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ABSTRACT 

Patterns, processes, and emergent properties of flowering responses to climate across spatial 

and ecological scales 

by 

Tadeo Hernan Ramirez Parada 

 

Climate change can reshape the flowering season by shifting species distributions and 

phenology, leading to cascading ecological impacts through changes in temporal and spatial 

synchrony among species. However, data limitations and incomplete knowledge of species-

level flowering responses to climate within and among communities have hindered our 

understanding of how environmental changes impact the structure of the flowering season 

across biomes. Here, I used millions of herbarium specimens and community-science records 

to assess: i) whether variation in flowering time reflects local adaptation to long-term 

climatic conditions or rapid plastic responses, and ii) how species distribution shifts and 

plastic phenological responses scale to alter the flowering season across North American 

biomes. I first validated estimates of phenology-climate relationships from herbarium 

specimens against field observations, confirming their reliability at vast taxonomic and 

spatiotemporal scales. Then, I measured flowering time sensitivity to temperature for 1,605 

well-sampled species across the United States to infer how adaptation and plasticity 

historically influenced phenology along temperature gradients. Results suggest plasticity is 

the primary driver of temperature-mediated variation in flowering phenology, with adaptation 

playing a more context-dependent role. Simulations showed that interspecific variation in 
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plastic responses to temperature in flowering onset and duration could significantly 

redistribute floral resources and restructure patterns of flowering synchrony among co-

occurring species. To evaluate this, I modeled the distribution and flowering phenology of 

2,837 species across the U.S. under historical, current, and projected climate and land cover 

conditions, scaling duration, and termination responses from species to communities and 

from local to continental levels. Within species, flowering onset, duration, and termination 

responded differently to climate, with substantial variation in sensitivity among species both 

within and between communities. At the community level, climate change altered species 

composition and the timing and duration of flowering seasons, with ecoregion-specific shifts 

in co-flowering species diversity and flowering overlap networks that are projected to 

intensify with ongoing climate and land use changes. Together, these studies demonstrate that 

climate change is reassembling the flowering season across North America through plastic 

species-level responses, with sharp differences in the severity of changes across biomes. In 

doing so, these analyses highlight the emerging opportunities afforded by community-science 

records to study the impacts of climate change on plant phenology at unprecedented 

taxonomic, spatiotemporal, and ecological scales.   
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I. Dissertation overview: motivation and objectives 

 

A. Motivation and knowledge gaps 

The timing of plant life-cycle events (i.e., phenology) is a key determinant of the structure of 

terrestrial ecosystems (Chuine 2010, Richardson et al. 2013). Phenology determines the 

abiotic conditions that individuals, or their seasonally produced organs, encounter throughout 

development and their temporal overlap with mutualists and antagonists, profoundly 

impacting their fitness (Elzinga et al. 2007). The phenology of co-occurring plant species 

also defines the temporal availability and abundance of leaves, flowers, and fruits within a 

community, with consequences for a diverse array of organisms that depend on plant 

resources for growth and reproduction (Iler et al. 2021). Consequently, understanding the 

patterns and drivers of spatiotemporal phenological variation across species, communities, 

and landscapes is essential for forecasting the potential demographic and ecological 

consequences of global change on terrestrial ecosystems (Wolkovich & Donahue 2021). 

In plants, phenological variation over space and time is intimately linked to climate. 

Phenology is usually cued by seasonally and interannually variable climatic factors that 

enable individuals to adjust growth and reproduction to fluctuating environmental conditions 

(Forrest & Miller-Rushing 2010). In many species, phenology also varies intraspecifically 

due to evolutionary adaptation to local environments, which may select for different mean 

phenological timings among populations in space or within populations over time (Franks & 

Weis 2007, Geinapp et al. 2008, Hoffmann & Sgrò 2011, Wu & Colautti 2022). Accordingly, 

a trend towards earlier flowering and leaf out in response to warming in recent decades has 

demonstrated that phenology is highly sensitive to ongoing climatic trends, foreshadowing 
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alterations to species distributions (Chuine 2010), trophic interactions (Renner and Zohner 

2018), species persistence (Cleland et al. 2012) and community structure (Miller-Rushing et 

al. 2008).  

Although a vast body of research has firmly established the pervasiveness and 

variability of phenological shifts across species and biomes (Parmesan & Yohe 2003, Menzel 

et al. 2020), several knowledge gaps limit our understanding of historical and future 

phenological shifts due to climatic change. For example, most research on phenology-climate 

relationships has focused on relatively few species within temperate biomes in North 

America and Europe, limiting the taxonomic and biogeographic scope of documented 

patterns of phenological sensitivity and change (Wolkovich et al. 2014, Willis et al. 2017, 

Ettinger et al. 2021). Moreover, even across well-studied regions, phenological sensitivity to 

climate varies widely among plant assemblages and taxa (Cook et al. 2012, Park 2014, 

Menzel et al. 2020, limiting our ability to extrapolate documented patterns to unstudied 

systems. Therefore, predicting plant phenological responses to climate change and their 

impacts from species to communities, landscapes and biomes will require significant 

increases in the geographic and taxonomic coverage of phenoclimatic analysis. 

The degree to which different biological processes drive intraspecific spatiotemporal 

variation in phenology is also largely unresolved. Specifically, both phenotypic plasticity and 

adaptation can drive phenological variation within a species over space and time (Anderson 

et al. 2012). However, their relative contributions rarely have been measured within the same 

system because doing so typically requires extensive experiments or genetic sampling in 

space and time (Chevin et al. 2010, Franks 2011, Anderson et al 2012, but see Wu & Colautti 

2022). Accordingly, most studies have evaluated either plasticity or adaptation as drivers of 
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phenology and their relative importance across species and ecological contexts remains 

unresolved (Merilä & Hendry 2014). Elucidating the degree to which species have 

phenologically adjusted to historical climatic conditions through plasticity or adaptation 

could help to predict whether organismal plastic responses may be sufficient—or 

evolutionary change necessary—to maintain synchrony between plant development and 

climate in a warming world (Fox et al. 2019). 

While variation among species in flowering onset, budburst, and leafout responses to 

climate has been extensively documented, how such patterns will scale up to alter the 

structure of the growing or flowering season within and among communities remains 

unresolved. The flowering season, for example, is the cumulative outcome—and an emergent 

property—of the population-level flowering patterns of its angiosperm species. 

Consequently, changes to a community’s flowering season due to warming depend on how 

the flowering periods of co-occurring species—both their onset and duration— respond to 

temperature. The few studies that have assessed community-level changes to the flowering 

season have found temperature responses in season length differing in magnitude and 

direction (e.g., Diez et al. 2012, Caradonna et al. 2014, Jabis et al. 2020, Nam and Kim 2020, 

Chen et al. 2022, Zhou et al. 2022). However, temperature responses for more granular (and 

ecologically critical) characteristics of the season—such as the temporal distribution of floral 

diversity and abundance—remain understudied. Moreover, the temperature sensitivity of the 

termination (and therefore the duration) of flowering has been less intensively examined than 

that of flowering onset, limiting our ability to predict the temperature responses of entire 

flowering periods (Pearse et al. 2017). Unfortunately, addressing these gaps empirically is 

difficult because long-term phenological datasets that provide the flowering periods of 
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populations across enough species to assess community-level change over time are 

exceedingly rare (Willis et al. 2017, Ettinger et al. 2021).  

