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A 3D Model for Ion Beam Formation and Transport Simulation
J. Qiang, D. Todd, and D. LeitnerLawren
e Berkeley National Laboratory,Berkeley, CA 94720In this paper, we present a three-dimensional model for self-
onsisently model-ing ion beam formation from plasma ion sour
es and transporting in low energybeam transport systems. A multi-se
tion overlapped 
omputational domain hasbeen used to break the original transport system into a number of weakly 
oupledsubsystems. Within ea
h subsystem, ma
ro-parti
le tra
king is used to obtainthe 
harge density distribution in this subdomain. The three-dimensional Poissonequation is solved within the subdomain after ea
h parti
le tra
king to obtain theself-
onsistent spa
e-
harge for
es and the parti
le tra
king is repeated until thesolution 
onverges. Two new Poisson solvers based on a 
ombination of the spe
-tral method and the �nite di�eren
e multigrid method have been developed tosolve the Poisson equation in 
ylindri
al 
oordinates for the straight beam trans-port se
tion and in Frenet-Serret 
oordinates for the bending magnet se
tion.This model 
an have important appli
ation in design and optimization of the lowenergy beam line opti
s of the proposed Rare Isotope A

e
elerator (RIA) frontend. I. INTRODUCTIONThe RIA lina
 driver requires a great variety of high 
harge state, high intensity ion beams fromthe Ele
tron Cy
lotron Resonan
e (ECR) ion sour
es. This presents a strong 
hallenge not only forthe design of the ECR ion sour
es but also for the design of low energy beam transport (LEBT) sys-tems. Computational tools help to explore a wide range of parameter spa
e, to identify the parti
leloss 
onditions, and to optimize the system design and operation. A number of simulation toolshave been developed in the past years to study the ion beam formation from ECR ion sour
es [1{4℄.However, these tools used su

essive over-relaxation (SOR) method, to 
al
ulate the spa
e-
hargefor
es (by solving the Poisson equation) during the ion beam formation. The 
onvergen
e rate ofthe SOR method de
reases dramati
ally as the mesh size gets �ner and the number of grid points



2gets larger. Meanwhile, these tools do not e�e
tively handle the spa
e-
harge e�e
ts inside a bend-ing magnet. So far, they have not been used to self-
onsistently simulate a three-dimensional ionbeam transport inside a LEBT system. Previous designs of LEBT systems depended on a two-dimensional envelope model su
h as TRACE-2D [5{7℄, a time dependent bun
hed beam simulationwith periodi
 boundary 
ondition [8℄, or a simpli�ed model with in�nite beam pipe length [9℄. Afully three-dimensional self-
onsistent simulation of multiple 
harge state ion beam transport inthe LEBT system will help to optimize the design of the transport system and to minimize theparti
le losses in su
h a system.II. PHYSICAL MODEL AND COMPUTATIONAL METHODSThe physi
al system in this model is a low energy ion beam transport system. A plot of aLEBT system together with the plasma ion sour
e at the Lawren
e Berkeley National Laboratoryis given in Fig. 1 [10℄. It 
onsists of a high voltage extra
tion system for ion beam formationfrom the plasma ion sour
e, a solenoid magneti
 lens for transverse fo
using and a double-fo
usinganalyzing bend magnet for 
harge sele
tion. Low energy ion beam transport inside the LEBTsystem is di�erent from the beam transport inside a radio-frequen
y (RF) lina
. Inside the RFlina
 the beam is longitudinally bun
hed to a few millimeters by the time dependent RF �elds.Inside the LEBT system, there is no longitudinal bun
hing, the parti
les extend longitudinallythrough the whole system to form a 
ontinuous steady state beam. The length of beam 
ouldbe from a few meters to ten meters. To model the parti
le transport in su
h a system, we needto solve the time-independent Vlasov-Poisson equations in
luding 
orre
t transverse boundary
onditions. A brute for
e approa
h is to model the whole system as one 
omputational domaindire
tly. However, this is 
omputationally impra
ti
al if a good numeri
al pre
ision is required.For example, a very high numeri
al resolution is needed in order to a

