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ABSTRACT OF THE THESIS

Improving Automated Time Series

Forecasting with the use

of Model Ensembles

by

Christopher Thomas Cavitt Meade

Master of Applied Statistics

University of California, Los Angeles, 2019

Professor Frederic Paik Schoenberg, Chair

There currently exist several black box software libraries for the automatic forecasting of

time series. Popular among these are the ‘forecast’ and ‘bsts’ packages for R, which have

functions to automatically fit several common classes of time series models, such as the

autoregressive integrated moving average (ARIMA) and the family of exponential smoothing

models, among others. It is often the case that what one gains from the ease in fitting these

automatic methods comes at the cost of predictive performance. In this paper, we propose

several methods to improve the prediction accuracy of automatic time series forecasting,

all of which relate to creating ensembles of models automatically fit from these packages.

We explore different ways that one can construct these ensembles and evaluate each on a

benchmark time series dataset. In addition, we provide the R code used to construct these

ensembles.
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CHAPTER 1

Introduction

Several scenarios exist that necessitate automatic time series forecasting. A manufacturing

firm may need to generate monthly production forecasts for each of its products, of which

there could be thousands. A hedge fund manager may need to forecast the price of a security

every 30 seconds using the latest available stock data. In either case, the high volume of

time series data sets or the frequency at which forecasts must be made represent too high

a cost for a statistician to manually apply the classical supervised methodology to fit an

appropriate, causal, and invertible ARIMA model to each time series. In the first scenario,

using such a methodology would consume too many man-hours of work, while in the second,

a human could simply not keep up with the data.

In such situations, automatic ‘black box’ time series forecasting methods, like those

implemented in the popular ‘forecast’ R software library by Rob J. Hyndman and the ‘bsts’

package by Steven L. Scott, deliver a compelling value proposition – adequate forecasts can

be made almost instantly by anyone. Even if these automatic methods do not perform as

well as the ideal, manually fitted ARIMA model, the value they create by reducing forecast

costs (in hours of work or in time to model) can easily surpass the cost associated with

implementing a less-than-ideal forecast. In the first scenario given above, 1,000 adequate

production-ready forecasts are better than 100 excellent forecasts and 900 missing values

because the statistician ran out of time.

The work presented in this paper deals with how these ‘black box’ automatic methods

can be improved, so that a forecaster need not settle with adequate performance while still

enjoying the benefits that black box methods provide. To that end, we explore several ways

to create ensembles of four of the popular black box models included in the ‘forecast’ and
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‘bsts’ packages to increase prediction accuracy over any single automatically fit model alone.

To evaluate the performance of the ensembles, they will be tested on the M3-Competition

data set, which contains 3,003 univariate time series with mostly monthly, quarterly, and

yearly periods. Each series in the data set is split into a training and test set, the latter

of which will be used to evaluate loss using normalized root mean squared error (nRMSE),

mean absolute percent error (MAPE), and normalized mean absolute error (nMAE).

1.1 Related Work

Much work has been done in the space of time series forecasting to increase prediction accu-

racy with the use of model ensembles. In 2004, Wichard and Ogorzalek proposed combining

the forecasts of several classes of time series models to make predictions. They were among

the first to recognize that choosing different classes of models increases forecast diversity,

thereby reducing forecast bias and variance, leading to an increase in prediction accuracy.

The component models used by Wichard and Ogorzalek include linear and polynomi-

als models, nearest neighbor methods, and neural network methods, among others. Such

methods are not as widely used by time series practitioners in comparison to more popular

modeling frameworks, such as ARIMA and Exponential Smoothing. In 2018, Rob J. Hynd-

man, author of the ‘forecast’ package for R, proposed a similar ensemble methodology using

more modern methods, taking the average of three different classes of models, ARIMA, Ex-

ponential Smoothing, and Theta, all automatically fit from the ‘forecast’ package. He claims

such an ensemble should be regarded as a forecasting benchmark against which to test other

forecasting methods.

Work proposed in this paper also builds off a time series bagging methodology proposed

by Bergmeir et. al. (2016). This paper, which applies bootstrap aggregation to time series

forecasting, constructs forecasts by combining Exponential Smoothing predictions for each

bootstrapped series. We expand upon this work by combining ensemble forecasts instead of

Exponential Smoothing forecasts alone, thereby creating ensembles of ensembles.

The methods proposed in this paper, like the ensembles proposed by Hyndman and
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Bergmeir et. al., are evaluated with the M3 Competition Data set. This data set of 3,003

time series is often used to compare the performance of automatic forecasting methods.

In fact, the original M3 Competition was first won by the Theta method, one of the four

automatically fit models we attempt to improve upon in this paper.

Since its publication in 2000, the M3 Competition Data set has become the defacto

forecasting benchmark data set. Rob Hyndman, editor of the International Journal of Fore-

casting (IJF), claims ”The M3 data have continued to be used since 2000 for testing new

time series forecasting methods. In fact, unless a proposed forecasting method is competitive

against the original M3 participating methods, it is difficult to get published in the IFJ”.

Keeping with tradition, we evaluate our methods against the same data set.
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CHAPTER 2

Automatic Time Series Forecasting

The time series ensembles proposed in this paper will be composed of combinations of four

classes of models that can be fit automatically using the ‘forecast’ and ‘bsts’ packages in

R. These four methods are chosen because they are prominently featured in time series

literature, are commonly used by practitioners, and because each can be fit automatically.

They are as follows:

2.1 Auto.Arima

Proposed by Hyndman and Khandakar (2008), Auto.Arima was designed to automatically

select the best Autoregressive Integrated Moving Average (ARIMA) model for forecasting.

