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With synchronization being one of nature’s most ubiquitous collective behaviors, the field of network
synchronization has experienced tremendous growth, leading to significant theoretical developments. However,
most previous studies consider uniform connection weights and undirected networks with positive coupling. In
the present article, we incorporate the asymmetry in a two-layer multiplex network by assigning the ratio of the
adjacent nodes’ degrees as the weights to the intralayer edges. Despite the presence of degree-biased weighting
mechanism and attractive-repulsive coupling strengths, we are able to find the necessary conditions for intralayer
synchronization and interlayer antisynchronization and test whether these two macroscopic states can withstand
demultiplexing in a network. During the occurrence of these two states, we analytically calculate the oscillator’s
amplitude. In addition to deriving the local stability conditions for interlayer antisynchronization via the master
stability function approach, we also construct a suitable Lyapunov function to determine a sufficient condition for
global stability. We provide numerical evidence to show the necessity of negative interlayer coupling strength
for the occurrence of antisynchronization, and such repulsive interlayer coupling coefficients cannot destroy
intralayer synchronization.

DOI: 10.1103/PhysRevE.107.034313

I. INTRODUCTION

Multilayer networks [1–3] of coupled oscillators provide a
fascinating platform to study the collective asymptotic behav-
ior of dynamical systems evolving on top of it. Several layers
of such a network prove to be a fertile playground to reveal
the interplay between the network structure and the unfold-
ing of collective phenomena of various dynamical processes.
The hallmark property of a realistic system is the complex
connectivity patterns of its components, and it may often give
rise to complex dynamics. An isolated network can seldom
describe such collective dynamics of interconnected systems.
Thus, researchers often resort to multilayer networks antici-
pating some new fresh insights into complex systems. In past
years, numerous studies have unfolded several emergent col-
lective phenomena, such as extreme events [4,5], percolation
[6,7], congestion of traffic [8,9], epidemics spreading [10,11],
controllability [12], evolutionary game dynamics [13,14], and
diffusion [15], to name a few. The results presented in these
studies demonstrate a very different phenomenology from the
one found in monolayer networks. Various complex forms of
synchronized dynamics of multilayer networks of the coupled
oscillator, such as interlayer synchronization [16,17], relay
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synchronization [18], antiphase synchronization [19], relay
interlayer synchronization [20], intralayer synchronization
[21–23], cluster synchronization [24,25], explosive synchro-
nization [26–28], breathing synchronization [29], solitary
states [30], and complete synchronization [31], have been
brought to the limelight by investigating the role that network
structure plays in the onset and stability of such coherent
states. Nevertheless, the study of interlayer antisynchroniza-
tion on multilayer structures remains relatively unexplored to
the best of our knowledge under different contexts.

Interlayer antisynchronization in a multiplex network
refers to the dynamical process where two identical oscillators
directly connected through the interlayer link settle down to
an equal amplitude with a constant phase difference of π . In-
spired by antiphase patterns in two-module neuronal networks
[32], we are interested in deriving the criteria for the existence
and stability of interlayer antisynchronization state in a duplex
(multiplex with two layers). Apart from performing local sta-
bility analysis of this state of the interacting systems with the
help of the master stability function (MSF) approach [33,34],
we are equally interested in deriving the sufficient condition
for global stability of the interlayer antisynchronization state.
To do this, we construct a suitable Lyapunov function for
deriving the global stability of this state. The term “global
stability” here reflects that the system will evolve into the
interlayer antisynchronization state irrespective of the chosen
initial conditions except for a set of measure zero [35].

Most of the previous investigations on the synchronization
[36–41] of complex networks of coupled dynamical systems
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are performed by assuming (i) unweighted and undirected
networks and (ii) attractive (positive) coupling strengths only.
However, realistic systems are far more complicated, and
there are ample real-life examples where heterogeneous con-
nectivity weights [42] and the simultaneous presence of
attractive-repulsive interactions [43–47] are beneficial in por-
traying real-world scenarios. For instance, the number of
emails exchanged between two colleagues in an organiza-
tion, and the number of scientific collaborations between two
scientists depend on different contexts. It is best to assign a
weight to each edge of the network to derive relationships
between such interacting individuals. Instead of using the
random weighted directed network, we consider the influence
of a node’s degree on its neighbors and construct a degree-
biased network to study the interlayer antisynchronization and
intralayer synchronization in the multiplex. Synchronization
on weighted networks have been studied extensively in the
literature, as indicated in Refs. [48–52]. Nevertheless, to our
knowledge, the emergence and (local and global) stability
of interlayer antisynchronization on multiplex networks with
weighted intralayer connections have never been investigated.
Furthermore, we introduce the negative interlayer coupling
strength, which is found to be essential for the onset of the
interlayer antisynchronization as per our numerical simula-
tions. The positive intralayer coupling strengths allow the
system to settle into the intralayer synchronization, despite the
presence of negative interlayer coupling strength. Numerous
real-life scenarios are highlighted in the review [53] to empha-
size the importance of attractive-repulsive interaction. As per
Ref. [54], all the pairs of interacting subunits of a system can
not minimize their energy due to opposing coupling strengths.
When network connections change over time, such temporal
networks with positive-negative coupling may produce several
peculiar states like static π state [55], extreme events [56,57],
inhomogeneous small oscillation [58], and many more. Ecol-
ogists and data analysts also unveil the tug of war between
positive and negative interactions for extracting useful infor-
mation about ecosystems’ diversity in species [59,60].

Following the seminal works by Estrada and his collabo-
rators [61,62], we consider three distinct types of intralayer
networks: hub-attracting, hub-repelling, and unweighted net-
work. We furnish analytical insights about the conditions for
the emergence of intralayer synchronization and interlayer
antisynchronization. We analytically derive the necessary con-
ditions for all the identical oscillators to evolve in unison
within the layers. All these analytical results help to design
a duplex with suitable oscillators and couplings that allows
the system to achieve such coherent states. Our numerical
simulations also support that our analytical findings (existence
and stability criteria) effectively help to achieve intralayer
synchronization and interlayer antisynchronization when ap-
propriate conditions are met.

II. MATHEMATICAL MODEL

To illustrate our findings, we consider a multiplex net-
work with two layers. On top of the vertices of each layer
consisting of N nodes, we place an m-dimensional identical
dynamical system with state vectors xα,i ∈ Rm, α = 1, 2 and
i = 1, 2, 3, . . . , N . Here the first component (α) of the suffices

of xα,i represents the number of the layer, and the second
component (i) depicts the number of the node of the αth layer.
Each of these isolated oscillators maintains the dynamical
equations in the absence of intralayer and interlayer couplings
as follows:

ẋα,i = f (xα,i ), (1)

where f :Rm → Rm is the autonomous nonlinear evolution
function. We assume this f is continuously differentiable with
respect to its argument. We need to consider this assumption,
which we need later for performing the stability analysis.
Let A [α]

i j , α = 1, 2 be the elements of the adjacency matrix
encoding the intralayer topology of the αth layer. Precisely,
for α = 1, 2,

A [α]
i j =

{
1, if ith and jth nodes are connected in the αth layer

0, otherwise
.

