for manybody effects inherent in CG models (chap-

ters 2 and 3) and the extended ensemble method for combining information from

reference atomistic simulations at different state points or even with different

chemistries63 (chapter 4). In spite of these efforts, the general question of de-
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terming the regime of transferability for a given CG model a-priori i.e. assess

transferability without the need to run CG MD simulations at different states and

compare with their atomistic counterparts, still remains an open problem. One

suggestion to tacke this problem through the relative entropy formalism is to in-

clude the thermodynamic state point directly into the CG Hamiltonian. Consider

a CG Hamiltonian UCG(λ,p) as a function of forcefield parameters λ and other

parameters p which encode state point information. This can be the thermody-

namic state or even other relevant CG model parameters. The derivative of the

relative entropy in this parameter space can be written as:

dSrel

dp

∣∣∣∣
λ∗

=
∂Srel

∂λ

∣∣∣∣
λ∗

∂λ

∂p
+
∂Srel

∂p
=
∂Srel

∂p
(6.3.1)

Here, we project the multidimensional Srel surface along the p co-ordinate, and

λ∗ = λ∗(p) describes the optimal CG forcefield at a given state p. This allows us

to write
(
∂Srel/dλ

)
λ∗ = 0 in the second step of Eq. (6.3.1). Specializing to the

canonical ensemble gives us:

dSrel

dp

∣∣∣∣
λ∗

= β

〈
∂UCG

∂p

〉
AA

− β
〈
∂UCG

∂p

〉
CG

or,∆Srel =

∫ p

p0

dp β

[〈
∂UCG

∂p

〉
AA

−
〈
∂UCG

∂p

〉
CG

]
(6.3.2)

where 〈•〉AA and 〈•〉CG denotes ensemble averages for the AA or atomistic and CG

models and β represents the inverse temperature. ∆Srel is the change in relative

entropy when transfering from a model parameterized at state p0 to state p, while
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moving along the path λ∗ = λ∗(p). Thus, if the CG Hamiltonian is separable in

λ and p, Eq. (6.3.1) can be used to readily calculate the relative entropy change

while transferring across state space. The states with high ∆Srel can be screened

as states at which the CG model would have limited or no transferability.

6.3.2 Including experimental information

In chapters 2 - 4, we have seen that thermodynamic properties like interfa-

cial tension or folding temperature can be reproduced only with limited accuracy,

not only at state points or system chemistries different from the parameteriza-

tion reference, but also at the reference conditions. Structural properties like pair

correlations, co-ordination number distribution, radii of gyration and end-to-end

distances along polymer chains, solvent accessible surface, etc. are captured much

more accurately. We suggest including thermodynamic metrics from experiments

or ensemble averages from AA simulations in the CG model prior to parameter-

ization, to capture such properties better. Voth and co-workers introduced the

Experiment-Directed-Simulation (EDS) scheme to include experimental informa-

tion in CG models by designing a correction function to the CG Hamiltonian

f(r) such that its trajectory average from CG MD simulations
〈
f(r)

〉
is direct

experimental data or available from atomistic MD simulations.305 We suggest a

somewhat similar approach in which corrections based on available data can be
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built directly into the CG optimization objective, i.e. the relative entropy, for

instance:

O(ξ) = Srel +
∑
i

ci
(
ξi(r)− ξ0i

)2
(6.3.3)

Here, the overall optimization objective O(ξ) corrects the usual relative entropy

Srel with quadratic constraints for each of the desired metrics ξi using a set of co-

efficients ci. These constraints represent penalties due to deviation in these prop-

erties from their known experimental (or AA average) values ξ0i . Using quadratic

constraints helps in avoiding non-convexity of the objective function surface. Opti-

mizing the CG forcefield parameters and the penalty coefficients ci simultaneously,

in principle, should produce a CG model that faithfully recapitulates at least the

metrics {ξ}. Thus, one should be careful in choosing these metrics and ensure

that they have little to no correlation between themselves, to prevent overfitting.

