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ABSTRACT OF THE DISSERTATION 

Defining a role for members of the Snail family of zinc-finger transcription factors during 

angiogenesis  

 

By  

Katrina Marie Welch-Reardon 

Doctor of Philosophy in Biological Sciences  

University of California, Irvine, 2014 

Professor Christopher C.W. Hughes, Chair 

 

Angiogenesis is a tightly regulated multi-step process in which new blood vessels form 

from the preexisting vasculature. Due to extensive research in the field of vascular 

biology, a plethora of knowledge exists about the growth factors, receptors, and signaling 

pathways that drive angiogenesis. However, our understanding of the transcription factors 

that bridge the gap between these signals and new gene expression remains incomplete.  

 

Members of the Snail superfamily of zinc-finger transcription factors are expressed and 

required during both embryonic development and progression of malignant epithelial 

tumors. Specifically, this protein family drives developmental and pathological events by 

inducing epithelial to mesenchymal transitions (EMT). Snail (Snai1) and Slug (Snai2) are 

transcriptional repressors that belong to the Snail family of zinc-finger proteins. 

Importantly, expression of Snail or Slug in tumor cells is known to contribute to invasion 

and metastasis, and these genes have also been observed in angiogenic endothelial cells 
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(EC) in vivo. Based on these observations, we asked whether angiogenic sprouting might 

share common attributes with EMT.  

 

Using our in vitro angiogenesis model, we show that sprouting EC express and regulate 

Slug and Snail. To demonstrate a functional role for these genes, we utilized small 

interfering RNA (siRNA) to inhibit Slug or Snail expression and examine phenotypic 

alterations in EC undergoing angiogenesis. Interestingly, both Slug and Snail appear to be 

required for angiogenic sprouting as siRNA-mediated knockdown of either gene inhibits 

EC sprouting. In addition, we demonstrate that Slug regulates expression of membrane-

type 1 matrix metalloproteinase (MT1-MMP; itself a regulator of vascular morphogenic 

events), but not vascular endothelial-cadherin (VE-Cadherin). Furthermore, lentiviral-

mediated re-expression of MT1-MMP rescues the loss of sprouting induced by Slug 

knockdown, confirming that MT1-MMP is a crucial downstream target of Slug during 

sprouting angiogenesis. Importantly, we also observe enhanced Slug and Snail expression 

in tumor-associated blood vessels in multiple cancers. Taken together, these data identify 

a critical role for Slug expression in regulating pathological angiogenesis. 
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CHAPTER 1 
 

Introduction 
 

VASCULAR DEVELOPMENT 

The adult vasculature is initially formed in the embryo by vasculogenesis, a process in which 

vessels are formed de novo from endothelial cell precursors termed angioblasts.
1-3

 During 

vasculogenesis, angioblasts proliferate and coalesce into a nascent network of vessels referred to 

as the primary capillary plexus. This primitive arrangement of endothelial cells (EC) then serves 

as a scaffold for angiogenesis, a process in which new blood vessels form from the pre-existing 

vasculature.
1
 Most angiogenesis takes places in the embryo ensuring that each developing organ 

receives an adequate supply of nutrients and oxygen, and although very little vascular turnover 

occurs in the adult, angiogenesis does take place during the ovarian cycle and during 

physiological repair processes such as wound healing.  

 

Angiogenesis is a tightly regulated process governed by the balance between pro- and anti-

angiogenic signals – disruption of this equilibrium has been termed the “angiogenic switch.”
4
 

The angiogenic switch has been depicted as a balance with pro-angiogenic factors on one side 

and anti-angiogenic factors on the other. Extensive studies reveal a multitude of growth factors 

responsible for tipping the balance in either direction thereby promoting or inhibiting 

angiogenesis. Angiogenic stimuli include vascular endothelial growth factor (VEGF), fibroblast 

growth factor (FGF), placental growth factor (PIGF), and hepatocyte growth factor (HGF) to 

name a few.
5-7

 Occupying the other side of the scale are angiogenic inhibitors including 

thrombospondin-1 (TSP-1), soluble Flt1 (sFlt1), angiostatin, and endostatin.
8
 During 

development and normal physiological conditions, the balance between these signals is strictly 
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controlled. However, aberrant expression of these signals leads to the absence or overabundance 

of blood vessels contributing to the pathologies of many disorders such as heart and brain 

ischemia, cancer, arthritis, and diabetes-related blindness. It is therefore crucial to understand the 

cellular and molecular signals that regulate each step of angiogenesis to ameliorate these disease 

states.   

 

ANGIOGENESIS: A MULTI-STEP PROCESS 

During angiogenesis a subset of quiescent EC respond to angiogenic growth factors, the most 

well studied being VEGF. Once these angiogenic cytokines are bound to their cognate EC 

receptors, a cascade of tightly regulated molecular and cellular events ensues. The initial stages 

of angiogenesis require EC to lose their apical-basal polarity and degrade the adjacent basement 

membrane (BM) and extracellular matrix (ECM). Matrix breakdown thereby permits nascent 

sprouts to migrate towards angiogenic stimuli. Developing vessels then proliferate, form intricate 

branching patterns, form lumens, and anastomose with neighboring vessels. Finally, as the newly 

formed vessel matures, EC recruit mural cells to their abluminal surface, synthesize new BM and 

return to a quiescent phenotype. Together, these highly coordinated steps of angiogenesis result 

in functional vascular networks that support transportation of oxygen and nutrients throughout 

the body. 

 

Selection of EC for sprouting 

During initiation of sprouting angiogenesis, the transition of EC into two distinct cell types 

emerges. These discrete EC types are referred to as tip cells and trunk cells and each 

subpopulation has a distinct function, phenotype, and molecular profile.
9
 Tip cells assume the 
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lead and guide the nascent sprout along a gradient of angiogenic stimuli.
10

 Consequently, tip 

cells are highly polarized and extend both fillopodia and lamellipodia permitting exploration of 

the surrounding environment. Trailing behind the tip cells is a thread of trunk cells. Unlike tip 

cells, trunk cells are proliferative, form the vessel lumen, and contribute to the synthesis of new 

BM.
11

 Aside from these phenotypic differences, gene expression profiles reveal unique 

molecular variances between tip and trunk cells. Tip cells have elevated expression levels of 

delta-like ligand-4 (Dll-4), Jagged-1 (Jag-1), platelet derived growth factor-B (PDGF-B), unc-5 

homolog B (UNC5B), VEGF receptor-2 (VEGFR-2), membrane type-1 MMP (MT1-MMP), 

neuropilin receptor-2 (NRP-2), C-X-C chemokine receptor-4 (CXCR-4), and have low levels of 

Notch signaling activity.
10, 12-21

 Importantly, the Notch pathway is a significant driver of tip and 

trunk cell selection through spatial differentiation and lateral inhibition.
22

  

 

The necessity of Notch signaling in the endothelium is well established as loss of a single copy 

of Dll-4 or deletion of Notch-1 results in vascular defects and embryonic lethality.
23, 24

 

Angiogenic EC express various Notch receptors (Notch-1, 3, 4) and ligands (Dll-1, Dll-4, 

Jagged-1, Jagged-2), and their differential expression results in tip or trunk cell identity.
25

 

Specifically, when a nascent vessel is formed, VEGF binds VEGFR-2 causing upregulation of 

Notch ligand, Dll-4 in tip cells.
10, 11, 17, 26

 Dll-4 subsequently activates Notch on adjacent EC 

resulting in downregulation of VEGFR-2 thereby creating a feedback loop that maintains active 

VEGF signaling and a migratory phenotype in tip cells while suppressing this phenotype in trunk 

cells.
15, 16, 27

 Furthermore, Notch receptor signaling drives greater expression of VEGFR-1 in 

trunk cells serving as a competitive inhibitor of VEGF signaling.
26

 Interestingly, more recent 

studies have challenged this concept of tip and trunk cell exclusivity arguing that tip-trunk cell 
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specification is rather dynamic and transient, dependent on continually competition between 

these cell types.
17

 Regardless of these controversial data, it is clear that proper sprout formation 

requires coexistence of both tip and trunk cells in a nascent vessel.   

 

EC interactions with the surrounding matrix 

Once tip and trunk cells are defined during the angiogenic cascade, they must collectively 

migrate through the surrounding matrix. This action requires detachment of mural cells from the 

preexisting vasculature followed by proteolytic degradation of the interstitial matrix. Secretion of 

angiopoietin-2 (Ang-2) facilitates mural cell release placing tip cells in contact with the BM, a 

matrix rich in type IV collagen and laminin.
9, 28, 29

 Past the BM, a sprout encounters an ECM 

comprised of collagen type I under normal physiological conditions or, during pathological 

angiogenesis, a matrix abundant in fibrin, fibronectin, and vitronectin.
30-32

 Degradation of these 

BM and ECM components requires EC to utilize proteolytic enzymes including plasminogen 

activators, the related ADAM (a disintegrin and metalloproteinase) protein family, and matrix 

metalloproteinases (MMPs).  

 

Angiogenesis is an invasive process and EC require MMPs to move through diverse matrices. 

MMPs are either secreted or tethered to the cell membrane, and those bound to the cell surface 

are classified as membrane-type MMPs (MT-MMPs). MMPs are maintained in an inactive form 

and upon cleavage of a propeptide domain enzymatic activation is achieved. In the field of 

vascular biology, particular emphasis has been placed on MT1-MMP, MMP-2, and MMP-9 as 

critical regulators of angiogenesis. Interestingly, gene knockout studies reveal these three 

proteases to be required during both normal and pathological angiogenesis, but dispensable 
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during embryonic vascular development.
33-36

 MT1-MMP mutant mice lack adequate vascular 

invasion at secondary ossification centers and MMP-9 mutant mice present defects in 

angiogenesis at the growth plate of bones.
33, 34

 MMP-2 mutant animals show strong reduction in 

retinal neovascularization after injury, an observation that is amplified in MMP-2/MMP-9 double 

knockouts.
35

 Finally, MMP-2/MT1-MMP double mutants have vascular defects including 

capillaries with extremely small lumens.
36

   

 

In vivo studies and extensive in vitro work have unraveled cellular and molecular mechanisms 

behind the actions of MT1-MMP, MMP-2, and MMP-9 during angiogenesis. MT1-MMP is 

indispensable in several steps of the angiogenic process including degradation of collagen and 

fibrin, EC invasion and migration, and formation of capillary tubes.
37-39

 In addition, ample 

evidence indicates that MT1-MMP is localized to the invading tip cell, while its expression is 

downregulated in trunk cells.
9, 20, 21, 28

 MT1-MMP is also required for the activation of MMP-2. 

The propeptide of MMP-2 is cleaved by a cell-surface complex that consists of a homodimer of 

MT1-MMP and a single molecule of tissue inhibitor of metalloproteinase-2 (TIMP-2).
40

 Once 

activated by this complex, MMP-2 is critical during pathological angiogenesis. For example, 

MMP-2 exposes hidden αvβ3 binding sties on collagen IV facilitating EC adhesion and 

migration.
41-43

 Finally, degradation of ECM by EC expression of MMPs also liberates growth 

factors including VEGF and basic fibroblast growth factor (bFGF) which otherwise remain 

sequestered in the matrix.
2
 For instance, MMP-9 releases matrix-bound VEGF to stimulate 

vascular patterning and also cleaves VEGF creating a 16 kDa fragment that promotes decreased 

vascular density and larger vessel diameter.
44, 45 
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While migrating and degrading matrix, EC process signals from the ECM through EC-surface 

expression of integrins – heterodimeric membrane glycoproteins composed of an alpha and beta 

subunit, each with a unique ECM ligand-binding profile. Importantly, these integrin-ECM 

interactions promote EC behavioral alterations including cell attachment and migration, making 

these proteins key contributors during angiogenesis.
46-49

 In vivo and in vitro data have implicated 

several integrins as regulators of angiogenesis including α1β1, α2β1, α4β1, α5β1, α6β1, α6β4, 

α9β1, αvβ3, and αvβ5. Of particular importance is the αvβ3 integrin. This integrin complex has 

high affinity for ECM proteins including vitronectin, fibronectin, fibrinogen, and osteopontin, all 

of which are key components of the ECM, particular during pathological angiogenesis.
50, 51

 It is 

therefore of no surprise that this integrin is widely expressed on tumor blood vessels but is absent 

on the vessels of normal endothelium.
51

 Finally, αvβ3 binds directly with active MMP-2 

generating a single cell-surface receptor capable of regulating both matrix degradation and 

motility, thereby facilitating directed cellular invasion.
52

 

 

Mechanisms of EC lumen formation 

The formation of the vascular lumen is a pivotal step during the process of angiogenesis as the 

lumenal space of a blood vessel is required to transport blood, nutrients, and oxygen to tissues. It 

is generally accepted that trunk cells are the subset of EC responsible for forming tubes during 

the growth of a vascular sprout, although some controversy remains regarding the exact 

mechanism(s) of this process. In one mechanism, referred to as cord hollowing, trunk cells 

flatten onto the wall of a matrix space created by the tip cell, initiating a lumenal area and 

leading to a tube that emerges from the trailing chain of trunk cells. This mechanism is observed 

during in vitro sprouting angiogenesis, in the retina and aorta of developing mice, and during 
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zebra fish major axial and ISV formation in vivo.
53-57

 Alternatively, a cell hollowing mechanism 

has been described in which individual trunk cells generate small intracellular pinocytic vacuoles 

that, through exocytic events, fuse with adjacent trunk cells to form intercellular lumens. Cell 

hollowing has been observed during lumen formation in 3D collagen gels in vitro and during 

zebrafish ISV formation and mouse arteriolar lumenogenesis in vivo.
58-61

 It is clear that 

lumenogenesis is a highly dynamic process that may occur by different cellular mechanisms 

dependent on the organism, stage of development, or size and site of the developing vessel.    

 

Vessel Maturation  

During the final stages of angiogenesis the newly formed vascular network must return to a 

quiescent state. This is achieved through wrapping of mural cells around the newly formed 

vessels, followed by vascular remodeling. First, EC recruit vascular support cells to their 

abluminal surface. The type of mural cell and the area of coverage are dependent on the caliber 

of the vessel – smooth muscle cells (SMC) to arteries, and pericytes (PC) to venules and 

capillaries.
1
 Recruitment of these mural cells is mediated by secretion of platelet-derived growth 

factor B (PDGFB) by tip cells, which signals through PDGF receptor-β (PDGFR-β) located on 

mural cells.
62

 Stabilization between EC and mural cells is then mediated by binding of Ang-1, 

secreted by smooth muscle cells or PC, to its receptor Tie-2 on EC.
63, 64

 These support cells then 

synthesize new basement membrane (BM) thereby sending signals to the newly formed vessels 

to assume a quiescent phenotype. Finally, EC remodeling takes place to meet the requirements of 

the surrounding tissue. During this process some EC apoptose and a subset of vessels regress 

creating a more differentiated vascular network. These final stages of angiogenesis result in a 
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functional and mature vascular network that acts as a conduit for blood, oxygen, nutrients, and 

waste.   

 

PATHOLOGICAL ANGIOGENESIS 

Angiogenesis is a process that is critical during physiological conditions such as embryonic 

development, wound healing, and reproduction. It also plays an important role in many disease 

states including ischemic and inflammatory diseases, diabetes, rheumatoid arthritis, and 

cancer.
65-69

 In cancer, sprouting angiogenesis is required to meet the metabolic demands of a 

rapidly dividing tumor. In fact, a tumor will fail to grow larger than ~2 mm without blood vessel 

recruitment due to the diffusion limit of oxygen and nutrients. Angiogenesis is therefore required 

for a primary tumor’s survival and is also involved in metastasis formation and further outgrowth 

of metastases.
70

 However, due to an imbalance between pro- and anti-angiogenic signals, tumors 

constantly produce pro-angiogenic signals in excess of angiogenic inhibitors, the tumor 

vasculature is architecturally abnormal. Vessels in tumors are highly disorganized, tortuous and 

dilated, with uneven diameter, excessive branching and shunts. As a result, blood flow in these 

vessels is chaotic and variable leading to hypoxic and acidic regions in the tumor.
71, 72

 Moreover, 

the tumor vasculature is highly permeable due to a number of fenestrae, widened junctions, 

discontinuous or absent BM, and improper or decreased vessel association with pericytes.
73, 74

    

 

In 1971, Judah Folkman proposed that tumor growth was dependent on angiogenesis and 

inhibiting this dependency could be a strategy to arrest tumor growth.
75

 Progressive research has 

since proven Folkman’s theory, setting in motion the pursuit of anti-angiogenic molecules and 

strategies for cancer treatment. Included in these blocking therapies are Bevacizumab (Avastin), 
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Sorafenib (Nexavar), Sunitinib (Sutent), Pazopanib (Votrient), and Everolimus (Afinitor). 

Bevacizumab, for example, is a monoclonal antibody that binds VEGF preventing VEGF from 

activating VEGFR2.
76

 This drug is used as a monotherapy to treat glioblastoma and in 

combination with other cancer drugs to treat metastatic colorectal cancer, some non small-cell 

lung cancers, and metastatic renal cell cancer. Many of these therapies provide improvement in 

progression-free or overall survival; however, they are nonetheless met with eventual drug 

resistance and side effects due to the complexity and heterogeneity of the tumor 

microenvironment. Furthermore, both animal and preliminary human clinical trials reveal that 

different tumors respond differently to anti-angiogenic therapy complicating treatment regimens. 

Continual efforts to understand the molecular mechanisms that regulate tumor angiogenesis will 

certainly lead to the development of novel targets for anti-angiogenic therapies.   

 

METHODS FOR STUDYING ANGIOGENESIS IN VITRO   

Mechanistic insights into physiological and pathological processes in vivo have often come from 

in vitro culture systems. Conventionally, single cell populations are grown on two-dimensional 

(2D) substrates such as tissue culture polystyrene and experiments in this format have provided 

the basis for our understanding of intricate biological processes. However, these traditional 

culturing methods were challenged by Bissel and colleagues in the early 90’s in a study 

demonstrating that human breast epithelial cells developed like tumor cells when cultured in 2D, 

but reverted to normal growth behavior when cultured in three-dimensional (3D) analogs of their 

native microenvironment.
77

 Subsequently, numerous studies have shown that cells grown in vitro 

are dramatically perturbed by their new microenvironments resulting in gene expression 

alterations.
78, 79

 These findings collectively reveal the insufficiency of monolayer cultures and, as 
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a result, scientists have developed numerous 3D scaffolds that recapitulate aspects of native 

cellular microenvironments for in vitro cell culture. These 3D models more adequately represent 

the complexity of an endogenous microenvironment and are therefore becoming the method of 

choice for more physiologically relevant modeling of cell behavior ex vivo. 

