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A 3D Model for Ion Beam Formation and Transport Simulation
J. Qiang, D. Todd, and D. LeitnerLawrene Berkeley National Laboratory,Berkeley, CA 94720In this paper, we present a three-dimensional model for self-onsisently model-ing ion beam formation from plasma ion soures and transporting in low energybeam transport systems. A multi-setion overlapped omputational domain hasbeen used to break the original transport system into a number of weakly oupledsubsystems. Within eah subsystem, maro-partile traking is used to obtainthe harge density distribution in this subdomain. The three-dimensional Poissonequation is solved within the subdomain after eah partile traking to obtain theself-onsistent spae-harge fores and the partile traking is repeated until thesolution onverges. Two new Poisson solvers based on a ombination of the spe-tral method and the �nite di�erene multigrid method have been developed tosolve the Poisson equation in ylindrial oordinates for the straight beam trans-port setion and in Frenet-Serret oordinates for the bending magnet setion.This model an have important appliation in design and optimization of the lowenergy beam line optis of the proposed Rare Isotope Aeelerator (RIA) frontend. I. INTRODUCTIONThe RIA lina driver requires a great variety of high harge state, high intensity ion beams fromthe Eletron Cylotron Resonane (ECR) ion soures. This presents a strong hallenge not only forthe design of the ECR ion soures but also for the design of low energy beam transport (LEBT) sys-tems. Computational tools help to explore a wide range of parameter spae, to identify the partileloss onditions, and to optimize the system design and operation. A number of simulation toolshave been developed in the past years to study the ion beam formation from ECR ion soures [1{4℄.However, these tools used suessive over-relaxation (SOR) method, to alulate the spae-hargefores (by solving the Poisson equation) during the ion beam formation. The onvergene rate ofthe SOR method dereases dramatially as the mesh size gets �ner and the number of grid points



2gets larger. Meanwhile, these tools do not e�etively handle the spae-harge e�ets inside a bend-ing magnet. So far, they have not been used to self-onsistently simulate a three-dimensional ionbeam transport inside a LEBT system. Previous designs of LEBT systems depended on a two-dimensional envelope model suh as TRACE-2D [5{7℄, a time dependent bunhed beam simulationwith periodi boundary ondition [8℄, or a simpli�ed model with in�nite beam pipe length [9℄. Afully three-dimensional self-onsistent simulation of multiple harge state ion beam transport inthe LEBT system will help to optimize the design of the transport system and to minimize thepartile losses in suh a system.II. PHYSICAL MODEL AND COMPUTATIONAL METHODSThe physial system in this model is a low energy ion beam transport system. A plot of aLEBT system together with the plasma ion soure at the Lawrene Berkeley National Laboratoryis given in Fig. 1 [10℄. It onsists of a high voltage extration system for ion beam formationfrom the plasma ion soure, a solenoid magneti lens for transverse fousing and a double-fousinganalyzing bend magnet for harge seletion. Low energy ion beam transport inside the LEBTsystem is di�erent from the beam transport inside a radio-frequeny (RF) lina. Inside the RFlina the beam is longitudinally bunhed to a few millimeters by the time dependent RF �elds.Inside the LEBT system, there is no longitudinal bunhing, the partiles extend longitudinallythrough the whole system to form a ontinuous steady state beam. The length of beam ouldbe from a few meters to ten meters. To model the partile transport in suh a system, we needto solve the time-independent Vlasov-Poisson equations inluding orret transverse boundaryonditions. A brute fore approah is to model the whole system as one omputational domaindiretly. However, this is omputationally impratial if a good numerial preision is required.For example, a very high numerial resolution is needed in order to aurately model the plasmasurfae at the exit of the ion soure. This high auray may not be needed through the