(2)

Since we are also interested in inspecting intralayer syn-
chronization, we only consider connected intralayer networks.
When both the layers are coupled, then we can describe
the dynamical evolution of the ith node of the αth layer as
follows:

ẋ1,i = f (x1,i ) + kA

N∑
j=1

˜A [1]
i j G[x1, j, x1,i] + kRH[x2,i, x1,i],

ẋ2,i = f (x2,i ) + kA

N∑
j=1

˜A [2]
i j G[x2, j, x2,i] + kRH[x1,i, x2,i].

(3)

Here ˜A [α]
i j is generated by assigning a weight to each element

A [α]
i j as

˜A [α]
i j =

(
d j

di

)β

A [α]
i j , (4)

where β ∈ {0, 1,−1} and di denotes the degree of the ith node
in the whole multiplex network whose adjacency matrix is
given by

A =
(

A [1] I
I A [2]

)
. (5)

Here I is the identity matrix of order N . When β = +1, we
have a hub-attracting intralayer adjacency matrix by adopting
the terminology from Ref. [62]. This rescaled unsymmetric
hub-attracting matrix reflects the tendency to produce a strong
influence on the low-degree neighbors by the high-degree
nodes [63]. We can inspect the reverse scenario of biased dom-
ination from low to high-degree nodes with the hub-repelling
matrix by considering β = −1 [61,63]. However, the matrix
remains unaltered for β = 0, i.e., we have ˜A [α]

i j = A [α]
i j for

β = 0. Thus, Eq. (3) reduces to

ẋ1,i = f (x1,i ) + kA

N∑
j=1

(
d j

di

)β

A [1]
i j G[x1, j, x1,i]

+ kRH[x2,i, x1,i],
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ẋ2,i = f (x2,i ) + kA

N∑
j=1

(
d j

di

)β

A [2]
i j G[x2, j, x2,i]

+ kRH[x1,i, x2,i]. (6)

Here kA is the intralayer coupling strength, and G : Rm ×
Rm → Rm is the output vectorial function within the layers.
On the other hand, kR is the interlayer coupling strength,
and H :Rm × Rm → Rm is the interlayer coupling vectorial
function. In the next section, we rigorously investigate the
necessary criteria for the existence of interlayer antisynchro-
nization state and intralayer synchronization.

III. ANALYTICAL FINDINGS

Before representing our key analytical findings, first, we
briefly define two synchronized states: (i) interlayer antisyn-
chronization and (ii) intralayer synchronization states.

The interlayer antisynchronization depicts the synchronous
time evolution of the oscillators situated on top of the
replica nodes with a constant phase difference of π ,
i.e., the sum [x1,i(t ) + x2,i(t )] of the dynamics of the
state variables of the ith oscillators of both layers van-
ishes after the transient. Mathematically, when the sys-
tem evolves in the interlayer antisynchronization state, we
have

x1,i(t ) + x2,i(t ) = 0, ∀ i = 1, 2, . . . , N. (7)

We define the interlayer antisynchronization error as

E = lim
t→∞

1

T

∫ t+T

t

N∑
i=1

‖x1,i(t ) + x2,i(t )‖
N

dτ. (8)

Clearly, E necessarily becomes zero in the state of inter-
layer antisynchronization and remains nonzero otherwise.

On the other hand, intralayer synchronization remains
completely independent of the interlayer antisynchronization.
A system may evolve in the interlayer antisynchronization
state; however, it may not maintain the intralayer synchro-
nization and vice versa. Intralayer synchronization refers to
the synchronous evolution of all dynamical units within each
layer. In other words, proceeding to the limit as t → ∞ for all
i = 1, 2, . . . , N and α = 1, 2, there definitely exists intralayer
synchronization solution xα (t ) ∈ Rm such that

xα,i(t ) → xα (t ). (9)

Now we move on to prove the necessary conditions on the
individual node dynamics f , the network topology ˜A [α]

i j , the
coupling functions G and H for the emergence of interlayer
antisynchronization and intralayer synchronization states.

A. Necessary condition for interlayer anti synchronization state

When the system evolves in the interlayer antisynchroniza-
tion state, all the vertices of one layer maintain the same
amplitude with its replica nodes of the different layers. Still
their phase difference will be π . Thus, using Eq. (7), we obtain

the following set of equations from Eq. (3) as follows:

ẋ1,i = f (x1,i ) + kA

N∑
j=1

˜A [1]
i j G[x1, j, x1,i]

+ kRH[−x1,i, x1,i],

ẋ1,i = − f (−x1,i ) − kA

N∑
j=1

˜A [2]
i j G[−x1, j,−x1,i]

− kRH[x1,i,−x1,i]. (10)

These equations remain consistent if
(1) f (x) = − f (−x), i.e., f is an odd function
(2)

∑N
j=1

˜A [1]
i j G[x1, j, x1,i]= − ∑N

j=1
˜A [2]
i j G[−x1, j,−x1,i]

and
(3) H (−x, x) = −H (x,−x), i.e., H is an odd function.
These three conditions are necessary for obtaining inter-

layer antisynchronization and, by no means, sufficient ones.
Mere fulfilling these three conditions, one can not anticipate
interlayer antisynchronization.

B. Necessary condition for intralayer synchronization

Let all the trajectories of the first layer maintain a coherent
rhythm, i.e., x1,i(t ) converges to x1(t ) at some time, say, t =
t1. Similarly, x2,i(t ) of the second layer converges to x2(t ) at
some time t = t2. Let t0 be the maximum of {t1, t2}. Thus, for
any time t � t0, the rate of changes of all the state variables in
all respective layers should be identical. The system converges
into the intralayer synchronization manifold (x1(t ), x2(t )) for
t � t0.

Without loss of any generality, we choose two arbitrary
nodes i and l (say) from both the layers. Therefore, we have
x1,i(t ) = x1,l (t ) = x1(t ) and x2,i(t ) = x2,l (t ) = x2(t ), once
the system (3) settles into the intralayer synchronization man-
ifold. Then the corresponding dynamics of the ith and lth
nodes of the first layer are governed by the following ordinary
differential equations:

ẋ1 = ẋ1,i = f (x1) + kA

N∑
j=1

˜A [1]
i j G[x1, x1] + kRH[x2, x1],

ẋ1 = ẋ1,l = f (x1) + kA

N∑
j=1

˜A [1]
l j G[x1, x1] + kRH[x2, x1].

(11)

Subtracting these two equations, we obtain

N∑
j=1

( ˜A [1]
i j − ˜A [1]

l j

)
G[x1, x1] = 0. (12)

Similarly, the dynamics of the ith and lth nodes of the second
layer yield the following equation:

N∑
j=1

( ˜A [2]
i j − ˜A [2]

l j

)
G[x2, x2] = 0. (13)

Since both the two chosen nodes i and l are arbitrary,
thus the necessary condition for the intralayer synchronization
gives the following criteria:
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(1)
∑N

j=1
˜A [α]
i j = ∑N

j=1
˜A [α]
l j , α = 1, 2, i.e., the in-degree

of each node in the each layer must be equal or
(2) G[xα, xα] = 0, α = 1, 2, i.e., the intralayer coupling

function G vanishes after the oscillators of each layer evolve
synchronously.