 

The fibrin-gel angiogenesis assay 

During angiogenesis, EC undergo complex morphological changes that a 2D environment 

insufficiently supports. To overcome this, our lab has developed a 3D assay termed the fibrin-gel 

angiogenesis assay which beautifully recapitulates angiogenesis as observed in vivo.
80

 In this 

assay EC (Figure 1.1 Ai) are coated onto Cytodex
TM

 microbeads and embedded into a 3D fibrin 

matrix, an environment that is physiologically relevant to pathologic wound healing (Figure 1.1 

B). To further mimic an in vivo microenvironment, mural cells (Figure 1.1 Aii) are seeded on top 

of the fibrin-gel. These support-cells secrete pro-angiogenic growth factors that, along with 

elements in endothelial growth media (EGM), induce angiogenesis. Over the course of 

approximately ten days, each step of in vivo angiogenesis is elegantly recapitulated including 

sprouting, migration, lumen formation, anastomosis and vessel network maturation (Figure 1.1 

C). This assay therefore serves as a powerful tool to study molecular and cellular events during 

angiogenesis. For example, EC treated with inhibitors such as small interfering RNA (siRNA) or 

expression plasmids provide insight into the roles particular genes play during this process. In 

addition, EC can be isolated from the assay at specific time points to acquire mechanistic 

knowledge behind observed phenotypic alterations after EC manipulation.  
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The collagen I invasion and lumen assays 

Pioneers in the field of vascular biology have developed additional 3D assays to investigate 

particular steps of angiogenesis. Dr. George Davis and colleagues established 3D in vitro assays 

designed to scrutinize initial stages of sprouting as well as lumen formation during 

angiogenesis.
58, 59

 First, the collagen I invasion assay provides an ideal platform to study 

preliminary steps of angiogenesis (Figure 1.2 B). In this 3D model system, EC (Figure 1.2 A) are 

seeded on top of collagen I gels containing pro-angiogenic cytokines thereby stimulating EC to 

invade into the collagen gel, a process reminiscent of tip-cell selection and migration (Figure 1.2 

C). Alternatively, EC (Figure 1.3 A) are embedded into a collagen I gel spiked with cytokines to 

promote EC lumen formation through the development of intracellular vacuoles that coalesce to 

form capillary lumens and tubes (Figure 1.3 B, C). These two assays enable investigation of 

discrete morphologic steps and molecular events controlling EC sprouting and lumen formation. 

Similar to the fibrin-gel angiogenesis assay EC can be manipulated and harvested from these 

assays to complete gene expression analysis leading to identification of novel genes required 

during these processes.   

 

The 3D vascularized tumor assay 

Although the assays described above sophisticatedly mimic crucial stages of in vivo 

angiogenesis, they certainly lack the complexity of a tumor microenvironment. Collaborators in 

the lab of Dr. Steven George have therefore developed a multicellular model that more 

accurately captures angiogenesis as it ensues during tumor progression. In this assay, EC and 

tumor cells (Figure 1.4 A) are formulated into spheroids which are then embedded in a fibrin 

matrix containing mural cells (Figure 1.4 A, B). Over the course of approximately seven days, 
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robust sprouting angiogenesis into the matrix, as well as contiguous vascularization within the 

spheroid is observed (Figure 1.4 C). This multicellular model facilitates tumor-directed EC 

behavior in a more physiologically relevant model. Importantly, this model reflects the cellular 

heterogeneity of native tumors in which EC and mural cells communicate directly with cancer 

cells to influence the progression of cancer. 

 

THE SNAIL FAMILY OF ZINC-FINGER TRANSCRIPTION FACTORS  

Epithelial- and Endothelial-to-Mesenchymal Transitions 

The epithelial-to-mesenchymal transition (EMT) is a highly conserved cellular event that permits 

polarized, immotile epithelial cells to transform into motile, mesenchymal cells. During this 

transition epithelial cells lose apical-basal polarity, sever intercellular junctions, degrade 

basement membrane components and become migratory, mesenchymal-like cells. These events, 

however, do not necessarily occur in one particular order and not all components of EMT are 

present in any given example. EMT was initially observed during embryonic development in a 

variety of tissue remodeling events including mesoderm formation and neural crest 

development.
81

 More recently, this cellular program has been implicated in promoting invasion 

and metastasis of many carcinomas.  

 

A specialized form of EMT is endothelial-to-mesenchymal transition (EndMT). This particular 

transition has been well characterized during heart formation where a subset of endothelial cells 

in the developing heart acquire mesenchymal markers, invade the surrounding tissue and form 

the valves and septa of the adult heart.
82

 EndMT also occurs in pathological events. In cancer, it 

was demonstrated that a subset of cancer-associated fibroblasts (CAFs) arose from an EndMT 
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mechanism.
83

 In the case of cardiac fibrosis, fibroblasts, the cells responsible for excessive 

deposition of ECM and progression of the pathology, were found to originate from EC.
84

 

Additional evidence suggests that EndMT may occur in other disease settings such as chronic 

pulmonary hypertension, atherosclerosis, wound healing, and in both acute and chronic kidney 

injury.
85-88

  

 

During both EMT and EndMT, genes involved in cell adhesion, migration, and invasion are 

transcriptionally altered. The Snail family of zinc-finger transcription factors are evolutionarily 

conserved proteins responsible for many of these transcription alterations. Importantly, in 2000, 

the zinc-finger transcription factor Snail (Snai1) was found to directly bind the E-box element of 

the E-Cadherin promoter leading to downregulation of E-Cadherin expression and dissolution of 

cell-cell adhesion, a step required during EMT.
89, 90

 Other transcription factors have since been 

identified as key regulators of vertebrate EMT programs including Slug (Snai2), Zeb-1, Zeb-2 

and Twist. However, Snail and Slug will be the transcription factors predominately discussed 

throughout this thesis.   

 

Snail genes in developmental processes and cancer progression.   

Without EMT, multicellular organisms would be incapable of getting past the blastula stage of 

embryonic development. Pointedly, EMT in vertebrates is required for the formation of the heart, 

the musculoskeletal system, most craniofacial structures, and the peripheral nervous system. Two 

transcription factors, Snail and Slug, are well recognized as significant regulators of EMT events 

and are often required for these cellular programs to progress. For example, Snail knockout mice 

are embryonic lethal due to severe defects in gastrulation and mesoderm formation.
91
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Furthermore, conditional deletion of Snail mid-gestation results in embryonic lethality in part 

due to severe cardiovascular defects.
92, 93

 In other vertebrates such as zebrafish and Xenopus, 

Snail is expressed in the neural crest and plays a key role in specification and migration of these 

cells.
94, 95

 Finally, in chicken, Slug performs many of the functions that Snail carries out in other 

vertebrates.  

 

Since the discovery of the Slug gene in chicken, homologues in several vertebrates including 

Xenopus, zebrafish, mouse, and human have been identified. In several vertebrate species, 

expression of Slug is implicated in regulating the formation and delamination of the mesoderm 

and neural crest. In chicken, Slug is expressed in cells undergoing EMT during gastrulation, 

neural crest formation, and limb development.
96-98

 Slug is also required for EndMT in the heart 

of chicken and for EMT during neural crest emergence in both Xenopus and chicken.
96, 99, 100

 

However, dissimilar to many vertebrate species, the Slug gene is not essential for mesoderm or 

neural crest development in mice.
101

 In fact, Slug homozygous null mutant mice are viable 

although they do exhibit postnatal growth deficiency among other defects.
101

 These results 

indicate that neither the expression pattern nor the biological function of Slug is conserved 

among all vertebrates. Other defects of Slug mutant mice include a diluted coat color and areas 

of depigmentation, development of eye infections, and male subfertility and reduced testes size 

due to reduced seminiferous tubules. In humans, loss of Slug has been observed in a very rare 

subset of patients with Waardenburg-Shah syndrome; a disease characterized by varying degrees 

of deafness, minor defects in structures arising from the neural crest, and pigmentation 

anomalies.
102
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It is clear that the Snail family of zinc-finger transcription factors is essential during embryonic 

development. As previously described, the predominant function of Snail and Slug is to regulate 

EMT, which is required during developmental processes including gastrulation and neural crest 

formation. Interestingly, many of the cellular alterations that occur during tumor progression are 

reminiscent of developmental EMT. For this reason, Snail and Slug expression have been 

implicated in tumor progression. For example, Snail expression in breast carcinomas is 

associated with metastasis, tumor recurrence, and poor prognosis.
103-105

 Similarly, Slug has been 

associated with poor clinical outcome in breast and ovarian tumors.
104

 Studies in colorectal 

cancer show Snail overexpression likely contributes to distant metastases.
106

 In addition, Slug 

overexpression in colon caner is recognized as an independent marker for poor prognosis.
107

 

Snail and Slug overexpression have also been observed in a variety of other carcinomas 

including ovarian carcinoma, squamous cell carcinoma, hepatocarcinoma, and lung 

adenocarcinoma.  

 

Induction and maintenance of Snail genes 

Snail and Slug are well recognized as being essential drivers of both developmental and 

pathological EMT and EndMT events. As a result, many signaling pathways that regulate Snail 

and Slug expression have been described. During development, Snail family members are 

induced by receptor tyrosine kinases (RTK), which are activated by signals such as FGF, PDGF, 

and epidermal growth factor (EGF). Transforming growth factor-β (TGF-β), the bone 

morphogenetic protein (BMP) pathway, as well as Wnt and Notch signaling cascades have also 

been sited as inducers of Snail and Slug.
108-111

 Furthermore, in vitro and in vivo studies confirm 

that similar pathways stimulate expression of these two transcription factors during EMT 
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associated with cancer progression.
108, 110, 112, 113

 Finally VEGF, HGF, hypoxia, and laminin 5 

have also emerged as regulating expression of Snail and Slug.
114-116

 Given the diversity of these 

signals, it is easy to speculate that Snail and Slug expression depends on the process and cell type 

being scrutinized.  

 

Snail and Slug are labile proteins with extremely short half-lives, approximately 25 minutes. 

Glycogen synthase kinase-3β (GSK-3β) binds to and phosphorylates Snail at two consensus 

motifs; phosphorylation of the first motif regulates its β-Trcp-mediated ubiquitination, whereas 

phosphorylation of the second controls its nuclear export.
117

 Hence, inactivation of GSK-3β via 

the Wnt, PI3K/Akt, or MAPK signaling cascades may promote Snail stability and nuclear 

import. Phosphorylation of Snail not only leads to its degradation, but can also result in its 

stabilization. In breast cancer cells, p21-activated kinase-1 (Pak-1) phosphorylation of Snail 

results in protein accumulation in the nucleus thus facilitating its repressor functions.
118

 

Unfortunately, stabilization of Slug is less studied and to date very little is known regarding 

phosphorylation sites, subcellular localization or degradation. However, one study found p53 

suppressed cancer cell invasion through negative regulation of Slug.
119

 MDM2, an E3 ubiquitin 

ligase, was identified as being induced by p53 resulting in MDM2-mediated Slug degradation. 

Therefore, in cancers with p53 mutations, low levels of MDM2 prevent Slug degradation leading 

to increased cancer invasion as a result.   

 

Genes regulated by Snail family members 

Snail proteins act as molecular triggers of EMT/EndMT programs by repressing a subset of 

common genes that encode cadherins, claudins, cytokeratins, integrins, mucins, occludin and ZO 
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proteins. More specifically, Snail downregulates or alters cellular localization patterns of 

epithelial markers such as E-Cadherin, desmoplakin, occludin, claudin-3, ZO-1, MUC-1, and 

cytokeratin-17 and -18.
90, 111, 120

 Similarly, Slug downregulates occludin, integrin α-3, and E-

Cadherin although to a lesser extent than Snail.
121-123

 In addition, Slug expression causes 

disassembly of desmosomes.
121

 Once these epithelial genes are repressed, mesenchymal markers 

including vimentin, fibronectin, and N-Cadherin are consequently upregulated.
90

 

 

Although Snail and Slug were initially characterized as repressors, the upregulation of numerous 

genes following their expression suggests that they might also act as gene inducers. Of particular 

interest is the observed induction of several MMP genes subsequent to expression of Snail or 

Slug, although this observation is unlikely due to direct promoter activation. In many 

carcinomas, Snail expression increases or accelerates expression of MT1-MMP, MMP-1, MMP-

2, MMP-7 and MMP-9, contributing to the invasive capabilities of epithelial cancers.
112, 124-127

 

Slug has a similar story; MT1-MMP, MT4-MMP, MMP-2, and MMP-9 expression increase as a 

result of Slug expression in numerous carcinomas.
128-132

 Indeed, increased expression of these 

proteolytic enzymes aids in degradation of the ECM thereby contributing to a cell’s enhanced 

ability to invade and migrate. Moreover, in Madin-Darby canine kidney (MDCK) cells, Snail and 

Slug expression results in upregulation of genes that encode several collagens and ECM-related 

proteins, such as SPARC, plasminogen activator inhibitor-1 (PAI-1), and TIMP-1.
133

 Combined, 

these data strongly suggest that Snail and Slug not only function as repressors, but also as 

inducers of genes critical for EMT/EndMT events.  
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Several lines of evidence also point to a role for Snail superfamily members in regulating cell 

death or survival. In humans, a translocation event converts the repressor hepatic leukemic factor 

(HLF) into an activator that, as a result, induces Slug and leads to aberrant cell survival and to 

the development of leukemia.
134

 Furthermore, haematopoietic progenitors in Slug null-mutant 

mice demonstrate sensitivity to death induced by gamma-irradiation.
135

 Snail too acts as a 

survival factor. Examples include Snail-expressing cells surviving despite being deprived of 

survival factors, demonstrating resistance to direct apoptotic stimuli that signal through the death 

receptor, and exhibiting resistance to DNA damage.
123, 136, 137

   

 

SUMMARY 

A plethora of knowledge exists about the growth factors and receptors that drive angiogenesis, 

and in recent years there has been an increase in knowledge about the signaling pathways 

downstream of these receptors. However, the transcription factors that govern new gene 

expression during this highly regulated process are far less studied. The following chapters 

provide evidence that Snail and Slug are two transcription factors expressed, regulated, and 

required during the angiogenic cascade. Although these transcription factors have been well 

documented as drivers of EMT and EndMT programs during developmental and pathological 

events, to our knowledge we are the first to identify that Snail and Slug are required during 

angiogenesis. Indeed, expression of these genes has been observed in angiogenic EC, however, a 

functional role for Snail and Slug during angiogenesis has not been elucidated until now.  

 

Here we characterize the expression patterns of Snail and Slug in EC undergoing angiogenesis 

and provide preliminary data on their individual functions. In particular, we show that inhibition 
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of either transcription factor reduces sprouting and lumen formation in several in vitro 

angiogenesis assays, indicating a lack of redundancy. Our data identify an underlying cellular 

mechanism in which Slug regulates sprouting angiogenesis through MT1-MMP, although this is 

unlikely due to direct transcriptional regulation. Furthermore, a decrease in MT1-MMP 

expression results in reduced activity of MMP-2 in the absence of Slug. As these two proteases 

are required for angiogenesis to proceed and due to the fact their expression is increased in Slug-

expressing carcinomas, our findings are logical and in line with existing data. We also show that 

inhibition of Snail results in reduced activity of both MMP-2 and MMP-9 although additional 

studies are required to determine a definitive mechanism behind the actions of Snail in 

angiogenic EC.  
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Figure 1.1. Fibrin-gel angiogenesis assay. (A) Monolayer culture images of cells used in the 

fibrin-gel angiogenesis assay. (i) Human umbilical vein endothelial cells (HUVEC) are the most 

common endothelial cells (EC) used in the assay. (ii) Normal human lung fibroblasts (NHLF) are 

the most common mural cell used in the assay. (B) Schematic representation of the fibrin-gel 

angiogenesis assay. (C) Representative images of the fibrin-gel angiogenesis assay over the 

course of ten days. On day three, early events of sprouting and migration are observed. During 

days four through eight, vessels continue to migrate, sprout, and branching begins. By day ten, 

patent lumens have formed, neighboring sprouts have anastomosed, and a mature network is 

observed.  
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Figure 1.2. Collagen I invasion assay. (A) Monolayer culture image of (i) human umbilical 

vein endothelial cells (HUVEC), the most common endothelial cells (EC) used in the assay. (B) 

Schematic representation of the collagen I invasion assay. (C) Representative image (top view) 

of the assay after 24 hours of EC invasion. Arrow indicates an invading EC. 
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Figure 1.3. Collagen I lumen assay. (A) Monolayer culture image of (i) human umbilical vein 

endothelial cells (HUVEC), the most common endothelial cells (EC) used in the assay. (B) 

Schematic representation of the collagen I lumen assay. (C) Representative image (top view) of 

the assay after 24 hours of EC lumenogenesis. Asterisk indicates an intercellular lumen. 
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Figure 1.4. 3D vascularized tumor assay. (A) Monolayer culture images of cells used in the 3D 

vascularized tumor assay. (i) Human umbilical vein endothelial cells (HUVEC) are the most 

common endothelial cells (EC) used in the assay. (ii) Normal human lung fibroblasts (NHLF) are 

the most common mural cell used in the assay. (iii) SW620s are one of many cancer cells lines 

that can be used in the assay (B) Schematic representation of the 3D vascularized tumor assay. 

(C) Representative image of one EC-SW620 spheroid on day seven of the assay; a point when 

EC sprouting and lumen formation are robust.   
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ABSTRACT 

The contribution of epithelial-to-mesenchymal transitions (EMT) in both developmental and 

pathological conditions has been widely recognized and studied. In a parallel process, governed 

by a similar set of signaling and transcription factors, endothelial-to-mesenchymal transitions 

(EndMT) contribute to heart valve formation, the generation of cancer-associated-fibroblasts, 

and the angiogenic sprouting that supports tumor growth and metastasis. A key regulatory point 

in these processes determines whether cells undergo a full or a partial EMT /EndMT, however, 

very little is known about how this switch is controlled. Here we discuss these two 

developmental/pathologic pathways, with a particular focus on their role in vascular biology. 
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INTRODUCTION 

Morphological changes in tissues are invariably associated with phenotypical changes in the cells 

that comprise them. Often these are limited to temporary changes in protein expression patterns, 

but more dramatic changes can also occur, during which cells undergo transcriptional 

reprogramming that leads to significant changes in morphology and function. One class of such 

changes is called the epithelial-to mesenchymal transition (EMT), and subsets of EMT include 

endothelial-to-mesenchymal transition (EndMT) as well as partial EMT/EndMT 

(pEMT/EndMT). Our focus will be to highlight the distinctions among the subsets, with an 

emphasis on angiogenesis as a unique example of pEndMT.  