 

B. Overview of chapters 

This dissertation leveraged the vast taxonomic and spatiotemporal scope of herbarium 

collections—as well as computer simulations—to address these knowledge gaps in the 

context of flowering phenology. Herbarium specimens capture snapshots of the reproductive 

status of individuals in space and time, and with hundreds of millions of records worldwide, 

provide unique opportunities to study phenology-climate relationships at large 

spatiotemporal and taxonomic scales (Willis et al. 2017, Meineke et al. 2018). In recent 

years, researchers have increasingly leveraged specimens to study phenological responses to 

climate (Jones and Daehler 2018, Heberling et al. 2019), estimating responsiveness for 

thousands of species (Park and Mazer 2018) and generating results qualitatively consistent 

with those from field studies (Calinger et al. 2013).  

However promising, the use of herbarium specimens in phenoclimatic research is 

relatively recent, and studies designed to validate herbarium-based estimates of phenology 

and its sensitivity to climate using field observations are few and limited in scope. 

Accordingly, Chapter II evaluated whether herbarium specimens can generate reliable 

estimates of phenological responsiveness by contrasting inferences derived from field 

observations from the U.S.A. National Phenology Network (USA-NPN) against those 

obtained from herbarium data. This chapter shows that estimates of flowering time variation 

due to climatic variation over space and time obtained from both data sources closely agree 
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in both magnitude and direction. In doing so, it demonstrates that herbarium-based sensitivity 

estimates are reliable among species spanning a wide diversity of life histories and biomes, 

highlighting their utility in a broad range of ecological contexts, and underscoring the 

potential of herbarium collections to enable phenoclimatic analysis at taxonomic and 

spatiotemporal scales not yet captured by observational data. 

In Chapter III, I used over one million herbarium specimens from 1,605 species 

across the conterminous United States (CONUS) to examine how adaptation and plasticity 

influence phenology along temperature gradients and how their contributions vary among 

species with different phenological niches and native climates. Phillimore et al. (2010) 

proposed that the contributions of plasticity and local adaptation to spatial variation in 

phenology within a species can be estimated from the difference between the slopes of spatial 

and temporal phenology-climate relationships. Using this framework, I measured flowering 

time sensitivity to temperature variation over time and space to infer how adaptation and 

plasticity influence phenology along temperature gradients and how their contributions vary 

among species with different phenological niches and native climates. These analyses 

revealed that, across ecoregions, plasticity is the predominant driver of temperature variation 

over space and time, with adaptation playing a widespread but comparatively limited role. 

My findings suggest that plasticity historically has enabled flowering phenology to respond 

quickly to a wide range of temperature conditions among North American angiosperms, with 

adaptation playing a comparatively context-dependent role. 

Chapter IV used computer simulations to provide a conceptual overview of how 

variation in the sensitivity of both flowering onset and duration among species can influence 

changes in a community's flowering season under warming. I focused on the effects of i) 
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differences in the mean sensitivity of flowering onset and duration among communities, and 

ii) sensitivity variation in species flowering sequentially through the season within a 

community. Simulations, based on a wide and empirically informed range of parameter 

values and combinations, examined how these forms of between-species sensitivity might 

independently and interactively affect the flowering season's structure. The analyses revealed 

that documented patterns of variation in onset and duration sensitivities can lead to diverse 

flowering season changes across biomes, emphasizing the need to account for both factors to 

fully understand community-level flowering dynamics in response to warming. 

Finally, chapter V offers an empirical counterpart to the conceptual outline from 

chapter IV, and expands it outlook to assess how both changes in species distributions and 

flowering responses to climate change among species scale to restructure the flowering 

season across North America. Using millions of herbarium and occurrence records from 

community-science initiatives (e.g., iNaturalist), I modeled the distribution and flowering 

phenology of 2,837 species across the United States under historical, current, and projected 

climate and land cover conditions, scaling onset, duration, and termination responses from 

species to communities, and from local to continental levels. These analyses demonstrate 

that—within species—the onset, duration, and end of flowering respond differently to 

temperature and precipitation, with broad variation in mean sensitivity among and within 

communities. Climate change has resulted in widespread shifts in species composition and 

the timing and length of the flowering season across ecoregions, leading to region-specific 

changes in the seasonal distribution of flowering diversity and patterns of flowering overlap 

that are projected to intensify under ongoing climate trends. These findings outline broad 
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macroecological changes, revealing uneven impacts of climate change on the identity, 

diversity, and flowering patterns of co-occurring species across biomes. 

Together, these projects demonstrate the enormous potential of herbarium collection 

and community-science record to expand the taxonomic and spatiotemporal scale of 

phenoclimatic analysis from species to communities and from local to continental scales. 
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II. Herbarium specimens provide reliable estimates of phenological responses to 

climate at unparalleled taxonomic and spatiotemporal scales1 

 

A. Abstract 

Understanding the effects of climate change on the phenological structure of plant 

communities will require measuring variation in sensitivity among thousands of co-occurring 

species across regions. Herbarium collections provide vast resources with which to do this, 

but may also exhibit biases as sources of phenological data. Despite general recognition of 

these caveats, validation of herbarium-based estimates of phenological sensitivity against 

estimates obtained using field observations remain rare and limited in scope. Here, I 

leveraged extensive datasets of herbarium specimens and of field observations from the USA 

National Phenology Network for 21 species in the United States and, for each species, 

compared herbarium- and field-based estimates of peak flowering dates expected under 

standardized temperature conditions, and of sensitivity of peak flowering time to geographic 

and interannual variation in mean spring minimum temperatures (TMIN). I found strong 

agreement between herbarium- and field-based estimates for standardized peak flowering 

time (r=0.91, p<0.001) and for the direction and magnitude of sensitivity to both geographic 

TMIN variation (r=0.88, p <0.001) and interannual TMIN variation (r=0.82, p<0.001). This 

agreement was robust to substantial differences between datasets in 1) the long-term TMIN 

conditions observed among collection and phenological monitoring sites and 2) the 

 
1 This chapter has been published in the following peer-reviewed article: 
Ramirez‐Parada, T. H., Park, I. W., & Mazer, S. J. (2022). Herbarium specimens provide reliable estimates of 
phenological responses to climate at unparalleled taxonomic and spatiotemporal scales. Ecography, 2022(10), 
e06173. https://doi.org/10.1111/ecog.06173 

https://doi.org/10.1111/ecog.06173
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interannual TMIN conditions observed in the time periods encompassed by both datasets for 

most species. These results show that herbarium-based sensitivity estimates are reliable 

among species spanning a wide diversity of life histories and biomes, demonstrating their 

utility in a broad range of ecological contexts, and underscoring the potential of herbarium 

collections to enable phenoclimatic analysis at taxonomic and spatiotemporal scales not yet 

captured by observational data.  

 

B. Introduction 

Widespread shifts in plant phenology (i.e., the timing of life cycle events) due to climate 

change have the potential to significantly alter species distributions (Chuine 2010), trophic 

interactions (Renner & Zhoner 2018), species persistence (Cleland et al. 2012), and 

community structure (Willis et al. 2008). A trend towards earlier flowering and leaf out in 

response to warming has demonstrated that phenology is highly sensitive to climate 

variation, but sensitivity varies widely among regions and taxa (Cook et al. 2012, Park 2014, 

Menzel et al. 2020), and even within species (Song et al. 2020, Love & Mazer 2021, Pearson 

et al. 2021), limiting our ability to extrapolate documented patterns to unstudied systems. 