Given a nonseasonal ARIMA(p, d, q) process (1− Bd)yt = c + φ(B)yt + θ(B)εt or seasonal

ARIMA(p, d, q, P,D,Q)m process (1−Bm)(1−B)dyt = c+ Φ(Bm)φ(B)yt + Θ(Bm)θ(B)εt,

φ and θ are polynomials with orders p and q respectively, Φ and Θ are polynomials with

orders P and Q respectively, d and D are the respective numbers of nonseasonal and seasonal

differences, B is the backshift operator, ε is Gaussian white noise with mean 0 and variance

σ2, and c is a constant.

The goal of ARIMA modeling is to choose the parameters p, d, q, P , D, and Q which best

fit the data. Parameter combinations can be evaluated by observing which best minimize

an information criterion, such as AIC or BIC.

Auto.Arima provides a framework to automate the ARIMA parameter optimization pro-

cess. If the data are nonseasonal, the algorithm first chooses d on the basis of KPSS unit-root

tests, in which the data are checked for a unit root (Kwiatkowski et al., 1992). If a root
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is present, it is differenced and checked again. The process repeats until no unit root is

detected.

For seasonal data, first D is chosen to equal 0 or 1 on the basis of the Canova-Hansen

test (Canova and Hansen, 1995). If D = 1, seasonal differencing is applied. Then the KPSS

unit-root test algorithm is applied to select d.

Auto.Arima then considers ARIMA models where p and q can take values ranging from

0 to 3 and, if applicable, P and Q can be set equal to 0 or 1. If d + D ≤ 1, the constant c

is fit. Otherwise it is set equal to 0. For the sake of efficiency, the model space is explored

using a novel step-wise algorithm. Finally, the model which minimizes AIC is returned at

the “best” model.

2.2 ETS

Short for both ‘Error, Trend, Seasonality’ and ‘ExponenTial Smoothing’, the ‘ets’ function

from the ‘forecast’ packages fits 30 different classes of exponential smoothing models to a

given time series and chooses best on basis of which minimizes AIC.

As the functions acronym suggests, an exponential smoothing model has three compo-

nents: error, trend, and seasonality. Each of these three components can be further classified.

Hyndman and Khandakar (2008) explain that error can be either “additive” or “multiplica-

tive”. Trend can be classified as “none”, “additive”, “additive damped”, “multiplicative”,

or “multiplicative damped”. Finally, seasonality can be classified as “none”, “additive”, or

“multiplicative”.

These 30 different combinations or error, trend, and seasonality comprise the 30 ex-

ponential smoothing models fit by the ets function. Hyndman and Khandakar provide a

taxonomy of each of these 30 methods, including formulas for parameters optimization and

point forecasts.
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2.3 Theta

Proposed by Assimakopoulos and Nikolopoulos (2000), the Theta method applies a coeffi-

cient, θ, to a twice differenced time series in order to change its local curvature. For example,

setting θ = 0 reduces the time series to a simple linear regression. At the other extreme,

setting θ = 2, Assimakopoulos and Nikolopoulos explain, doubles the the local curvature,

thereby magnifying the short term behavior of the series.

The first Theta-line, given by θ = 0, is extrapolated via its simple linear trend. The

second line, when θ = 2, is extrapolated by simple exponential smoothing. Forecasts are

made by combining these two extrapolations.

Assimakopoulos and Nikolopoulos have developed a six-step algorithm to automate fore-

casting using their Theta method. First, a time series is tested for seasonality by examining

the autocorrelation function at the lag equal to the series periodicity. For example, for

monthly data one would check the autocorrelation at lag 12, or lag 4 for quarterly data.

Next, the data is deseasonalized if the seasonality was determined to be significant. Then

two Theta-lines are generated, corresponding to θ = 0 and θ = 2. Next, these two lines are

extrapolated via linear trend and simple exponential smoothing, respectively. Then these

two lines are averaged with equal weights at each point in the forecast horizon. Finally,

seasonality is reintroduced to the series.

This algorithm is provided in the forecast package as the function named ‘thetaf’ (Hyn-

dman et. al., 2019).

2.4 BSTS

The BSTS framework, short for Bayesian Structural Time Series, was developed by Scott

and Varian (2014) at Google to improve automated time series forecasting. According to

Scott and Varian, this approach to time series forecasting combines three methods from

Bayesian statistics – Kalman filtering, spike-and-slab regression, and model averaging.

The Bayesian Structural Time Series, according to Scott (2017), is defined in two equa-
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tions. The first, called the observation equation, “relates the observed data yt to a vector of

latent variables αt”, called the state. This equation is given by

yt = ZT
t αt + εt (2.1)

Scott continues, describing also a transition equation, which defines how these latent

states, or αt, change over time. The transition equation is given by

αt+1 = Ttαt +Rtηt (2.2)

In the two equations above, εt and ηt are defined as Gaussian white noise, while Zt, Tt,

and Rt are called the structural parameters.

Once the latent state vector is defined, the model is fit using a user defined number of

Markov chain Monte Carlo algorithm iterations.
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CHAPTER 3

The Case for Ensembles

3.1 Use in Machine Learning

The use of ensembles to improve prediction accuracy is nothing new in the realm of machine

learning and statistical modeling. In 1996, Leo Breiman introduced the concept of bootstrap

aggregation, shortened to ‘bagging’ (Breiman, 1996). Given a training set L, Bagging uses

the bootstrap to create B ∈ N new training sets, Li, i = 1, ..., B.

A given machine learning model is then fit to each of the new training sets. The final

decision is made by taking the average of the B models in the case of regression, or by

majority vote for classification. The method, one of the first implementations of ensemble

learning, was successful, with Breiman concluding “What one loses [...] is a simple and

interpretable structure. What one gains is increased accuracy.” In the case of bagging,

it was found that an ensemble of models performed better than any single learner alone.

Dietterich (2002) gives three possible explanations to the improved predictive performance

of ensemble learning.

For example, in the event of insufficient training data to establish a “best fit” model,

it may be the case that several different learners provide an equally accurate but vastly

different fit to the training data. Making a future prediction with only one of these models

can be risky, due to the high variance of the predictions. However, an ensemble can reduce

this prediction variance and thus reduce risk with a simple majority vote or average over all

predictions.