urately model the plasmasurfa
e at the exit of the ion sour
e. This high a

ura
y may not be needed through the wholesystem. Furthermore, the parti
les at the beginning may not a�e
t the parti
les near the enddue to the large longitudinal to transverse aspe
t ratio and the shielding of transverse 
ondu
tingwall. Hen
e, we 
an divided the whole beam into multiple overlapped segments. Fig. 2 showsa shemati
 plot of the overlapped multiple 
omputational subdomains. Here, ea
h subdomainoverlaps with the neighboring subdomains. For ea
h segment, we solve the time-independentVlasov-Poisson equations with the Diri
hlet boundary 
onditions on the left end and the Neumannboundary 
onditions on the right end. The left end of the segment is 
hosen inside the domain of
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FIG. 1: A s
hemati
 plot of the low energy beam transport system together with the plasma ion sour
e atLawren
e Berkeley National Laboratory.the pre
eding segment so that the potential and the density distribution obtained in the pre
edingsegment are used as the left boundary 
onditions of this segment. Within ea
h segment, an iterativeparti
le-tra
king method has been used to obtain the 
onverged solution of the time-independentVlasov-Poisson equations. The 
ow diagram of the iteration pro
edure is given in Fig. 3. Theparti
les are advan
ed through the spa
e by solving the Lorentz equations of motion for ea
hparti
le subje
t to the external �elds and the spa
e-
harge for
es. These parti
les are depositedonto the 
omputational grid to obtain the 
harge density distribution on the mesh. After all of theparti
les have passed through the lo
al subdomain, the Poisson equation is solved to obtain thespa
e-
harge potential generated by the ion beam itself. The parti
le tra
king is redone using the
al
ulated new spa
e-
harge �elds and the applied external �elds of the beam transport system.This pro
edure is repeated until the 
hange of the spa
e-
harge potential between two iterations isbelow spe
i�ed error toleran
e level and the parti
le traje
tories have 
onverged.In the pro
ess of parti
le tra
king, the Lorentz equations of motion are solved in the Frenet-Serret 
oordinate system sin
e it is a 
onvenient 
oordinate system for spe
ifying parti
le motioninside both the bending magnet and the straight se
tion shown in Fig. 1. In this 
oordinate system,
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FIG. 2: A shemati
 plot of the overlapped multiple 
omputational subdomains.the equations of motion are written as [11℄:dpxdt = vz h1 + hxpz + Fx (1)dpydt = Fy (2)dpzdt = �vz h1 + hxpx + Fz (3)dxdt = pxm
 (4)dydt = pym
 (5)

FIG. 3: A 
ow diagram of the iterative ray tra
ing pro
edure.



5dzdt = pzm
(1 + hx) (6)where x 
orresponds to the horizontal dire
tion, y 
orresponds to the transverse dire
tion, z
orresponds to the longitudinal dire
tion, px;y;z = m
 _r is the x, y, and z 
omponent of me-
hani
 momentum, Fx;y;z is the 
orresponding for
e of ea
h 
omponent, 
 is the relativisti
 fa
tor
 = 1:0=p1� (_r=
)2, 
 is the speed of light in the va

uum, and h is the 
urvature of the bendingmagnet with a bend plane in x � z (i.e. horizontal) plane. Inside the straight se
tion, 
urvatureh = 0, the Frenet-Serret 
oordinates redu
e into the standard Cartesian 
oordinates. The abovenonlinear equations of motion are solved using a modi�ed leap-frog algorithm. The 
harge densityon the grid is obtained from the summation of linear volume weighted deposition s
heme in the
ylindri
 
oordinate system inside the straight se
tions and in the Frenet-Serret 
oordinate systeminside the bending magnet se
tion.A. Solution of the 3D Poisson Equation in Cylindri
al CoordinatesA major part of the LEBT system, su
h as extra
tion region and solenoid fo
using region, hasa 
ylindri
al geometry with azimuthal symmetry. For su
h a system, we 
an write the Poissonequation in 
ylindri
 