Therefore, predicting plant phenological responses to climate change and their impact across 

communities, landscapes, and biomes will require significant increases to the geographic and 

taxonomic coverage of phenoclimatic analysis. 

Regular field observations of individual plants allow precise records of the date of 

phenological events and are the gold-standard for the study of phenology-climate 

relationships.  However, observational datasets spanning enough time to permit detection of 
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phenological shifts are scarce and predominantly consist of phenological records from North 

America and Western Europe (Cook et al. 2012, Templ et al. 2018), limiting their utility in 

assessing phenology-climate relationships across many unstudied taxa and biomes 

(Wolkovich et al. 2014, Tang et al. 2016). Moreover, field-based time series of phenology are 

usually available only at single sites for most species, constraining estimation of 

phenological responses to climate to small subsets of their ranges.  

 In contrast, herbarium specimens capture snapshots of the reproductive status of 

individual plants in space and time, and with hundreds of millions of records worldwide 

increasingly available digitally, provide unique opportunities to expand the taxonomic and 

spatiotemporal coverage of phenoclimatic studies (Willis et al. 2017, Meineke et al. 2018). In 

recent years, researchers have leveraged specimens to study phenology-climate relationships 

(Jones & Dahler 2018, Heberling et al. 2019), estimating phenological responsiveness for 

thousands of species (e.g., Park & Mazer 2018) and generating results qualitatively 

consistent with those from field studies (Calinger et al. 2013). However, potential biases in 

collection practices could yield inaccurate estimates of a species’ phenology and its 

sensitivity to climate. For example, while field observations can pinpoint the timing of a 

phenological with known degrees of uncertainty, herbarium specimens may have been 

collected anytime between the onset and termination of a phenophase or botanists may 

preferentially collect individuals in specific phenophases (e.g., peak flowering, Panchen et al. 

2019), potentially compromising collection dates as reliable proxies for the dates of 

phenological events, especially the onset and termination of a phenophase. Additionally, the 

opportunistic collection of specimens could result in sampling of early or late flowering 

individuals that may not accurately reflect the phenological behavior of their populations. 
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 Despite these caveats, studies designed to validate herbarium-based estimates of 

phenology and its sensitivity to climate using field observations are few and limited in scope. 

Most validation studies have been restricted to areas with long records of field observations 

and specimen collections covering a small portion of species’ ranges (Miller-Rushing et al. 

2006, Robbirt et al. 2011, Davis et al. 2015). In turn, the only studies comparing herbarium- 

and field-based phenological records at large spatial scales have not aimed to validate 

phenological sensitivity estimates (Spellman and Mulder 2016, Park & Mazer 2018). Some 

studies have compared herbarium- vs. field-based estimates of sensitivity for a single species 

(Robbirt et al. 2011), or conducted pooled, multi-species analyses that do not enable 

validation of estimates for individual species (Miller-Rushing et al. 2006, Park 2012). As an 

exception, Davis et al. (2015) used herbarium and field data for 20 species collected in 

Middlesex County (Massachusetts, USA), finding overall agreement between data for the 

direction of phenological responses to spring temperature variation; however, sensitivity 

estimates derived from the two sources tended to differ in magnitude and were not positively 

correlated among species. Collectively, these studies have shown herbarium specimens are 

promising data sources for phenoclimatic analysis, but their limited scope and the mismatch 

in estimates between data types in Davis et al. (2015) make it difficult to establish to what 

extent specimens may represent generally valid resources for the study of phenology-climate 

relationships. 

This study provides a multi-species comparison of herbarium- and field-based 

estimates of peak flowering sensitivity to spatiotemporal variation in mean minimum 

temperatures (TMIN). I used two geographically extensive datasets obtained from herbaria 

across the United States and from field observations aggregated by the USA National 
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Phenology Network (USA-NPN, hereafter, ‘NPN’; Schwartz et al. 2012). These data 

included a total of 21 species spanning diverse life histories and biomes and included 

phenological observations across thousands of unique site-year combinations throughout the 

United States. These data substantially exceed the sample sizes of previous validation studies 

and enabled us to compare herbarium- and field-based estimates of sensitivity to climate 

variation over both space and time and across a broad range of ecological contexts.  

I measured peak flowering time sensitivities to both geographic and interannual 

variation in TMIN because, among conspecifics distributed across large geographic scales, 

associations between phenology and climate might be driven both by phenotypic plasticity 

and by local adaptation to long-term climatic conditions among populations (Anderson et al. 

2012). While associations between phenology and interannual climate variation are thought 

to predominantly reflect plastic responses, correlations between phenology and long-term, 

mean climatic conditions over space may be strongly influenced by local adaptation across 

populations (Delgado et al. 2020). To the extent that phenology-climate relationships over 

space and time have different drivers, they may also differ in magnitude or direction. 

Therefore, I leveraged the spatiotemporal scale of these datasets to partition observed 

variation in temperature across sites and years into interannual and geographic components, 

comparing herbarium- and field-based estimates of sensitivity to both sources of temperature 

variation in all examined species. In doing so, this study provides the first concurrent 

validation of herbarium-based estimates of phenological sensitivity to spatial and temporal 

variation in temperature. 
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C. Methods 

Phenological data 

Field observations consisted of all records of flowering onset and termination available in the 

USA National Phenology Network database, representing an initial 1,105,764 phenological 

observations. To ensure data quality, I retained only observations for which flowering onset 

and termination dates had an arbitrary maximum error of 14 days. Accordingly, I filtered the 

data to include only records for which the date of flowering onset was preceded by an 

observation of the same individual without flowers no more than 14 days prior, and for which 

the flowering termination date was followed by an observation of the same individual 

without flowers no more than 14 days later. The remaining field observations had an average 

maximum error of 6.4 days for flowering onset, and of 6.6 days for flowering termination. 

Herbarium data consisted of an initial 894,392 digital specimen records archived by 

72 herbaria across North America (see Appendix 1—Note S1 for a list). I removed all 

specimens not explicitly recorded as being in flower, or for which GPS coordinates or dates 

of collection were not available. I further filtered both datasets by only retaining species that 

were found in both datasets and that were represented by observations at an arbitrary 

minimum of 15 unique sites in both datasets. To better align the geographic range of each 

dataset for each species, I filtered herbarium observations to include only specimens within 

the range of latitudes and longitudes represented among field observations in the NPN data. 

Finally, I retained only species represented by 70 or more herbarium specimens to ensure 

sufficient sample sizes for phenoclimatic modelling (Park & Mazer 2018). This procedure 

identified a final set of 21 native species represented in 3,243 field observations across 1,406 

unique site-year combinations, and a final sample of 5,405 herbarium specimens across 4,906 
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unique site-year combinations (Fig. 1). These species represented 15 families and 17 genera, 

spanning a diverse range of life history strategies and growth forms, including evergreen and 

deciduous shrubs and trees, as well as herbaceous perennials and annuals. The study’s focal 

species covered a wide variety of biomes and regions including Western deserts, 

Mediterranean shrublands, oak woodlands, and Eastern deciduous forests (Appendix 1—

Table S1). 