It can also be the case that finding the best model to fit to a training data set can be

too computationally expensive. This is especially true with gradient based methods, as a
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learner may become trapped at a local minimum and fail to reach the global minimum. In

such a scenario, an ensemble reduces the risk of choosing the wrong minimum.

Finally, it is possible that no single learner can accurately model a given data. Creating an

ensemble allows one to explore more functional relationships between data and model, which

comprise what Dietterich calls the representation space. One of these previously untested

members of the representation space may perform better than any of its component learners.

In each of the three explanations provided by Dietterich, the advantages attributed to

ensemble learning directly relate to the diversity of its member learners (Oliveira, 2014).

That is, the predictions made by the member learners are relatively uncorrelated. In bagging,

uncorrelated learners are created with bootstrap sampling of the data set. The random forest,

in addition to bootstrap sampling, uses a random subset of predictor variables to construct

uncorrelated classification and regression trees (Breiman, 2001). The result is an even more

diverse set a learners and often an even greater prediction accuracy.

3.2 Application to Time Series Forecasting

How, then, can an ensemble of uncorrelated time series models be constructed? The predic-

tions from two reasonable ARIMA models fit to the same data will likely have a correlation

coefficient close to one. An ensemble created from these two models will likely look very

similar to both of the original forecasts and would therefore likely not enjoy the benefits of

ensembling.

In time series forecasting, a natural way to create diverse forecasts is to combine the

forecasts of different classes of time series models, such as the ARIMA, Theta, Exponential

Smoothing, and Bayesian Structural Time Series, all of which were discussed in the previous

section. Because forecasts created by these different classes of models will naturally vary,

an ensemble of these learners should provide the same benefits as those ensemble methods

mentioned above, namely a increase in prediction accuracy from a reduction in bias and

variance and a robustness to training noise and outliers.

9



CHAPTER 4

Creating the Ensembles

We propose the following ensemble methods:

4.1 Naive Ensemble

Perhaps the simplest way to create an ensemble of multiple predictors is to take the average

of all the predictions for each time point on the forecast horizon. Specifically, let X be a h by

p matrix, where h is the prediction horizon (the number of time points into the future to be

forecasted) and p is the number of models from which predictions were made. In this design,

each column of the forecast matrix X corresponds to a prediction of horizon h made by one

of the p models. Let W be a 1 by h weight matrix with every element given by 1/p. Then a

final forecast is given by XW . We call models structured in this fashion Naive Ensembles.

We are specifically interested in Naive Ensembles made with the four classes of automatic

time series models we previously discussed. We will refer to this model as the BEAT (BSTS,

ETS, Auto.Arima, Theta) Ensemble. Also of interest are the four Naive Ensembles made

using three of the four component models, called BEA, EAT, BAT, and BET, following the

same naming convention.

4.2 Median Naive Ensembles

The Naive Ensembles proposed in the previous section simply take the average of component

forecasts at each time point in the forecast horizon. If one of these component forecasts

predicts extreme or unreasonable values, it can have a huge impact on the accuracy of the
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Naive Ensemble on the whole.

One solution to combat the influence of an extreme forecast is to take the median, rather

than the mean, of the p predictors at each time point in the forecast horizon. If X is the

same h by p forecast matrix, let M = [m1, ...,mh] be the final forecast, where each mi is

the median of the ith row of X, i = 1, ..., h. We will specifically examine the medians of

forecasts generated from the BEAT ensemble, and will refer to this method as the Median

BEAT Ensemble.

4.3 Bagged Ensemble

Just how Breiman introduced bootstrap aggregation (bagging) to improve the accuracy

of classification and regression tree ensembles, so too can bagging be used in time series

analysis. Because of the order-dependent nature of time series, the standard methodology

of resampling data points with replacement may be ill-suited to create bootstrapped series.

Bergmeir et. al. (2016) proposes an adaptation specifically suited for time series analysis in

such a way that the trend and seasonal structure of the time series is preserved.

The Box-Cox transformation is applied to the series to ensure that its trend and season-

ality components are additive (Petropoulos et. al., 2018). The Box-Cox lambda parameter

is chosen on the basis of maximum likelihood estimation (Box and Cox, 1964). The Box-

Cox transformed series is then decomposed into seasonal, trend, and error components using

LOESS (STL) (Cleveland et al., 1990).

Bootstrapped resampling is then applied to the error components of the series. Bergmeir

et. al. utilize moving block bootstrap (Kunsch, 1989), whereby n data points are assigned to

n−b+a overlapping blocks, each with length b. Then n/b blocks are drawn with replacement

and assigned in the order that they were drawn, creating a bootstrapped set of errors. This

method is utilized in the event that there is any remaining autocorrelation in the LOESS

residuals after the STL decomposition.

A new bootstrapped time series is then constructed by performing the inverse STL decom-
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position, whereby the trend, seasonality, and bootstrapped error terms are added together.

The inverse Box-Cox transformation is then applied to return the time series to its original

scale. This process then repeated a given number of times to create a set of bootstrapped

series.

If a time series is not periodic, or has fewer than two periods, the Box-Cox transformation

is applied, after which the series is decomposed into trend and error components using

LOESS. Seasonality is not calculated. Then the same procedure as above is followed to

create a set of bootstrapped time series.

Bergmeir et. al. then fit an ETS model to each of the bootstrapped time series, make

a forecast, then take the median of the component forecasts for each point on the forecast

horizon to make a final prediction. This method was found to perform better than the ETS

model alone the M3 Competition Data set.