 

Epithelial-to-mesenchymal transitions 

EMT is a highly conserved cellular reprogramming event in which polarized, non-migratory 

epithelial cells transition into motile, mesenchymal-like cells. During this transition epithelial 

cells lose apical-basal polarity, sever intercellular junctions, degrade basement membrane 

components and migrate into the surrounding tissue. This transition is initiated by key EMT-

inducing transcription factors including Snail (Snai1), Slug (Snai2), Twist, and Zeb1 and 2. EMT 

was first described as a necessary and critical tissue remodeling event that occurs during 

embryonic development, including the stages of mesoderm and neural crest formation
1
. Aside 

from its importance during development, EMT is also observed during physiological and 

pathological events such as wound healing, organ fibrosis and cancer. Specifically, EMT is 

implicated in promoting invasion and metastasis in many epithelial-derived cancers, and is 

thought to be critical for the early, intravasation stage of metastasis.  
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Endothelial-to-mesenchymal transitions 

Endothelial cells (EC) have many epithelial characteristics, including strong apical-basal 

polarity, the ability to form tubes, and the potential to undergo a transition to a mesenchymal-like 

cell (EndMT). During embryogenesis subsets of EC in the developing heart undergo EndMT, 

acquire mesenchymal markers, invade the surrounding tissue and form the valves and septa of 

the adult heart
2
, a process that involves transforming growth factor-β (TGF-β), bone 

morphogenetic protein (BMP) and Notch signaling pathways
3, 4

. Pathologically, EndMT is 

reactivated in the adult heart, contributing to cardiac fibrosis
5
, a characteristic common to most 

forms of heart failure. Using lineage-tracing techniques, Kalluri’s group demonstrated that 27 to 

35% of fibroblasts present in fibrotic heart tissue were of EC origin, strongly suggesting a role 

for EndMT in this process
5
. Importantly, EndMT was TGF-β1-dependent, whereas BMP-7 

preserved the EC phenotype and consequently reduced fibrosis
5
. EndMT has also been 

implicated as a source of fibroblasts in hypertrophic cardiomyopathy
6
, diabetes-induced cardiac 

fibrosis
7
, and chronic pulmonary hypertension

8, 9
, although these studies lacked definitive 

lineage-tracing analyses.  

 

There is also evidence supporting a role for EndMT during both acute and chronic kidney 

injury
10

. In three distinct mouse models of chronic kidney disease approximately 30 to 50% of 

fibroblasts co-expressed the EC marker CD31 along with markers of myofibroblasts and 

fibroblasts, including fibroblast specific protein-1 (FSP-1) and α-SMA. Lineage tracing 

experiments confirmed the EC origin of these cells
10, 11

. Thus, EndMT provides a source of 

fibroblasts in both damaged heart and kidney, and may function to facilitate tissue remodeling 

and fibrosis.  
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Finally, EndMT also has a significant role to play in cancer. For example, Zeisberg and 

colleagues, using two different mouse models of cancer, demonstrated that EndMT accounts for 

up to 40% of cancer associated fibroblasts (CAFs)
12

. A distinct population of fibroblasts co-

expressed the EC marker CD31 along with either FSP-1 or α-SMA. Use of transgenic mice with 

irreversibly tagged EC revealed strikingly similar results – unique populations of fibroblasts co-

expressing endothelial and mesenchymal markers. These data suggest that EndMT is a 

significant source of CAFs in tumors.   

 

Partial EMT and EndMT 

When epithelial/endothelial cells commit to a mesenchymal phenotype, as described above, the 

event is designated as a complete EMT/EndMT. Partial EMT/EndMT is also possible, and this 

occurs when one or more of the key characteristics of complete-EMT/EndMT is not exhibited, 

such as loss of cell-cell contact. For example, during re-epithelialization of cutaneous wounds, 

keratinocytes undergo a series of changes reminiscent of EMT including loss of polarity, 

rearrangement of the actin cytoskeleton, alterations in cell-cell contacts, and breakdown of 

basement membrane (BM); however, these cells retain some intercellular junctions and migrate 

as a cohesive cell sheet
13

. This process has thus been termed a partial-EMT. Partial-EMT has 

also been implicated in branching morphogenesis during the formation of the mammary glands, 

kidneys and trachea
14

. Additional data point to a role for the EMT-transcription factor Slug in 

promoting a partial-EMT during Madin-Darby canine kidney (MDCK) cell tubulogenesis, at 

least in part by promoting cell survival. Furthermore, these chains of epithelial cells retained 

some cell-cell junctions and did not acquire full mesenchymal characteristics, confirming this 

morphogenesis process as a partial-EMT
15

. These findings in epithelial tubule-forming assays 
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have prompted speculation that endothelial sprouting and tube formation during angiogenesis 

may likewise be driven by a partial EndMT. 

 

Angiogenesis: a partial EndMT 

Angiogenesis, the formation of new blood vessels from the pre-existing vasculature, is essential 

during development and many normal physiological processes, but is also important in numerous 

pathological processes, including tumor growth. Although much is known about the growth 

factors, receptors and signaling pathways that govern angiogenesis, the transcriptional changes 

that govern new gene expression patterns remain to be elucidated. Interestingly, comparison of 

angiogenesis and EMT reveals several similarities. Among these, the tip cells that lead emerging 

sprouts lack apical-basal polarity, degrade both BM and extracellular matrix (ECM) and, by 

definition, are migratory.  However, angiogenic EC do not usually separate from their neighbors, 

suggesting that angiogenesis may involve a partial EndMT
16, 17

. Our lab has recently published 

preliminary evidence demonstrating that the transcription factors Snail and Slug are indeed 

expressed and regulated by angiogenic EC during in vitro angiogenesis
16

. We demonstrated that 

inhibition of Snail or Slug expression results in a reduced ability of angiogenic EC to invade and 

migrate through multiple ECM environments. Importantly, lentiviral mediated re-expression of 

membrane type-1 matrix metalloproteinase (MT1-MMP) rescued the inability of EC lacking 

Slug to migrate. This finding therefore suggests that MT1-MMP is a critical downstream target 

of Slug during angiogenesis. Importantly, we and others have observed increased expression of 

Snail and Slug in the vasculature of colon, breast
18

 and ovarian carcinoma
19

. Finally, we have 

preliminary data suggesting that Slug deficiency in mice leads both to impaired developmental 

and pathological angiogenesis (KMWR, NW and CCWH, unpublished data). In aggregate, these 

data clearly point to a role for the Snail family of transcription factors during angiogenesis. 
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Signaling pathways governing EMT and EndMT 

Members of the TGF-β superfamily are considered some of the major regulators of EMT and 

EndMT. The activation of TGF-β signaling through Smad-dependent and independent pathways 

leads to direct transcriptional regulation of multiple genes, including several EMT-inducing 

transcription factors
20

. Expression of these transcription factors subsequently drives loss of cell-

cell adhesion by repression of epithelial/endothelial tight junction gene transcription, regulation 

of cytoskeletal rearrangement, and increased expression and activity of both MT-MMPs and 

secreted MMPs
21

. Moreover, during EndMT, upregulation of EC Slug by TGF-β and other 

growth factors results in increased migration and invasion into multiple ECM matrices, and this 

is due in part to the indirect activation of MT1-MMP, MMP-2 and MMP-9
16

. Interestingly, 

nuclear Smads form multi-protein complexes with EMT-transcription factors resulting in 

suppression or activation of promoters of epithelial (E-Cadherin, Occludin, ZO-1) or 

mesenchymal (Vimentin, N-Cadherin) genes, respectively
22

. TGF-β can also activate Smad-

independent pathways such as MAPK/ERK/JNK, all of which are implicated in driving EMT
20

. 

 

Aside from TGF-β, several other signaling pathways are also associated with EMT. The 

relationship between canonical Wnt signaling and the onset of EMT and metastasis is well 

established in many cancer models. In human prostate cancer, the expression and nuclear activity 

of β-Catenin correlates with the level of hypoxia-induced factor 1 alpha (HIF-1α), and HIF-1α-

induced EMT
23

. The degree of hypoxia-induced EMT can also be enhanced by Wnt3a-induced 

activation of β-catenin in hepatic carcinoma
24

. Furthermore, it has been demonstrated that 

canonical Wnt signaling stabilizes Slug expression through regulating glycogen synthase kinase 

3-β (GSK3-β) phosphorylation and βTrcp-1-mediated ubiquitination, thereby inducing EMT in 
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triple-negative breast cancer
25

. In contrast, the role of non-canonical Wnt signaling in EMT and 

cancer metastasis remains controversial. While many studies demonstrate that expression of 

Wnt5a, a representative non-canonical Wnt ligand, promotes EMT in some cancers
26-28

, others 

provide evidence that Wnt5a attenuates canonical Wnt signaling, thus preventing EMT and 

consequently the ability to predict a better prognosis in colon cancer patients
29, 30

.  

 

Notch activation is linked to both EMT and EndMT events. The cleavage and nuclear 

translocation of the Notch intracellular domain (NICD) can induce genetic reprogramming and 

hence a series of morphological and functional changes related to a mesenchymal transition
31

. 

Notch can suppress epithelial gene expression directly or through upregulation of Snail and Slug 

in both epithelial cells and EC, and thus initiate EMT and EndMT in both developmental and 

pathological conditions
32-34

. Notch ligands can also be induced by TGF-β signaling to activate 

Notch receptors and enhance EMT synergistically
35

. Blockage of either Jagged-1, or its 

downstream signaling target Hey-1, can attenuate TGF-β-induced EMT in mammary gland, 

kidney tubule and epidermal epithelial cells
33, 36

.  

 

Notch and VEGF are both induced in the hypoxic tumor environment and they work together to 

drive metastasis. On the one hand, interaction of Notch and HIF pathways leads to increased 

“stemness” of cancer cells, self-renewal ability and a complete EMT
33, 37

. On the other hand, 

hypoxia-dependent induction of VEGF expression augments tumor angiogenesis, which provides 

increased opportunities for tumor cell intravasation. Finally, the crosstalk between Notch and 

VEGF pathways in the context of hypoxic tumors also promotes pEndMT in angiogenic tumor 
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EC leading to the formation of unstable, leaky vessels
38

. Altered vessel integrity and 

permeability correlates with enhanced tumor cell dissemination to distant sites
39

. 

 

Notch-mediated EMT is unusual, and somewhat paradoxical, as it is contact-dependent. 

Importantly, the ability of cells to retain cell-cell adhesion complexes while migrating as a group 

is crucial to tubulogenesis. As described above, processes involving tubulogenesis, such as 

angiogenesis and kidney tubule formation, both require a partial EMT/EndMT, during which the 

participating cells temporarily lose polarity and gain migratory capacity, but never fully acquire 

all mesenchymal phenotypes, nor completely lose cellular adhesion. While other signaling 

pathways such as TGF-β, HGF and FGF are capable of promoting this process, it is intriguing to 

speculate that Notch activation is a crucial determinant of a partial versus full EMT/EndMT.   

 

Aside from the major signaling pathways discussed above, miRNA, epigenetic regulation and 

histone modification have also recently emerged as regulators of EMT. These alterations control 

the expression level of the Snail/Slug, ZEB, and Twist families of transcription factors, and these 

in turn feed back to affect the expression and/or activity of the miRNA, or histone modifying 

enzymes
30, 32

. Clearly, the relationship(s) between the master regulators governing EMT are 

extremely complex
20, 22

.  

 

Transcription factor interactions governing EMT and EndMT  

Snail, Slug, ZEB1/2 and Twist have been identified as the key transcriptional regulators of EMTs 

and EndMTs. A shared function of these proteins is their ability to repress the transcription of E-

cadherin, however, numerous studies have demonstrated that they have overlapping but non-
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redundant roles in EMT and tumor progression. In human carcinomas it is generally accepted 

that Snail plays a major role in inducing EMT, while Zeb1/2 and Twist are mainly involved in 

maintaining the invasive mesenchymal phenotype
21

. However, our recent study on EndMT 

suggests that at least in the case of sprouting angiogenesis, Slug is the primary initiator of this 

process while the induction of Snail occurs at a much later time
16

. It is therefore unclear if each 

of these transcription factors has a distinct and specific role during EMT/EndMT or if they rather 

act in symphony to promote a mesenchymal phenotype. Accumulating evidence from studies 

observing their expression patterns and their ability to regulate each other has begun to reveal a 

non-linear map that suggests these transcription factors mostly act in concert. For example, Snail 

can upregulate Zeb1 and Zeb2 in oral squamous carcinoma and, at the same time, negatively 

regulate its own expression through direct promoter binding
40, 41

. Moreover, Slug indirectly 

upregulates Snail through EGF and/or HGF signaling, thereby promoting mammary gland 

branching morphogenesis
42

. Slug can also activate Zeb1 and its own expression through direct 

transcriptional regulation
43, 44

. In addition, many have shown that Twist1 can regulate the 

expression level of Snail and Slug by either directly influencing transcription
45, 46

 or through 

post-translational regulation via the NF-κB/GSK-3β axis
47

. 

 

Dynamic functions of EMT and EndMT transcriptional regulators 

The master regulators of EMT mediate repression of E-cadherin expression and this is often 

described as the hallmark of EMT. However, several recent studies show that in both in vitro and 

in vivo models, EMT master regulators can induce EMT/EndMT-like phenotypes in cells without 

complete loss of membrane E-cadherin – a partial EMT. Likewise, the deletion of E-cadherin 

alone is not sufficient to induce EMT. Interestingly, Shamir et al demonstrated that the induction 
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of Twist alone is sufficient to induce single cell dissemination/local invasion without the loss of 

epithelial identity, and that E-Cadherin expression is required for this process
48

. Moreover, in the 

absence of E-Cadherin, and despite a reduction in multiple classes of junction proteins, these 

rounded epithelial cells invade the surrounding matrix as a chain rather than single cells
48

. 

Similarly, we observed that overexpression of Slug in EC promotes EC sprouting, a process 

reminiscent of a partial EndMT without altering the mRNA levels or surface expression of 

vascular endothelial-cadherin (VE-Cadherin), the EC equivalent of E-Cadherin
16

. Finally, Leroy 

et al. and others have previously shown that Slug upregulation prevents apoptosis and promotes 

cell proliferation through p53
49

. Collectively these data suggest that master regulators of EMT 

serve more functions than simply acting as repressors of epithelial genes.  

 

Remaining questions and perspectives 

The Snail/Slug, Zeb and Twist transcription factors all seem to have non-redundant roles in the 

developmental processes involving EMT/EndMT. However, whether one or all of these genes is 

required for cells to acquire and maintain a complete mesenchymal phenotype in pathological 

processes remains to be elucidated. Further characterization of the individual steps of 

EMT/EndMT, comparisons of specific functions, and observations of spatial and temporal 

expression patterns of each of these transcription factors will inevitably provide insight into their 

roles during both full and partial EMT/EndMT. It is plausible that the requirement for each 

transcription factor to induce full or partial EMT may be tissue or cell type specific, dependent 

on the lineage of the cells, or perhaps is preprogrammed during development. A still unanswered 

question is how important these genes are in angiogenesis and tubulogenesis and how they act to 

maintain a partial EndMT.  
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Figure 2.1 Complete vs. Partial EMT/EndMT. Epithelial and endothelial cells comprise the 

quiescent epithelium and endothelium respectively and utilize junctional proteins to maintain 

connections. Once transcriptional reprogramming is initiated, an event led by the EMT/EndMT-

transcription factors Slug, Snail, Twist and Zeb1/2, the epithelial/endothelial cells lose apical-

basal polarity, sever intercellular junctions and become motile cells. However, the regulatory 

signal(s) that determine whether these cells undergo a complete EMT/EndMT or partial 

EMT/EndMT remains unclear. In the case of sprouting angiogenesis, the unique contact-

dependent nature of the Notch signaling pathway holds great potential to be a gateway for such 

decisions. 
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ABSTRACT 

The Snail family of zinc-finger transcription factors are evolutionarily conserved proteins 

that control processes requiring cell movement. Specifically, they regulate epithelial-to-

mesenchymal transitions (EMT) where an epithelial cell severs intercellular junctions, 

degrades basement membrane and becomes a migratory, mesenchymal-like 

cell. Interestingly, Slug expression has been observed in angiogenic endothelial cells 

(EC) in vivo, suggesting that angiogenic sprouting may share common attributes with 

EMT. Here we demonstrate that sprouting EC in vitro express Slug, and that siRNA-

mediated knockdown of Slug expression inhibits sprouting and migration in multiple in 

vitro angiogenesis assays. We find that expression of MT1-MMP, but not VE-Cadherin, 

is regulated by Slug and that loss of sprouting as a consequence of reduced Slug 

expression can be reversed by lentiviral-mediated re-expression of MT1-MMP. Activity 
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of MMP-2 and MMP-9 are also affected by Slug expression, likely through MT1-MMP. 