 

Figure 1 – Geographic distribution of herbarium specimens (A) and field observations from the 

USA-NPN (B) for 21 species in the continental United States. Numbered labels represent the centroid 

of the spatial distribution of observations for each species, obtained by calculating the average 

latitude and longitude among data points for each species. 
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I employed the day of year of collection (henceforth ‘DOY’) of each specimen 

collected while in flower as a proxy of flowering dates. Flowering specimens could have 

been collected at any point between onset and termination and botanists may preferentially 

collect individuals in their flowering peak for many species (Panchen et al. 2019). Therefore, 

specimen DOYs are more likely to reflect peak flowering dates than onset or termination 

dates (Primack et al. 2004). To increase the phenological equivalence of field and herbarium 

observations, I used the median date between flowering onset and termination for each 

observation in the NPN data as a proxy for peak flowering time. Median flowering dates also 

had a maximum error of 14 days, with an average maximum error among observations of 6.5 

days. Because flowering spanned year ends for some species (e.g., Quercus agrifolia), I 

accounted for the artificial DOY discontinuity between December 31st (DOY = 365-366) to 

January 1st (DOY = 1) by converting DOY into a circular variable using an Azimuthal 

correction (e.g., Park & Mazer 2018). 

 

Climate data 

Daily minimum temperatures mediate key developmental processes including the break of 

dormancy, floral induction, and anthesis (Reeves & Coupland 2000). Therefore, I used 

minimum surface temperatures averaged over the three months leading up to (and including) 

the mean flowering month for each species (hereafter ‘TMIN’) as the climatic correlate of 

flowering time in this study; consequently, the specific months over which temperatures were 

averaged varied among species. Using TMIN calculated over different time periods instead 

(e.g., during spring for all species) did not qualitatively affect the results. Then, I partitioned 

variation among sites into spatial and temporal components, characterizing TMIN for each 
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observation by the long-term mean TMIN at its site of collection (henceforth ‘TMIN 

normals’), and by the deviation between its TMIN in the year of collection (for the three-

month window of interest) and its long-term mean TMIN (henceforth ‘TMIN anomalies’) 

(Appendix 1—Fig. S1; see Munson & Long 2017 for an example of this approach). 

For each site, I obtained a monthly time series of TMIN from January, 1901, and 

December, 2016, using ClimateNA v6.30 (Wang et al. 2016), a software package that 

interpolates 4km2 resolution climate data from PRISM (PRISM Climate Group, Oregon State 

University, http://prism.oregonstate.edu) to generate elevation-adjusted climate estimates. To 

calculate TMIN normals, I averaged observed TMIN for the three months leading up to the 

mean flowering date of each species across all years between 1901 and 2016 for each site. 

TMIN anomalies relative to long-term conditions were calculated by subtracting TMIN 

normals from observed TMIN conditions in the year of collection. Therefore, positive and 

negative values of the anomalies respectively reflect warmer-than-average and colder-than-

average conditions in a given year (Appendix 1—Fig. S1).  

Pooling across species, herbarium records showed slightly cooler TMIN normals than 

did NPN field observations, and spanned a wider envelope encompassing warmer and cooler 

long-term conditions in the months leading up to mean flowering dates (Fig. 2A).  Specimen 

collection dates spanned a long period (1901-2016) largely preceding the onset of rapid 

warming trends while NPN observations were all conducted in recent years (2009-2020). 

Consequently, TMIN anomalies in the NPN dataset encompassed warmer conditions than 

those in the herbarium dataset both globally and for most species (Fig. 2A, C). Among 

species, differences between datasets in the width and median of TMIN normal and anomaly 
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envelopes varied substantially (Fig. 3B,C), but relative differences in TMIN envelopes 

among species were largely consistent in both datasets (Appendix 1—Fig. S2). 

 

Figure 2 – 90% TMIN normal and TMIN anomaly envelopes for herbarium specimens vs. field 

observations for all species pooled (A), and by species (B, C). The small red and blue segments 

located on the x- and y-axes in (A) indicate the mean values of each climatic variable for herbarium 

(blue) vs. field (red) data. 

 

Analyses 

I compared estimates of sensitivity to spatiotemporal variation in TMIN derived from 

herbarium specimens and field observations, concurrently measuring the effects of TMIN 

normals and anomalies on peak flowering time for each species-by-dataset combination. I 

combined herbarium and field records in a single dataset, which I analyzed using a varying-

intercepts, varying-slopes Bayesian mixed-effect model. The model fitted species-specific 

intercepts and slopes and treated them as random effects stemming from community-level 

distributions (defined by separate ‘hyperparameters’) for field and herbarium records. This 
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hierarchical structure improves estimation of parameters for species with low sample sizes by 

using community-level information and estimates from better-sampled species.  In turn, the 

Bayesian inference framework enables direct measurement of uncertainty for all parameters. 

 I used peak flowering DOY for each observation i in the combined dataset as a 

response, which was assumed to be normally distributed, with mean µi and species-specific 

standard deviation σs (Equation 1). 

Equation 1 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖  ∼  𝑁𝑁(µ𝑖𝑖 ,𝜎𝜎𝑠𝑠) 

 

 I modeled µi as a linear function of TMIN normal (TMIN Normi), and TMIN 

anomaly (TMIN Anomi) for each observation i. To obtain intercepts and slopes unique to 

each species-by-dataset combination, I used two dummy variables (with values of 0 or 1) 

respectively indicating whether each observation was obtained from field observations in 

the NPN (Fi) or from herbarium records (Hi). This resulted in the inclusion of only NPN or 

herbarium observations when a given parameter was estimated (i.e., model terms were 

turned “on and off”’ depending on data type). For each data type, the model yielded species-

specific intercepts representing standardized flowering dates expected under mean TMIN 

normal and mean TMIN anomaly conditions (herbarium: 𝛼𝛼1𝑠𝑠; NPN: 𝛼𝛼2𝑠𝑠), species-specific 

sensitivities (i.e., regression slopes) for TMIN normal (herbarium: 𝛽𝛽1𝑠𝑠; NPN: 𝛽𝛽2𝑠𝑠), and 

species-specific sensitivities for TMIN anomaly (herbarium: 𝛽𝛽3𝑠𝑠; NPN: 𝛽𝛽4𝑠𝑠) (Equation 2). 

Equation 2 

µ𝑖𝑖 =  𝛼𝛼1𝑠𝑠 × 𝐻𝐻𝑖𝑖  +  𝛼𝛼2𝑠𝑠 × 𝐹𝐹𝑖𝑖 + 𝛽𝛽1𝑠𝑠 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  ×  𝐻𝐻𝑖𝑖 + 𝛽𝛽2𝑠𝑠 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  ×  𝐹𝐹𝑖𝑖 + 
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𝛽𝛽3𝑠𝑠 ×  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  ×  𝐻𝐻𝑖𝑖 +  𝛽𝛽4𝑠𝑠 × TMIN 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  ×  𝐹𝐹𝑖𝑖 

 

Estimating peak flowering dates under standardized TMIN normal and TMIN anomaly 

enabled us to directly compare herbarium- and field-based predictions of peak flowering 

phenology. To account for co-variation among parameters (e.g., standardized flowering dates 

and temperature sensitivities, Mazer et al. 2013), I assumed that community-level 

distributions for intercepts and slopes were generated by a multivariate normal distribution 

with a vector of hyper-means µ and a variance-covariance matrix Σ.  

Equation 3 

(𝛼𝛼1𝑠𝑠 ,𝛼𝛼2𝑠𝑠 ,𝛽𝛽1𝑠𝑠 ,𝛽𝛽2𝑠𝑠 ,𝛽𝛽3𝑠𝑠 ,𝛽𝛽4𝑠𝑠)  ∼ 𝑁𝑁(µ,𝛴𝛴) 

 

The diagonals in Σ correspond to community-level variances for each intercept and slope, 

whereas off-diagonal values correspond to the covariances between parameters among 

species.  