We propose the following adaptation to this method: given that we expect the BEAT

ensemble to perform better than ETS alone under the ensemble hypothesis, we fit a BEAT

ensemble to each bootstrapped time series instead of just an ETS model alone. Final forecasts

will then be made by taking an equal-weight average of the BEAT point forecasts for each

point on the forecast horizon as specified in the Naive Ensemble description. We also evaluate

the median of the BEAT models, as done in the original paper, as described in the Median

BEAT Ensemble specification. We refer to these methods as Mean Bagged BEAT and

Median Bagged BEAT, respectively.

4.4 Random Error Resampling Ensemble

We propose the Random Error Resampling ensemble model for time series forecasting. This

model is functionally very similar to the bagged model proposed in the previous section.

Bagging utilizes bootstrap resampling of residuals after performing STL decomposition of

a time series. However, it is common in time series literature to assume that these errors

are distributed as Gaussian white noise with mean 0 and a finite variance (Schumway and

Stoffer, 2011).
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Therefore, instead of applying the moving block bootstrap to resample STL residuals to

create a new set of bootstrapped time series, we create a new set of residuals by sampling

from a Gaussian distribution with mean 0 and variance equal to the sample variance of

the original STL residuals. We repeat this sampling a given number of times to create a

bootstrapped set of time series.

Except for the previous step, the process is exactly the same as the bagged BEAT model.

We evaluate the performance of this ensemble using both the mean and median of the

component BEAT forecasts. We refer to these methods as the Mean Perturbed BEAT and

Median Perturbed BEAT models, respectively.

The R code to construct each of the proposed ensembles is provided in the Appendix.
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Table 4.1: Taxonomy of Methods

Method Description

Auto.Arima Function from forecast package to fit ARIMA model

ETS Function from forecast package to fit exponential

smoothing model

Theta Function from forecast package to fit Theta model

BSTS Function from bsts package to fit Bayesian structural

time series model

BAT Average of BSTS, Auto.Arima, and Theta forecasts

BEA Average of BSTS, ETS, and Auto.Arima forecasts

BET Average of BSTS, ETS, and Theta forecasts

EAT Average of ETS, Auto.Arima, and Theta forecasts

BEAT Average of BSTS, ETS, Auto.Arima, and Theta fore-

casts

medianBEAT Median of BSTS, ETS, Auto.Arima, and Theta at each

point in forecast horizon

meanBaggedBEAT Mean of 10 bootstrapped BEAT forecasts at each point

in forecast horizon

medianBaggedBEAT Median of 10 bootstrapped BEAT forecasts at each

point in forecast horizon

meanPertBEAT Mean of 10 white noise resampled BEAT forecasts at

each point in forecast horizon

medianPertBEAT Median of 10 white noise resampled BEAT forecasts at

each point in forecast horizon

14



CHAPTER 5

Methodology

Each ensemble method, in addition to the automatic component learners (Auto.Arima,

Theta, BSTS, and ETS), will be evaluated on the M3 Competition Data set (Makridakis

and Hibon, 2000). This data set contains 3,003 time series, each of which is divided into

a training and a test set. Of the 3,003 series, 645 are yearly data, 756 are quarterly, 1428

are monthly, and 174 have frequencies that are not yearly, quarterly, or monthly (referred to

as having periodicity ‘Other’). In addition to containing series with varying periodicity, the

type of series in the M3 data set span different industries and origins. Of the 3,003 series, 828

relate to microeconomic phenomenon, 731 are from macroeconomics, 519 are from industry,

308 are from finance, 413 are from demography, and 204 have other origins.

To ensure that enough data is available to make a reasonable forecast, each yearly series

has at least 14 observations, quarterly series have at least 16 observations, monthly data

have at least 48 observations, and series with frequencies that are not yearly, quarterly, or

monthly (other) have at least 60 observations.

Each method will be fit to the training set of each series, and will create a forecast on

the same time interval as the test set. In this way, forecasts can be evaluated against the

ground truth for each of the 3,003 series.

The performance of the methods will be evaluated on the basis of normalized RMSE,

normalized MAE, and MAPE. Standard RMSE and MAE are insufficient for this problem,

as they are scale dependent, meaning that it does not make sense to compare the RMSE and

MAE of the same model on multiple time series. We solve this problem by normalization.

We first calculate the mean of training set, then divide RMSE and MAE of the model by this

mean to get normalized RMSE (nRMSE) and normalized MAE (nMAE). This normalization

15



process allows us to compare the performance of the models on the 3,003 series in the M3

Competition Data set. MAPE, mean absolute percent error, is already scale independent.

5.0.1 nRMSE

1
T

√∑T
t=1(ŷt − yt)2

Ȳ
(5.1)

5.0.2 nMAE

1
T

(
∑T

t=1 |ŷt − yt|)
Ȳ

(5.2)

5.0.3 MAPE

1

T

T∑
t=1

|ŷt − yt|/yt (5.3)

A smaller number represents a more accurate forecast for each of the three metrics. In

evaluating the nRMSE, nMAE, and MAPE for each method on each of the time series in

the competition data set, we may compare models and draw conclusions about the “best”

methods by determining which best minimizes these loss functions by better predicting the

test set.
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CHAPTER 6

Experimental Results

A forecast for each of the 3,003 time series in the M3 Competition data set was made with

each of the 4 base learners and 10 ensemble methods under consideration. Each forecast was

compared with the ground truth values of the time series over the same horizon, allowing

the three accuracy metrics, nRMSE, nMAE, and MAPE, to be calculated. The average of

each metric for each of the 14 methods is shown below.

Table 6.1: Summary of Methods over M3 Data

Method nRMSE nMAE MAPE

1 Auto.Arima 0.209 0.178 18.771

2 BAT 0.194 0.164 17.697

3 BEA 0.199 0.169 18.028

4 BEAT 0.192 0.162 17.450

5 BET 0.191 0.161 17.500

6 BSTS 0.223 0.190 20.908

7 EAT 0.189 0.159 17.108

8 ETS 0.196 0.166 17.694

9 meanBaggedBEAT 0.192 0.163 17.094

10 meanPertBEAT 0.193 0.164 17.104

11 medianBaggedBEAT 0.191 0.162 16.817

12 medianBEAT 0.193 0.163 17.380

13 medianPertBEAT 0.193 0.163 16.835

14 THETA 0.189 0.160 17.092
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We also construct the average of each metric grouped by time series periodicity – yearly,

quarterly, monthly, and other. These aggregations are shown in Tables 6.2 - 6.5.