Importantly, we find enhanced expression of Slug in EC in human colorectal 

cancer samples compared to normal colon tissue, suggesting a role for Slug in 

pathological angiogenesis. In summary, these data implicate Slug as an important 

regulator of sprouting angiogenesis, particularly in pathological settings. 
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INTRODUCTION 

Angiogenesis is a multi-step, tightly-regulated process that plays a critical role during 

embryogenesis and wound healing, as well as in pathological conditions such as tumor 

growth.
1-3

 During sprouting angiogenesis, endothelial cells (EC) are activated in response 

to angiogenic stimuli, the best characterized being vascular endothelial growth factor 

(VEGF).
2, 4

 EC-activation triggers a cascade of events including degradation of the 

adjacent basement membrane, migration of nascent sprouts into the surrounding 

extracellular matrix (ECM), formation of lumens, branching, anastomosis, and a return to 

quiescence once support cells have been recruited to the newly-formed vessel.
1, 2, 4

 

Initiation of sprouting requires generation of at least two distinct EC phenotypes – tip 

cells and trunk cells. Each assumes a different morphology and performs unique 

functions. A tip cell leads the sprout; it is polarized along its anterior-posterior axis, 

rarely proliferates and is highly migratory.
5-8

 Trunk cells trail tip cells; they are 

proliferative, apically-basally polarized, and form the vessel lumen
9
. Gene expression 

profiles reveal tip cells to be highly enriched in vascular endothelial growth factor 

receptor-2 (VEGFR-2)
7-10

, platelet-derived growth factor-B (PDGFB)
8, 9

, neuropilin 

receptor-2 (NRP-2)
8
, Jagged-1 (Jag-1)

8, 11
, membrane type-1 matrix metalloproteinase 

(MT1-MMP)
12, 13

, and delta-like 4 (Dll4)
6, 14

. Expression of tip cell genes and induction 

of angiogenic sprouting are stimulated and regulated by pro-angiogenic cytokines 

including VEGF
2, 9

, tumor necrosis factor-alpha (TNF-α)
8, 15

, transforming growth factor-

beta (TGF-β)
15

, fibroblast growth factor (FGF)
2, 15

, and hepatocyte growth factor 

(HGF)
16

. During pathological events such as inflammation and tumor growth, several of 
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these growth factors induce expression of the transcription factor Slug (Snai2), and 

expression of this gene in tumor cells contributes to invasion and metastasis.
17-19

  

 

The Snail family of zinc-finger transcription factors are evolutionarily conserved and 

involved in processes that require cell movement. Expression of these genes is essential 

during embryonic development in events such as mesoderm, neural crest, and heart 

cushion formation.
20, 21

 During epithelial-to-mesenchymal transitions (EMT), Slug acts as 

a transcriptional repressor by binding E-box elements in target promoters. Under certain 

conditions Slug represses transcription of genes involved in formation of both adherens 

junctions (E-Cadherin), and tight junctions (claudins, occludins, ZO-1), and promotes 

disassembly of desmosomes.
19, 21, 22

 Slug also indirectly induces expression of genes that 

degrade ECM such as matrix metalloproteinases (MMP).
19, 23, 24

 A specialized form of 

EMT is an endothelial-to-mesenchymal-transition (EndMT). This event was first 

observed in developmental studies of heart formation
25

, and studies in the heart continue 

to reveal mechanistic insights, including a role for Notch signaling and induction of Slug 

during EndMT
20

. Interestingly, Slug expression is upregulated in tumor-associated EC
26

 

and EndMT has been identified as an origin of cancer associated fibroblasts
27

. Here we 

provide evidence that Slug is expressed in angiogenic EC and is a critical mediator of 

angiogenic sprouting. Interestingly, we find that Slug regulates expression of MT1-MMP 

but not VE-cadherin, and that while it promotes EC migration it does not lead to a loss of 

EC-EC junctions or the separation of EC from their neighbors. Collectively, these studies 

suggest that Slug expression in EC promotes only a partial EndMT during angiogenesis.  
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RESULTS 

Slug expression is temporally regulated during in vitro angiogenesis  

In order to study the mechanisms regulating EC morphogenesis we use an in vitro 

angiogenesis model
28

 in which EC sprout into fibrin gels. The assay recapitulates several 

critical steps of angiogenesis, including sprouting, lumen formation, branching and 

anastomosis (Figure 2.1 A). Using this assay we analyzed Slug expression in angiogenic 

EC at several time points up to 10 days, a point at which extensive, lumenized sprouts are 

present. Slug mRNA expression is strongly induced on day 3 when sprouts first begin to 

emerge from the beads, and remains highly expressed up to day 6, the time at which 

protein expression is highest (Figure 2.1 B, C). At this point lumen formation begins to 

dominate the cultures, with fewer new sprouts emerging, and this correlates with a slow 

decline in Slug expression out to 10 days (Figure 2.1 B, C). Thus, in an in vitro assay that 

mimics pathologic and/or wound healing angiogenesis, Slug expression in EC correlates 

with neovessel sprouting.  

 

Tumor-associated blood vessels in multiple cancers express Slug 

To examine whether Slug is expressed in EC during pathologic angiogenesis in vivo we 

first surveyed cancer tissues stained for Slug in the Human Protein Atlas Database 

(www.proteinatlas.org). We observed Slug expression in vessels of gliomas (patient ID: 

3120 and 3174), breast carcinomas (patient ID: 1882 and 2091), squamous cell lung 

carcinomas (patient ID: 1765, 1428, and 2231), liver carcinomas (patient ID: 2279, 2280, 

and 887), and colon adenocarcinomas (patient ID: 2060 and 2106), among others. Slug 

expression was not exclusive to vessels, however, as many of the tumor cells were also 
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Slug-positive. To confirm that Slug is expressed in the EC of pathologic vessels, we 

obtained samples of normal human colon and colorectal cancer (CRC) and used double-

labeling immunohistochemistry to look for Slug expression in CD31 positive EC. As 

shown in Figure 2.1 D, EC lining normal vessels only rarely express Slug. In sharp 

contrast, we found numerous Slug positive EC in blood vessels in the reactive stroma, 

within and adjacent to colorectal tumor tissue. Some perivascular cells (possibly 

pericytes) were also positive in some vessels. Non-vascular cells expressing Slug, in both 

normal and tumor tissues are likely to be pericryptal myofibroblasts. We quantitated 

these findings and found less than 1% of vessels in normal tissues containing Slug-

positive EC, whereas in two CRC tumors examined the proportion of Slug-positive 

vessels was 44% and 55%. We also examined vessels in an orthotopic, syngeneic (CT26) 

mouse colorectal cancer model, and here again we observed Slug staining in the vessels 

(Figure 2.1 Div).  

 

Loss of Slug inhibits EC sprouting 

To determine if Slug is required for vessel formation we utilized small interfering RNA 

(siRNA) oligonucleotides to inhibit Slug expression in several in vitro angiogenesis 

assays. We first confirmed that targeting Slug with siRNA in EC resulted in robust 

inhibition of mRNA and protein expression (Figure 2.2 A, B). Next we examined the 

effect of Slug knockdown on the ability of EC to sprout into fibrin gels, and consistently 

observed a dramatic loss of sprout formation (Figure 2.2 Ci, Cii, D). In addition, those 

sprouts that did form appeared to have a reduced ability to form lumens (Figure 2.2 Ci, 

Cii, E), a finding we confirmed in a second assay
29

 that specifically models lumen 
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formation (see below). Importantly, Slug knockdown was still >60% at the mRNA level 

on day 5, the latest time at which phenotypes were quantified (Figure 2.2 C).  

To confirm the loss of sprouting in a second assay we looked at the ability of control or 

Slug knockdown EC to invade collagen I gels in response to pro-angiogenic 

chemokines
29

. Again, loss of Slug severely limited EC sprouting (Figure 2.2 Ciii, Civ, F). 

To rule out off-target effects of the siRNA, we obtained a second, independent sequence 

(Ambion) and repeated this assay. Once more, siRNA-mediated loss of Slug expression 

strongly inhibited EC sprouting (Figure S2.1 D, E). Thus, Slug expression is necessary 

for sprouting in both fibrin and collagen gels.  

 

Our data showing a role for Slug during EC sprouting into fibrin gels suggest that it may 

be particularly important during pathologic angiogenesis – indeed, it is already known 

from mouse knockout studies to be dispensable for developmental angiogenesis
30

. We 

therefore turned to an in vitro 3D vascularized tumor model to explore the role of Slug 

further. Co-cultures of EC transfected with either control or Slug siRNA, and colon 

cancer SW620 cells transduced to express GFP, were formulated into multicellular 

spheroids and embedded in fibrin gels distributed with fibroblasts. After 7 days, tissue 

constructs were fixed and tumor vessel networks were assessed. In the absence of Slug 

expression we observed fewer sprouts compared to control cultures and, when EC did 

form sprouts, less than 20% of vascularized spheres had greater than 5 vessels; 70% less 

than control (Figure 2.2 Cv, Cvi, G, H). The average total vessel length was also 

significantly decreased in the absence of EC Slug expression (Figure 2.2 I). Collectively, 



 55 

these data demonstrate that Slug is critical during angiogenesis in the pathological setting 

of an in vitro 3D tumor. 

 

Slug regulates lumen formation  

Several mechanisms have been suggested for the formation of lumens during 

angiogenesis and the likelihood is that different mechanisms may pertain to large and 

small vessels, and developmental and pathologic processes.
31, 32

 A widely accepted 

mechanism for lumen formation in small vessels involves formation of intracellular 

pinocytic vesicles, the fusion of these into larger intracellular vacuoles, and finally, the 

joining of these between neighboring EC to form a contiguous intercellular lumenal 

space.
31

 This is the process we see most often in vitro. To examine the role of Slug in EC 

undergoing lumen formation, we used an assay originally devised by the Davis lab in 

which EC are induced to form lumens in collagen gels.
29

 As shown in Figure S2.2, 

knockdown of Slug reduced both mean luminal area as well as number of lumens per 

high-power field (Figure S2.2 A-C). Again, we confirmed this finding using a second, 

independent siRNA (Figure S2.2 A, D, E). We next assessed early stages of lumen 

formation by quantifying the number of intracellular vesicles in control and Slug 

knockdown-EC in the presence of FITC-dextran – FITC-dextran is incorporated into the 

newly formed pinocytic vacuoles.
33

 We found no difference between control and Slug-

knockdown EC suggesting that Slug’s effects on lumen formation are downstream of the 

early, vesicle-forming stage, and likely at the stage of intercellular lumen formation 

(Figure S2.2 F-H). 
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Inducers of Slug expression in EC 

To gain insight into the induction of Slug expression, we tested several pro-angiogenic 

growth factors known to be present in our in vitro angiogenesis models. Some of these 

were added to the medium and the fibroblasts provide several more.
34

 We therefore tested 

the ability of these individually, or in combination, to induce Slug mRNA and protein in 

monolayer cultures (Figure S2.3). Several factors induced moderate Slug expression 

when tested independently, and more robust expression when used in combination. These 

data suggest that the expression of Slug depends on integration of multiple signals, 

potentially including those derived from the 3D microenvironment. 

 

Slug misexpression promotes sprouting  

To determine whether forced expression of Slug would promote sprouting and whether 

Slug-expressing EC sprout preferentially, EC were transduced with Slug lentivirus in 

which Slug was directly linked to copGFP via the self-cleaving peptide T2A permitting 

visualization of Slug expression (these cells are referred to as EC
Slug/GFP

). A second set of 

EC were transduced with copGFP lentivirus lacking Slug and these served as a control 

(referred to as EC
GFP

). EC
Slug/GFP

 exhibited overexpression of Slug compared to EC
GFP

 

and untransduced EC (EC
Control

) as confirmed by Western blot (Figure 2.3A). We then 

tested these cells in the fibrin gel angiogenesis assay. Compared to EC
GFP

 the EC
Slug/GFP

 

cells showed a dramatic increase in their ability to form sprouts (Figure 2.3 B, D). Thus, 

Slug expression can drive angiogenic sprouting. 
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To test whether this effect is cell-autonomous, we mixed EC
Slug/GFP

 with EC
Control

 at 

different ratios and again looked at sprouting in the fibrin gel angiogenesis assay, 

comparing this mixture to the same ratios of EC
GFP

 with EC
Control

. As shown in Figure 2.3 

D, at each ratio (10%, 25% and 100% EC
Slug/GFP

) there was more sprouting compared to 

the cultures containing 10%, 25% or 100% EC
GFP

. Interestingly, there were a 

disproportionate number of sprouts containing GFP-positive cells in 10% and 25% 

EC
Slug/GFP

 cultures compared to EC
GFP

 cultures of the same percentages (Figure 3 F). 

Indeed, almost all of the sprouts in 25% EC
Slug/GFP

 cultures contained Slug-positive cells 

and almost all of the cells within the sprout were Slug-positive (Figure 2.3 F, C). While 

the expression of Slug clearly pre-disposes EC to sprout, these data also suggest that 

Slug-expressing cells may suppress neighboring cells from sprouting (see Discussion). 

We also noted a secondary phenotype resulting from Slug expression – the detachment of 

sprouts from the beads, which became progressively more apparent at higher ratios of 

Slug-expressing cells (Figure 2.3 E, C). 

 

Loss of Slug reduces MT1-MMP expression but does not affect VE-Cadherin 

In epithelial cells, genes of the Snail family regulate expression of E-Cadherin, and 

thereby the ability of cells to release from each other (EMT). We therefore examined the 

expression of VE-Cadherin (the EC equivalent of E-Cadherin) in Slug knockdown-EC 

during sprouting into fibrin gels. Interestingly, we saw no change in the mRNA 

expression of this gene using either of the siRNAs (Figures 2.4 A, S2.1 C). In addition, 

we evaluated VE-Cadherin protein localization in EC undergoing vessel formation in the 

absence of Slug expression and saw no differences compared to control (Figure 2.4 C). 
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This is consistent with our finding that misexpression of Slug does not lead to a loss of 

EC junctional integrity (Figure 2.3). 

 

An early, critical stage of angiogenesis is the establishment of a tip cell that leads 

migration of the nascent sprout.
9
 In light of the sprouting defect observed in Slug 

knockdown cells, we hypothesized that Slug might regulate EMT-related genes and/or 

known tip cell genes. We therefore examined mRNA levels for the following genes in the 

presence or absence of Slug in the fibrin gel angiogenesis assay: VEGFR-2, PDGFB, 

NRP-2, Jag-1, Dll4, Integrin v, Integrin 3, Vimentin, N-Cadherin and MT1-MMP. Of 

these, only MT1-MMP (Figure 2.4 B) and Jag-1 (Figure 2.5 A) were consistently 

decreased in Slug knockdown EC. We chose to pursue further studies with MT1-MMP 

and confirmed regulation by Slug using a second, independent Slug siRNA (Figure S2.1 

B). MT1-MMP, a membrane tethered MMP, is expressed in tip cells during 

angiogenesis
12, 13

 and is required to facilitate migration through both fibrin and collagen 

matrices
35-37

. We therefore examined Slug regulation of MT1-MMP in the collagen gel 

invasion assay. Slug was strongly induced at 24 hours and this induction was completely 

blocked by Slug siRNA (Figure 2.4 D). In the same cells, MT1-MMP mRNA was also 

strongly induced at 24 hours and this induction was blocked 50% by loss of Slug (Figure 

2.4 E). Flow cytometry analysis confirmed upregulated surface expression of MT1-MMP 

protein and a concomitant decrease in cells treated with siRNA (data not shown). These 

data were also confirmed with a second, independent siRNA to Slug (Figure S2.1 F, G). 

As further confirmation that the decreased sprouting seen with Slug knockdown cells is 

due (at least in part) to loss of MT1-MMP expression we performed a rescue experiment. 
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EC were transduced with lentivirus expressing either GFP or MT1-MMP, and then 

transfected with control or Slug siRNA and tested for their ability to invade collagen gels. 

Expression of transduced MT1-MMP was confirmed by western blot (Figure 2.4 F). 

Knockdown of Slug reduced invasion by over 50% and this was not affected by 

expression of GFP (Figure 2.4 G, H). However, expression of MT1-MMP completely 

rescued the loss of sprouting due to Slug knockdown, confirming that MT1-MMP is a 

critical downstream target of Slug during angiogenic sprouting. 

 

Slug indirectly regulates activity of MMP-2 and MMP-9  

During sprouting angiogenesis, the enzymatic activity of several MMPs is required to 

degrade and remodel the surrounding 3D ECM.
38

 MMP-2 is a secreted protease that is 

inactive in its native form, however, in the presence of TIMP-2 it is cleaved and activated 

by surface-expressed MT1-MMP.
39

 Interestingly, several studies have reported that 

expression of Slug correlates with an increase in activity of several MMPs.
19, 23, 24

 We 

therefore reasoned that the decrease of MT1-MMP expression observed in the absence of 

Slug might result in decreased enzymatic activity of MMP-2 and perhaps other MMPs 

such as MMP-9. Indeed, this was the case. Using gelatin zymography we found that 

knockdown of Slug in EC reduced both MMP-2 and MMP-9 activity by 50% when 

compared to control (Figure 2.6 A, B, D). This result was confirmed using a second 

independent siRNA targeting Slug (Figure S2.1 H-J). Interestingly, we saw no decrease 

in mRNA levels of either MMP-2 or MMP-9 at 24 hours, although we did see strong 

induction of MMP-9 in this assay (Figure 2.6 C, E). These data are consistent with Slug 

regulating the activity of MMP-2 through MT1-MMP, however the mechanisms 
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underlying the effects of Slug knockdown on MMP-9 activity are as yet unclear as MMP-

9 does not require activation by MT1-MMP. Interestingly, TIMP1, which blocks MMP-2 

and MMP-9 but not MT1-MMP, blocked sprouting (data not shown) suggesting that 

MMP-2 and MMP-9 may have a role in this process. In aggregate our data show that 

Slug regulates EC protease activity during angiogenic sprouting. 
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DISCUSSION 

In recent years there has been a dramatic increase in our understanding of the growth 

factors and receptors that drive angiogenesis, and a growing appreciation of the signaling 

pathways downstream of these receptors. Our understanding of the transcription factors 

that form the link between these signals and new gene expression is, however, much less 

complete. Here we define a role for the transcription factor Slug in sprouting 

angiogenesis. Slug expression drives sprouting through the induction of MT1-MMP and 

the regulation of MMP-2 activity. In the absence of Slug, EC sprouting is disrupted and 

this can be overcome by re-expression of MT1-MMP. Importantly, we also find Slug 

expression in tumor-associated vessels in multiple cancers. Our data therefore suggest 

that Slug potentially regulates pathologic angiogenesis in settings including cancer.  

 

Slug is perhaps best characterized as a member of a family of transcription factors, 

including Snail, Twist, ZEB-1 and -2, that drive epithelial-to-mesenchymal transitions 

(EMT).
40

 EndMT has been previously described during cardiac cushion morphogenesis
20

, 

and several studies have suggested that EndMT provides a source for cancer-associated 

myofibroblast cells
40, 41

. We therefore wondered whether Slug expression during 

angiogenesis was driving a partial EndMT, particularly affecting tip cells. Slug certainly 

drives migration and invasion, through MT1-MMP expression, however we saw no 

change in VE-Cadherin expression, nor did we see regulation of several genes, other than 

MT1-MMP and Jag-1, known to be upregulated in tip cells.
12, 13

 Somewhat surprisingly, 

our hypothesis that Slug-expressing cells would localize preferentially to a tip location 

was not borne out. Instead, Slug-expressing cells were found throughout the sprout, 
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suggesting that Slug expression in EC may be a more general marker for an activated, 

angiogenic phenotype rather than a specific marker for EndMT-like processes occurring 

in tip cells. Strikingly, when EC were forced to express Slug by lentiviral-mediated 

transduction, and these were mixed 1 to 3 with untransduced-EC, the vast majority of 

cells locating to sprouts expressed Slug. In sharp contrast, when GFP-expressing EC were 

mixed 1 to 3 with untransduced EC, GFP-expressing cells were found both in and out of 

sprouts. The strong implication is that Slug-expressing cells not only preferentially 

localize to sprouts, but also actively suppress non Slug-expressing cells from sprouting. 

Without further experimentation we cannot be sure of the mechanism underlying this 

finding, however, data from our lab
42

 and others
6, 14

 may implicate Notch signaling. 

Notch ligand expression, especially Dll4, suppresses neighboring cells from sprouting 

both in vitro and in vivo
6, 14, 42

, however, our preliminary data did not show a loss of Dll4 

expression in Slug-knockdown cells, although Jag-1 was suppressed. Further work will 

be required to determine the interactions between Slug and the Notch pathway in this 

process. 

 

MMPs, including MT1-MMP, are critical mediators of angiogenesis, responsible for 

matrix degradation
4, 37-39, 43

 as well as release of matrix-bound pro-angiogenic factors 

including bFGF and VEGF
44

. MT1-MMP directly degrades both fibrin and collagen
35-37

 

and acts in concert with TIMP2 to cleave pro-MMP-2 into its active form
39

. Several 

studies have also shown that MT1-MMP is required for both sprouting
45

 and lumen 

formation in vitro
46

 – a finding we suggest is linked to expression of Slug (Figure 2.4). 