 Priors in the model were weakly informative, with wide, 0 centered normal 

distributions for intercepts, slopes, and rate parameters for exponential distributions (used to 

obtain species-specific variances). For the variance-covariance matrix Σ, I used a 

Lewandowski-Kurowicka-Joe (LKJ) Cholesky covariance prior, with ŋ = 1 to allow for high 

correlations among parameters. Posterior distributions were obtained using Hamiltonian 

Monte Carlo (HMC) in Stan (code provided in Appendix 1—Note S2), implemented in R 

Studio v1.4.1106 using the ‘rstan’ package v.2.21.2 (R Core Team 2020, Stan Development 

Team 2020). I implemented a non-centered parameterization to improve sampling of the 

parameter space. Sampling was done using two MCMC chains with training and sampling 
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periods of 1000 iterations each. All parameters had Gelman-Rubin statistics (‘R-hat’) values 

close to 1, and visual examination of trace plots confirmed convergence. Bulk and tail 

effective sample size were both high relative to the total number of samples. 

To evaluate the correlation between herbarium- and field-derived estimates 

accounting for differences in the number of sampled sites between datasets, I calculated 

weighted Pearson correlation coefficients between Maximum a posteriori (MAP) estimates 

for field data and herbarium specimens generated by the model, using the minimum number 

of unique sites in the NPN or the herbarium dataset for each species as weights. Alternative 

weighing schemes (e.g., using total sample sizes instead) yielded nearly identical results. 

I assessed whether, among species, mismatches between herbarium- vs. field-based 

estimates could be explained by differing climate conditions captured by each dataset. For 

each species, I calculated the absolute difference between herbarium- and field-based 

estimates of standardized flowering time and TMIN sensitivities, and the absolute differences 

in mean TMIN normal and mean TMIN anomaly for both datasets. Finally, I calculated 

weighted Pearson correlations between absolute differences in parameter estimates and 

absolute differences in TMIN normal and TMIN anomaly between datasets, using the 

number of unique sites in the NPN or the herbarium dataset for each species as weights. All 

p-values were adjusted for multiple hypothesis testing using a Holm-Bonferroni correction. 

 

D. Results 

I found strong correlations between herbarium- and field-derived estimates for all 

phenological parameters. Standardized flowering times ranged from mid Spring (early April, 
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Cornus florida) to late Summer (mid-September, Baccharis pilularis), with very high 

correlation between herbarium- and field-derived estimates (r =0.91, p < 0.001; Fig. 3A). 

Absolute differences between herbarium- and field-based flowering dates ranged from 0 days 

for Fouquieria splendens to 64 days for Quercus rubra (Appendix—Table S1). Overall, 

estimates from both datasets differed by a mean of 14 days among species, with herbarium 

specimens generating estimates that were, on average, 11 days later than NPN-derived 

estimates across species. 

Estimates of sensitivity to TMIN normals and to TMIN anomalies were consistent 

between data types. Field- and herbarium-based estimates of sensitivity to TMIN normal 

were highly correlated (r = 0.88, p < 0.001) and largely co-varied along a one-to-one line, 

indicating agreement in the magnitude of species-specific sensitivities (Fig. 3B). TMIN 

normal sensitivities agreed in direction (i.e., the sign of the slope coefficient; Equation 2) for 

20 out of 21 species (95%), and the only species showing discrepancies between data types 

(Asclepias tuberosa) showed a non-significant estimate of TMIN normal sensitivity for field 

observations (Appendix—Table S2). On average, estimates of TMIN normal sensitivity 

differed by 1.5 d/°C among species between data types, with absolute differences ranging 

from 0.1 d/°C for Cornus florida and Tilia americana to 4.5 d/°C for Asclepias tuberosa 

(Appendix—Table S1). Collectively, herbarium-based estimates were an average of 0.1 d/°C 

more negative than field-based estimates. 

Similarly, sensitivities to TMIN anomalies were significantly correlated between data 

types (r = 0.82, p <0.001) and tended to agree in both direction and magnitude (Fig. 3C). 

Sensitivities to TMIN anomalies agreed in direction for 19 out of 21 species (90%), and the 

two species with mismatches in direction between data types (Eriogonum fasciculatum and 
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Tilia americana) had non-significant estimates that were very close to 0 for both data types 

(Appendix 1—Table S2, Fig. 3C). Herbarium- and field-based estimates of sensitivity to 

TMIN anomaly differed by an average of 1.3 d/°C among species, with absolute differences 

ranging from 0.0 d/°C for Acer negundo to 3.9 d/°C for Fouquieria splendens (Appendix—

Table S1). Herbarium-based estimates of sensitivity to TMIN anomaly were, on average, 0.5 

d/°C more positive than field-based estimates.  

 

Figure 3 – Comparison of species-specific estimates derived from herbarium vs. USA-NPN field 

observations for standardized flowering dates (A), flowering sensitivity to TMIN normal (B), and 

flowering sensitivity to TMIN anomaly (C). Vertical and horizontal lines around each point 

correspond to the standard deviation of each species-specific parameter and each dataset, and were 

obtained from the posterior distribution of each coefficient. Reported correlation coefficients and p-
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values were obtained using the minimum between the number of unique locations for each species in 

either the herbarium or the NPN dataset as weights. 

 

Among species, absolute differences in mean TMIN normal and in TMIN anomaly 

between datasets were not significantly correlated to mismatches between herbarium- vs. 

field-derived phenological estimates (Fig. 4). While I detected a marginally significant 

negative relationship between mismatches in standardized flowering dates and differences in 

TMIN normal between datasets, which would nonsensically indicate higher agreement 

between herbarium-vs field-based estimates for species showing greater differences in TMIN 

normal (Fig. 4A, C), such relationship was driven by a single outlier, Quercus rubra, 

exhibiting the greatest mismatch in estimated flowering time between datasets (64 days), and 

one of the lowest absolute differences in TMIN normal among species (0.1 °C). Excluding Q. 

rubra yielded a non-significant relationship instead (p = 0.50). 
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Figure 4 – Correlation among 21 species in the continental United States between absolute 

differences (|∆|) between herbarium- vs. field-derived estimates of standardized DOY, of sensitivity to 

TMIN normals, and of sensitivity to TMIN anomalies and absolute differences in mean TMIN normal 

(A, B, C) and TMIN anomaly (D, E, F). Quercus rubra is labeled in panels showing absolute 

differences in standardized DOY, for which it was a clear outlier. All P values displayed were adjusted 

for multiple hypothesis testing using a Holm-Bonferroni correction. 

 

E. Discussion 

This study extends these results by demonstrating strong quantitative agreement between 

field- and herbarium-based estimates of sensitivity to climate over both space and time and 

across multiple species. Moreover, while Robbirt et al. (2011) focused on a single species and 

Davis et al. (2015) analyzed only herbaceous species with ephemeral spring and summer 

flowering in New England, the 21 focal species spanned a wide diversity of growth forms, 

life histories, and native biomes, suggesting that herbarium-based estimates of phenology-

climate relationships may be reliable across a wide spectrum of ecological contexts. 

Despite a strong correlation, herbarium specimens produced later standardized 

estimates of flowering dates than did NPN observations. For most species, herbarium 

specimens encompassed colder TMIN conditions than NPN observations (Fig. 2). However, 

while this difference would predict later flowering dates in the cooler herbarium dataset (Fig. 