Table 6.2: Summary of Methods for Yearly Data

Method nRMSE nMAE MAPE

1 Auto.Arima 0.390 0.338 22.071

2 BAT 0.352 0.303 21.013

3 BEA 0.367 0.316 21.314

4 BEAT 0.347 0.299 20.724

5 BET 0.340 0.293 20.794

6 BSTS 0.401 0.347 24.218

7 EAT 0.341 0.294 20.407

8 ETS 0.354 0.305 21.016

9 meanBaggedBEAT 0.351 0.303 21.484

10 meanPertBEAT 0.355 0.307 21.663

11 medianBaggedBEAT 0.350 0.301 21.471

12 medianBEAT 0.354 0.305 20.989

13 medianPertBEAT 0.355 0.308 21.491

14 THETA 0.331 0.285 20.911

In addition to aggregating the performance of methods on the basis of the periodicity

of the underlying series, we also aggregate the predictive performance of the 14 methods

based on the origin the time series itself. As discussed earlier, these origins include the fields

of microeconomics, macroeconomics, industry, finance, demography, and ‘other’. These six

aggregations are shown in tables 6.6 - 6.11.

We also examine how the nRMSE, nMAE, and MAPE change at each point in the forecast

horizon. The nRMSE, nMAE, and MAPE are calculated at each point in the forecast horizon

for each of the 3,003 time series and methods, then averaged. The average MAPE over each

point in the horizon is provided in Figure 6.1. A detailed view of the average MAPE for

horizon points 14 through 18 is given in Figure 6.2.

18



Table 6.3: Summary of Methods for Quarterly Data

Method nRMSE nMAE MAPE

1 Auto.Arima 0.147 0.127 13.229

2 BAT 0.133 0.113 11.993

3 BEA 0.140 0.119 12.376

4 BEAT 0.132 0.113 11.864

5 BET 0.131 0.112 11.704

6 BSTS 0.156 0.133 13.978

7 EAT 0.131 0.112 11.784

8 ETS 0.139 0.119 12.153

9 meanBaggedBEAT 0.135 0.115 12.106

10 meanPertBEAT 0.133 0.113 11.955

11 medianBaggedBEAT 0.134 0.115 12.072

12 medianBEAT 0.134 0.114 11.925

13 medianPertBEAT 0.132 0.113 11.864

14 THETA 0.134 0.115 11.846

Similarly, the average nRMSE and nMAE is shown in Figure 6.3. Because nRMSE and

nMAE are calculated for only a single pair of points for each point in the horizon for each

of the 3,003 series and 14 methods, nRMSE and nMAE are functionally equal in this plot.

Finally, we include Figures 6.4 - 6.7, which show actual forecasts of the 14 methods on

two time series from the M3 Competition Data set. These figures depict some desirable

properties of ensembles and highlight the advantages of the methods proposed in this paper.
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Table 6.4: Summary of Methods for Monthly Data

Method nRMSE nMAE MAPE

1 Auto.Arima 0.179 0.149 21.913

2 BAT 0.173 0.144 20.797

3 BEA 0.174 0.145 21.150

4 BEAT 0.171 0.141 20.482

5 BET 0.173 0.143 20.628

6 BSTS 0.200 0.167 24.997

7 EAT 0.168 0.139 19.944

8 ETS 0.174 0.144 20.698

9 meanBaggedBEAT 0.169 0.140 19.217

10 meanPertBEAT 0.170 0.141 19.245

11 medianBaggedBEAT 0.168 0.139 18.660

12 medianBEAT 0.170 0.141 20.174

13 medianPertBEAT 0.170 0.140 18.817

14 THETA 0.172 0.142 19.562
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Table 6.5: Summary of Methods for Other Data

Method nRMSE nMAE MAPE

1 Auto.Arima 0.043 0.037 4.821

2 BAT 0.042 0.037 4.743

3 BEA 0.042 0.037 4.787

4 BEAT 0.041 0.037 4.712

5 BET 0.042 0.037 4.795

6 BSTS 0.046 0.041 5.188

7 EAT 0.042 0.037 4.730

8 ETS 0.042 0.037 4.797

9 meanBaggedBEAT 0.044 0.039 5.077

10 meanPertBEAT 0.044 0.039 5.012

11 medianBaggedBEAT 0.044 0.039 5.049

12 medianBEAT 0.042 0.037 4.769

13 medianPertBEAT 0.043 0.038 4.912

14 THETA 0.048 0.042 5.465
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Table 6.6: Summary of Methods for Microeconomics Series

Method nRMSE nMAE MAPE

1 Auto.Arima 0.312 0.263 31.576

2 BAT 0.295 0.246 29.589

3 BEA 0.299 0.250 30.028

4 BEAT 0.290 0.243 29.183

5 BET 0.291 0.243 29.194

6 BSTS 0.339 0.285 34.034

7 EAT 0.287 0.239 28.745

8 ETS 0.299 0.251 29.837

9 meanBaggedBEAT 0.290 0.242 28.923

10 meanPertBEAT 0.290 0.242 29.287

11 medianBaggedBEAT 0.290 0.242 28.662

12 medianBEAT 0.289 0.241 29.003

13 medianPertBEAT 0.291 0.243 28.898

14 THETA 0.288 0.240 27.962
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Table 6.7: Summary of Methods for Macroeconomics Series