oordinates as:�2��r2 + 1r ���r + 1r2 �2���2 + �2��z2 = ��=�0 (7)Here, � denotes the ele
trostati
 potential generated by the beam itself, � the 
harge densityfun
tion, r and z the radial and longitudinal distan
e. Sin
e both the ele
tri
 potential and the
harge density are periodi
 fun
tion of �, we 
an approximate the potential � and sour
e term �as: �(r; �; z) = Nm=2�1Xm=�Nm=2 �m(r; z) exp(�im�) (8)�(r; �; z) = Nm=2�1Xm=�Nm=2�m(r; z) exp(�im�) (9)Substituting equations 8 and 9 into the Poisson equation 7, we obtain a group of de
oupled two-dimensional partial di�erential equations in (r; z) as:�2�m�r2 + 1r ��m�r � m2r2 �m + �2�m�z2 = ��m=�0 (10)The boundary 
onditions at the radial edge are assumed as the Diri
hlet boundary 
onditions withgiven potentials on the 
ondu
ting wall or as the Neumann boundary 
onditions if there is no
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ondu
ting wall. On the axis, the boundary 
onditions are��m(0; �; z)�r = 0 for m = 0 (11)�m(0; �; z) = 0 for m > 0 (12)The boundary 
onditions at the left edge of the 
omputational domain are assumed as the Diri
h-let boundary 
onditions obtained from the pre
eding subdomain and as the Neumann boundary
onditions at the right edge of the 
omputational domain.The above two-dimensional partial di�erential equations are solved using a �nite di�eren
emultigrid method for ea
h azimuthal mode m. The 
omputational domain for the extra
tionregion of the LEBT system 
ontains ele
trodes with irregular shapes. For the grid points near the
ondu
ting surfa
e, the mesh size 
ould be di�erent in r and z dire
tions. An irregular dis
retizationalong r and z is needed. A s
hemati
 plot of an irregular dis
retization point is given in Fig. 4.For su
h a dis
retization s
heme, the di�erential operator in Eq. 10 
an be approximated as:��m�r � 1h2h4(h2 + h4)(�mi+1;jh24 � �mi�1;jh22 + �mi;j(h22 � h24)) (13)�2�m�r2 � 2(h2 + h4)( 1h2 (�mi+1;j � �mi;j) + 1h4 (�mi�1;j � �mi;j)) (14)�2�m�z2 � 2(h1 + h3)( 1h1 (�mi;j+1 � �mi;j) + 1h3 (�mi;j�1 � �mi;j)) (15)where h1 and h3 denote the uneven mesh size in the z dire
tion, h2 and h4 denote the uneven meshsize in the r dire
tion. Subsituting these approximations into the Eq 10, we obtain a �ve pointdi�eren
e equation at grid point (i; j) as: ( 2r2i;jh2h4 + 2r2i;jh1h3 +m2 � ri;j(h2 � h4)h2h4 )�mi;j =r2i;j �i;j�0 + ( 2r2i;jh2(h2 + h4) + ri;jh4h2(h2 + h4) )�i+1;j + ( 2r2i;jh4(h2 + h4) � ri;jh2h4(h2 + h4) )�i�1;j + 2r2i;jh1(h1 + h3)�i;j+1 + 2r2i;jh3(h1 + h3)�i;j�1 (16)This equation redu
es into the standard se
ond-order �ve point di�eren
e equation for the gridpoints away from the 
ondu
ting surfa
e where h1 = h3 = hz and h2 = h4 = hr.The linear algebrai
 Eq. 16 for ea
h grid point inside the 
omputational domain is solvedusing an iterative multigrid method [12{14℄. The multigrid method is an iterative method whi
his based on the 
on
ept of smoothing out the numeri
al iteration errors on multiple resolutions
ales. Instead of solving the original dis
rete Poisson equation on one level of mesh size, themultigrid method solves the dis
rete Poisson equation on multiple level of mesh size using aniterative method. The multigrid alogorithm 
onsists of four basi
 steps involving two grid levels:pre-smoothing, restri
tion, prolongation and post-smoothing. Both the pre-smoothing and thepost-smoothing approximate the solution of dis
rete Poisson equation using an iterative method
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FIG. 4: A s
hemati
 plot of an irregular dis
retization point inside the 
omputational domain.at the same dis
retization level. The restri
tion refers to interpolate the iteration residue from the�ner grid level approximation to the 
oarser grid. The residue on the 
oarser grid will be usedas sour
e term in the dis
rete linear Poisson equation to �nd the 
orre
tion on the 
oarser grid.The prolongation refers to a reinterpolation of the solution, i. e. 
orre
tion, from the 
oarser gridba
k to the �ner grid to obtain an improved solution on that level. These four steps form thebasi
 building stru
ture of the multigrid algorithm. If the dis
rete equation on the 
oarser grid
an be solved by some analyti
al method or dire
t linear algrebra solver, only two grid levels areused, and the algorithm is referred to as two-grid method. If the solution on the 
oarser grid 
annot be easily attained, this step 
an be repla
ed by more two-grid iterations. Depending on howmany two-grid iterations are used when ea
h time the number of grid levels is in
reased by one, themultigrid iteration 
an have a V 
y
le (one two-grid iteration is used) or a W 
y
le (two two-griditerations are used) [14℄. In the multigrid method, the iteration 
an start from �nest grid levelor start from the 
oarest grid level. If a good initial guess of the solution is available, startingfrom the �nest grid will be an appropriate method. Otherwise, starting from the 
oarsest grid willbe more eÆ
ient sin
e the solution on the 
oarsest grid 
an be obtained from the dire
t solutionand reinterpolated to the �ner grid level. This method is also 
alled full multigrid algorithm ornested iteration. By 
hanging the resolution of the dis
retization, i. e. s
ale of resolution, from onelevel to the next level, the low frequen
y errors in the numeri
al residues of the iteration 
an beremoved by a 
oarser grid iteration, while the high frequen
y errors 
an be resolved on a �ner grid.The multigrid iteration provides a mu
h faster 
onvergen
e than the 
onventional iterative methodsu
h as SOR. For most appli
ations, the 
omputational 
ost of this method s
ales linearly with