wholesystem. Furthermore, the partiles at the beginning may not a�et the partiles near the enddue to the large longitudinal to transverse aspet ratio and the shielding of transverse ondutingwall. Hene, we an divided the whole beam into multiple overlapped segments. Fig. 2 showsa shemati plot of the overlapped multiple omputational subdomains. Here, eah subdomainoverlaps with the neighboring subdomains. For eah segment, we solve the time-independentVlasov-Poisson equations with the Dirihlet boundary onditions on the left end and the Neumannboundary onditions on the right end. The left end of the segment is hosen inside the domain of
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FIG. 1: A shemati plot of the low energy beam transport system together with the plasma ion soure atLawrene Berkeley National Laboratory.the preeding segment so that the potential and the density distribution obtained in the preedingsegment are used as the left boundary onditions of this segment. Within eah segment, an iterativepartile-traking method has been used to obtain the onverged solution of the time-independentVlasov-Poisson equations. The ow diagram of the iteration proedure is given in Fig. 3. Thepartiles are advaned through the spae by solving the Lorentz equations of motion for eahpartile subjet to the external �elds and the spae-harge fores. These partiles are depositedonto the omputational grid to obtain the harge density distribution on the mesh. After all of thepartiles have passed through the loal subdomain, the Poisson equation is solved to obtain thespae-harge potential generated by the ion beam itself. The partile traking is redone using thealulated new spae-harge �elds and the applied external �elds of the beam transport system.This proedure is repeated until the hange of the spae-harge potential between two iterations isbelow spei�ed error tolerane level and the partile trajetories have onverged.In the proess of partile traking, the Lorentz equations of motion are solved in the Frenet-Serret oordinate system sine it is a onvenient oordinate system for speifying partile motioninside both the bending magnet and the straight setion shown in Fig. 1. In this oordinate system,
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FIG. 2: A shemati plot of the overlapped multiple omputational subdomains.the equations of motion are written as [11℄:dpxdt = vz h1 + hxpz + Fx (1)dpydt = Fy (2)dpzdt = �vz h1 + hxpx + Fz (3)dxdt = pxm (4)dydt = pym (5)

FIG. 3: A ow diagram of the iterative ray traing proedure.



5dzdt = pzm(1 + hx) (6)where x orresponds to the horizontal diretion, y orresponds to the transverse diretion, zorresponds to the longitudinal diretion, px;y;z = m _r is the x, y, and z omponent of me-hani momentum, Fx;y;z is the orresponding fore of eah omponent,  is the relativisti fator = 1:0=p1� (_r=)2,  is the speed of light in the vauum, and h is the urvature of the bendingmagnet with a bend plane in x � z (i.e. horizontal) plane. Inside the straight setion, urvatureh = 0, the Frenet-Serret oordinates redue into the standard Cartesian oordinates. The abovenonlinear equations of motion are solved using a modi�ed leap-frog algorithm. The harge densityon the grid is obtained from the summation of linear volume weighted deposition sheme in theylindri oordinate system inside the straight setions and in the Frenet-Serret oordinate systeminside the bending magnet setion.A. Solution of the 3D Poisson Equation in Cylindrial CoordinatesA major part of the LEBT system, suh as extration region and solenoid fousing region, hasa ylindrial geometry with azimuthal symmetry. For suh a system, we an write the Poissonequation in ylindri oordinates as:�2��r2 + 1r ���r + 1r2 �2���2 + �2��z2 = ��=�0 (7)Here, � denotes the eletrostati potential generated by the beam itself, � the harge densityfuntion, r and z the radial and longitudinal distane. Sine both the eletri potential and theharge density are periodi funtion of �, we an approximate the potential � and soure term �as: �(r; �; z) = Nm=2�1Xm=�Nm=2 �m(r; z) exp(�im�) (8)�(r; �; z) = Nm=2�1Xm=�Nm=2�m(r; z) exp(�im�) (9)Substituting equations 8 and 9 into the Poisson equation 7, we obtain a group of deoupled two-dimensional partial di�erential equations in (r; z) as:�2�m�r2 + 1r ��m�r � m2r2 �m + �2�m�z2 = ��m=�0 (10)The boundary onditions at the radial edge are assumed as the Dirihlet boundary onditions withgiven potentials on the onduting wall or as the Neumann boundary onditions if there is no