Method nRMSE nMAE MAPE

1 Auto.Arima 0.091 0.079 6.895

2 BAT 0.087 0.075 6.154

3 BEA 0.090 0.078 6.365

4 BEAT 0.087 0.075 6.174

5 BET 0.088 0.076 6.170

6 BSTS 0.099 0.085 7.064

7 EAT 0.086 0.075 6.231

8 ETS 0.093 0.080 6.559

9 meanBaggedBEAT 0.086 0.074 6.156

10 meanPertBEAT 0.085 0.074 6.100

11 medianBaggedBEAT 0.086 0.074 6.168

12 medianBEAT 0.088 0.076 6.261

13 medianPertBEAT 0.085 0.074 6.077

14 THETA 0.090 0.079 6.424
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Table 6.8: Summary of Methods for Industry Series

Method nRMSE nMAE MAPE

1 Auto.Arima 0.223 0.186 14.802

2 BAT 0.204 0.171 14.170

3 BEA 0.214 0.179 14.615

4 BEAT 0.205 0.171 14.132

5 BET 0.203 0.170 14.330

6 BSTS 0.225 0.189 16.574

7 EAT 0.203 0.170 13.806

8 ETS 0.215 0.180 14.674

9 meanBaggedBEAT 0.207 0.173 14.419

10 meanPertBEAT 0.207 0.173 14.270

11 medianBaggedBEAT 0.207 0.173 14.336

12 medianBEAT 0.209 0.175 14.148

13 medianPertBEAT 0.207 0.174 14.261

14 THETA 0.200 0.168 13.968
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Table 6.9: Summary of Methods for Financial Data

Method nRMSE nMAE MAPE

1 Auto.Arima 0.334 0.295 34.397

2 BAT 0.302 0.265 35.713

3 BEA 0.317 0.277 36.483

4 BEAT 0.297 0.260 35.059

5 BET 0.290 0.253 35.719

6 BSTS 0.357 0.314 44.263

7 EAT 0.285 0.248 32.824

8 ETS 0.288 0.250 33.834

9 meanBaggedBEAT 0.294 0.256 30.160

10 meanPertBEAT 0.298 0.260 29.621

11 medianBaggedBEAT 0.286 0.249 28.468

12 medianBEAT 0.306 0.268 34.199

13 medianPertBEAT 0.293 0.256 28.143

14 THETA 0.270 0.231 32.241
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Table 6.10: Summary of Methods for Demographic Series

Method nRMSE nMAE MAPE

1 Auto.Arima 0.166 0.142 12.599

2 BAT 0.151 0.128 10.242

3 BEA 0.153 0.130 10.234

4 BEAT 0.146 0.124 9.836

5 BET 0.145 0.123 9.501

6 BSTS 0.184 0.156 13.447

7 EAT 0.144 0.122 10.175

8 ETS 0.146 0.124 9.816

9 meanBaggedBEAT 0.154 0.131 11.012

10 meanPertBEAT 0.158 0.135 11.063

11 medianBaggedBEAT 0.152 0.129 10.861

12 medianBEAT 0.146 0.123 10.094

13 medianPertBEAT 0.157 0.134 11.056

14 THETA 0.152 0.131 11.195
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Table 6.11: Summary of Methods for Unlabeled Series

Method nRMSE nMAE MAPE

1 Auto.Arima 0.070 0.059 8.349

2 BAT 0.064 0.055 7.653

3 BEA 0.065 0.056 7.715

4 BEAT 0.064 0.054 7.513

5 BET 0.063 0.054 7.384

6 BSTS 0.069 0.059 8.107

7 EAT 0.065 0.055 7.554

8 ETS 0.065 0.055 7.570

9 meanBaggedBEAT 0.066 0.056 7.673

10 meanPertBEAT 0.066 0.056 7.632

11 medianBaggedBEAT 0.066 0.056 7.671

12 medianBEAT 0.065 0.055 7.627

13 medianPertBEAT 0.065 0.056 7.601

14 THETA 0.070 0.060 8.220
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Figure 6.1: MAPE Over Time
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Figure 6.2: MAPE h14 - h18 Detail
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Figure 6.3: nRMSE and nMAE Over Time

30



Figure 6.4: Series N2698
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Figure 6.5: Forecast of Series N2698
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Figure 6.6: Series N2459
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Figure 6.7: Forecast of Series N2459
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CHAPTER 7

Discussion

Experimental data indicate that ensembling methods can offer improvements in predictive

performance over their component learners. From Table 6.1, which shows the average perfor-

mance of each method over the entire data set of 3,003 time series, the medianBaggedBEAT

model performs the best of 14 methods when evaluated by MAPE, and the EAT Naive En-

semble performs best on the basis of nMAE. The EAT ensemble also minimizes the nRMSE,

however it ties with the Theta method.

Table 6.2, which displays the average nRMSE, nMAE, and MAPE of the 14 methods,

restricted only to yearly data, indicates that ensemble methods perform especially well in

minimizing the MAPE of time series with this periodicity. However, the Theta method min-

imizes both nRMSE and nMAE. This is in stark contrast to the other component methods,

which perform significantly worse than Theta in each of the three evaluation metrics.

Theta does not seem to perform as well when dealing with quarterly time series, however,

as shown in Table 6.3. Here, the BET Naive Ensemble achieves the best score for each of

nRMSE, nMAE, and MAPE. The EAT ensemble does not perform much worse, tying BET

in nRMSE and nMAE, but achieving a slightly worse MAPE. In fact, three of the component

models, Auto.Arima, BSTS, and ETS, perform worse than every single one of the ensemble

methods when evaluated by MAPE. Auto.Arima and BSTS in particular perform worse than

all other methods in each of the three metrics.