8the number of grid points and the 
onvergen
e rate does not degrade with �ner mesh size [13℄. Inthis work, we have extended a 2D multigrid solver developed by Fortuna to in
lude the Neumannboundary 
ondition and the irregular geometry shape of the ele
trode in the extra
tion region [15℄.We have used a point red and bla
k Gaussian-Seidel iteration method as pre and post smoother onea
h level. For the �rst iteration during ea
h parti
le tra
king, we have used the nested multigridalgorithm with a W 
y
le to solve the dis
rete Poisson equation (Eq. 16) for ea
h azimuthal modesin
e the initial guess of the solution on the �nest grid level is not easily obtained. For the followingiteration, we have started the iteration from the �nest grid with the initial guess from the previousiteration. We have also used a bilinear interpolation for prolongation and restri
tion during themultigrid iteration.The above solver is �rst tested with a simple uniform round beam inside a 
ondu
ting pipe sin
ethe analyti
al solution 
an be obtained for this 
ase. Here, we have used a Neumann boundary
onditions at both ends. The numeri
al solution together with the analyti
al solution is shownin Fig. 5. The agreement between the numeri
al and the analyti
al solution is very good. As ase
ond test, we 
al
ulated the potential inside the extra
tion region with a 20 kV plasma ele
trode,a �1 kV puller ele
trode, and a 0 kV ground ele
trode. The ele
tri
 potential on the axis as afun
tion of distan
e is shown in Fig. 6 together with a solution using another 
ode WARP [16℄.The agreement between the solutions obtained by the two di�erent 
odes, whi
h are using di�erentPoisson solvers, is ex
ellent.B. Solution of the 3D Poisson Equation in Frenet-Serret CoordinatesThe pre
eding Poisson solver is appli
able for a round system with azimuthally symmetri
geometry. For some element in the LEBT system, su
h as the bending magnet, it has a re
tangular
ross-se
tion with a horizontal bending angle. The bending magnet provides not only a transversefo
using of the ion beam but also a sele
tion of di�erent 
harge states for further transport. Insidethis element, we use the Frenet-Serret 
oordinates sin
e these 
oordinates redu
e to the the normalCartesian 
oordinates when the 
urvature is zero. The 3D Poisson equation in this 
oordinatesystem 
an be written as:11 + hx ( ��x(1 + hx)���x ) + �2��y2 + 11 + hx( ��z 11 + hx ���z ) = ��(x; y; z)=�0 (17)where h is the 
urvature of the bending magnet, x 
orresponds to the horizontal dire
tion, y
orresponds to verti
al dire
tion and z 
orresponds to longitudinal dire
tion. For perfe
t 
ondu
ting
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FIG. 6: Ele
tri
 potential on the axis from the new solver and from the WARP solver.plates, the ele
tri
 potential will vanish on verti
al walls. We 
an approximate the ele
tri
 potentialand the 
harge density distribution as:�(x; y; z) = NmXm=1 �m(x; z) sin(m�y=a) (18)�(x; y; z) = NmXm=1�m(x; z) sin(m�y=a) (19)where a is the full verti
al aperture width. Substituting these equations into the Poisson Eq. 18 andusing the orthogonal 
ondition of sine fun
tions, we obtain a group of de
oupled two-dimensionalpartial di�erential equations:11 + hx ( ��x(1 + hx)��m�x + ��z 11 + hx ��m�z )� m2�2a2 �m = ��m(x; z)=�0 (20)The resulting two-dimensional partial di�erential equations are solved using the same �nite di�er-en
e multigrid method des
ribed before.