6onduting wall. On the axis, the boundary onditions are��m(0; �; z)�r = 0 for m = 0 (11)�m(0; �; z) = 0 for m > 0 (12)The boundary onditions at the left edge of the omputational domain are assumed as the Dirih-let boundary onditions obtained from the preeding subdomain and as the Neumann boundaryonditions at the right edge of the omputational domain.The above two-dimensional partial di�erential equations are solved using a �nite di�erenemultigrid method for eah azimuthal mode m. The omputational domain for the extrationregion of the LEBT system ontains eletrodes with irregular shapes. For the grid points near theonduting surfae, the mesh size ould be di�erent in r and z diretions. An irregular disretizationalong r and z is needed. A shemati plot of an irregular disretization point is given in Fig. 4.For suh a disretization sheme, the di�erential operator in Eq. 10 an be approximated as:��m�r � 1h2h4(h2 + h4)(�mi+1;jh24 � �mi�1;jh22 + �mi;j(h22 � h24)) (13)�2�m�r2 � 2(h2 + h4)( 1h2 (�mi+1;j � �mi;j) + 1h4 (�mi�1;j � �mi;j)) (14)�2�m�z2 � 2(h1 + h3)( 1h1 (�mi;j+1 � �mi;j) + 1h3 (�mi;j�1 � �mi;j)) (15)where h1 and h3 denote the uneven mesh size in the z diretion, h2 and h4 denote the uneven meshsize in the r diretion. Subsituting these approximations into the Eq 10, we obtain a �ve pointdi�erene equation at grid point (i; j) as: ( 2r2i;jh2h4 + 2r2i;jh1h3 +m2 � ri;j(h2 � h4)h2h4 )�mi;j =r2i;j �i;j�0 + ( 2r2i;jh2(h2 + h4) + ri;jh4h2(h2 + h4) )�i+1;j + ( 2r2i;jh4(h2 + h4) � ri;jh2h4(h2 + h4) )�i�1;j + 2r2i;jh1(h1 + h3)�i;j+1 + 2r2i;jh3(h1 + h3)�i;j�1 (16)This equation redues into the standard seond-order �ve point di�erene equation for the gridpoints away from the onduting surfae where h1 = h3 = hz and h2 = h4 = hr.The linear algebrai Eq. 16 for eah grid point inside the omputational domain is solvedusing an iterative multigrid method [12{14℄. The multigrid method is an iterative method whihis based on the onept of smoothing out the numerial iteration errors on multiple resolutionsales. Instead of solving the original disrete Poisson equation on one level of mesh size, themultigrid method solves the disrete Poisson equation on multiple level of mesh size using aniterative method. The multigrid alogorithm onsists of four basi steps involving two grid levels:pre-smoothing, restrition, prolongation and post-smoothing. Both the pre-smoothing and thepost-smoothing approximate the solution of disrete Poisson equation using an iterative method
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FIG. 4: A shemati plot of an irregular disretization point inside the omputational domain.at the same disretization level. The restrition refers to interpolate the iteration residue from the�ner grid level approximation to the oarser grid. The residue on the oarser grid will be usedas soure term in the disrete linear Poisson equation to �nd the orretion on the oarser grid.The prolongation refers to a reinterpolation of the solution, i. e. orretion, from the oarser gridbak to the �ner grid to obtain an improved solution on that level. These four steps form thebasi building struture of the multigrid algorithm. If the disrete equation on the oarser gridan be solved by some analytial method or diret linear algrebra solver, only two grid levels areused, and the algorithm is referred to as two-grid method. If the solution on the oarser grid annot be easily attained, this step an be replaed by more two-grid iterations. Depending on howmany two-grid iterations are used when eah time the number of grid levels is inreased by one, themultigrid iteration an have a V yle (one two-grid iteration is used) or a W yle (two two-griditerations are used) [14℄. In the multigrid method, the iteration an start from �nest grid levelor start from the oarest grid level. If a good initial guess of the solution is available, startingfrom the �nest grid will be an appropriate