These data are consistent with several previous reports that Slug regulates MMP 
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expression and activity in cancer cells. For example, Slug regulates both MT1-MMP and 

MMP-9 in pancreatic cancer
24, 47

, and has also been shown to regulate MT4-MMP
23

. 

Moreover, we find that Slug is upregulated in blood vessels adjacent to invasive tumors, 

but is largely absent in quiescent vessels (Figure 2.1 D). Finally, a previous report found 

Slug in invasive ovarian tumor-associated EC.
26

 In aggregate, these data support a role 

for Slug-regulated MMP expression in both tumor cells, and their associated angiogenic 

vasculature. 

 

Interestingly, Slug knockout mice are viable with no major phenotype
30

, although loss of 

the closely-related gene, Snail, causes early embryonic lethality due to problems with 

gastrulation
48

. It is therefore possible that Snail compensates for the loss of Slug during 

early development, masking a potential role for Slug in this process. In our in vitro 

studies, in contrast, we find that Snail cannot compensate for Slug in the pathological 

setting of invasion into fibrin gels. We have preliminary data showing that Snail is 

expressed under these conditions, although along a different time course than Slug, and 

that its expression is also required for proper sprouting (Chapter 3). It is likely, therefore, 

that under these conditions Slug and Snail regulate a separate but potentially overlapping 

suite of genes. We are currently investigating this possibility. Importantly, there are a 

number of precedents for genes being critical for pathological angiogenesis but 

dispensable for developmental angiogenesis including tetraspanin CD151
49

, 

Aminopeptidase N (CD13)
50

 and TNFRI (CD120)
51

. 
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In summary, our data suggest a critical role for Slug expression in angiogenic EC 

upstream of MT1-MMP expression, and suggest that Slug may be a useful target for 

regulating angiogenic EC in multiple human tumor types. 
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MATERIALS AND METHODS 

Cell culture and small interfering RNA transfection  

Primary human umbilical vein endothelial cells (HUVEC) were isolated from umbilical 

cords obtained from local hospitals under University of California Irvine Institutional 

Review Board approval. HUVEC were routinely cultured in 1X M199 (Life 

Technologies) supplemented with 10% fetal bovine serum (FBS) and endothelial cell 

growth supplement (ECGS; BD Biosciences) at 37°C and 5% CO2. Normal human lung 

fibroblasts (NHLF) were purchased from Lonza, routinely grown in 1X M199 

supplemented with 10% FBS at 37°C and 5% CO2. HUVEC at 80% confluency were 

transfected with 50 nM siRNA purchased from Invitrogen or 16 nM siRNA purchased 

from Ambion using Lipofectamine 2000 in Opti-MEM (Invitrogen) for four hours with 

transfection mixture and recovered in endothelial growth media-2 (EGM-2; Lonza) 

overnight. The non-targeting stealth RNAi negative control high GC duplex #2 

(Invitrogen) or the silencer select negative control #1 siRNA (Ambion) was used as a 

control for sequence independent effects of siRNA delivery. Transfection efficiencies 

were determined by qRT-PCR and western blot analysis. siRNA oligonucleotide 

sequences listed in Appendix I.   

 

Lentiviral constructs and transductions  

Full-length human HA-tagged MT1-MMP or full-length human Slug was cloned into the 

lentiviral vector pCDH (CD521A-1; System Biosciences). Lentivirus was made by 

transfection of pCDH constructs along with the packaging lines psPAX2 and pCMV-

VSV-G into 293T cells using Lipofectamine 2000 in Opti-MEM according to the 
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manufacturer’s protocol. Viral supernatants were collected and precipitated using 50% 

polyethylene glycol (PEG) and passage 0 HUVEC were transduced with virus using 

polybrene (8 μg/ml; Santa Cruz Biotechnology). 

  

In vitro fibrin gel angiogenesis assay  

Fibrin gel angiogenesis assays were performed as previously described.
28

 Briefly, 

HUVEC were coated onto Cytodex 3 microcarrier beads (Amersham) at a concentration 

of 150 cells/bead for four hours and allowed to adhere overnight. HUVEC coated beads 

were then resuspended in a 2.5 mg/ml fibrinogen solution (MP Biomedicals) at a 

concentration of 250 beads/ml. Gels were formed by adding 500 μl of the fibrinogen/bead 

suspension to each well of a 24-well plate containing 0.5 U of thrombin (Sigma-Aldrich). 

Once gels clotted, 1 ml of EMG-2 containing 20,000-50,000 NHLF was added to each 

well. Assays were quantified between days 5-6 by live-culture imaging using bright field 

microscopy. Thirty beads per condition were quantified per experiment. 

 

For RNA and protein isolation, HUVEC were isolated from the fibrin gels by removing 

fibroblasts with 3 mg/ml trypsin (Sigma-Aldrich) under gentle agitation. Residual 

fibroblasts were removed by washing the gels using 1X Hank’s Balanced Salt Solution 

(HBSS; Cellgro). Fibrin gels were digested with 4 mg/ml trypsin and gels were dislodged 

from the wells of the 24-well plate. The entire contents of each well was transferred to a 

conical tube and placed under rotation at 37°C to achieve complete digestion. When 

harvesting cells for studies of Slug protein expression, the cells were pre-treated 10 μM 

MG-132 (Calbiochem) for 1 hour to retard proteasome-mediated degradation.  
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In vitro fibrin gel sandwich assay  

HUVEC were transfected with control or Slug siRNA (Ambion) as described above. 500 

μl of 2.5 mg/ml fibrinogen was mixed with 0.5 U thrombin (Sigma-Aldrich) in four wells 

of a 12-well plate and allowed to clot at 37°C. HUVEC were seeded on top of each gel at 

a concentration 2.5 x 10
5
 cells/ml in EGM-2 and allowed to adhere at 37°C for 3 hours. 

EGM-2 was aspirated and 500 μl of 2.5 mg/ml fibrinogen pre mixed with 0.5 U thrombin 

was added to create a fibrin-sandwich, gels were allowed to clot at 37°C and 1 ml of 

EMG-2 containing 40,000 NHLF was added to each well. HUVEC were allowed to 

undergo morphogenesis for 3 days. HUVEC were isolated from the fibrin-gel-sandwich 

by removing fibroblasts using 3 mg/ml trypsin (Sigma-Aldrich). Gels were washed with 

1X HBSS to remove residual NHLF. Fibrin gels were digested with 4 mg/ml trypsin and 

HUVEC isolation was monitored under a microscope. The contents of 4 wells/condition 

were combined, and digested product was centrifuged at 1,200 rpm.  The resulting pellet 

containing HUVEC was resuspended in TRIZOL for qRT-PCR analysis as described 

below.  

 

Human tissue and Immunohistochemistry 

Formalin fixed, paraffin-embedded sections of de-identified human colorectal cancer 

slides were obtained from the Experimental Tissue Resource in accordance with UCI 

Biorepository procedures. Deparaffinized human colorectal cancer tissue sections 

underwent citrate-based antigen retrieval, and blocking with 5% goat serum. Sections 

were incubated in rabbit anti-Slug (1:200; Cell Signaling, 9585) and biotinylated goat 

anti-rabbit antibody, followed by development with a peroxidase-based Vectastain ABC 
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kit. The stained slides were re-blocked with goat serum, and incubated in mouse anti-

CD31 (1:100; Dako, IR610) followed by ImmPRESS alkaline phosphatase-conjugated 

anti-mouse IgG (Vector Laboratories, MP-54020) and developed with Vector-Blue 

substrate. Counterstaining was performed with tri-methyl green. 

 

In vitro invasion assays and in vitro lumenogenesis assays in 3D collagen matrices 

Assays were performed as previous described.
29

 For invasion assays, collagen gels were 

made with 30 μl of rat-tail collagen I (3.75 mg/ml) supplemented with 200 ng/ml SDF-1α 

(PeproTech) and 1 μM S1P (Biomol). Gels were added to each well of a 4.5 mm diameter 

96 microwell-plate (Corning) and incubated at 37°C until polymerized. HUVEC were 

then suspended in serum-free culture media of 1X M199 containing 1X ITS+3 (Sigma-

Aldrich), 40 ng/ml VEGF (R&D Systems), 40 ng/ml FGF-2 (R&D Systems), 50 μg/ml 

ascorbic acid (Fisher Scientific), and 50 ng/ml PMA (Calbiochem) at a concentration of 1 

x 10
5 

cells/ml and 100 μl of cell suspension was added to each well. HUVEC were 

allowed to invade for 24 hours at 37°C and 5% CO2. Cultures were fixed in 3% 

glutaraldehyde for 30 minutes, washed with sterile water and stained using 1% toluidine 

blue in 30% methanol for 1 hour. Assays were destained with water and bright field 

images (three gels/condition) were taken a few micrometers below the monolayer in 

order to quantify the number of invading HUVEC. To isolate HUVEC, 65 gels/condition 

were digested in 5 mg/ml collagenase (Worthington Biochemical) dissolved in dPBS 

(Gibco) and the cellular pellet was resuspended in 1 ml of TriZOL (Invitrogen). 
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Alternatively, HUVEC used in lumenogenesis assays were suspended in 30 μl of rat-tail 

collagen I (3.75 mg/ml) gels at a final concentration of 6 x 10
5 

cells/ml, added to each 

well of a 4.5 mm diameter microwell-plate (Corning) and incubated at 37°C until 

polymerized. 100 μl of serum-free culture media described above (omitting cells) was 

added to each well. HUVEC were allowed to undergo morphogenesis for 24-48 hours at 

37°C and 5% CO2 and fixed, stained and destained as described for invasion assays. Four 

bright field images were captured per well (three wells/condition) and intercellular 

lumens were manual traced using NIH ImageJ, converted from pixels to square 

micrometers and averaged for each condition. An EC lumen was defined as a 

multicellular lumenal space in addition to intracellular lumen compartments.     

 

Early stage lumen formation was assessed using the assay described above with the 

addition of 5 mg/ml FITC-dextran (Molecular Probes) to the culture media. After 4 hours 

of morphogenesis, gels were digested with 5 mg/ml collagenase type I for 10 minutes at 

37°C and the contents of three microwells were added to 500 μl phenol red free 1X 

M199. Cells were seeded onto glass coverslips coated with 50 μg/ml type I collagen and 

allowed to adhere for 10 minutes at 37°C. Coverslips were mounted and the percent of 

cells containing fluorescent-labeled intracellular lumens/high power field (HPF) and the 

number of fluorescently labeled intracellular lumens/cell were quantified for each 

condition (n=400 cells).     
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Methylcellulose production and 3D vascularized colon cancer spheroid assay 

Methylcellulose was generated by autoclaving 1.2 grams of powder in a 250 ml beaker at 

120°C for 20 minutes. Under sterile conditions, 50 ml of preheated (60°C) endothelial 

basal media (EBM; Lonza) was added to the autoclaved methylcellulose and dissolved by 

stirring at 60°C for 20 minutes. Once dissolved, an additional 50 ml of EBM was added 

for a final volume of 100 ml. The methylcellulose solution was covered with foil and 

mixed for 2 hours at 4°C. The solution was centrifuged at 4,000 rpm for 2 hours. 

Supernatant was removed, approximately 90% of the volume, and the resulting 

methylcellulose was stored at 4°C. The PDMS-retaining rings used to generate tissues 

had a diameter of 8 mm and a height of 0.8 mm. For quantification, a total of 5 

tissues/condition were quantified for each independent experiment (n=3) and one tissue 

contained approximately eight vascularized spheroids.   

 

HUVEC and SW620 were seeded into EGM-2 containing 15% methylcellulose at 

7.5x10
4 

cells/ml and 2.5x10
4 

cells/ml respectively. Cellular suspensions were aliquoted 

(150 μl/well) into a 96-well U-bottom plate (Greiner Bio-one, CellStar) and allowed to 

form spheres overnight. Spheroids were resuspended in fibrinogen (2.5 mg/ml; Sigma) 

containing NHLF at 1x10
6 

cells/ml. 50 μl of spheroid/cell suspension was added onto a 

12-mm circular glass cover slip with an affixed polydimethylsiloxane (PDMS)-retaining 

ring and mixed with 5x10
-3

 U thrombin (Sigma-Aldrich). Tissues were fed with EGM-2 

and maintained at 37°C and 5% CO2. On day 7, tissues were fixed and 

immunofluorescent staining was performed.  
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Growth factor treatments  

HUVEC were cultured as previously described.  At 100% confluency, HUVEC were 

serum starved in 1X M199 containing 2% FBS overnight. The following day HUVEC 

were treated with the following growth factors in 1X M199 containing 2% FBS for 24 

hours; SDF1α (200 ng/ml; PeproTech), VEGF (40 ng/ml; PeproTech), bFGF (40 ng/ml; 

PeproTech), S1P (1 μM; Biomol), PMA (50 ng/ml; Calbiochem), TGF-β1 (5 ng/ml; 

PeproTech), TNF-α (10 ng/ml; PeproTech), TGF-α (50 ng/ml; PeproTech), HGF (100 

ng/ml; PeproTech), ANG-1 (250 ng/ml; PeproTech), and Angiogenin (250 ng/ml; R&D 

Systems). HUVEC were then harvested and expression levels were detected via western 

blot or qRT-PCR analysis as described below.  

 

Quantitative Real-Time PCR  

Total RNA was isolated from HUVEC using TriZOL reagent (Invitrogen) according to the 

manufacturer’s protocol. Isolated RNA was treated with RQ1 DNase (Promega) for 1 

hour. Total RNA was used for cDNA synthesis using an iScript cDNA Synthesis Kit 

(BioRad). A BioRad iCycler and HotStartTaq DNA Polymerase (Qiagen) was used to 

perform qRT-PCR with SYBR Green (Molecular Probes) as the readout. Average CT 

values were normalized to GAPDH expression levels and all samples were measured in 

triplicate. Primers were synthesized by Integrated DNA Technologies and sequences can 

be found in Appendix I. 
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Western blot 

HUVEC isolated from the fibrin gel angiogenesis assay as described above were lysed on 

ice in RIPA buffer (50mM Tris-Cl pH 7.4, 1% NP-40, 0.5% sodium deoxycholate, 

150mM NaCl) supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM 

EDTA, 5 mM DTT and 1X protease inhibitor cocktail. Lysates were sonicated twice at 

10 Watts for 15 seconds, and cellular debris and beads were cleared by centrifugation - 

14,000 rpm for 10 minutes at 4°C. Alternatively, protein lysates from monolayer HUVEC 

were extracted directly from culture dishes by adding supplemented RIPA buffer to 

culture dishes placed on ice for 10 minutes. Dishes were scrapped and the cellular 

contents were added to a microfuge tube and allowed to lyse for an additional 10 minutes 

on ice. Lysates were sonicated and spun at 14,000 rpm for 10 minutes at 4°C. Protein 

concentrations were determined using bicinchoninic acid assay (Sigma-Aldrich) 

according to manufacturer’s instructions. Samples were mixed 3:1 with Laemmli 4X 

sample buffer (BioRad), boiled for 5 minutes at 95°C, and equal amounts of protein (40-

100 μg) were loaded and electrophoresed in 4-20% Mini-PROTEAN TGX 

polyacrylamide gels (BioRad) under denaturing and reducing conditions. Proteins were 

transferred to a polyvinylidene fluoride membrane (Millipore).  Membranes were blocked 

for 2 hours in TBS/0.1% Tween 20 (0.1% TBST) containing 5% non-fat dry milk. 

Membranes were then incubated overnight at 4°C in primary antibodies - primary rabbit 

monoclonal anti-Slug (1:750; Cell Signaling, 9585) or primary rabbit monoclonal anti-

MMP14 (1:2000; Epitomics, 2010-1) were used. Anti-Slug antibody was diluted in 0.1% 

TBST containing 5% bovine serum albumin (BSA) and anti-MMP14 was diluted in 0.1% 

TBST containing 2% milk. The following day, membranes were washed with TBS/0.2% 
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Tween 20 (0.2% TBST) before secondary antibody was added. HRP-conjugated goat 

anti-rabbit secondary antibody (1:5000; Abcam) was diluted in 0.1% TBST containing 

5% BSA and added to the blot for 2 hours at RT. Protein expression was detected using 

Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare) and 

membranes were imaged using a Nikon AF 50 mm f/1.4D camera (Nikon). To ensure 

equal loading, membranes were stripped using restore stripping buffer (Thermo 

Scientific), blocked for 1 hour in 0.1% TBST containing 5% BSA and re-probed for 2 

hours with HRP-conjugated GAPDH (1:5000; Abcam, ab9482) antibody.   

 

Gelatin zymography 

Supernatant/culture media from 3D collagen I invasion assays (see above) were collected 

from 20 wells/condition, combined and cellular debris was removed by centrifugation. 

Collected media was concentrated using ultra centrifugal devices with a 3,000 nominal 

molecular weight limit (Amicon) according to the manufacturer’s protocol. 25-100 μg of 

protein was resolved on 10% polyacrylamide gels containing 1% (w/v) gelatin (BioRad). 

Zymogram reagents were purchased from BioRad and the manufacturer’s protocol was 

followed. Briefly, gels were washed 4 times for 15 minutes in 25 ml of 1X Renaturation 

Buffer (BioRad), incubated in Development Buffer (BioRad) for 20 min at 37°C, stained 

with 0.1% amido black (Sigma-Aldrich) in 30% methanol (v/v) and 10% acetic acid 

(v/v), and then destained in 30% methanol (v/v) and 10% acetic acid (v/v). Zymograms 

were imaged using a Gel Doc 2000 equipped with an 8-bit CCD camera and Quantity 

One software (BioRad) and densitometry quantification was completed using NIH 

ImageJ.  
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Immunofluorescence  

Fibrin gel angiogenesis assays used for immunofluorescence were performed in Lab-Tek 

II 4-well chambered borosilicate coverglass system (No. 1.0; Thermo Fisher Scientific). 

Prior to staining, the NHLF monolayer was removed as described above. Assays were 

fixed in 4% PFA for 15 minutes and extensively washed in 1X PBS containing 0.3 M 

glycine to remove fixative. Assays were permeabilized and blocked for 2 hours at RT 

using 1X PBS supplemented with 0.3 M glycine, 5% BSA, 5% goat serum, 0.2% sodium 

azide, and 0.3% Triton X-100. Assays were treated with primary monoclonal rabbit anti-

VE-Cadherin antibody (1:75; Enzo, ALX-210-232) diluted in blocking/permeabilization 

solution and incubated at 4°C overnight. The following day cultures were treated with 

secondary goat anti-rabbit 488-conjugated antibody (1:200; Invitrogen, A11008) 

overnight at 4°C. Cultures were extensively washed in 1X PBS. Nuclei were stained with 

1 μg/ml DAPI (Sigma-Aldrich) and F-actin was stained with 0.2 μM Texas Red-X 

phalloidin (Invitrogen). All steps were completed under gentle agitation.  