10As a test of this Poisson solver, we 
al
ulated the ele
tri
 �elds inside a bended 
ondu
tingpipe with a longitudinal uniform and transverse Gaussian distribution beam and di�erent bending
urvatures. Fig. 7 shows the horizontal ele
tri
 �eld as a fun
tion of y at x = 0 for di�erent bending
urvatures. We see that as the 
urvature approa
hes to zero, the horizontal �eld vanishes due tothe symmetry of the beam density distribution.III. APPLICATIONSThe simulation tool developed here has been applied to the study of the ion beam formationand ion beam transport out of the super
ondu
ting ECR ion sour
e VENUS at the Lawren
eBerkeley National Laboratory [10℄. It 
onsists of an extra
tion region, a solenoid fo
using lens,and a bending analyzing magnet for 
harge sele
tion. The total length is about 3:5 meters. Asa �rst appli
ation of the 
omputational model developed here, we have done a simulation of ahydrogen ion beam formation from the ECR ion sour
e. We have 
hosen a 
omputational domain
ontaining the extra
tion region and about 15 Debye lengths inside the plasma sour
e from theplasma aperature so that the formation of ion beam is not sensitive to the lo
ation of the plasmaboundary. The boundary 
ondition at the left edge of the domain is set by the plasma potential�p whi
h 
an be found from [17℄:�p = �w � kTe log( NXi=1(ni0ne0s�TimeTeMi )) (21)where k is the Boltzman 
onstant, �w is the ele
tri
 extra
tion potential on the wall,Mi is the massof ion spe
ies i, me is the mass of ele
tron, Ti is the ion temperature, ni0 is the ion density insidethe plasma sour
e, ne0 is the ele
tron density inside the plasma sour
e, and N is the total numberof ion spe
ies. The boundary 
ondition on the right edge of the domain is set as the Neumannboundary 
onditions. We have also assumed that the ele
trons in the plasma follow a Boltzmandensity distribution: ne = ne0 exp (��p � �kTe ) (22)where � is the spa
e-
harge ele
tri
 potential from the solution of the Poisson equation in
ludingthe 
ontributions from both the ele
trons and the ions. As an example, Fig. 8 shows a hydrogenion beam formation using an extra
tion voltage of 7 kV. The self-
onsistent plasma boundary 
anbe seen in the �gure. The plasma density and the extra
tion �elds are ni
ely mat
hed in this 
aseprodu
ing an almost 
at plasma boundary.
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FIG. 8: Transverse rms beam size as a fun
tion of distan
e from the 3D simulation and 2D simulation fora beam with 1 mA 
urrent.As another example of appli
ations, we have simulated a 2 mA H+ and H+2 ion beam transportthrough the LEBT system in
luding the double fo
using analyzing magnet. The bend magnet istreated fully three-dimensionally in this 
ase. External �elds from a OPERA-3d ve
tor �eld 
al
u-lation are used to des
ribe magneti
 �elds of the bend [18℄. We have used 20; 480 ma
roparti
lesand �ve overlapped segments in the simulation. The transverse rms size for one 
harge state ofthe beam (H+) as a fun
tion of distan
e is shown in Fig. 9. There is a double fo
using in bothhorizontal and verti
al dire
tions of the beam after the bending magnet. Fig. 10 shows the fra
tionof parti
les survives inside the LEBT system. With the 
hosen bending magnet strength set forthe H+, all the H+2 parti
les are lost inside the magnet.
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tion of ion beam as a fun
tion of the VENUS LEBT system distan
e.IV. CONCLUSIONSIn this work, we have developed a three-dimensional model to self-
onsitently simulate the ionbeam formation from plasma ion sour
es and the ion beam transport in low energy beam transportsystems through a bending magnet. We have used an overlapped multi-se
tion model to break theoriginal large system into a number of small subsystems. We have developed two new three-dimensional Poisson solvers to 
al
ulate the spa
e-
harge for
es generated by the beam inside thesubsystem self-
onsistently. These new three-dimensional Poisson solvers based on a 
ombinationof spe
tral method and �nite di�eren
e multigrid method are more 
omputational eÆ
ient thanthe �nite di�eren
e SOR method used in previous studies. We have also applied the model tostudies of the hydrogen ion beam formation and transport from the ECR ion sour
e at LBNL. Themodel developed here 
an have important appli
ation in design and optimization of the low energybeam line opti
s of the proposed Rare Isotope A

e
elerator front end.
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