method. Otherwise, starting from the oarsest grid willbe more eÆient sine the solution on the oarsest grid an be obtained from the diret solutionand reinterpolated to the �ner grid level. This method is also alled full multigrid algorithm ornested iteration. By hanging the resolution of the disretization, i. e. sale of resolution, from onelevel to the next level, the low frequeny errors in the numerial residues of the iteration an beremoved by a oarser grid iteration, while the high frequeny errors an be resolved on a �ner grid.The multigrid iteration provides a muh faster onvergene than the onventional iterative methodsuh as SOR. For most appliations, the omputational ost of this method sales linearly with



8the number of grid points and the onvergene rate does not degrade with �ner mesh size [13℄. Inthis work, we have extended a 2D multigrid solver developed by Fortuna to inlude the Neumannboundary ondition and the irregular geometry shape of the eletrode in the extration region [15℄.We have used a point red and blak Gaussian-Seidel iteration method as pre and post smoother oneah level. For the �rst iteration during eah partile traking, we have used the nested multigridalgorithm with a W yle to solve the disrete Poisson equation (Eq. 16) for eah azimuthal modesine the initial guess of the solution on the �nest grid level is not easily obtained. For the followingiteration, we have started the iteration from the �nest grid with the initial guess from the previousiteration. We have also used a bilinear interpolation for prolongation and restrition during themultigrid iteration.The above solver is �rst tested with a simple uniform round beam inside a onduting pipe sinethe analytial solution an be obtained for this ase. Here, we have used a Neumann boundaryonditions at both ends. The numerial solution together with the analytial solution is shownin Fig. 5. The agreement between the numerial and the analytial solution is very good. As aseond test, we alulated the potential inside the extration region with a 20 kV plasma eletrode,a �1 kV puller eletrode, and a 0 kV ground eletrode. The eletri potential on the axis as afuntion of distane is shown in Fig. 6 together with a solution using another ode WARP [16℄.The agreement between the solutions obtained by the two di�erent odes, whih are using di�erentPoisson solvers, is exellent.B. Solution of the 3D Poisson Equation in Frenet-Serret CoordinatesThe preeding Poisson solver is appliable for a round system with azimuthally symmetrigeometry. For some element in the LEBT system, suh as the bending magnet, it has a retangularross-setion with a horizontal bending angle. The bending magnet provides not only a transversefousing of the ion beam but also a seletion of di�erent harge states for further transport. Insidethis element, we use the Frenet-Serret oordinates sine these oordinates redue to the the normalCartesian oordinates when the urvature is zero. The 3D Poisson equation in this oordinatesystem an be written as:11 + hx ( ��x(1 + hx)���x ) + �2��y2 + 11 + hx( ��z 11 + hx ���z ) = ��(x; y; z)=�0 (17)where h is the urvature of the bending magnet, x orresponds to the horizontal diretion, yorresponds to vertial diretion and z orresponds to longitudinal diretion. For perfet onduting
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FIG. 5: Radial eletri �eld from the numerial solution and from the analytial solution.
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FIG. 6: Eletri potential on the axis from the new solver and from the WARP solver.plates, the eletri potential will vanish on vertial walls. We an approximate the eletri potentialand the harge density distribution as:�(x; y; z) = NmXm=1 �m(x; z) sin(m�y=a) (18)�(x; y; z) = NmXm=1�m(x; z) sin(m�y=a) (19)where a is the full vertial aperture width. Substituting these equations into the Poisson Eq. 18 andusing the orthogonal ondition of sine funtions, we obtain a group of deoupled two-dimensionalpartial di�erential equations:11 + hx ( ��x(1 + hx)��m�x + ��z 11 + hx ��m�z )� m2�2a2 �m = ��m(x; z)=�0 (20)The resulting two-dimensional partial di�erential equations are solved using the same �nite di�er-ene multigrid method desribed before.