IV. RESULTS

For numerical simulations, we utilize a FORTRAN 90
compiler. We integrate Eq. (3) using the fifth-order Runge-
Kutta-Fehlberg method with integration time step h = 0.01.
As per our derived necessary conditions on the interlayer
antisynchronization, H needs to be an odd function. Hence,
we choose H (xi, x j ) = [x j + xi, y j + yi]T where T represents
the transpose of a vector. Similarly, the necessary conditions
for the intralayer synchronization reveal either the in-degree
of each node of the intralayer network is equal or G should
vanish after the intralayer synchronization is achieved. Hence,
we choose G(xi, x j ) = [x j − xi, y j − yi]T as in the form of
the linear diffusive coupling, so that G will become identi-
cally zero after achieving the intralayer synchronization state.
The diffusive coupling was previously used in many systems
[64], which removes the restriction on the intralayer network
connectivity. This choice of G will allow us to choose any
connected intralayer network.

A. Stuart-Landau oscillators

We first choose identical Stuart-Landau (SL) oscillators
[65] to begin our numerical investigations. The state dynamics

of the limit cycle oscillator situated on top of the i-th node is
represented by

f (xi ) =
⎛
⎝

[
1 − (

xi
2 + yi

2
)]

xi − ωiyi[
1 − (

xi
2 + yi

2
)]

yi + ωixi

⎞
⎠, (14)

where xi ∈ R2. Since we are basically interested in the inter-
layer antisynchronization and intralayer synchronization, thus
we choose the same intrinsic frequency ωi = ω = 3 for all
oscillators. Clearly, this f , being the odd function, satisfies
the necessary condition for the emergence of the interlayer
antisynchronization state.

1. Amplitude of each oscillator maintaining interlayer
antisynchronization and intralayer synchronization

We analytically calculate the amplitude of each SL os-
cillator when each oscillator in a single layer undergoes a
synchronous evolution with all the other units of the same
layer, and simultaneously, each oscillator maintains an anti-
synchronization state with all its replicas in different layers.
The chosen functions G and H help us to write the dynamical
evolution of each lth SL oscillator (l = 1, 2, . . . , N ) in the
αth layer (α = 1, 2) in terms of the complex variable zα,l =
xα,l + kyα,l = rα,l ekθα,l ∈ C as follows:

ż1,l = (1 − |z1,l |2)z1,l + kωz1,l + kA

N∑
j=1

˜A [1]
l j (z1, j − z1,l ) + kR(z2,l + z1,l ),

ż2,l = (1 − |z2,l |2)z2,l + kωz2,l + kA

N∑
j=1

˜A [2]
l j (z2, j − z2,l ) + kR(z1,l + z2,l ), (15)

where k = √−1, rα,l =
√

x2
α,l + y2

α,l is the amplitude of the

SL oscillator situated in the lth node of the αth layer and
the phase of that SL oscillator, θα,l is given by the prin-
cipal value of argument of the complex number zα,l , i.e.,

θα,l = tan−1
(yα,l

xα,l

)
. By substituting z1,l = r1,l ekθ1,l and z2,l =

r2,l ekθ2,l in (15), we find the phase of the oscillators obeys the
following ordinary differential equations:

θ̇1,l = ω + kA

N∑
j=1

˜A [1]
l j

r1, j

r1,l
sin (θ1, j − θ1,l )

+ kR
r2,l

r1,l
sin (θ2,l − θ1,l ),

θ̇2,l = ω + kA

N∑
j=1

˜A [2]
l j

r2, j

r2,l
sin (θ2, j − θ2,l )

+ kR
r1,l

r2,l
sin (θ1,l − θ2,l ). (16)

In order to obtain these equations, we assume rα,l �= 0, l =
1, 2, . . . , N and α = 1, 2. Clearly, if rα,l = 0, then the system
converges to the origin giving rise to the amplitude death state
[66–69]. Hence for rα,l = 0, we can not anticipate interlayer
antisynchronization state. Thus, we neglect the case of rα,l =
0. Similarly, we derive the rate of change of amplitude of the
lth SL oscillator as follows:

ṙ1,l = (
1 − r2

1,l

)
r1,l + kA

N∑
j=1

˜A [1]
l j [r1, j cos (θ1, j − θ1,l ) − r1,l ]

+ kR[r2,l cos (θ2,l − θ1,l ) + r1,l ],

ṙ2,l = (
1 − r2

2,l

)
r2,l + kA

N∑
j=1

˜A [2]
l j [r2, j cos (θ2, j − θ2,l ) − r2,l ]

+ kR[r1,l cos (θ1,l − θ2,l ) + r2,l ]. (17)

For complete intralayer synchronization state, we have

rα,i = rα, θα,i = θα (18)
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FIG. 1. A multiplex network: We here visualize a duplex network
(a multiplex network with two layers) with the help of Gephi [70].
Each of these layers consists of a connected intralayer network. This
network used for the numerical experiments (unless stated otherwise)
contains 12 nodes and 21 links. The six interlayer edges (dotted lines)
connect the replica nodes and help to connect the two connected
layers.

for α = 1, 2 and i = 1, 2, . . . , N .
Furthermore, if the system evolves in the interlayer anti-

synchronization state, then we have

r1 = r2, θ1 − θ2 = ±π. (19)

Using Eqs. (18) and (19), Eq. (17) becomes

ṙ1 = (
1 − r2

1

)
r1. (20)

Thus, the duplex networks in the presence of intralayer syn-
chronization and interlayer antisynchronization states can be
described by Eq. (20), where the local dynamics of each node
are associated with the SL oscillator (14). Solving Eq. (20) as
a function of time t , we have

r1 = +
√

e2t

e2t − c1
. (21)

Here c1 is the integration constant. Also, the linear stabil-
ity analysis of (20) suggests there are two stationary points:
r1 = 0 and r1 = 1. The stationary point r1 = 0 is unstable. In
fact, we are not interested in r1 = 0, as r1 = 0 corresponds to
the amplitude death state, which contradicts the emergence of
the interlayer antisynchronization state. The other stationary
point r1 = 1 is stable. Thus, the system (15) experiencing the
intralayer synchronization and the interlayer antisynchroniza-
tion possesses the unit amplitude (r1 = 1) irrespective of the
choice of the coupling coefficients kA and kR.

2. Numerical illustration and demultiplexing effect

To validate our analytical findings, we consider the multi-
plex network given in Fig. 1. This multiplex network contains
two layers, where each layer consists of two different con-
nected intralayer networks. The first layer contains six nodes
and seven links, whereas the second layer is made of six nodes
and eight edges. On top of each of these vertices, we place
identical SL oscillators (14) with the same intrinsic frequency
ω = 3.0. To verify our findings, here we propose two different
measures:

(1) The first one

FReplica =
〈

1

N

N∑
i=1

[1 + cos (θ1,i − θ2,i )]

〉
(22)

is to measure the interlayer antisynchronization. 〈·〉 repre-
sents here the time average, and for numerical simulation, we
choose 0.5 × 105 steps to average this measure after the initial
transients of 1.5 × 105 steps. The scaling factor 1

N accounts
for the N number of interlayer links. We are basically inter-
ested with only two values of FReplica, viz. FReplica = 2, which
indicates the interlayer phase synchronization, and FReplica = 0
representing the interlayer antisynchronization. However, this
measure deals with only the phase of each oscillator; thus,
to ensure the intralayer synchronization and interlayer anti-
synchronization, we need to see the temporal evolution of the
state vectors too.