When dealing with monthly data, as shown in Table 6.4, the four ensemble methods

that utilize resampling – meanBaggedBEAT, meanPertBEAT, medianBaggedBEAT, and

medianPertBEAT – perform exceptionally well, achieving lower average nRMSE, nMAE,

and MAPE values than all four of component methods, Auto.Arima, BSTS, ETS, and Theta.
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For those series with periodicity that is not yearly, quarterly, or monthly, the Theta

method is ranked last of the 14 methods in each of the three evaluation metrics, as shown

in Table 6.5. This is in stark contrast to the performance of Theta for yearly, quarterly, or

monthly series, where it usually performed best of the component learners. In these series

with nonstandard periodicity, the family of Naive Ensembles, which includes BAT, BEA,

BET, EAT, and BEAT, perform best on average, edging out slight accuracy increases over

the family of resampling ensembles. In particular, the BEAT ensemble performs the best of

all 14 methods in each metric.

For time series that relate to microeconomics, the EAT Naive Ensemble minimized av-

erage nRMSE and nMAE, as seen in Table 6.6. The Theta method achieved the lowest

average MAPE, however. As is often the case, Auto.Arima, ETS, and BSTS were the three

worst performers in each of average nRMSE, nMAE, while ETS performed better than two

ensemble models on the basis of MAPE.

In the case of series relating to macroeconomics, the family of resampling ensembles are

again superior. Of the four, medianPertBEAT is able to minimize average MAPE and tie

for lowest average nRMSE and nMAE, as shown in Table 6.7. For macroeconomic data,

the superiority of the ensemble methods is clear – all four component models are either the

worst performers or tie for worst, in terms of average nRMSE, nMAE, and MAPE.

For series relating to industry, results are shown in Table 6.8. The Theta method performs

exceptionally well here, minimizing both average nRMSE and average nMAE. As is often the

case, the other three component learners are the three worst methods on average for these

series. The EAT Naive Ensemble is able to edge out a slight decrease in average MAPE over

the Theta method, but besides that all ensemble methods are inferior to Theta in this case.

For series related to demography, results are shown in Table 6.10. The family of Naive En-

sembles again offer the best average predictive performance. Average nRMSE and nMAE are

minimized by EAT, while average MAPE is minimized by BET. Here again are Auto.Arima

and BSTS the worst of the 14 methods for the three evaluation metrics. The Theta method

delivers a competitive average nRMSE and the ETS method has the second lowest average
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MAPE, but each suffers in the other two respective metrics.

For those series in the M3 data set whose origin is not specified, the Theta method

achieves a markedly lower ranking in each of the three evaluation metrics, just as is the case

for series where the periodicity was non-standard. The clear best-performing model for this

type of data, just as for the data is non-standard periodicity, is the BEAT Naive Ensemble,

which ties for or achieves the lowest average nMAE and MAPE, and ranks second for lowest

average nRMSE, behind only the BET ensemble.

Figure 6.1, which displays the average MAPE of each of the 14 methods at all points in

the forecast horizon, sheds light on how ensemble methods increase forecast accuracy. These

increases appear to be primarily driven by the better predictive performance of ensemble

methods further down the forecast horizon. A more detailed view of the point-wise average

MAPE of tail of the forecast horizon is shown in Figure 6.2. Two of the component learners,

Auto.Arima and BSTS, show clear deviation from the ensemble methods the further out

that forecasts are made.

The same deviation is clear when evaluating the point-wise nRMSE and nMAE, shown

in Figure 6.3. The performance gap between Auto.Arima and BSTS against the ensemble

methods becomes increasingly stark the further out a time series is forecast.

Figure 6.4 depicts series N2698 from the M3 Competition Data set. This time series

comes from the field of demography and has monthly periodicity. The forecasts made on

N2698 are shown in Figure 6.5, along with the ground truth in black. We include this time

series because it highlights a few desirable properties of ensembles, namely the increase in

accuracy through the reduction of bias and variance. In Figure 6.5, the forecasts from two of

the component methods, Theta and BSTS, appear biased. In addition, forecasts from these

methods also appear to become more inaccurate over time. However, the ensemble methods

correct for both of these issues. They have a clear reduction in bias, and do not appear to

become more inaccurate over time.

Figure 6.6 shows N2459, a monthly series from macroeconomics. Forecasts on N2459

are shown in Figure 6.7. Like the previous example, N2459 is included to highlight another
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advantage of ensemble methods. Here, that advantage is protection against a single poorly

performing model. In Figure 6.7, the forecast provided by the Theta method appears flat and

does not follow the trend or seasonality of the series, making it ill-suited to model these data.

Ensembles containing Theta forecasts, however, still accurately model the series, despite its

poor predictive performance.
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CHAPTER 8

Conclusion

In most cases, ensembling automatically fit time series models has been shown to offer an

increase in forecast accuracy, especially when the alternative is using an automatically fit

Auto.Arima, BSTS, or ETS model. These three component learners were inferior to almost

all of the proposed ensemble methods for every periodicity and type of time series tested in

the M3 data set.

Of the four component learners, the Theta method was often able to deliver average

nRMSE, nMAE, and MAPE scores that were competitive with the 10 ensemble methods.

However, for time series with non-standard periodicity – that is, time series with periods that

are not yearly, quarterly, or monthly – and for time series without origins in microeconomics,

macroeconomics, industry, finance, or demography, the Theta method was often the worst

of the 14 methods in each evaluation metric.

With regards to the drawbacks of using only one of Auto.Arima, BSTS, ETS, or Theta to

make a forecast, and in light of the advantages of the 10 ensembles proposed in this paper, a

practitioner is faced with the natural question of ‘Which ensemble method should be used?’.

This is a difficult question, and an important one.

This question must be answered with regards to the type of time series to be forecast, the

periodicity of these time series, and the evaluation metric of interest. With these qualities in

mind, a practitioner should design an experiment similar to the one in this paper, using time

series that most closely resemble those that are to be automatically forecast. In evaluating

which method performs the best in the experiment, the choice in which method to use

becomes easy.