2), differences in TMIN normal and anomaly did not explain mismatches between datasets 

(Fig. 4). Herbarium specimens are predominantly collected opportunistically or during 

sporadic botanical expeditions, which might make them more likely to represent median 

rather than early or late flowering individuals within a population. In turn, NPN records are 
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assembled from regular visits to sites or individuals, which may result in capture of early 

flowering plants for herbaceous species for which monitoring the same individuals across 

years may not be possible, and to the extent that observers might choose to monitor large and 

healthy trees or shrubs (which may flower early), this could be the case for woody taxa as 

well. Nevertheless, estimates from both datasets showed modest differences and high 

correlation despite marked differences in collection periods and climatic conditions. 

 Similarly, herbarium- and field-based estimates of sensitivities to spatiotemporal 

TMIN variation overwhelmingly agreed in direction and magnitude despite differences in 

TMIN conditions between datasets (Fig. 2B-C; Fig. 3B-C). While recent studies shows that 

species can exhibit variation in phenological sensitivity among areas characterized by 

different long-term climatic conditions (e.g., Song et al. 2020; Love and Mazer, 2021, 

Pearson et al. 2021), the results suggest that such intraspecific differences might not be 

substantial enough to mask patterns of among-species variation in sensitivity to TMIN in this 

case. Similarly, plastic phenological responses to interannual climate variation can vary 

intraspecifically between cool and warm periods due to non-linearities in the underlying 

phenology-temperature relationship (Fu et al. 2015, Güsewell et al. 2017). However, the lack 

of associations between mismatches in TMIN conditions and in TMIN sensitivity suggests 

that phenology-temperature relationships among the focal species might be stable within the 

range of interannual variation encompassed here.   

While I lacked enough taxa to test this statistically, no apparent relationships between 

species-level characteristics and the degree of mismatch between herbarium vs. field 

estimates was detected. For example, while the species that showed the greatest mismatches 

for different phenological parameters consisted of a mix of evergreen and deciduous woody 
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species (and a few herbs) from various Western and Eastern ecoregions, so did groups of 

species showing the smallest mismatches (Appendix 1—Table S1). Likewise, no clear 

taxonomic patterns in mismatches between datasets were apparent. For example, while 

species in the genera Cornus and Quercus, respectively, showed some of the smallest 

mismatches in TMIN normal sensitivity and the greatest mismatches in TMIN anomaly 

sensitivity, congeners Cornus florida and Cornus sericea were respectively among the 

species showing the smallest and greatest mismatches in TMIN anomaly, obfuscating 

whether the reliability of herbarium-derived estimates may vary taxonomically. 

  NPN observations and herbarium collections might exhibit similar biases not 

examined in this study. For example, specimens might be collected and NPN observations 

conducted at easily accessible sites near roads or at low elevations that may inaccurately 

represent the overall environmental conditions and phenology observed throughout a species’ 

range (Daru et al. 2018, Meineke et al. 2021). Additionally, I detected large differences in 

sensitivity estimates for some species and substantial uncertainty in parameter estimation 

(especially for sensitivity to TMIN anomaly; Fig 3C, Appendix 1—Table S2), suggesting that 

herbarium-derived sensitivities for some species may lead to different conclusions from field 

observations or require much greater sample sizes than employed here for accurate 

estimation. Nevertheless, within the geographic and climatic space and the ecological 

diversity sampled in this study, this study demonstrates that herbarium specimens can 

uncover patterns of variation in phenology-climate relationships largely equivalent to those 

generated using field observations, suggesting that herbarium-based estimates may be 

generally robust to potential error or bias in specimen collection dates as proxies of peak 

flowering time. 
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Future directions 

This study provides strong evidence of the reliability of herbarium specimens as resources 

with which to study phenological responses to spatiotemporal climate variation among 

species. However, the study was constrained by the availability of well-represented species in 

the NPN and herbarium datasets, preventing statistical comparison of the reliability of 

herbarium-based estimates among, for example, species with different life history traits. 

Future studies could leverage the growing number of digitized collections across the United 

States to identify additional species that are well represented in the NPN or other 

observational datasets and that might facilitate such analyses. Additionally, the study focused 

on a single component of the flowering phenology of a species (peak flowering); further 

research could determine whether specimens can generate reliable estimates of sensitivity for 

flowering onset or termination (which can show differing responses to climate; Caradonna et 

al. 2014), or for different life-cycle stages altogether. Phenological data from herbarium 

specimens is usually limited to presence-absence of reproductive structures, providing coarse 

information on the reproductive stage of specimens. Ongoing efforts to automate scoring of 

reproductive structures in herbarium sheets (Pearson et al. 2020) combined with new metrics 

that provide fine grained information of the reproductive status of herbarium specimens 

(Love et al. 2019, Goëau et al. 2020) might eventually enable sensitivity analyses for a wide 

range of phenological events and stages.  
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III. Plasticity and not adaptation is the primary source of temperature-mediated 

variation in flowering phenology in North America2 

 

A. Abstract 

Phenology varies widely over space and time because of its sensitivity to climate. However, 

whether phenological variation is primarily generated by rapid organismal responses (i.e., 

plasticity) or local adaptation remains unresolved. Here, I used 1,038,027 herbarium 

specimens representing 1,605 species from the continental United States to measure 

flowering time sensitivity to temperature over time (‘Stime’) and space (‘Sspace’). By 

comparing these estimates, I inferred how adaptation and plasticity historically influenced 

phenology along temperature gradients and how their contributions vary among species with 

different phenology and native climates, and among ecoregions differing in species 

composition. Sspace and Stime were positively correlated (r = 0.87), of similar magnitude, and 

more frequently consistent with plasticity than adaptation. Apparent plasticity and adaptation 

generated earlier flowering in spring, limited responsiveness in late summer, and delayed 

flowering in fall in response to temperature increases. Nonetheless, ecoregions differed in the 

relative contributions of adaptation and plasticity, from consistently greater importance of 

plasticity (e.g., Southeastern USA Plains) to their nearly equal importance throughout the 

season (e.g., Western Sierra Madre Piedmont). These results support the hypothesis that 

plasticity is the primary driver of flowering time variation along temperature gradients, with 

local adaptation having a widespread but comparatively limited role. 

 
2This chapter has been published in the following peer-reviewed article: 
Ramirez-Parada, T. H., Park, I. W., Record, S., Davis, C. C., Ellison, A. M., & Mazer, S. J. (2024). Plasticity 
and not adaptation is the primary source of temperature-mediated variation in flowering phenology in North 
America. Nature Ecology & Evolution, 8(3), 467–476. https://doi.org/10.1038/s41559-023-02304-5 

https://doi.org/10.1038/s41559-023-02304-5
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B. Introduction 

The timing of life-cycle events (‘phenology’) determines the environmental conditions that 

organisms encounter throughout development and often mediates their fitness (Elzinga et al. 

2007). Phenology usually is cued by seasonally and interannually variable climatic factors—

such as temperature—that enable individuals to adjust growth and reproduction plastically in 

response to fluctuating environmental conditions (Bradshaw et al. 1965, Elzinga et al. 2007). 