(2) To measure intralayer phase synchronization, we
define

FLayer1 =
〈

1

L1

∑
i< j

A [1]
i j [1 + cos (θ1,i − θ1, j )]

〉
,

FLayer2 =
〈

1

L2

∑
i< j

A [2]
i j [1 + cos (θ2,i − θ2, j )]

〉
. (23)

Here L1 and L2 are the numbers of edges of both connected
layers, respectively. If these two measures attain their respec-
tive maximum values of 2, the system achieves intralayer
phase synchronization. Besides, if they both acquire their
respective minimum values 0, the system reaches intralayer
antiphase synchronization.

Using the multiplex network in Fig. 1, we have construct
the adjacency matrix A [see (5)]. The degree of each node
is given by d1 = d5 = d7 = d9 = d11 = d12 = 4 and d2 =
d3 = d4 = d6 = d8 = d10 = 3. Using these degrees di and in-
tralayer graphs, we construct the weighted directed networks
with adjacency matrices ˜A [α], α = 1, 2. In Fig. 2 we plot the
variation of FLayer1, FLayer2, and FReplica by numerically inte-
grating Eqs. (3) with intralayer coupling strength kA = 0.1.
For all the numerical simulations with identical SL oscilla-
tors, we choose initial conditions randomly for each oscillator
within the interval [−1, 1] × [−1, 1]. An exciting observation
of Fig. 2 is that the system does not exhibit interlayer antisyn-
chronization for any positive interlayer coupling coefficient
kR. Once the interlayer coupling strength kR becomes negative
and attains a sufficient value, FReplica diminishes to zero and
continues to be at zero, suggesting the occurrence of inter-
layer antisynchronization. To compare the results, we vary kR

within the interval [ − kA
10 , kA

10 ] in each panel, where kA = 0.1.
We vary kR from 0.01 to −0.01 with small space −0.0001, and
for each step, we select the initial conditions randomly from
[−1, 1] × [−1, 1]. Figures 2(a)–2(c) are plotted for the hub-
attracting intralayer matrix (β = 1), the unweighted intralayer
matrix (β = 0), and the hub-repelling intralayer matrix (β =
−1), respectively. Depending on the initial conditions in the
small neighborhood of kR = 0, FReplica attains multiple val-
ues. However, the measures FLayer1 and FLayer2 reach their
maximum values of 2 for all chosen values of the interlayer
coupling strength kR, even when kR is negative. This suggests
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FIG. 2. The variation of FLayer1, FLayer2, and FReplica as a function of interlayer coupling strength kR: We choose the multiplex network shown
in Fig. 1, and place an identical limit cycle oscillator (14) on top of each node with ωi = ω = 3. We vary the interlayer coupling strength kR

from 0.01 to −0.01 with fixed space −0.0001 and fixed intralayer coupling strength kA = 0.1. For each of these 200 kRs, we choose the initial
condition of each oscillator randomly within the interval [−1, 1] × [−1, 1]. For kR > 0, the system remains in interlayer phase synchronization
(i.e., FReplica = 2) beyond a critical value of kR. However, the system attains interlayer antisynchronization (FReplica = 0) for a suitable negative
interlayer coupling strength. Each of these subfigures is drawn with different adjacency matrices ˜A [α] using the multiplex network in Fig. 1.
Panel (a) represents the results for hub-attracting intralayer matrix (β = 1), whereas panel (c) depicts the results for the hub-repelling intralayer
matrix (β = −1). The middle panel (b) shows the results for the unweighted intralayer matrix (β = 0). Irrespective of the chosen value of β,
the system settles down to an interlayer antisynchronized state for negative interlayer coupling strength (see blue square markers). In spite of
choosing negative kR, each layer maintains intralayer synchronization as FLayer1 (red plus (+) markers) = FLayer2 (magenta circle markers) = 2
throughout the panels.

our chosen intralayer coupling strength kA for this simula-
tion is sufficient to maintain the coherent behavior among
the identical SL oscillators within the layers, and the inter-
layer coupling strength kR, even when it is negative, can not
destroy the intralayer coherence. Nevertheless, for all these
three matrices, FReplica becomes zero beyond a critical value of
kR < 0. The required interlayer coupling strength with fixed
kA = 0.1 for the multiplex network given in Fig. 1 is as fol-
lows: (i) kR ≈ −0.0037 for hub-attracting intralayer matrix
(β = 1), (ii) kR ≈ −0.0033 for unweighted intralayer matrix
(β = 0), and (iii) kR ≈ −0.0032 for hub-repelling intralayer
matrix (β = −1). All these critical values are obtained after
averaging over 100 independent numerical simulations. We
have the same underlying network structure in all these real-
izations but possess different random initial conditions. Thus,
the critical interlayer coupling strength varies with each re-
alization. Note that we do not want to emphasize the role
of enhancement of interlayer antisynchronization here by
changing the values of β. This topic is a subject of rigorous
investigation and beyond the scope of the present work. The
impact of β on the enhancement of interlayer antisynchro-
nization and determine the critical value of kR for different
multiplex networks may be investigated in the near future.
Nevertheless, we later perform the global stability analysis of
the interlayer antisynchronization for a few special intralayer
networks to elucidate the effect of initial conditions. i.e., we
will determine an approximate value of interlayer coupling
strength kR < 0 for which the system evolves interlayer anti-
synchronously irrespective of the choice of initial conditions,
except for a set of measure zero.

Thus, our selected intralayer coupling function G, inter-
layer coupling function H , intralayer coupling strength kA >

0, and intralayer coupling strength kR < 0 work immensely
well for the emergence of intralayer synchronization and