10As a test of this Poisson solver, we alulated the eletri �elds inside a bended ondutingpipe with a longitudinal uniform and transverse Gaussian distribution beam and di�erent bendingurvatures. Fig. 7 shows the horizontal eletri �eld as a funtion of y at x = 0 for di�erent bendingurvatures. We see that as the urvature approahes to zero, the horizontal �eld vanishes due tothe symmetry of the beam density distribution.III. APPLICATIONSThe simulation tool developed here has been applied to the study of the ion beam formationand ion beam transport out of the superonduting ECR ion soure VENUS at the LawreneBerkeley National Laboratory [10℄. It onsists of an extration region, a solenoid fousing lens,and a bending analyzing magnet for harge seletion. The total length is about 3:5 meters. Asa �rst appliation of the omputational model developed here, we have done a simulation of ahydrogen ion beam formation from the ECR ion soure. We have hosen a omputational domainontaining the extration region and about 15 Debye lengths inside the plasma soure from theplasma aperature so that the formation of ion beam is not sensitive to the loation of the plasmaboundary. The boundary ondition at the left edge of the domain is set by the plasma potential�p whih an be found from [17℄:�p = �w � kTe log( NXi=1(ni0ne0s�TimeTeMi )) (21)where k is the Boltzman onstant, �w is the eletri extration potential on the wall,Mi is the massof ion speies i, me is the mass of eletron, Ti is the ion temperature, ni0 is the ion density insidethe plasma soure, ne0 is the eletron density inside the plasma soure, and N is the total numberof ion speies. The boundary ondition on the right edge of the domain is set as the Neumannboundary onditions. We have also assumed that the eletrons in the plasma follow a Boltzmandensity distribution: ne = ne0 exp (��p � �kTe ) (22)where � is the spae-harge eletri potential from the solution of the Poisson equation inludingthe ontributions from both the eletrons and the ions. As an example, Fig. 8 shows a hydrogenion beam formation using an extration voltage of 7 kV. The self-onsistent plasma boundary anbe seen in the �gure. The plasma density and the extration �elds are niely mathed in this aseproduing an almost at plasma boundary.
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FIG. 8: Transverse rms beam size as a funtion of distane from the 3D simulation and 2D simulation fora beam with 1 mA urrent.As another example of appliations, we have simulated a 2 mA H+ and H+2 ion beam transportthrough the LEBT system inluding the double fousing analyzing magnet. The bend magnet istreated fully three-dimensionally in this ase. External �elds from a OPERA-3d vetor �eld alu-lation are used to desribe magneti �elds of the bend [18℄. We have used 20; 480 maropartilesand �ve overlapped segments in the simulation. The transverse rms size for one harge state ofthe beam (H+) as a funtion of distane is shown in Fig. 9. There is a double fousing in bothhorizontal and vertial diretions of the beam after the bending magnet. Fig. 10 shows the frationof partiles survives inside the LEBT system. With the hosen bending magnet strength set forthe H+, all the H+2 partiles are lost inside the magnet.
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distance (m)FIG. 10: Fration of ion beam as a funtion of the VENUS LEBT system distane.IV. CONCLUSIONSIn this work, we have developed a three-dimensional model to self-onsitently simulate the ionbeam formation from plasma ion soures and the ion beam transport in low energy beam transportsystems through a bending magnet. We have used an overlapped multi-setion model to break theoriginal large system into a number of small subsystems. We have developed two new three-dimensional Poisson solvers to alulate the spae-harge fores generated by the beam inside thesubsystem self-onsistently. These new three-dimensional Poisson solvers based on a ombinationof spetral method and �nite di�erene multigrid method are more omputational eÆient thanthe �nite di�erene SOR method used in previous studies. We have also applied the model tostudies of the hydrogen ion beam formation and transport from the ECR ion soure at LBNL. Themodel developed here an have important appliation in design and optimization of the low energybeam line optis of the proposed Rare Isotope Aeelerator front end.
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