Phenology also varies within species as a result of evolutionary adaptation to local 

environments, which may select for different mean phenological timings among or within 

populations in space and time (Franks et al. 2007, Gienapp et al. 2008, Hoffman and Sgrò 

2011, Wu and Colautti 2022). Although both plasticity and adaptation alter phenology, their 

relative contributions rarely have been measured within the same system largely because 

doing so requires experiments or spatiotemporally extensive genetic sampling (Phillimore et 

al. 2010, Merilä and Hendry 2011, Fox et al. 2019) (but see Wu and Colautti 2022). 

Accordingly, most studies have highlighted either plasticity or adaptation as mechanisms of 

phenological variation attributable to environmental change7, but their relative importance 

across species and ecological contexts remains unresolved. Elucidating the degree to which 

species have phenologically responded to historical climatic variation through plasticity or 

adaptation could provide important context for predicting whether organismal responses may 

be sufficient—or evolutionary change necessary—to maintain development synchronized 

with suitable climatic conditions in a warming world (Fox et al. 2019). 

Phillimore et al. (2010) proposed that the relative and joint contributions of plasticity 

and local adaptation to spatial variation in phenology within a species can be estimated from 

the difference between the slopes of spatial and temporal phenology-climate relationships. 
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This proposition rests on several observations. The effects of interannual climatic variation 

on phenology generally reflect plastic responses, especially among long-lived species less 

liable to experience microevolutionary changes from year to year (Bonamour et al. 2019). 

Phenological variation over space also can be caused by phenotypic plasticity where, for 

example, growing-degree day (GDD) thresholds that trigger life-cycle events occur on 

different dates across sites (Ensing and Eckert 2019). However, among populations, local 

adaptation also can generate phenological variation along climatic gradients (Stinchcombe et 

al. 2004, Montague et al. 2008). Therefore, assuming no confounding factors, and absent 

significant variation in phenological plasticity within and among populations, phenological 

variation along spatial climate gradients should reflect the joint effects of plasticity and 

adaptation (Anderson et al. 2012). 

Given these observations and assumptions, plasticity and adaptation can generate five 

empirical patterns of sensitivity to temporal climatic variation (hereafter ‘Stime’) and to spatial 

climatic variation (hereafter ‘Sspace’) (Fig. 1). First, if a species does not show phenological 

plasticity but population-level phenological means are locally adapted across a climatic 

gradient, we should observe negligible sensitivity to temporal climatic variation (i.e., no 

plasticity; Stime = 0) and a biologically significant difference between the slopes of the 

temporal and spatial relationships (Sspace – Stime ≠ 0 attributable to adaptation along the 

gradient; Figs. 1a,b). Alternatively, a phenologically plastic species whose populations are 

not locally adapted along the gradient should show biologically significant sensitivity to 

interannual climatic variation (i.e., Stime ≠ 0) and no differences between temporal and spatial 

slopes (Sspace – Stime = 0; Figs. 1c,d), implying that variation along the gradient can be 

attributed to plastic responses (i.e., Sspace = Stime). When both adaptation and plasticity drive 
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phenological variation along the climate gradient (i.e., Stime ≠ 0 and Sspace – Stime ≠ 0), the 

resulting empirical pattern should depend on the relative direction of plastic and adaptive 

responses. Specifically, when adaptation operates in the same direction as plasticity (i.e., “co-

gradient adaptation”; Conover and Schultz 1995, Nylin and Gotthard 1998), we should 

observe a greater spatial than temporal sensitivity (e.g., Stime < 0 and Sspace – Stime < 0 implies 

that Sspace < Stime, so Sspace is more negative; Figs. 1e, f). In turn, when adaptation operates in 

the opposite direction as plasticity (i.e., “counter-gradient adaptation”15,16), we should 

observe a lesser spatial sensitivity or one of opposite direction to the temporal relationship 

(e.g., Stime < 0 and Sspace – Stime > 0 implies that Sspace > Stime, so Sspace is either less steep, or 

positive; Figs. 1g, h). Finally, if a species shows no plasticity or local adaptation along a 

climate gradient, we would expect biologically non-significant temporal and spatial 

sensitivities (Figs. 1i, j). 

 

Figure 1—Spatial and temporal relationships between flowering time and temperature resulting from 

plasticity and adaptation. (a) Local adaptation acting as the sole driver of flowering time along the 
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gradient (i.e., no phenological plasticity) should result in (b) a negligible temporal relationship and a 

biologically significant difference between temporal and spatial slopes. In contrast, (c) plasticity 

acting as the sole driver of flowering time variation along the gradient (i.e., no adaptation) should 

result in (d) a biologically significant temporal relationship and negligible differences between spatial 

and temporal slopes. Local adaptation and plasticity jointly influencing flowering time should result 

in different empirical patterns depending on the direction of their effects. (e) Plasticity and adaptation 

operating in the same direction (e.g., both negative) should result in (f) a biologically significant 

temporal relationship and a spatial relationship of significantly greater magnitude. In contrast, (g) 

plasticity and adaptation operating in opposite directions (e.g., plasticity negative, adaptation positive) 

should result in (h) a biologically significant temporal relationship and a spatial relationship of 

significantly lesser magnitude (or having a different sign altogether). (i) Species exhibiting no 

plasticity or adaptation along the gradient would generate (j) biologically non-significant temporal 

and spatial slopes. Orange lines in a, c, e, and g illustrate phenological responses of spatially 

separated populations to temporal temperature variation, which spans a narrower temperature range 

than spatial temperature variation across the entire species range (segmented red lines). The 

biological processes in a, c, e, and g generate the empirical patterns in b, d, f, and h. In turn, the 

empirical patterns imply the processes that generated them. See “Methods – Exploring Assumptions” 

for an overview of the assumptions of this approach and the degree to which they were met by the 

data. For examples of species exhibiting each of these patterns, see Appendix 2—Fig. S1. 

 

Phenological sensitivity to temperature often varies among species occurring in 

different regions or that initiate phenological events at different times throughout the growing 

season (Fitter and Fitter 2002, Cook et al. 2012, Lapenis et al. 2014, Park et al. Zhang et al. 

2015, Park et al. 2019, Prevéy et al. 2019, Delgado et al. 2020, Li et al. 2021). However, 

comparisons of phenological sensitivity to climate over space and time—which are necessary 
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to evaluate the apparent contributions of plasticity and adaptation (Fig. 1)—across species 

differing in phenology and occupying different climates require spatiotemporally extensive 

datasets and therefore remain rare. Herbaria provide abundant and increasingly available data 

to conduct these analyses at unprecedented taxonomic, temporal, and spatial scales (Davis et 

al. 2015, Willis et al. 2017, Park and Mazer 2018, Park I. et al. 2021 Park D. et al. 2021, Park 

et al. 2022, Ramirez-Parada et al. 2022). However, few studies have separately estimated 

sensitivity to spatial versus temporal climate variation using specimens (but see Kharouba 

and Vellend 2015, Munson and Long 2017, Kopp et al. 2020, Pearson et al. 2021, Mazer et 

al. 2021, Ramirez-Parada et al. 2022, Park et al. 2023), and none have leveraged their unique 

scope to determine the ecological contexts in which plasticity or adaptation might contribute 

more strongly to spatial variation in phenology. 