interlayer antisynchronization states. However, as mentioned
earlier, the proposed measures do not incorporate the ampli-
tude of the oscillators. Hence, we plot the dynamics of each
SL oscillator in Fig. 3. To avoid monotonicity, we show the
results in Fig. 3 with only hub-attracting intralayer matrix
(β = 1). Although we plot all 12 oscillators’ temporal evo-
lution in Fig. 3(a), however, we can only see two trajectories
here. This is due to the simultaneous appearance of intralayer
synchronization in both layers. All trajectories of the same
layer collapse into a single one. To generate this figure, we
choose the same multiplex network given in Fig. 1. We set
the intralayer coupling strength kA = 0.1 and the intralayer
coupling strength kR = −0.1, so that |kA| = |kR|. We again
choose initial conditions randomly for each SL oscillator
within the interval [−1, 1] × [−1, 1]. Interestingly, the two in-
tralayer synchronized trajectories maintain a constant π phase
difference as revealed through Fig. 3(a). Apart from that, we
also plot the sum (x1,i + x2,i ) (see blue line) that indicates the
sum of the dynamics of the oscillators situated on top of the
replica nodes. This temporal evolution of (x1,i + x2,i ) remains
at zero after the initial transient as depicted in Fig. 3(a). This
(x1,i + x2,i ) = 0 suggests the emergence of interlayer antisyn-
chronization. We also plot the positions of x1,i and x2,i of
the multiplex at a particular time after the initial transient
in Fig. 3(b). This snapshot indicates the occurrence of two
synchronized clusters with π phase difference. Evidently, one
of these synchronized clusters represents the state of the oscil-
lators of one layer, and the other cluster reflects the dynamics
of another layer. Figure 3(c) reveals any oscillator of the first
layer (here, without any loss of generality, we choose x1,1, i.e.,
the first oscillator) maintains a synchronized rhythm with any
oscillator of the same layer (here we choose x1,2, i.e., the sec-
ond oscillator for visualization) and preserves the interlayer
antisynchronization with the oscillators on top of the replica
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FIG. 3. Intralayer synchronization and interlayer antisynchronization for hub-attracting intralayer matrix (β = 1): All the trajectories of
the first layer collapse to a single trajectory (red line), and similarly, the trajectories of the second layer oscillate within [−1, 1] maintaining
the same path (magenta line) in (a). This attests to the occurrence of intralayer synchronization. The sum (x1,i + x2,i ) converges to a fixed value
zero (blue line) after the transient. This validates the emergence of interlayer antisynchronization. Panel (b) contemplates the appearance of two
clusters. The SL oscillators of the first layer lie within a synchronized group, and the oscillators of the second layer stay in another cluster. Due
to the presence of repulsive interlayer coupling strength kR = −0.1, these two clusters maintain a constant phase difference of π . All the panels
are drawn using random initial conditions from [−1, 1] × [−1, 1]. We choose the oscillators on top of the node 1, 2, and 7, respectively, from
the multiplex network given in Fig. 1. We plot the phase portrait of these oscillators after the transient. Clearly, we have x1,1 = x1,2 = −x2,1.
More importantly, panels (a) and (c) confirm our analytical calculation revealing each SL oscillator evolves with a unit radius after reaching
the interlayer antisynchronization manifold and the intralayer synchronization manifold. For each panel, we choose kA = |kR| = 0.1.

node of the other layer [see x1,1 = −x2,1 in Fig. 3(c)]. Further,
Figs. 3(a) and 3(c) ensure that the identical SL oscillators
sustain a unit radius after achieving the intralayer synchro-
nization and interlayer antisynchronization. This validates our
analytical findings too.

Now we want to understand whether all these N = 6
interlayer links are necessary or not to achieve interlayer an-
tisynchronization in the multiplex, chosen in Fig. 1. Instead
of demultiplexing the multiplex randomly, we prefer a sys-
tematic way to demultiplex the network. First, we remove the
connections between the first oscillator of both layers, i.e.,
we disconnect the interlayer link 1–7 of the multiplex shown
in Fig. 1. Now, in the absence of this link 1–7, the network
does not remain as a multiplex. However, it remains a mul-
tilayer network. Now, we integrate the system (3) by placing
identical SL oscillators (14) on top of each node with ω = 3.
We choose the interlayer coupling strength kR = −0.1 and set
the intralayer coupling strength as kA = |kR|. We again choose
the initial conditions randomly within [−1, 1] × [−1, 1]. The
chosen coupling strengths still allow the system to main-
tain the interlayer antisynchronization along with intralayer
synchronization. Keeping the same coupling strengths and
random initial conditions from [−1, 1] × [−1, 1], we remove
the link 2–8 between the second oscillators of both layers.
Interestingly, even this link removal does not destroy both the
interlayer antisynchronization and intralayer synchronization.
In fact, in this way, we gradually disconnect the interlayer
links one by one. We find the system evolves in the interlayer
antisynchronization and intralayer synchronization; still, there
exists at least one interlayer link between the two layers.
Unless we detach the last interlayer link 6–12, i.e., the con-
nection between the sixth oscillators of both layers, the system
settles in the interlayer antisynchronization state. Thus, only
one interlayer link is sufficient to entertain the interlayer anti-

synchronization once the oscillators settle themselves into the
intralayer synchronization manifold.

Here is a feasible explanation behind this occurrence of
interlayer antisynchronization with only one interlayer link.
Once the oscillators attain intralayer synchronization, this
coherence will not be destroyed with negative interlayer cou-
pling strength, as shown in Figs. 2 and 3. Thus, each of these
two layers can be represented by two state vectors x1(t ) and
x2(t ) (say), respectively. Now, since that one single interlayer
link connects these two layers with repulsive interlayer cou-
pling strength, thus these two state vectors x1(t ) and x2(t ) try
to maximize their phase difference. Hence, we have |x1(t )| =
|x2(t )| and their phase difference is exactly π . In other words,
we have x1(t ) + x2(t ) = 0. In Table I we represent how the
gradual removal of interlayer links results in the values of
FLayer1, FLayer2, and FReplica. We find FReplica = 0 until the
single interlayer link 6–12 remains. After removing all in-
terlayer links, FReplica will give an initial condition-dependent
value. Deleting all interlayer links still entertains the intralayer
synchronization as the intralayer coupling strength kA = 0.1
provides sufficient coherence among the oscillators within the
same layer. Thus, we have FLayer1 = FLayer2 = 2 even without
all interlayer connections.

B. Thomas’ cyclically symmetric attractor

It is already established in Sec. III that the vector field
f should be an odd function in order to realize one of the
necessary conditions of interlayer antisynchronization along
with intralayer synchronization. We already represent the re-
sults with the help of SL oscillators in the earlier subsection.
To further validate our claim, we choose a different system
with a self-excited attractor [71,72], viz., Thomas’ cyclically
symmetric attractor [73–75], where the state dynamics of the
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TABLE I. Demultiplexing of the network.

Removal of interlayer links FLayer1 FLayer2 FReplica

1–7 2 2 0
2–8 2 2 0
3–9 2 2 0
4–10 2 2 0
5–11 2 2 0
6–12 2 2 Initial condition-dependent value

ith oscillator is represented by

f (xi ) =
⎛
⎝sin (yi ) − bxi

sin (zi ) − byi

sin (xi ) − bzi

⎞
⎠, (24)

where b is a constant. For b > 1, the origin is the single stable
equilibrium. The system undergoes a pitchfork bifurcation at
b = 1. As the parameter b is further decreased, the system
undergoes a Hopf bifurcation around b ≈ 0.32899, creating
stable limit cycles. Through a period-doubling cascade, the
system becomes chaotic at b ≈ 0.208186.

We integrate Eqs. (6) with β = −1 by placing identical
Thomas’ cyclically symmetric attractor on top of each node.
We simulate the system for 3 × 105 steps and discard the ini-
tial 2.7 × 105 steps treating them as transient. We choose the
same coupling functions G(xi, x j ) = [x j − xi, y j − yi, z j −
zi]T and H (xi, x j ) = [x j + xi, y j + yi, z j + zi]T for the numer-
ical simulation. All the panels in Fig. 4 are drawn with fixed
kA = 1.0 and kR = −0.3. We choose three distinct values of
the system parameter b. All these panels suggest all the six
oscillators of the same layer coincide in a single trajectory, in-
dicating the intralayer synchronization. However, they exhibit
replica-wise antiphase synchronization. We find (x1,i + x2,i )
(blue line) converges to exactly zero after the initial transient
in Fig. 4. Hence, we again confirm the emergence of the inter-
layer antisynchronization with Thomas’ cyclically symmetric

attractor and validate our analytical calculations for such a
state’s existence.