6.3.3 Determining the optimal AA → CG mapping

An open problem in bottom-up coarse graining is to design the most efficient

AA to CG mapping that not only captures all the relevant physics of the phenom-

ena under study, but also provides the simplest possible description of the AA

system. An immediately obvious way to approach this problem is through the

mapping entropy Smap (Eq. (2.13)) which is basically an AA ensemble average of

the degeneracy of the AA to CG mapping, i.e. an average estimate of the number of
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AA configurations that map to a single CG configuration. Smap is independent of

the CG forcefield and depends only on the mapping function M(r) that translates

the co-ordinates r of a group of AA particles to a CG particle position. Therefore,

minimizing Smap with respect to M(r) seems like a promising approach to sys-

tematically estimate the most efficient AA to CG mapping. Foley, Noid and Shell

estimated a modified form of the mapping entropy as function of CG resolution

by coarse graining a set of single-domain proteins to Gaussian Network Models

(GNMs).306 Their work revealed a rather counter-intuitive result: the information

retained per site in translating from the AA to the CG, had a maximum when

plotted as a function of the number of CG sites, i.e. the CG resolution. This work

suggests that there may be an optimal CG resolution for a particular atomistic

system that is different and possibly lesser from the maximum possible resolution,

i.e. a 1:1 mapping. Of course, a putative mapping function still needs to incorpo-

rate some chemical information and as such will always be system-specific. But

at least, we can systematically estimate optimal mapping functions for families

of compounds, namely alkanes, aromatics, polar groups, proteins, etc, by target-

ing the mapping entropy. One important problem to solve before we reach that

stage, is to calculate or numerically approximate the mapping entropy for CG

models with arbitrarily complex mapping functions beyond simplistic models like

the GNM, where the mapping entropy can be calculated analytically.
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6.3.4 A functional form for the LD potential

The LD potentials in chapters 2 and 3 are practically represented as cubic B-

splines, whose knot points are parameterized through relative entropy minimiza-

tion. While the robustness of the minimization algorithm enables highly flexible

splines with several knot points, it is still desirable to develop a (semi) analyti-

cal expression for the LD potential function to gain deeper physical insight into

how it embeds manybody correlations in CG models. More importantly, such an

expression may enable us to connect the LD potential with the bulk density and

ultimately with the extent of manybody correlations that the system admits. This

may provide a-priori estimates of efficiency for the LD potential. As mentioned

earlier, the LD potential is inspired from the theory of metallic bond-order poten-

tials.57,74 This theory accounts for mean electronic density ϕ(r) around metallic

nucleii through an “embedding function” F (ϕ), similar to how the LD potential

function accounts for local density ρ of neighboring sites around a central CG site

through the LD potential function f(ρ) (see section 2.2.1). So, it may be sugges-

tive to follow Finnis and Sinclair’s work where they examined the special case of

bond-order potentials for solid transition metals with regular lattice spacings to

approximate the embedding function F as:60

F (ϕ) ≈ √ϕ (6.3.4)
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Approximations for the LD potential functions for liquids in terms of the local

density might be constructed by translating Finnis and Sinclair’s procedure to

liquid structure and closely examining two-body or three-body correlations, in

particular.

6.3.5 Refinements to the CG peptide model

The Gō models developed in chapter 4 represent the first step in developing

CG peptide models for protein folding and self-assembly. Gōmodels require the

native structure of the target sequence as an input and as such serve as a test

for the quality of the CG peptide backbones developed in chapter 4 rather than

demonstrating structure predictive abilities for arbitrary sequences with unknown

/ un-determined native structure. The next steps in this line of CG model develop-

ment is introducing sidechain interactions based on sequence chemistry, perhaps a

four alphabet model that classifies residues as hydrophilic, hydrophobic, cationic

and anionic. The ultimate goal in this cascade is a full alphabet model with

separate sidechain interaction parameters for all twenty amino acids. Further, it

is necessary to account for glycine and proline through special bond-angle and

dihedral interaction parameters in the backbone model, and eventually parame-

terize such backbones from a carefully designed extended ensemble of reference

simulations of relevant polypeptides. E.g. special backbone parameters for glycine
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and proline can be readily parameterized by including polyglycine and polyproline

atomistic data in the reference extended ensemble.