 

Vascularized 3D colon cancer spheroids were fixed in 10% formalin (Fisher Scientific). 

Tissues were permeabilized for 30 minutes at RT using 1X PBS supplemented with 0.5% 

Tween-20. Non-specific binding was blocked with 1X PBS containing 2% BSA and 

0.1% Tween-20. Tissues were incubated overnight at 4°C using a mouse anti-CD31 

antibody (1:100; Dako, IR610) diluted in blocking buffer followed by a goat anti-mouse 

568-conjugated (1:500; Invitrogen, A11004) secondary antibody also diluted in blocking 

buffer. Tissues were extensively washed with 1X PBS containing 0.3 M glycine to 

remove background. All steps were completed under gentle agitation. 
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Microscopy  

An inverted microscope (IX70; Olympus) was used for all conventional bright field 

images. Images were captured using a SPOT Idea 3.0 megapixel color mosaic camera 

and Spot acquisition software (Sport Imagining Solutions). For confocal microscopy, a 

Nikon Eclipse Ti inverted confocal microscope (Nikon) equipped with a CoolSNAP ES2 

CCD camera (Photometrics) and EZ-C1 acquisition software (version 3.91; Nikon) was 

used. Confocal images were 12-bit (containing 1024x1024 pixels) and four scans were 

averaged per pixel. Adjustments to image brightness and/or contrast were performed 

using Adobe Photoshop software - images between difference conditions were treated 

identically. 

 

Statistical analysis  

Researchers were blinded to experimental conditions prior to performing quantifications.  

All experiments were repeated at least three times. Data are reported as mean ± standard 

error of the mean (SEM). A Student’s t-test was used to analyze differences between 

experimental groups of equal variance when only two groups were being compared. For 

comparisons involving three or more conditions and/or two independent time points, a 2-

way analysis of variance (ANOVA) with multiple comparisons was performed and the 

TukeyHSD probability value was used to determine significance. For analysis of Slug 

overexpression data (Fig. 3), a generalized linear mixed model (GLMM) was performed 

using SPSS software and an LSD pairwise contrast method was used to determine 

significance. 
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Figure 3.1. Angiogenic EC express Slug. (A) Representative images depicting EC 

morphogenesis during in vitro angiogenesis in fibrin gels. Nascent sprouts (arrowhead) 

are observed on day 3 and continue to proliferate, migrate, branch (arrow) and form 

lumens (asterisk) through days 6-10. Scale bars, 150 μm. (B) EC were harvested on the 

indicated days from fibrin gels and Slug mRNA levels were assessed by qRT-PCR. 

Results conveyed as fold change over day 0 ± SEM (n=5; *P<0.01 and **P<0.0001; 

Student’s t-test). (C) Western blot analysis of Slug protein levels in EC isolated from 

fibrin gels on the indicated days. (D) Formalin fixed, paraffin-embedded sections of de-

identified (i) normal human colon tissue, (ii-iii) human colorectal cancer tissue, and (iv) 

mouse colorectal cancer tissue, stained for Slug (brown) and CD31 (blue), and 

counterstained with tri-methyl green. Red arrows depict Slug positive EC. Scale bars, 20 

μm. Two representative images of five human patient samples analyzed.  
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Figure 3.2.  Loss of Slug inhibits EC sprouting in multiple in vitro angiogenesis 
assays. (A) EC were transfected with control or Slug siRNA and Slug mRNA levels 

were assessed by qRT-PCR 48 hours later. Results are shown as percent of control set to 

100 ± SEM (n=3; ***P<0.0001; Student’s t-test). (B) EC were transfected with control or 

Slug siRNA and harvested at 72 hours for analysis of Slug protein levels by western blot. 

(C) EC transfected with control or Slug siRNA were used in fibrin gel sprouting assays 

(Ci,Cii), in 3D collagen I invasion assays (Ciii,Civ), and in 3D vascularized tumor 

spheroids (Cv,Cvi). Representative images from one of at least three similar experiments 

are shown. Scale bars, 150 μm (Ci,Cii); 100 μm (Ciii-vi). (D,E) Sprouting, defined as a 

vessel with length greater than or equal to the diameter of the bead (150 μm), and lumen 

formation, defined as a vessel with a lumenal space throughout the entire vessel, were 

quantified on day 5 of the fibrin-gel sprouting assay. Results are expressed as mean ± 

SEM (n=3; *P<0.05; Student’s t-test). (F) Sprout invasion into collagen gels was 

analyzed 24 hours after seeding. Results are shown as percent of control set to 100 ± 

SEM (n=3; *P<0.05; Student’s t-test). (G-I) Sprouting phenotypes from 3D vascularized 

tumor spheroids were quantified on day 7 (n=3; *P<0.05, **P<0.001, ***P<0.0001; 

Student’s t-test). 
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Figure 3.3. Slug misexpression in EC promotes angiogenic sprouting. (A) EC were 

transduced with pCDH-T2A-copGFP (EC
GFP

), or pCDH-Slug-T2A-copGFP (EC
Slug/GFP

) 

lentivirus, or were left untransduced (EC
Control

), and then analyzed for Slug expression by 

Western blot. (B) Transduced EC (EC
GFP 

or EC
Slug/GFP

) were mixed with EC
Control

 and 

beads were then coated such that 10%, 25%, or 100% of the cells were transduced and 

the remainder were untransduced. Fibrin-embedded beads were then examined for 

sprouting on day 6. Arrowheads indicate detached sprouts. (C) Confocal microscopy of 

sprouts from 25% transduced-EC assays stained for nuclei (DAPI, blue) and F-actin 

(red). Arrowheads depict sprouts lacking GFP-expressing EC. Arrows indicate detached 

vessels; a detached vessel was defined as a sprout no longer attached to a Cytodex bead. 

Scale bars, 50 μm. (D) Quantification of sprouts/bead at the indicated ratios of transduced 

cells. (E) Quantification of detached vessels at the indicated ratios of transduced cells. (F) 

Quantification of sprouts that contain at least one EC
GFP

 or EC
Slug/GFP

-positive EC. All 

results expressed as mean ± SEM (n=3; *P<0.01, **P>0.001; GLMM).  
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Figure 3.4. Loss of Slug reduces MT1-MMP expression, but does not affect VE-

Cadherin. (A-C) EC were transfected with control or Slug siRNA and seeded into fibrin 

gels. (A,B) EC harvested on day 5 for analysis of VE-Cadherin or MT1-MMP expression 

by qRT-PCR. Results are expressed as mean ± SEM (n=3; **P<0.001; Student’s t-test). 

(C) Confocal microscopy of fibrin gels on day 5 stained for VE-Cadherin (green), nuclei 

visualized with DAPI (blue), arrows indicate VE-Cadherin-positive adherens junctions. 

Scale bar, 10 μm. (D,E) EC transfected with control or Slug siRNA seeded on top of 

collagen I gels and stimulated to invade for 24 hours. EC were harvested at the indicated 

time points and mRNA levels of Slug and MT1-MMP were determined by qRT-PCR. 

Results shown as fold change over time 0 ± SEM (n=3; **P<0.01 and ***P<0.001; 

ANOVA). (F) EC were transduced with the indicated lentiviral vectors and examined for 

expression of MT1-MMP by western blot. (G) Transduced EC were subsequently 

transfected with control or Slug siRNA, seeded onto collagen gels. After 24 hrs, gels 

were fixed, stained, and invading cells were quantified (n=3; **P<0.01 and ***P<0.001; 

ANOVA). (H) Representative images from G captured at 24 hours. Arrows indicate 

invading cells. Scale bars, 100 μm. 
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Figure 3.5. EMT and tip-cell gene expression analysis in the absence of Slug. (A) EC 

were transfected with control or Slug siRNA and seeded into fibrin gels. EC were then 

harvested on day 5 for analysis of expression levels of EMT and tip-cell genes by qRT-

PCR. Results are expressed as mean ± SEM (n=3; *P<0.001; Student’s t-test) 
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Figure 3.6. MMP-2 and MMP-9 activity is indirectly regulated by Slug. (A) EC were 

transfected with control or Slug siRNA, seeded on top of collagen gels, and stimulated to 

invade. After 24 hours, culture medium was collected and MMP activity assessed by 

gelatin zymography. (B,C) Quantitative analysis of MMP-2 activity and mRNA 

expression after Slug knockdown. Results of the zymography are shown as percent of 

control set to 100 ± SEM (n=3; *P<0.05; Student’s t-test). Results of the qRT-PCR 

analysis are shown as fold change over time-0 ± SEM (n=3; ***P<0.001; ANOVA). 

(D,E) Quantitative analysis of MMP-9 activity and mRNA expression after Slug 

knockdown. Details as for MMP-2. 
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Figure S3.1. Slug is required during angiogenic sprouting and inhibition results in 

expression and activity alterations of several MMPs but not VE-Cadherin. (A-J) 

HUVEC were transfected with control or Slug siRNA from Ambion. (A) Slug protein 

levels were assessed via western blot 72 hrs post transfection. (B,C) HUVEC were 

seeded in-between a fibrin sandwich, harvested on day 3 and mRNA levels for MT1-

MMP (B) and VE-Cadherin (C) were assessed by qRT-PCR. Results are represented as 

fold change relative to control set to 1 ± SEM (n=3; *P<0.01; Student’s t-test). (D,E) 

HUVEC were seeded on top of collagen matrices and stimulated to invade for 24 hours. 

Assays were fixed, stained, and invading cells (arrows) were quantified. Representative 

images captured at 24 hours. Results are represented as percent of control set to 100 ± 

SEM (n=3; *P<0.05; Student’s t-test). Scale bars, 100 μm. (F,G) HUVEC were seeded on 

top of collagen matrices and stimulated to invade for 24 hours. EC were harvested at the 

indicated time points and mRNA levels of Slug (F) and MT1-MMP (G) were determined 

by qRT-PCR. Results are conveyed as fold change over time 0 ± SEM (n=3; *P<0.05, 

**P<0.01, ***P<0.001; ANOVA). (H) Culture medium was also collected from each 

condition at 24 hours and MMP activity was assessed by gelatin zymography - 

representative zymogram. (I,J) Quantitative analysis of MMP-2 and MMP-9 activity 

calculated by densitometry using NIH ImageJ software. Results are represented as 

percent of control set to 100 ± SEM (n=3; *P<0.05; Student’s t-test). 
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Figure S3.2. Loss of Slug disrupts late-stage lumen formation in 3D collagen 

matrices. (A-E) HUVEC transfected with control or Slug siRNA from Invitrogen or 

Ambion were seeded into collagen matrices (3.75mg/ml) and stimulated to invade for 24 

hours. Assays were fixed and stained and representative images were captured. (A) 

Representative images captured at 24 hours.  Scale bars, 50μm. (B,D) EC lumens were 

quantified by manual tracing intracellular and intercellular lumens (asterisk) using NIH 

ImageJ software. Results show mean EC luminal area ± SEM (n=3. **P<0.002 and 

*P<0.01; Student’s t-test). (C,E) Lumens were also quantified by counting the total 

number of EC lumens per high power field (HPF) using NIH ImageJ software. Data are 

represented as EC lumens/HPF ± SEM (n=3; ***P<0.0001 and *P<0.05; Student’s t-

test). (F-H)  HUVEC transfected with control or Slug siRNA from Invitrogen were 

seeded into collagen gels and allowed to undergo morphogenesis in the presence of 

soluble FITC-conjugated dextran. After 4 hours, collagen gels were digested to release 

the cells from the 3D matrix for live imagining on collagen-coated coverslips. (F) Bright 

field images and corresponding fluorescent images are shown. Scale bars, 10 μm. The 

average number of fluorescently labeled intracellular lumens (G) and the percent of cells 

containing fluorescently labeled intracellular lumens (H) were quantified and are 

expressed as mean ± SEM (n=2). 
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Figure S3.3. Slug expression is regulated by several angiogenic growth factors. (A-B) 

HUVEC were grown to confluency in 2D and serum starved overnight in media 

containing 2% FBS. HUVEC were then treated with the indicated growth factors for 24 

hours. (A) HUVEC were harvested and Slug mRNA levels were assessed by qRT-PCR. 

Results are conveyed as fold change over 2% FBS ± SEM (n=2). (B) Western blot 

analysis of Slug protein levels stimulated with the indicated growth factors. GAPDH is 

shown as the loading control. 
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ABSTRACT 

An epithelial-to-mesenchymal transition (EMT) is an indispensible process during 

embryogenesis in which epithelial cells are converted into motile cells. In addition, EMT is a 

critical component of cancer progression and acts as an important mechanism of invasion and 

metastasis. Endothelial cells (EC), which are specialized epithelial cells, have also been found to 

undergo a similar transition termed an endothelial-to-mesenchymal transition (EndMT). First 

identified in developmental studies of heart formation, EndMT has more recently been identified 

in a variety of pathological states. Interestingly, Snail (Snai1), a key transcriptional regulatory of 

both EMT and EndMT, was found to be upregulated in tumor-associated EC when compared to 

normal endothelium suggesting a role for this gene during pathological angiogenesis. We have 

identified, for the first time, a critical role for the Snail gene, Snail (Snai1), in angiogenesis.  We 

find that EC upregulate Snail expression during sprouting in an in vitro angiogenesis model, and 

that loss of expression inhibits sprouting, invasion and lumen formation in vitro.  Moreover, we 

find the activity of MMP-2 and MMP-9 to be significantly decreased in the absence of Snail 

expression in angiogenic EC.  In summary, these data implicate Snail as a novel regulator of 

angiogenesis.  
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INTRODUCTION  

Angiogenesis is a process that occurs during both physiological and pathological conditions 

including development and growth, tissue repair, inflammation and tumor progression.
1-3 This 

highly dynamic and tightly regulated process is initiated when endothelial cells (EC) respond to 

pro-angiogenic stimuli, the most well characterized being VEGF.
2, 4 Upon EC-activation, 

angiogenesis ensues resulting in degradation of the adjacent basement membrane, migration of 

nascent sprouts into the surrounding extracellular matrix (ECM), formation of lumens, 

branching, anastomosis, and a return to quiescence once support cells have been recruited to the 

newly-formed vessel.1, 2, 4
 Angiogenesis is a process involving EC migration, and proteolytic 

enzymes are therefore essential during the angiogenic cascade.
5, 6

 These enzymes aid in EC 

invasion into the surrounding tissue by degrading the basement membrane, removing and 

releasing impeding matrix proteins, and by generating space in the ECM allowing EC tubules to 

form.
7
 In addition, protease activity results in activation and modification of growth factors, 

cytokines and receptors, and generation of matrix protein fragments.
5, 6, 8

  

 

Matrix metalloproteinases (MMP) are particularly well studied in angiogenesis and three 

members of this family, MMP-2, MMP-9 and membrane type 1-MMP (MT1-MMP) have been 

identified as critical regulators of this process.
5, 6, 9

 Studies including knockout mouse models 

have identified MMP-2, MMP-9 and MT1-MMP as playing essential roles in the initiation of 

both tumor and developmental angiogenesis and angiogenic growth factors can induce 

expression of these proteases.
10-12

 MMP-2 is a secreted protease that is inactive in its native 

form, however, in the presence of TIMP-2 it is cleaved and activated by surface-expressed MT1-

MMP.
13

 MT1-MMP is a membrane tethered MMP and is activated during transport from the 
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Golgi to the plasma membrane by removal of the propeptide by furin or furin-like serine 

protease.
7
 Interestingly, evidence points to expression of MT1-MMP in angiogenic tip-cells

14-16
 

as well as playing an important role in lumen formation
17

. MMP-9, another secreted MMP, 

facilitates angiogenesis by degrading ECM components and by aiding in the release of ECM-

bound pro-angiogenic growth factors include VEGF.
18, 19

 It is clear that several MMPs are 

known and well-studied in the process of angiogenesis.   

 

MMP activation is not only crucial during angiogenesis but upregulation of these proteases is 

found in nearly every tumor type. Of particular interest is their involvement in epithelial-to-

mesenchymal transitions (EMT). EMT occurs during embryonic development and is involved in 

the progression of primary tumors towards metastases.
20-22

 Key transcriptional regulators of this 

process belong to the Snail family of zinc-finger transcription factors including one of the most 

well studied, Snail (Snai1). Although well known for its role as a transcriptional repressor, 

expression of Snail during EMT also correlates with increased expression and activity of several 

MMPs including MMP-2
23, 24

, MMP-9
25, 26

 and MT1-MMP
27, 28

. Given that Snail expression 

correlates with activity of proteases that are also required during angiogenesis, it is intriguing to 

speculate that Snail may also be regulated during this process. In fact, Snail expression was 

found to be upregulated in the endothelium of invasive breast carcinoma compared to the normal 

vasculature.
29

 Here we provide evidence that Snail is regulated by EC during in vitro 

angiogenesis and is a critical mediator of angiogenic sprouting and late-stage lumen formation. 

In addition, we find that Snail indirectly regulates activity of MMP-2 and MMP-9 although the 

mechanism behind this action remains elusive. Collectively these studies suggest that Snail 

expression in EC may help to regulate several processes of angiogenesis.  
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RESULTS 

Snail expression is temporally regulated during in vitro angiogenesis 

To study the molecular mechanism governing EC morphogenesis, our lab utilizes the fibrin gel 

angiogenesis assay, a model in which EC are stimulated to sprout into fibrin gels.
30

 This assays 

recapitulates critical stages of angiogenesis including sprouting, lumen formation, branching and 

anastomosis (Figure 3.1A). Utilizing this assay, we analyzed Snail expression in angiogenic EC 

at several time points. Snail mRNA expression is induced on day 6 when sprouts have formed 

and migration of these nascent sprouts through the fibrin gel is at its peak (Figure 3.1B).  

Expression then drastically declines through days 7 to 10 when sprouts begin to mature (Figure 

3.1B). Thus, Snail expression correlates with migratory sprouts in an in vitro angiogenesis 

model. 

 

To examine whether Snail is expressed in EC during pathologic angiogenesis in vivo we 

surveyed cancer tissues stained for Snail in the Human Protein Atlas Database 

(www.proteinatlas.org). We observed Snail expression in vessels of colon adenocarcinoma 

(Figure 3.1C). Snail expression was not exclusive to vessels, however, as many of the tumor 

cells were also Snail-positive. Thus, in the pathologic setting of cancer, EC in angiogenic vessels 

express Slug and Snail, consistent with our in vitro model of pathologic angiogenesis. 