V. LOCAL STABILITY ANALYSIS OF INTERLAYER
ANTISYNCHRONIZATION STATE

We already derive a necessary condition

N∑
j=1

˜A [1]
i j G[x1, j, x1,i] = −

N∑
j=1

˜A [2]
i j G[−x1, j,−x1,i] (25)

for the emergence of interlayer antisynchronization. Still, now
we ignore this condition as the function G is chosen as the
diffusive function, and it will vanish identically after the
occurrence of the intralayer synchronization. Therefore, the
condition (25) mentioned above is trivially satisfied. Since
G is chosen as, say, G(xi, x j ) = [x j − xi, y j − yi, z j − zi]T =
G[xi − x j]. Thus from Eq. (25), we have

N∑
j=1

˜A [1]
i j G[x1, j − x1,i] = −

N∑
j=1

˜A [2]
i j G[−x1, j + x1,i],

⇒
N∑

j=1

˜A [1]
i j G[x1, j − x1,i] =

N∑
j=1

˜A [2]
i j G[x1, j − x1,i].

(26)

FIG. 4. The intralayer synchronization and intralayer antisynchronization with identical Thomas’ cyclically symmetric attractor: The
figures are drawn for (a) b = 0.10, (b) b = 0.20, and (c) b = 0.30. We consider the same multiplex network with 12 vertices and 21 edges,
shown in Fig. 1. Initial conditions are chosen randomly from [−4, 4] × [−4, 4] × [−4, 4]. The interlayer coupling strength kR is set at −0.3,
and the intralayer coupling strength kA is kept fixed at 1.0. We choose β = −1; thus, we have the hub-repelling intralayer matrices. In all
panels, we find (x1,i + x2,i ) converges to a fixed value zero after the initial transient. Hence, the emergence of interlayer antisynchronization
is confirmed. Moreover, all the trajectories of the same layer collapse into a single trajectory [shown with the red (magenta) line for the first
(second) layer].
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The interlayer antisynchronization and the intralayer syn-
chronization states are two completely independent emerging
phenomena of a multiplex network. Thus, the system does
not need to evolve into intralayer synchrony during the ap-
pearance of interlayer antisynchronization. Therefore, G may
not vanish during the sole occurrence of interlayer antisyn-
chronization. Hence for G �= 0, we have from Eq. (26) the
following simplistic choice:

˜A [1] = ˜A [2] = B̃ (say). (27)

Thus, both connected layers contain the same intralayer
networks. Hence, Eqs. (3) transform to the following set of
equations:

ẋ1,i = f (x1,i ) + kA

N∑
j=1

B̃i jG[x1, j − x1,i]

+ kRH[x2,i + x1,i],

ẋ2,i = f (x2,i ) + kA

N∑
j=1

B̃i jG[x2, j − x2,i]

+ kRH[x2,i + x1,i]. (28)

During the occurrence of interlayer antisynchronization
state, the synchronous solution satisfies

ẋ1,i = f (x1,i ) + kA

N∑
j=1

B̃i jG[x1, j − x1,i], ẋ2,i = −ẋ1,i.

(29)

Let δχi(t ) be a tiny amount of feasible perturbation on the ith
node of the second layer from its interlayer antisynchroniza-
tion state. Then we have

x2,i(t ) = −x1,i(t ) + δχi(t ). (30)

Thus, the error dynamics transverse to the
interlayer antisynchronization manifold 
 =
{(x1,1(t ), x1,2(t ), . . . , x1,N (t )) ⊆ RmN : x1,i(t ) + x2,i(t ) = 0
for all i = 1, 2, . . . , N and t ∈ R+} is given by the following
equations:

δχ̇i = ẋ1,i + ẋ2,i

= f (x1,i ) + f (−x1,i + δχi )

+ kA

N∑
j=1

B̃i jG[δχ j − δχi] + 2kRHδχi,

= J f (x1,i )δχi − kA

N∑
j=1

L̃i jGδχ j + 2kRHδχi, (31)

for all i = 1, 2, . . . , N . Here J f (x1,i ) = ∂ f (x)

∂x
|x=x1,i

, where

x1,i satisfies Eq. (29). Also, L̃ be the zero-row sum intralayer
Laplacian matrix [76], defined as Li j = −Bi j for i �= j and
Lii = ∑N

j=1 Bi j , i = 1, 2, 3, . . . , N . Due to the linear inde-
pendence of these error components, all the state variables of
Eq. (31) evolve transverse to the interlayer antisynchroniza-
tion manifold. Therefore, the Lyapunov exponents of Eq. (31)
are all transverse to 
.

Now we place Thomas cyclically symmetric attractor on
top of each node of the multiplex, and thus, using Eq. (31),
we derive the following transverse error equations:

δẋi = cos(yi )δyi − bδxi − kA

N∑
j=1

L̃i jδx j + 2kRδxi,

δẏi = cos(zi)δzi − bδyi − kA

N∑
j=1

L̃i jδy j + 2kRδyi,

δżi = cos(xi )δxi − bδzi − kA

N∑
j=1

L̃i jδz j + 2kRδzi. (32)

For each i = 1, 2, . . . , N , the state variable (xi, yi, zi ), being
lying on the interlayer antisynchronization manifold, satisfies
the following equations:

ẋi = cos(yi ) − bxi − kA

N∑
j=1

L̃i jx j,

ẏi = cos(zi) − byi − kA

N∑
j=1

L̃i jy j,

żi = cos(xi ) − bzi − kA

N∑
j=1

L̃i j z j . (33)

Since we are interested in investigating the local stability of
the interlayer antisynchronization state for the duplex network
of Thomas cyclically symmetric attractor, we calculate 3N
Lyapunov exponents by solving the linearized equation (32)
along with the equation of motion (33) of the interlayer anti-
synchronization state. Out of these 3N Lyapunov exponents,
the maximum Lyapunov exponent �max will provide us the
transition point from desynchronization to interlayer antisyn-
chronization state. By keeping fixed the intralayer coupling
strength kA, we plot �max as a function of the interlayer
coupling strength kR. �max < 0 will provide the necessary
condition for the local stability of the interlayer antisynchro-
nization state.