6.3.6 Secondary structure classification for CG peptides

In chapter 5, we used the STRIDE algorithm303 to calculate oligomeric β con-

tent. STRIDE needs a fully resolved carbonyl group to estimate the possibility of

a hydrogen bond linking the amino and carbonyl groups. This required backmap-

ping the CG oxygen site in our four-site CG peptide models to predict approximate

locations of the carbonyl carbon and oxygen. The reverse mapping was performed

using simple geometrical arguments such as planarity of the sp2 carbonyl carbon

and mean carbon-oxygen double bond length. While STRIDE is very accurate,

the reverse-mapping step introduces approximation errors that may increase with

CG mapping resolutions lower than four-site (in spite of sophisticated reverse-

mapping algorithms297–300). This necessitates a secondary structure classification

algorithm for CG peptide residues, perhaps based on combined information from

contact maps and Ramachandran-like plots of dihedral angle distributions.

One possible classification algorithm is to mine contact maps for patterns.

As demonstrated in Fig. 6.3.1, two or more contact pairs (i.e. residue pairs

in contact) can be classified as nearest neighbors along particular “paths” or
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Figure 6.3.1: Schematic for β sheet classification in CG peptides using protein-G
as an example. Contact pairs CP1,CP2, which lie along a β sheet can be enumer-
ated using simple contact-map based conditions such as continuous paths away
from the main diagonal (either parallel or orthogonal to the main diagonal). Near-
est neighbors in the space of contact pairs can be ascertained from the Euclidean
distance between contact pair co-ordinates in the contact map. Nearest neighbor
contact pairs can be represented as connected vertices of a graph. Classifying
a residue as part of a β sheet then reduces to computing the longest connected
components (path 1 → 2 → 3 → 4 → 5 → 6 in this example) of this induced
graph.

patters such as parallel to the main diagonal (helices), parallel but off diagonal

(parallel β sheets) or orthogonal to the main diagonal (antiparallel β sheets).

Consider two contact pairs CP1 ≡ (i1, j1) and CP2 ≡ (i2, j2) formed from residue

pairs numbered (i1, j1) and (i2, j2). To determine if these contact pairs lie along

a pattern corresponding to a (parallel or antiparallel) β sheet, we can simply
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examine if they are away from the main diagonal. To assess if they are nearest

neighbors along such a path, we need to consider the (Euclidean) distance between

the contact pairs in the contact map, i.e. not in physical space but in the sequence

space. Eq. (6.3.6) expresses both these criteria:

(CP1,CP2) ∈ β, iff

|i1 − j1| ≥ dco, |i2 − j2| ≥ dco√
(i1 − j1)2 + (i2 − j2)2 ≤ dnn (6.3.5)

where the first condition ensures sufficient distance from the main diagonal through

the contact order parameter dco and the second condition ensures nearest neigh-

borhood within a cutoff contact order dnn. Once two contact pairs satisfy the

conditions in Eq. (6.3.6), they can be considered as connected nodes in a graph

of contact pairs, as illustrated in Fig. 6.3.1. The problem of searching for a

continuous path through candidate CPs then reduces to finding connected com-

ponents in this graph, which can be achieved through a depth-first-search or a

breadth-first-search.307 However, a true β sheet needs at least four or more con-

tinuous inter-strand hydrogen bonds, so that only paths above a critical length

say dmax can qualify as being part of a β-sheet. The final step that remains is to

extract the unique set of residues from the union of residues belonging to all paths

found through the graph search. However, there are three free parameters dco, dnn
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and dmax in this algorithm which either need to be assigned meaningful values or

estimated systematically. It is instructive to optimize / learn these parameters

from predicting secondary structures for known structures, perhaps across a large

subsection of sequences in the Protein Data Bank.296
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