 

Loss of Snail inhibits EC sprouting 

To elucidate a role for Snail during in vitro angiogenesis, we utilized small interfering RNA 

(siRNA) oligonucleotides to inhibit Snail expression. We then examined the effect of Snail 

knockdown on the ability of EC to undergo morphogenesis in the fibrin gel angiogenesis assay. 
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First, targeting Snail with siRNA resulted in 80% reduction of mRNA on day 3 of the fibrin gel 

angiogenesis assay and inhibition persisted through day 5 when mRNA was reduced by 20% 

(Figure 3.2A). Knockdown of Snail in angiogenic EC resulted in a dramatic phenotype, not only 

were fewer number of sprouts observed, but those sprouts that did form had reduced ability to 

form lumens (Figure 3.2A-C). Our data therefore demonstrate a role for Snail during multiple 

stages angiogenesis.  

 

To better understand the role of Snail during angiogenesis, we next turned to an in vitro 3D 

collagen I invasion assay developed by the Davis lab.
31

 This assay permits critical evaluation of 

processes required during initial stages of angiogenesis, namely sprouting and migration. As 

expect, inhibition of Snail resulted in reduction of EC invasion by 50% (Figure 3.3A,B). 

Surprisingly, Snail mRNA expression was not induced in this assay at 24 hours although 

knockdown was greater than 80% at both time of seeding (time 0) and 24 hours after EC 

invasion (Figure 3.3C). 

 

Snail indirectly regulates activity of MMP-2 and MMP-9 

Angiogenesis requires the enzymatic activity of several MMPs. These proteinases are used by 

EC to degrade and remodel the surrounding 3D ECM during sprouting and also play an 

important role in the formation of patent lumens.
7, 17, 32, 33

 MMP-2 is a secreted protease that is 

inactive in its native form, however, in the presence of TIMP-2 it is cleaved and activated by 

surface-expressed MT1-MMP.
13

 MMP-9, yet another MMP secreted by EC, facilitates 

angiogenesis by degrading ECM components and by aiding in the release of ECM-bound pro-

angiogenic growth factors including VEGF.
18, 19

 Interestingly, several studies have reported that 
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expression of Snail correlates with an increase in activity of several proteases.
25, 34-39

 We 

therefore reasoned that the inability to sprout and form lumens in the absence of Snail might be a 

result of decreased enzymatic activity of MMPs. Indeed, this was the case. Using gelatin 

zymography we found that knockdown of Snail in EC reduced both MMP-2 and MMP-9 activity 

by 40% and 20% respectively, when compared to control (Figure 3.3D-F). Interestingly, mRNA 

expression levels of these proteases were not altered after 24 hours of invasion (Figure 3.4A-B). 

However, at time zero (the time that EC are harvested from 2D culture) the mRNA expression 

levels of MMP-2 were significantly reduced in the absence of Snail suggesting direct 

transcriptional activation of MMP-2 by Snail (Figure 3.4A). However, given that this loss was 

not observed after 24 hours of invasion implicates that other transcription factors compensate for 

the loss of Snail induction of MMP-2 once in a 3D environment. In addition, MT1-MMP (a 

membrane-tethered protease known to activate MMP-2) mRNA expression was not changed 

before or after EC invasion into collagen gels (Figure 3.4C). These data therefore demonstrate 

that Snail regulates EC protease activity during angiogenic processes although not at the level of 

transcription.  

 

Loss of Snail reduce late stage EC lumen formation 

A critical step in the angiogenic process is the formation of lumens. Although numerous 

mechanisms for this process have been proposed, it is most probably that different mechanisms 

occur in large and small vessels, and developmental and pathologic processes.
17, 40

 In small 

vessels, one accepted mechanism for lumen development involves formation of intracellular 

pinocytic vesicles, the fusion of these into larger intracellular vacuoles, and finally, the joining of 

these between neighboring EC to form a contiguous intercellular lumenal space.
17

 Using the 



 95 

knowledge that inhibition of Snail resulted in fewer lumenized vessels in the fibrin gel 

angiogenesis assay (Figure 3.2A,C), we further examined the role of Snail in EC undergoing 

lumen formation by utilizing an assay originally devised by the Davis lab.
41

 In this assay, EC are 

induced to form lumens in collagen gels. As shown in Figure 3.5, knockdown of Snail reduced 

both mean luminal area as well as number of lumens per high-power field (Figure 3.5A-C). Next, 

to assess early stages of lumen formation, we quantified the number of intracellular vesicles in 

control and Snail knockdown-EC in the presence of FITC-dextran – FITC-dextran is 

incorporated into the newly formed pinocytic vacuoles.
42

 We found no difference between 

control and Snail-knockdown EC suggesting that Snail’s effects on lumen formation are 

downstream of the early, vesicle-forming stage, and likely at the stage of intercellular lumen 

formation (Figure 3.5D-F). 
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DISCUSSION  

In this study, we show that Snail is regulated by EC during angiogenesis in vitro. We find that in 

the absence of Snail several steps of angiogenesis, including sprouting and early stage lumen 

formation, are disrupted. In addition, inhibition of Snail in EC results in decreased activity of 

both MMP-2 and MMP-9. Interestingly, although the primary function of Snail is that of a 

transcriptional repressor, mRNA levels of these two proteases remains unaltered. These data 

therefore suggest that Snail regulates an intermediate player required for MMP-2 and MMP-9 

activation. Importantly, we also observe Snail expression in tumor-associated vessels in human 

colorectal cancer suggesting a possible role for Snail during pathological angiogenesis.   

 

Snail, a member of the Snail family of zinc-finger transcription factors, drives epithelial-to-

mesenchymal (EMT) transitions which occur during critical phases of embryonic development 

and carcinoma progression.
43

 A specialized form of EMT, endothelial-to-mesenchymal (EndMT) 

transition, plays an important role during cardiac cushion morphogenesis, and several studies 

have proposed that EndMT is a unique source of cancer-associated myofibroblast cells. 
44-46

 

Aside from acting as a transcriptional repressor of adheren junctions to drive these processes, 

Snail expression also correlates with upregulation of several MMPs including MT1-MMP, 

MMP-2, MMP-7 and MMP-9 in cancer cells.
23-28, 37

 Noting that MMPs are required during 

sprouting angiogenesis, we hypothesized that Snail may be regulating proteolytic activity of 

these enzymes in angiogenic EC. Indeed, in the absence of Snail we observe decreased activity 

of both MMP-2 and MMP-9, however, mRNA levels remain unaltered. 
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MMPs are produced as zymogens and require proteolytic cleavage of the propeptide for 

activation. In the case of pro-MMP-2, the propeptide is cleaved by a cell-surface complex that 

consists of a homodimer of MT1-MMP and a single molecule of tissue inhibitor of 

metalloproteinases-2 (TIMP2).
13

 We thus wondered if Snail might alter expression of MT1-

MMP providing mechanistic insight into the regulation of MMP-2 by Snail. Interestingly, MT1-

MMP mRNA levels did not change in the absence of Snail. Nonetheless, localization and levels 

of MT1-MMP surface expression will need to be examined before this mechanism is discounted. 

It is also intriguing to hypothesize that Snail may regulate expression of genes involved in 

recruiting MT1-MMP to the membrane, such as cortactin.
27

 In fact, Snail deficient fibroblasts 

exhibit significant reduction in invadopodial clusters of cortactin and thus MT1-MMP.
27

 

 

Snail deficient mouse embryos die early in gestation due to defects in gastrulation and mesoderm 

formation.
47

 Snail not only influences cell behavior during development, but also during disease 

such as metastatic cancer. A plethora of studies have identified factors that induce expression of 

Snail and genes that are regulated by Snail in epithelial tumors. However, to our knowledge, no 

studies have identified a role for Snail in angiogenic EC. Interestingly, Snail was found to be 

upregulated in the endothelium of invasive breast carcinoma compared to the normal 

vasculature.
29

 We too show Snail expression in EC in human colorectal cancer warranting further 

studies to better understand a role for Snail in pathologic EC.   

  

In conclusion, our data clearly demonstrate that EC undergoing angiogenesis in vitro express 

Snail and that this transcription factor plays a critical role in several steps of this process. 

Preliminary findings suggest that MMPs are regulated by Snail providing a possible mechanism 
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behind loss of sprouting in the absence of this gene. However, additional gene expression 

analysis will need to be completed to reveal possible mechanistic action behind these findings. 

Moreover, and as discussed in chapter 2, it appears that Snail and its closely related family 

member Slug play independent but equally important roles during sprouting angiogenesis. The 

fact that inhibition of either Snail or Slug results in reduced sprouting and lumen formation 

suggests that these genes do not compensate for one another during sprouting angiogenesis. 

However, it is likely that these transcription factors work in concert to regulate specific stages of 

angiogenesis and may share some targets during the angiogenic cascade including MMPs (See 

Discussion).    
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MATERIALS AND METHODS  

Cell culture and small interfering RNA transfection  

Primary human umbilical vein endothelial cells (HUVEC) were isolated from umbilical cords 

obtained from local hospitals under University of California Irvine Institutional Review Board 

approval. HUVEC were routinely cultured in 1X M199 (Life Technologies) supplemented with 

10% fetal bovine serum (FBS) and endothelial cell growth supplement (ECGS; BD Biosciences) 

at 37°C and 5% CO2. Normal human lung fibroblasts (NHLF) were purchased from Lonza, 

routinely grown in 1X M199 supplemented with 10% FBS at 37°C and 5% CO2. HUVEC were 

used between P3 and P4 and NHLF were used between P6 and P13 for all experiments. HUVEC 

at 80% confluency were transfected with 50 nM siRNA (Invitrogen) using Lipofectamine 2000 

in Opti-MEM (Invitrogen), incubated for four hours with transfection mixture and recovered in 

endothelial growth media-2 (EGM-2; Lonza) overnight. The non-targeting stealth RNAi negative 

control high GC duplex #2 (Invitrogen) was used as a control for sequence-independent effects 

of siRNA delivery. Transfected HUVEC were used in subsequent experiments 18 to 24 hours 

after transfection. Transfection efficiencies were determined by qRT-PCR. siRNA 

oligonucleotide sequences listed in Appendix I. 

 

The fibrin gel angiogenesis assay 

Fibrin gel angiogenesis assays were performed as previously described.
30

 Briefly, HUVEC were 

coated onto Cytodex 3 microcarrier beads (Amersham) at a concentration of 150 cells/bead for 

four hours and allowed to adhere overnight. The following day HUVEC coated beads were 

resuspended in a 2.5 mg/ml fibrinogen solution (MP Biomedicals) at a concentration of 250 

beads/ml. Gels were formed by adding 500 μl of the fibrinogen/bead suspension to each well of a 
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24-well plate containing 0.5 U of thrombin (Sigma-Aldrich). Once gels clotted, 1 ml of EMG-2 

containing 20,000-50,000 NHLF was added to each well. Assays were quantified between days 

5-6 by live-culture imaging using bright field microscopy. Thirty beads per condition were 

quantified per experiment.  

 

For expression analysis using qRT-PCR, HUVEC were isolated from the fibrin gels in 24-well 

plates by removing fibroblasts with 3 mg/ml trypsin (Sigma-Aldrich) for 6 minutes under gentle 

agitation. Residual fibroblasts were removed by washing gels two times using Hank’s Balanced 

Salt Solution (HBSS, 1X; Cellgro) after trypsin treatments. Fibrin gels were then digested with 4 

mg/ml trypsin and gels were dislodged from the wells of the 24-well plate after trypsin was 

added. The entire contents of each well was transferred to a conical tube and placed under 

rotation at 37°C for 6 minutes to achieve complete digestion. Isolated HUVEC were then 

resuspended in 1 ml of TriZOL (Invitrogen). 

 

Quantitative Real-time PCR (qRT-PCR) 

Total RNA was isolated from HUVEC using TriZOL reagent (Invitrogen) according to the 

manufacturer’s protocol. Isolated RNA was then treated with RQ1 DNase (Promega) for 1 hour. 

Total RNA was used for cDNA synthesis using an iScript cDNA Synthesis Kit (BioRad). A 

BioRad iCycler and HotStartTaq DNA Polymerase (Qiagen) was used to perform qRT-PCR with 

SYBR Green (Molecular Probes) as the readout. Average CT values were normalized to GAPDH 

expression levels and all samples were measured in triplicate. Primers were synthesized by 

Integrated DNA Technologies and sequences can be found in Appendix I 
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In vitro, 3D Collagen I Invasion Assay  

Assays were performed as previous described.
31

 Briefly, collagen gels were made with 30 μl of 

rat-tail collagen I (3.75 mg/ml) supplemented with 200 ng/ml SDF-1α (PeproTech) and 1 μM 

S1P (Biomol). Gels were added to each well of a 4.5 mm diameter 96 microwell-plate (Corning) 

and incubated at 37°C for 30 minutes to allow polymerization. HUVEC were then suspended in 

serum-free culture media of 1X M199 containing 1X ITS+3 (Sigma-Aldrich), 40 ng/ml VEGF 

(R&D Systems), 40 ng/ml FGF-2 (R&D Systems), 50 μg/ml ascorbic acid (Fisher Scientific), 

and 50 ng/ml PMA (Calbiochem) at a concentration of 1 x 10
5 

cells/ml and 100 μl of cell 

suspension was added to each well. HUVEC were allowed to invade for 24 hours at 37°C and 

5% CO2. Cultures were fixed in 3% glutaraldehyde for 30 minutes, washed with sterile water and 

stained using 1% toluidine blue in 30% methanol for 1 hour. Assays were destained with water 

and bright field images (three gels/condition) were taken a few micrometers below the 

monolayer in order to quantify the number of invading HUVEC - NIH Image J was used to count 

invading cells  

 

To isolate HUVEC, 65 gels/condition were digested in 5 mg/ml collagenase (Worthington 

Biochemical) dissolved in dPBS (Gibco) and the cellular pellet was resuspended in 1 ml of 

TriZOL (Invitrogen). 

 

Gelatin Zymography 

Supernatant/culture media from 3D collagen invasion assays (see methods and above) were 

collected from 20 wells/condition, combined and cellular debris was removed by centrifugation. 

Collected media was concentrated using ultra centrifugal devices with a 3,000 nominal 
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molecular weight limit (Amicon) according to the manufacturer’s protocol. 80 μg of protein was 

resolved on 10% polyacrylamide gels containing 1% (w/v) gelatin (BioRad). Zymogram reagents 

were purchased from BioRad and the manufacturer’s protocol was followed. Briefly, gels were 

washed 4 times for 15 minutes in 25 ml of 1X Renaturation Buffer (BioRad), incubated in 

Development Buffer (BioRad) for 20 min at 37°C, stained with 0.1% amido black (Sigma-

Aldrich) in 30% methanol (v/v) and 10% acetic acid (v/v), and then destained in 30% methanol 

(v/v) and 10% acetic acid (v/v). Zymograms were imaged using a Gel Doc 2000 equipped with 

an 8-bit CCD camera and Quantity One software (BioRad) and densitometry quantification was 

completed using NIH ImageJ.   

  

In vitro, 3D Collagen I Lumen Assay 

Assays were performed as previous described.
41

 Briefly, HUVEC used in lumenogenesis assays 

were suspended in 30 μl of rat-tail collagen I (3.75 mg/ml) gels at a final concentration of 6 x 10
5 

cells/ml, added to each well of a 4.5 mm diameter microwell-plate (Corning) and incubated at 

37°C for 30 minutes to allow polymerization. 100 μl of serum-free culture media, 1X M199, 

containing 1X ITS+3 (Sigma-Aldrich), 40 ng/ml VEGF (R&D Systems), 40 ng/ml FGF-2 (R&D 

Systems), 50 μg/ml ascorbic acid (Fisher Scientific), and 50 ng/ml PMA (Calbiochem) was 

added to each well. HUVEC were allowed to undergo morphogenesis for 24-48 hours at 37°C 

and 5% CO2 at which point cultures were fixed in 3% glutaraldehyde for 30 minutes, washed 

with sterile water and stained using 1% toluidine blue in 30% methanol for 1 hour. Assays were 

destained with water and four bright field images were captured per well (three wells/condition) 

and intercellular lumens were manual traced using NIH ImageJ, converted from pixels to square 
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micrometers and averaged for each condition. An EC lumen was defined as a multicellular 

lumenal space in addition to intracellular lumen compartments.     

Early stage lumen formation was assessed using the assay described above with the addition of 5 

mg/ml fluorescein-conjugated dextran (Molecular Probes) to the culture media. After 4 hours of 

morphogenesis, gels were digested with 5 mg/ml collagenase type I for 10 minutes at 37°C and 

the contents of three microwells were added to 500 μl phenol red free 1X M199. Cells were then 

seeded onto glass coverslips coated with 50 μg/ml type I collagen and allowed to adhere for 10 

minutes at 37°C. Coverslips were mounted and the percent of cells containing fluorescent-

labeled intracellular lumens/high power field (HPF) and the number of fluorescently labeled 

intracellular lumens/cell were quantified for each condition (n=400 cells). All analysis was 

completed blinded. 

 

Microscopy  

An inverted microscope (IX70; Olympus) was used for all conventional bright field images. 

Images were captured using a SPOT Idea 3.0 megapixel color mosaic camera and Spot 

acquisition software (Sport Imagining Solutions). 

 

Statistical analysis   

Researchers were blinded to experimental conditions prior to performing quantifications.  All 

experiments were repeated at least three times. Data are reported as mean ± standard error of the 

mean (SEM). A Student’s t-test was used to analyze differences between experimental groups of 

equal variance when only two groups were being compared. 
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Figure 4.1. Angiogenic EC express Snail. (A) Representative images depicting EC 

morphogenesis during in vitro angiogenesis in fibrin gels. Nascent sprouts (arrowhead) are 

observed on day 3 and continue to proliferate, migrate, branch (arrow) and form lumens 

(asterisk) through days 6-10. Scale bars, 150 μm. (B) EC were harvested on the indicated days 

from fibrin gels and Snail mRNA levels were assessed by qRT-PCR. Results conveyed as fold 

change over day 0 ± SEM (n=3; *P<0.05; Student’s t-test). (C) Human colon cancer tissue 

sectioned and stained for Snail. Arrows depict Snail positive EC. Scale bars, 50 µm. Image from 

The Human Protein Atlas, with permission (www.proteinatlas.org). 
 

 

 

 

 

 

 

 

 

 

S
n

a
il 

m
R

N
A
 l
e

v
e

ls

 (
F

o
ld
 C

h
a

n
g

e
)

Time (Days)

A
Day 3  Day 6  Day 10 

B

0 

2 

4 

6 

8 

10 

12 

0  3  6  10 

C



 105 

 
Figure 4.2.  Loss of Snail inhibits EC sprouting in an in vitro angiogenesis assay. (A-C) EC 

were transfected with control or Snail siRNA and seeded into the fibrin gel angiogenesis assay. 