Similarly, if we place identical SL oscillators on top of each
node of the multiplex instead of Thomas cyclically symmetric
attractor, the error components transverse to the interlayer
antisynchronization manifold satisfy the following evolution
equation:

δẋi = [
1 − 3x2

i − y2
i

]
δxi − [ω + 2xiyi]δyi

− kA

N∑
j=1

L̃i jδx j + 2kRδxi,

δẏi = (ω − 2xiyi )δxi + [
1 − x2

i − 3y2
i

]
δyi

− kA

N∑
j=1

L̃i jδy j + 2kRδyi. (34)

For each i = 1, 2, . . . , N , the state variable (xi, yi, zi ) of the
interlayer antisynchronization state satisfies the following
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FIG. 5. The interlayer antisynchronization error E (blue) and the
maximum transverse Lyapunov exponent �max (red) as a function
of the interlayer coupling strength kR: Both layers contain the same
ring intralayer network with four vertices. In (a) for the SL oscillator,
we set the system’s parameter at kA = 0.1 and ω = 3.0, whereas in
(b) for the Thomas cyclically symmetric attractor, we set kA = 1.0
and b = 0.2. E reduces to zero suggesting the occurrence of inter-
layer antisynchronization. Simultaneously, �max crosses zero and
becomes negative, revealing the appearance of interlayer antisyn-
chronization. This indicates that our local stability condition agrees
quite well with our numerical simulation.

equations:

ẋi = [
1 − (

x2
i + y2

i

)]
xi − ωyi − kA

N∑
j=1

L̃i jx j,

ẏi = [
1 − (

x2
i + y2

i

)]
yi + ωxi − kA

N∑
j=1

L̃i jy j . (35)

For the computation of the maximum Lyapunov exponent
�max for the duplex of SL oscillators, we need to solve the
linearized Eq. (34) along with Eq. (35) of the interlayer anti-
synchronization state, yielding the 2N Lyapunov exponents.

Figure 5 indicates our derived local stability condition
works quite well. We choose the intralayer coupling strength
kA = 0.1 and the system parameter ω = 3.0 for the SL oscil-
lator in Fig. 5(a), whereas we keep fixed kA = 1.0, and the
system parameter b = 0.2 for the Thomas cyclically symmet-
ric attractor in Fig. 5(b). We choose a ring network of four
nodes in each layer for this simulation. As the constructed
multiplex is a regular graph where the degree of each vertex of
the multiplex is three, thus we have ˜A = A from Eq. (4). We
plot the interlayer antisynchronization error E [see Eq. (8)] in
Fig. 5 for both coupled systems. Clearly, E (blue) diminishes
to zero gradually with the decrement of kR. This E = 0 attests
to the emergence of the interlayer antisynchronization state
x1,i(t ) + x2,i(t ) = 0, ∀ i = 1, 2, 3, 4. Similarly, the red lines
in Fig. 5 contemplate the variation of the maximum Lyapunov
exponent �max as a function of kR. As evident from Fig. 5,
�max becomes negative where E becomes zero in Fig. 5.

VI. SUFFICIENT CONDITION OF GLOBAL STABILITY
ANALYSIS FOR INTERLAYER ANTISYNCHRONIZATION

STATE

To derive the global stability condition for the interlayer
antisynchronization state, we need to assume a few conditions
which need to be satisfied for our calculations. If the follow-
ing conditions are satisfied, our derived interlayer coupling
strength kR leads to the interlayer antisynchronization in the
duplex network irrespective of the chosen initial conditions
except for a set of measure zero.

(1) The first condition is the individual vector field f must
be Lipschitz continuous, i.e., there exists a positive real con-
stant M such that

‖ f (x) − f (y)‖
‖x − y‖ � M, x �= y. (36)

If the relation mentioned above holds, i.e., if there is an
upper bound of the rate of change of the isolate oscillators’
dynamics in the phase space, then capitalizing on the Cauchy-
Schwarz inequality, we have

[x − y]T [ f (x) − f (y)] � ‖x − y‖‖ f (x) − f (y)‖
� M(x − y)T (x − y)∀x, y ∈ Rm.

(37)

(2) The intralayer Laplacian matrix L̃ must be a sym-
metric matrix. However, as per our construction, L̃ is a
symmetric matrix if and only if the intralayer network is a
regular graph (i.e., di = d j for all i and j), or we choose
β = 0, i.e., we consider only the unweighted case. Thus,
we restrict our global stability analysis to two types of
intralayer networks, viz., β = 0 or the regular intralayer net-
works where each node has the same degree. Hence under
these two specific choices, the intralayer Laplacian matrix L̃
is a symmetric positive semidefinite matrix. Thus, one of its
eigenvalues is zero, and all the other eigenvalues are positive.

(3) The interlayer coupling matrix H must be a symmetric
positive definite. Thus all of its eigenvalues are strictly posi-
tive.

(4) The intralayer coupling matrix G is a symmetric pos-
itive semidefinite matrix. Therefore all the eigenvalues of G
are nonnegative.

Let us define the interlayer antisynchronization error for
each replica as

ei = x1,i + x2,i for i = 1, 2, . . . , N. (38)

Hence, we have

ėi = ẋ1,i + ẋ2,i = f (x1,i ) + f (−x1,i + ei )

+ kA

N∑
j=1

B̃i jG[e j − ei] + 2kRHei,

= f (x1,i ) − f (x1,i − ei )

− kA

N∑
j=1

L̃i jGe j + 2kRHei. (39)

Let e be the stack of the error terms e1, e2, . . . , eN in the
vectorial form. Then we can rewrite the rate of change of this
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error system in the following form:

ė=
N⊕

i=1

[ f (x1,i ) − f (x1,i − ei )] − kAL̃ ⊗ Ge + 2kRIN ⊗ He,

(40)

where x1,i, x2,i satisfy Eq. (28). Here
⊕

and ⊗ represent the
matrix direct sum and Kronecker product, respectively.

Let us define a Lyapunov function in terms of the error
quantities as

V (t ) = 1
2 eT e. (41)

Then using Eq. (40), we have

V̇ (t ) = eT ė = eT
N⊕

i=1

[ f (x1,i ) − f (x1,i − ei )]

− kAeT [L̃ ⊗ G]e + 2kReT [IN ⊗ H]e

=
N⊕

i=1

eT
i [ f (x1,i ) − f (x1,i − ei )]

− kAeT [L̃ ⊗ G]e + 2kReT [IN ⊗ H]e. (42)

To further proceed, we have to utilize the following bound-
edness of the quadratic form xT Dx, where xT denotes the
transpose of x. Now if D is a real symmetric matrix of order
N , then for all x ∈ RN ,

λmin[D]xT x � xT Dx � λmax[D]xT x, (43)

where λmin[D] and λmax[D] are the minimum and maximum
eigenvalues of D, respectively. These inequalities (37) and
(43) help to convert Eq. (42) as follows:

V̇ (t ) � [M − kAλmin[L̃ ⊗ G] + 2kRλmax[IN ⊗ H]]eT e.