If such an experiment in not practical or feasible, the results of this paper indicate that the
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BEAT Naive Ensemble and medianBaggedBEAT Ensemble both provide good performance

regardless of periodicity or origin of the underlying series. This advantage make both good

options for general-use time series forecasting.
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APPENDIX A

Code

A.1 Naive Ensembles

l ibrary ( f o r e c a s t )

l ibrary ( b s t s )

naiveEnsemble <− function ( ts , h ){

# t s i s a time s e r i e s o b j e c t

# h i s the f o r e c a s t horizon , the number

# of data po in t s i n t o the f u t u r e to f o r e c a s t

### Fi t the automatic models to the t s o b j e c t

# Arima Forecast

aa <− f o r e c a s t ( auto . arima ( ts ) , h = h)$mean

# BSTS

s ea sona l <− f i nd f r equency ( ts )

s s <− AddLocalLinearTrend ( l i s t ( ) , ts )

i f ( seasona l >1){ s s <− AddSeasonal ( ss , ts , nseasons = sea sona l )}

model <− bs t s ( ts , s t a t e . s p e c i f i c a t i o n = ss ,

n i t e r = 1000 , family = ” gauss ian ” )

bs t s <− predict (model , hor i zon = h , burn = 100)$mean
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# Exponent ia l Smoothing

e t s <− f o r e c a s t ( e t s ( ts ) , h = h)$mean

# Theta f o r e c a s t

theta <− f o r e c a s t ( t h e t a f ( ts , h = h ) , h = h)$mean

# Combine each h by 1 f o r e c a s t i n t o

# a h by p matrix , where p i s the number

# of models f i t to the data

# Forecast Matrix

fcMat <− as .matrix (cbind ( as .numeric ( aa ) ,

as .numeric ( b s t s ) ,

as .numeric ( e t s ) ,

as .numeric ( theta ) ) )

# Return the Forecast Matrix and

# the average f o r e c a s t a t each po in t on

# the hor i zon as a l i s t o b j e c t

out <− l i s t ( p red i c t i onMatr ix = fcMat ,

f o r e c a s t = rowMeans ( fcMat ) )

return ( out )

}

# Fit the Naive Ensemble Matrix

fcMat <− naiveEnsemble ( ts = ts , h = h)
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# Naive Methods are g iven be low

BEA <− rowMeans ( fcMat [ , c ( 1 , 2 , 3 ) ] )

EAT <− rowMeans ( fcMat [ , c ( 2 , 3 , 4 ) ] )

BAT <− rowMeans ( fcMat [ , c ( 1 , 3 , 4 ) ] )

BET <− rowMeans ( fcMat [ , c ( 1 , 2 , 4 ) ] )

BEAT <−rowMeans ( fcMat )

medianBEAT <− apply ( fcMat , 1 , median)

A.2 Bagging Methods

l ibrary ( p a r a l l e l )

l ibrary (doMC)

doMC : : registerDoMC ( co r e s = detectCores ( ) )

baggedBEAT <− function ( ts , h ){

bootL i s t <− f o r e c a s t : : bld .mbb. boots t rap ( ts , 10)

outDF <− f o r each ( i = 1 : length ( bootL i s t ) ) %dopar% {

out <− as .numeric ( naiveEnsemble ( bootL i s t [ [ i ] ] ,

h = h ) [ [ 2 ] ] )

}

as . data . frame (do . ca l l ( rbind , outDF ) )

}

baggedBEAT <− baggedBEAT( ts = ts , h = h)

meanBaggedBEAT <− as .numeric ( colMeans (baggedBEAT ) )
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medianBaggedBEAT <− apply (baggedBEAT , 2 , median)

A.3 Error Perturbation Resampling Methods

e r r o r . resamp <− function (x , num, block s i z e=NULL) {

f r e q <− frequency ( x )

i f ( i s . null ( b lock s i z e ) ) {

block s i z e <− i f e l s e ( f r e q > 1 ,

2 ∗ f r eq ,

min(8 , f loor ( length ( x ) / 2 ) ) )

}

xs <− l i s t ( )

xs [ [ 1 ] ] <− x # the f i r s t s e r i e s i s the o r i g i n a l one

i f (num > 1) {

# Box−Cox trans format ion

i f (min( x ) > 1e−6) {

lambda <− BoxCox . lambda (x , lower = 0 , upper = 1)

} else {

lambda <− 1

}

x . bc <− BoxCox(x , lambda )

lambda <− attr ( x . bc , ”lambda” )

i f ( f r e q > 1) {

# STL decomposi t ion

x . s t l <− s t l ( ts ( x . bc ,

frequency = f r e q ) , ” per ” )$time . s e r i e s
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s ea sona l <− x . s t l [ , 1 ]

trend <− x . s t l [ , 2 ]

remainder <− x . s t l [ , 3 ]

} else {

# Loess

trend <− 1 : length ( x )

suppressWarnings (

x . l o e s s <− l o e s s ( x . bc ˜ trend ,

span = 6 / length ( x ) , degree = 1)

)

s ea sona l <− rep (0 , length ( x ) )

trend <− x . l o e s s $f itted

remainder <− x . l o e s s $residuals

}

for ( i in 2 :num) {

xs [ [ i ] ] <− InvBoxCox ( trend +

sea sona l +

rnorm( length ( remainder ) ,

0 ,

sd ( remainder ) ) ,

lambda )

}

}

xs

}

pBEAT <− function ( ts , h ){
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bootL i s t <− e r r o r . resamp ( ts , 10)

outDF <− f o r each ( i = 1 : length ( bootL i s t ) ) %dopar% {

out <− as .numeric ( naiveEnsemble ( bootL i s t [ [ i ] ] ,

h = h ) [ [ 2 ] ] )

}

as . data . frame (do . ca l l ( rbind , outDF ) )

}

pBEAT <− pBEAT( ts , h )

meanPertBEAT <− as .numeric ( colMeans (pBEAT) )

medianPertBEAT <− apply (pBEAT, 2 , median)
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