(A) Representative images from one of at least three similar experiments are shown from 

analysis on day 5. Scale bars, 150 μm. Snail mRNA levels were assessed by qRT-PCR on day 3 

and day 5 of the assay. Results are shown as percent of control set to 100 ± SEM (n=2; 

*P<0.005; Student’s t-test). (B-C) Sprouting, defined as a vessel with length greater than or 

equal to the diameter of the bead (150 μm), and lumen formation, defined as a vessel with a 

lumenal space throughout the entire vessel, were quantified on day 5 of the fibrin gel 

angiogenesis assay. Results are expressed as mean ± SEM (n=2; *P<0.005; Student’s t-test).  
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Figure 4.3. Loss of Snail inhibits EC invasion into 3D collagen matrices. (A-C) EC 

transfected with control or Snail siRNA were seeded on top of collagen I gels and stimulated to 

invade for 24 hours. (A-B) Gels were fixed and stained, and representative images of each 

condition were captured at 24 hours and invading cells were quantified using NIH Image J. 

Arrows indicate invading cells. Scale bars, 100 μm. Results are shown as percent of control set to 

100 ± SEM (n=2; *P<0.02; Student’s t-test). (C) Transfected EC were harvested at the indicated 

time points and mRNA levels of Snail were determined by qRT-PCR. Results shown as fold 

change over time 0 ± SEM (n=2; ***P<0.002 and *P<0.02; Student’s t-test). (D-F) EC were 

transfected with control or Snail siRNA, seeded on top of collagen gels, and stimulated to 

invade. After 24 hours, culture medium was collected and MMP activity assessed by gelatin 

zymography. (E) Quantitative analysis of MMP2 activity after Snail knockdown. Results of the 

zymography are shown as percent of control set to 100 ± SEM (n=2; **P<0.01; Student’s t-test). 

(F) Quantitative analysis of MMP9 activity after Snail knockdown. Details as for MMP2 (n=2, 

*P<0.05; Student’s t-test). 
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Figure 4.4. Loss of Snail does not affect MMP mRNA levels following EC invasion. (A-C) 

EC transfected with control or Snail siRNA were seeded on top of collagen I gels and stimulated 

to invade for 24 hours. EC were harvested at the indicated time points and mRNA levels of 

MMP2 (A), MMP9 (B), and MT1-MMP (C) were determined by qRT-PCR. Results shown as 

fold change over time 0 ± SEM (n=2; *P<0.01; Student’s t-test). 
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Figure 4.5. Loss of Snail disrupts late-stage lumen formation in 3D collagen matrices. (A-C) 

HUVEC transfected with control or Snail siRNA were seeded into collagen matrices and 

stimulated to invade for 24 hours. (A) Assays were fixed, stained, and representative images 

were captured at 24 hours. (B) EC lumens were quantified by manually tracing intracellular and 

intercellular lumens (asterisk) using NIH ImageJ software. Results show mean EC luminal area ± 

SEM (n=2. ***P<0.007; Student’s t-test). (C) Lumens were also quantified by counting the total 

number of EC lumens per high power field (HPF) using NIH ImageJ software. Data are 

represented as EC lumens/HPF ± SEM (n=2; ***P<0.004; Student’s t-test).  (D-F)  HUVEC 

transfected with control or Snail siRNA were seeded into collagen gels and allowed to undergo 

morphogenesis in the presence of soluble FITC-conjugated dextran.  After 4 hours, collagen gels 

were digested to release the cells from the 3D matrix for live imagining on collagen-coated 

coverslips.  (D) Bright field images and corresponding fluorescent images are shown.  Scale 

bars, 10 μm.  The average number of fluorescently labeled intracellular lumens (E) and the 

percent of cells containing fluorescently labeled intracellular lumens (F) were quantified and are 

expressed as mean ± SEM (n=2). 
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CHAPTER 5 
 

Summary and Conclusions 

 

DISCUSSION 

The Snail superfamily of zinc-finger transcription factors occupies a central role in 

cellular morphogenesis during embryonic development and cancer progression. In 

particular, this protein family is critical in triggering epithelial-to-mesenchymal transition 

(EMT), a program fundamental to both normal development and many pathological 

conditions, such as cancer, fibrosis, and wound healing.
1-3

 During EMT, epithelial cells 

alter their polarity, dissolve intercellular junctions, degrade basement member (BM), and 

transform into migratory, mesenchymal cells. However, these cellular alterations are not 

necessarily ordered nor do epithelial cells acquire all the characteristics associated with 

EMT. In fact, when epithelial cells lose genes that define them as epithelial, such as 

epithelial-cadherin (E-Cadherin), but do not fully commit to a mesenchymal phenotype or 

genotype, the event is termed a partial EMT.  

 

Partial EMT has been observed in both developmental and pathological states. For 

example, partial EMT is implicated in the branching morphogenesis that occurs during 

the formation of several organs, including the mammary glands, kidneys and trachea.
2
 In 

addition, partial EMT occurs during re-epithelialization of wounded skin. In this instance, 

although keratinocytes undergo a series of changes reminiscent of EMT including loss of 

polarity, alterations of the actin cytoskeleton, adjustments in cell-cell contacts, and 
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breakdown of basement membrane (BM), they do, however, retain some intercellular 

junctions and migrate as a cohesive cell sheet.
4
  

 

In recent years, data indicate that other cell types, namely endothelial cells (EC) undergo 

endothelial-to-mesenchymal transitions (EndMT), a program reminiscent of EMT. In 

fact, it was speculated that EndMT might play a central role in angiogenic sprouting by 

enabling tip-cells to migrate into adjacent tissue.
5
 Tip-cells certainly have phenotypes 

similar to mesenchymal cells and, as they are positioned at the angiogenic front, are 

exposed to a variety of pro-angiogenic stimuli including vascular endothelial growth 

factor (VEGF), hepatocyte growth factor (HGF), tumor necrosis factor-α (TNF-α), 

transforming growth factor-β (TGF-β), fibroblast growth factor (FGF), and epidermal 

growth factor (EGF). Knowing that these stimuli also induce expression of the EMT 

transcription factors Snail and Slug in epithelial cells, it is easy to hypothesize that these 

growth factors may also induce their expression in EC to promote angiogenesis. 

Furthermore, TGF-β, the bone morphogenetic protein (BMP) pathway, as well as Wnt 

and Notch signaling cascades have also been found to induce Snail and Slug expression.
6-

8
 Importantly, these signaling pathways also play key roles during angiogenesis. Finally, 

angiogenesis is an invasive process that requires alterations in polarity, cytoskeletal 

rearrangement, and proteolytic degradation of extracellular matrix (ECM), all changes 

that enable a nascent sprout to migrate. It is therefore intriguing to consider that EC may 

require Snail family members during the formation of vascular tubes, thus suggesting 

angiogenesis as a partial EndMT process. 
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This thesis work identified Snail and Slug as being regulated by EC during in vitro 

angiogenesis. The unique and dynamic expression patterns of Snail and Slug suggest that 

these transcription factors regulate different steps, but perhaps overlapping genes, during 

the angiogenic cascade. To elucidate a role for these transcription factors during 

angiogenesis, we independently inhibited their expression using small interfering RNA 

(siRNA). We showed that inhibition of Snail or Slug expression prevents sprouting 

angiogenesis, invasion, and lumen formation in multiple in vitro angiogenesis assays. We 

next hypothesized that Snail and Slug were inducing a partial EndMT owing to the fact 

that EC maintain their junctional integrity and migrate together during tube formation. To 

no surprise, expression levels of the adherens junction protein vascular endothelial-

cadherin (VE-Cadherin) were not altered in the absence of Slug expression (this 

experiment was not completed in the absence of Snail). Instead, inhibition of Snail or 

Slug led to reduced activity of both matrix metalloproteinase (MMP)-2 and MMP-9. 

Given that several MMPs are indirectly regulated subsequent to Snail or Slug expression, 

these findings were in line with published results. Furthermore, membrane type 1-MMP 

(MT1-MMP) was significantly decreased in the absence of Slug. Importantly, retroviral-

mediated re-expression of this gene recovered the sprouting defect observed in the 

absence of Slug. Given that Slug did not regulate VE-Cadherin but did alter activity and 

expression of several MMPs, we hypothesize that angiogenesis is indeed a partial EndMT 

process. However, our findings also suggested that the partial EndMT event was not 

exclusive to tip-cells as previous hypothesized.  

 



 115 

Although activity of MMP-2 and MMP-9 were altered in the absence of Snail or Slug, it 

is unlikely that this is a result of direct transcription repression. In fact, mRNA expression 

levels of MMP-2 and MMP-9 were not altered when Snail or Slug were inhibited. And, 

while mRNA levels of MT1-MMP were decreased in the absence of Slug providing an 

explanation for the decreased activity of MMP-2, it is yet to be determined if Slug 

directly regulates the transcription of MT1-MMP. Alternatively, if Slug does not directly 

regulate MT1-MMP transcription, studies show that Slug expression promotes formation 

of the β-catenin/T-cell factor (TCF) transcription complex.
9
 Moreover, in an independent 

study it was demonstrated that MT1-MMP was a target of the β-catenin/TCF complex.
10

 

Together these findings provide a potential mechanism by which Slug indirectly regulates 

MT1-MMP in angiogenic EC: Slug induces formation of the β-catenin/TCF complex 

resulting in increased MT1-MMP transcript.   

 

Worth noting is the low endogenous expression levels of Snail and Slug in EC culture in 

2D. Even after addition of endothelial growth media (EGM) supplemented with an 

abundance of pro-angiogenic growth factors, Snail and Slug expression remain relatively 

low. However, when EC are placed in a 3D environment and stimulated with EGM, their 

expression levels dramatically increase. We therefore speculate that integrins may play a 

role in these observations. Indeed, integrin αvβ3 upregulates Slug expression in cancer 

cells and expression of this same integrin is increased in tumor vessels.
13, 14

 In addition, 

Slug expression results in down-regulation of integrins α3, β1 and β4 in keratinocytes.
15

 

Although these data point to a potential link between Slug and integrins, it should also be 

mentioned that many of our 3D culture systems contain fibroblasts. These mural cells 
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secrete additional pro-angiogenic factors that may synergize with signals from the 3D 

matrix (integrins) to facilitate induction of Snail and Slug. For example, we have shown 

that upon inhibition of HGF produced by fibroblasts, sprouting is dramatically reduced. 

Given that HGF induces Snail and Slug expression and that inhibition of Snail or Slug 

results in reduced sprouting, we speculate that HGF might be one factor inducing 

expression of these transcription factors in our 3D culture systems.  

 

In addition to our own findings, in vivo work completed by others also points to a role for 

Snail and Slug during angiogenesis. In humans, Snail expression was increased in the 

vasculature of breast carcinoma and Slug expression was elevated in vessels of ovarian 

carcinoma suggesting that these two genes may be important during pathological 

angiogenesis.
16, 17

 Since embryonic lethality occurs in mice homozygous for a null 

mutation in the Snail gene, few studies have been completed to identify a role for Snail 

beyond gastrulation. However, in one study it was observed that a conditional deletion of 

Snail mid-gestation resulted in embryonic lethality in part due to severe cardiovascular 

defects.
18

 This finding hints that Snail also plays a role in blood vessel formation and 

studies on an EC-specific conditional Snail knockout may help to reveal this function. 

 

In sharp contrast to mice homozygous for a null mutation in Snail, mice homozygous for 

a null mutation of Slug are viable suggesting this gene is not critical for vascular 

developmental. However, we cannot rule out the involvement of Slug in pathological 

angiogenesis. In fact, as discussed in chapter 2, there are several examples of genes being 

dispensable during developmental angiogenesis but required for pathological 



 117 

angiogenesis.
19-21

 We therefore hypothesized that Slug may be one of these genes. 

Excitingly, preliminary findings suggest that Slug is indeed important during pathological 

angiogenesis. Using a Matrigel plug angiogenesis assay, we observed less blood vessel 

infiltration into Matrigel plugs in Slug knockout mice compared to control mice (Figure 

4.1). Further studies including immunohistochemistry analysis will be necessary to 

evaluate the precise number of blood vessels invading the gels and to rule out that 

increased vessel infiltration in control mice Matrigel plugs was not simply due to 

increased invasion of fibroblasts. Regardless, these are promising findings that our lab 

will continue to pursue.   

 

In summary, the findings presented in this thesis begin to reveal mechanistic actions 

behind Snail and Slug expression in angiogenic EC. However, more research is warranted 

to complete these stories. In particular, several questions still remain about the molecular 

mechanisms behind the actions of Snail. Specifically, we plan to uncover additional 

downstream targets of Snail family members using RNA-sequencing. With these data we 

hope to identify additional cellular and molecular functions for Snail and Slug during in 

vitro angiogenesis and confirm these findings in pathological angiogenesis models in 

vivo.   
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Figure 5.1.  Pathological angiogenesis is visual reduced in Slug knockout mice. 
(A) Matrigel was spiked with VEGF (400 ng/μl), bFGF (400 ng/μl), or heparin (20U/ml) 

and injected subcutaneously into the ventral side of control (Slug+/+; Ai-iii) or knockout 

(Slug-/-; Aiv-vi) mice that were 24 weeks of age. The Matrigel plug was then harvested 

seven days post injection and visualized for vessel infiltration. (n=3) 
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APPENDIX I 
 

Oligonucleotides used in this study 
 

qRT-PCR Primers 

Gene Name   Sequence 5`  3` 

αV    GCAGTCAGAGATGGATACT  (forward) 

    GACTCGAGACTCCTCTTATC  (reverse) 

β3    CCCTGCTCATCTGGAAACTC  (forward) 

    CGGTACGTGATATTGGTGAAGG (reverse) 

Dll4    GTAACGAATGCATCCCCCACAAT (forward) 

   CTCCCCAGCCCTCATCACAAGTA (reverse) 

GAPDH   TCGACAGTCAGCCGCATCTTC  (forward) 

GCGCCCAATACGACCAAATCC  (reverse) 

Jagged-1   CTGCCCAACCCCTGCCATAAT  (forward) 

   GCACCGGTACCAGTTGTGTCCAT (reverse) 

MMP2    CGCAGTGACGGAAAGATGTGG  (forward) 

AGAGCTCCTGAATGCCCTTGA  (reverse) 

MMP9    ACCAAGTGGGCTACGTGACCTATG (forward) 

GTATCCGGCAAACTGGCTCCTT  (reverse) 

MT1-MMP   CATGGCCACGGTGTCAAAGTT  (forward) 

CTCCCGGCCTTCTGTTCCTG  (reverse) 

N-Cadherin   CAGTATCCGGTCCGATCTGC  (forward) 

   GTCCTGCTCACCACCACTAC  (reverse) 

Slug (Snai2)   AGATGCATATTCGGACCCAC  (forward) 

CCTCATGTTTGTGCAGGAGA  (reverse) 

Snail (Snai1)   GCCTTCAACTGCAAATACTGC  (forward) 

CTTCTTGACATCTGAGTGGGT  (reverse) 

VE-Cadherin    CGCCCGGCCTTCCCTCTA  (forward) 

CGTGGTCCGCCTCGTCCTT  (reverse) 

Vimentin   GACGCCATCAACACCGAGTT  (forward) 

    CTTTGTCGTTGGTTAGCTGGT  (reverse) 

 

 

siRNA Oligos  

Gene Name – Company Sequence 5`  3`  

Slug (Snai2) – Invitrogen GGCUCAUCUGCAGACCCAUUCUGAU (sense) 

AUCAGAAUGGUCUGCAGAUGAGCC (antisense) 

Slug (Snai2) – Ambion  CAAUAAGACCUAUUCAACUtt  (sense) 

AGUUGAAUAGGUCUUAUUGca  (antisense) 

Snail (Snai1) – Invitrogen  CCUCGCUGCCAAUGCUCAUCUGGGA (sense) 

UCCCAGAUGAGCAUUGGCAGCGAGG (antisense 
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APPENDIX II 
 

List of Abbreviations 
 

2D    Two-dimensional 

3D    Three-dimensional  

α-SMA  α-smooth muscle actin 

Ang-1    Angiopoietin-1 

ANOVA  Analysis of variance 

BM   Basement membrane 

BMP   Bone morphogenetic protein 

CAF   Cancer associated fibroblast 

CRC   Colorectal cancer  

CXCR-4  C-X-C chemokine receptor-4  

Dll-4   Delta-like ligand-4 

EBM   Endothelial basal media 

E-Cadherin Epithelial-cadherin 

EC    Endothelial cell 

ECGS   Endothelial growth supplement  

ECL   Enhanced chemiluminescence  

ECM   Extracellular matrix 

EGF   Epidermal growth factor 

FGF   Fibroblast growth factor  

EGM-2  Endothelial growth media-2 

EMT   Epithelial-to-mesenchymal transition  
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EndMT   Endothelial-to-mesenchymal transition 

FBS    Fetal bovine serum  

FGF    Fibroblast growth factor 

FGF-2    Fibroblast growth factor-2 

FITC    Fluorescein isothiocyanate  

FSP-1    Fibroblast specific protein-1 

GFP    Green fluorescent protein 

GLMM   Generalized linear mixed model  

GSK-3β   Glycogen synthase kinase 3β 

HBSS    Hank’s balanced salt solution  

HGF    Hepatocyte growth factor 

HLF    Hepatic leukemic factor 

HPF    High power field  

HRP    Horseradish peroxidase  

HUVEC   Human umbilical vein endothelial cell 

Jag-1    Jagged-1 

MDCK   Madin-darby canine kidney 

MMP    Matrix metalloproteinase  

MT1-MMP  Membrane type-1 matrix metalloproteinase  

NHLF    Normal human lung fibroblast  

NICD    Notch intracellular domain  

NRP-2    Neuropilin receptor-2 

PAI-1    Plasminogen activator inhibitor-1 
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Pak-1    P21-activated kinase-1  

PBS     Phosphate buffer solution  

PC      Pericytes  

PDMS     Polydimethylsiloxane 

PDGFB    Platelet-derived growth factor B 

PDGFR-β.    Platelet-derived growth factor receptor- β 

PEG     Polyethylene glycol  

PIGF     Placental growth factor 

PMA     Phorbol 12-myristate 13-acetate 

qRT-PCR    Quantitative real time polymerase chain reaction  

RTK     Receptor tyrosine kinase  

sFlt1     Soluble Flt1 

S1P     Sphingosine-1 phosphate  

SDF-1     Stromal cell-derived factor-1 

SEM     Standard error of the mean 

siRNA     Small interfering RNA 

SMC     Smooth muscle cells 

TCF     T-cell factor 

TGF- α    Transforming growth factor-alpha 

TGF-β     Transforming growth factor-beta 

TIMP     Tissue inhibitor of matrix metalloproteinase 

TNF-α     Tumor necrosis factor-alpha 

TNFRI     Tumor necrosis factor receptor-1  
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TSP-1     Thrombospondin-1  

UNC5B     Unc-5 homolog B  

VE-Cadherin   Vascular endothelial-cadherin 

VEGF     Vascular endothelial growth factor  
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