(44)

Now, as per our assumption, G is a positive semidefinite
matrix. Therefore all the eigenvalues of G are nonnegative.
Also, the minimum eigenvalue of L̃ is zero. Thus, we have

λmin[L̃ ⊗ G] = λmin[L̃ ]λmin[G] = 0. (45)

Also, all the eigenvalues of IN is 1. Thus, we have

λmax[IN ⊗ H] = λmax[H]. (46)

Hence, Eq. (44) reduces to

V̇ (t ) � [M + 2kRλmax[H]]eT e. (47)

Since as per assumption, λmax[H] > 0. Thus, we know
V̇ (t ) < 0 yields the required global stability condition. Hence,
Eq. (47) provides

kR < − M

2λmax[H]
. (48)

Thus, whenever we choose an interlayer coupling strength
kR less than −M

2λmax[H ] , the global stability of the interlayer an-
tisynchronization state is assured irrespective of the chosen
initial conditions (except for a set of measure zero) if our
earlier mentioned assumptions hold. Note that the derived
interlayer coupling strength is not optimized in the sense that
it may be possible to calculate a better (optimal) interlayer

coupling strength to achieve such an interlayer antisynchro-
nization state by introducing more higher-order error terms
in the function (41). One more noticeable thing from the
relation (48) is one needs negative interlayer coupling strength
to establish the convergence of each oscillator in one layer
anti synchronously to its counterpart oscillator on the other
layer, irrespective of their initial conditions except for a set of
measure zero. As per our specific choice of the interlayer cou-
pling matrix H = diag(1, 1, 1), we have λmax[H] = 1. Thus,
the required interlayer coupling strength reduces to

kR < −M

2
. (49)

Thus, our calculated interlayer coupling strength for the
global convergence to the antisynchronization state of each
replica node, irrespective of initial conditions, depends cru-
cially on the Lipschitz constant of the isolated dynamics.
Hence, one requires different coupling strengths for distinct
dynamical systems. For instance, the Lipschitz constant for
the SL oscillator with ωi = ω = 3 is approximately 3.0.
Similarly, the Lipschitz constant for the Thomas cyclically
cylindrical oscillator with b = 0.2 is approximately 1.0711.
Therefore, the required kR for the global convergence of the
replica-wise antisynchronization trajectories irrespective of
initial conditions except for a set of measure zero is

kR < −1.5

for the SL oscillators with the chosen system parameter as the
local dynamics, and

kR < −0.53555

for the Thomas cyclically cylindrical oscillators with the cho-
sen system parameter as the local dynamics on top of the
multiplex.

VII. DISCUSSION

It is noteworthy that one can map the interlayer anti-
synchronization problem into the interlayer synchronization
by applying a suitable coordinate translation, x2,i → −x′

2,i.
Definitely, such a transformation allows us to arrive at the
standard synchronization problem; hence, we can use tra-
ditional techniques to study the phenomenon. However, by
doing such a transformation, we will mathematically lose
some valuable information about this phenomenon. Our
derivations indicate that we need something extra apart
from being identical for obtaining interlayer antisynchroniza-
tion. Specifically, the oscillators should maintain symmetry
in the form of an odd evolution function, which is nec-
essary for achieving such a novel state. Furthermore, a
few steps of calculations affirm that mathematically there
are no restrictions in the interlayer coupling functions for
maintaining interlayer complete synchronization in the trans-
lated coordinates. However, we successfully derive that one
needs odd interlayer coupling functions to obtain interlayer
antisynchronization.

Physically, we also lose the phenomenon of antisynchro-
nization when we apply such a coordinate transformation,
as the translated coordinates lead to the standard com-
plete synchronization phenomenon. However, such a peculiar
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antisynchronization state is worthy of investigation. For in-
stance, Christiaan Huygens observed the opposite type of
oscillation of two pendulums hanging from the same base
in 1665 [64,77–79]. So, one can also map this phenomenon
with “standard complete sync” in a translated coordinate
system. But we know this is a particular type of “standard
sync.” Transforming the antiphase synchronization achieved
by two pendulum clocks hanging on a common base into a
synchronization phenomenon may solve the same problem
mathematically, however, at the cost of losing the novel fea-
ture of the physical event.

Studying antiphase synchronization gained immense atten-
tion among researchers after the experiment by Huygens. For
instance, Ref. [80] studies the existence and stabilization of
various multi-cluster states, which may not be stable (even
if it exists) in single-layer networks. References [81,82] in-
vestigated the partial synchronizations in the form of clusters
in adaptively coupled phase oscillators. A numerical study
of antiphase synchronization in a bilayer network of repul-
sively and bidirectionally coupled 2D lattices of van der Pol
oscillators is furnished on Ref. [83]. Notably, the numerical
study on van der Pol oscillators by Shepelev et al. supports
our analytical findings too. Since its evolution function is an
odd function, thus it is possible to observe interlayer antisyn-
chronization in such a system. Using multiplex architectures
in combination with attractive intralayer and repulsive inter-
layer connections, the antiphase synchronization of identical
dynamical systems is analytically investigated in Ref. [19].
This study provides an elegant way of establishing antiphase
synchronization in a multiplex network by introducing repul-
sive coupling through any spanning tree of a single connected
layer and the interlayer links.

In fact, there are numerous investigations on antiphase
synchronization [54,84–87] and antisynchronization [88–99].
However, our goal is to look at the interlayer antisynchroniza-
tion of attractive-repulsively coupled amplitude oscillators in
a multilayer network. And each of its layers may consist
of a hub-attracting, hub-repelling, or unweighted network.
The inclusion of diverse factors like (i) attractive-repulsive
interaction, (ii) multilayer networks, (iii) amplitude oscilla-
tors, and (iv) hub-attracting, hub-repelling, and unweighted
intralayer adjacency matrix, leads to a complex system,
and despite the complexities of our proposed model, we
can provide a few exciting outcomes of this novel form
of synchronization, including (1) necessary conditions for
the existence of intralayer synchronization and interlayer
antisynchronization, (2) calculating the amplitude of each
oscillator by analytically solving 2N-coupled ordinary differ-
ential equations, (3) impact of demultiplexing, and (4) local
and global stability analysis of interlayer antisynchronization
state.

VIII. SUMMARY AND REMARKS

The present article offers a thorough understanding of
interlayer antisynchronization, a novel form of synchroniza-
tion that emerges in multiplex networks with hub-attracting,
hub-repelling, and unweighted intralayer networks. Our
mathematics-inspired studies allow drawing a series of im-
portant conclusions about this unique dynamical phenomenon
occurring in multiplex networks in terms of its local and
global stability conditions, relation to network topology, cou-
pling functions, and robustness under demultiplexing of the
network. We have demonstrated that our analytically derived
conditions for the existence and stability of such a solution
agree perfectly well with numerical simulations. Further, we
have derived a few necessary conditions analytically for the
intralayer synchronization in multiplex networks and numer-
ically verified it by assigning two different oscillators as the
local dynamics at the top of the network’s nodes. Apart from
that, we successfully analytically predict the SL oscillators’
amplitude during the simultaneous occurrence of interlayer
antisynchronization and intralayer synchronization. Our re-
sults may serve as a starting point for unveiling the novel
emergent collective dynamics in various natural systems. Al-
though we are unaware of any immediate applications of
the model studied here; however, our model may prove to
be beneficial for studying the complex topological behav-
ior of brain dynamics. References [100,101] demonstrate the
usefulness of studying brain dynamics using multilayer net-
works, and smooth brain functioning depends crucially on the
co-existence of excitatory and inhibitory neurons [102,103].
Examining the theoretical grounds of interlayer antisynchro-
nization is essential in gaining some intuition about the
cortical neuronal networks. We conclude with the hope that
our systematic investigations with the theoretical framework
may offer many possibilities for future research in generic
multilayer networks, revealing far more fundamental aspects
of these complex forms of synchronization.
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