Here, I analyzed a dataset of over a million flowering specimens from 1,605 species 

across the continental United States to compare phenological sensitivities to spatial and 

temporal variation in temperature (‘Sspace’ and ‘Stime’, respectively). For each species, I 

assessed whether its empirical sensitivity patterns were consistent with the effects of 

plasticity, adaptation, or both along temperature gradients (Fig. 1). Additionally, I evaluated 

how apparent temperature-related plasticity and adaptation of flowering time varied among 

species with different native climates, phenological niches, and occurring within different 

regional floras. Together, these analyses identified ecological contexts in which plasticity or 

adaptation appear to have most strongly influenced spatial phenological variation, providing 

the most taxonomically and geographically extensive assessment of temperature-mediated 

variation in flowering time among North American angiosperms conducted to date. 
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C. Methods 

Specimen data 

I assembled specimen records from 220 herbaria made available digitally through 16 

consortia from Mexico, the United States, and Canada (accessed during July and August of 

2022;  Appendix 2—Note S1). Only specimens explicitly recorded as bearing flowers were 

retained, which were identified by summarizing all unique entries in the DarwinCore 

‘reproductiveCondition’ column and identifying those that unambiguously indicated presence 

of flowers. After harmonizing species names using the Taxonomic Name Resolution Service 

(Boyle et al. 2013), I removed specimens lacking species-level identification, GPS 

coordinates, or dates of collection. To match the spatial and temporal coverage of the climate 

data (see ‘Climate data’ section below), I retained only specimens collected from 1896 to 

2020 within the United States. I considered as duplicates any conspecific specimens collected 

within 111m (i.e., 0.001 of a decimal degree) of one another on the same date. For 

subsequent analysis, species represented by at least 300 specimens were selected to ensure 

that the model was computationally tractable and that sufficient sample were available for 

estimating temperature responses in space and time. This filtering yielded a sample of 

1,038,047 specimens from 1,605 species (Appendix 2—Fig. S2) (see Ramirez-Parada et al. 

2023 for additional methodological detail).  

I used day of year (‘DOY’) of collection of each specimen as a proxy for flowering 

date. Because flowering spanned year-ends for many species, I accounted for the DOY 

discontinuity between December 31st and January 1st using an azimuthal correction, 

whereby DOYs from the year prior become negative values (Park and Mazer 2018). 
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Climatic data 

Temperature conditions preceding and leading up to anthesis can mediate flowering time 

through their effects on developmental rates of preceding phenophases or by cueing floral 

development and anthesis. Accordingly, I used mean surface temperatures averaged over a 

standard period of three months (Cook et al. 2012, Calinger et al. 2013, Mazer et al. 2013, 

Park et al. 2019) leading up to (and including) the mean flowering month for each species 

(hereafter ‘TMEAN’) as a predictor. For each collection site, I obtained monthly TMEAN 

time series (January 1896 – December 2020) at a 16-km2 spatial resolution from the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM Climate Group, 

Oregon State University, http://prism.oregonstate.edu). Each collection site was characterized 

by its long-term mean temperature (hereafter ‘TMEANNormal’), obtained by averaging 

observed TMEAN across all years between 1896 and 2020. Annual deviations from long-

term TMEAN conditions (hereafter ‘TMEANAnomaly’) at each site and in each year were 

calculated by subtracting the TMEANNormal from the observed TMEAN conditions in the year 

of collection. Positive and negative TMEANAnomaly values respectively reflect warmer-than-

average and colder-than-average years. TMEANNormal and TMEANAnomaly were uncorrelated 

irrespective of the latitudinal and elevational range spanned by a species (median r = −0.04), 

thus representing independent axes of climatic variation (Appendix 2—Fig. S3). 

TMEANNormal spanned a wider temperature range than TMEANAnomaly for most species, with 

respective median ranges of 13.7 °C and 5.4 °C (Appendix 2—Fig. S4). Species occurring in 

cold climates tended to show later mean flowering dates than species occupying warmer 

regions (Appendix 2—Fig. S5a); consequently, average TMEANNormal values were well 
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above 0°C leading up to the mean flowering dates of all species in the data (Appendix 2—

Fig. S5b). 

To assess how sensitivities varied across climatic gradients (see Analyses, below), I 

first characterized long-term precipitation and temperature at each site of collection using a 

Principal Component Analysis (PCA), with mean annual temperature normal (MATNormal), 

mean annual precipitation normal (PPTNormal), temperature seasonality, and precipitation 

seasonality as input features. I obtained precipitation (hereafter ‘PPT’) data from PRISM and 

calculated PPT and temperature seasonality for each collection site as the difference between 

the months with the highest and lowest PPT and mean temperature normal, respectively. PPT 

seasonality was calculated proportional to local levels of precipitation by dividing differences 

in maximum versus minimum monthly precipitation normal by PPTNormal at each site. The 

PCA identified 2 principal components accounting for more variance than its input features, 

jointly explaining 78% of observed variation. PC1 was associated with increasing PPT 

seasonality (36%), decreasing temperature seasonality (31%) and increasing MATNormal 

(28%) (Appendix 2—Fig. S2). PC2 represented a gradient of decreasing PPTNormal (74%) and 

increasing temperature seasonality (22%). 

 

Analyses 

Estimating apparent plasticity and adaptation 

Estimates of flowering time sensitivity to TMEANNormal and TMEANAnomaly were generated 

using a Bayesian mixed-effects model. The model fitted species-specific intercepts and 

slopes and treated them as random effects sampled from ‘community-level’ distributions 
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(defined by among-species mean and standard deviation of intercepts and slopes). This 

hierarchical structure improved estimation of parameters by using information and estimates 

from all species in the data. In turn, the Bayesian inference framework allowed for estimation 

of the correlations between TMEAN sensitivities over space and time and their differences 

for each species while propagating parameter uncertainty.  

 The model used DOY for each observation i as a response, assuming a normal 

distribution with mean µi and species-specific standard deviation σsp: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖  ∼  𝑁𝑁�µ𝑖𝑖 ,𝜎𝜎𝑠𝑠𝑠𝑠� (1) 

 µi was modeled as a linear function of TMEANNormal (TMEAN Normi), and 

TMEANAnomaly (TMEAN Anomi) for each observation i.  

µ𝑖𝑖 =  𝛼𝛼𝑠𝑠𝑠𝑠  + 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  +  𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 ×  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 (2) 

For each species sp, the model yielded intercepts representing mean flowering dates (𝛼𝛼𝑠𝑠𝑠𝑠), 

sensitivities (i.e., regression slopes) for TMEAN normal (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), and sensitivities for 

TMEAN anomaly (𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠). 

To assess the correlation between Sspace and Stime, I modeled community-level 

distributions for intercepts and slopes as generated by a multivariate normal distribution with 

a vector of hypermeans µ and a variance-covariance matrix Σ:  

�𝛼𝛼𝑠𝑠𝑠𝑠, 𝑆𝑆𝑁𝑁𝑠𝑠𝑠𝑠 , 𝑆𝑆𝐴𝐴𝑠𝑠𝑠𝑠� ∼ 𝑁𝑁(µ,𝛴𝛴) (3) 

I also calculated the difference between sensitivity types (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠) as a 

derived quantity within the model, interpreted as the degree of apparent local adaptation in 
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DOY observed across the TMEAN normal gradient (Fig. 1), with negative and positive 

values respectively indicating advances and delays in flowering DOY across warmer 

locations. 

 I used weakly informative priors, with wide, 0-centered normal distributions for 

intercepts, slopes, and rate parameters for exponential distributions (used to obtain species-

specific variances). For the variance-covariance matrix Σ, I used a Lewandowski-Kurowicka-

Joe (LKJ) Cholesky covariance prior, with ŋ = 1 to allow for high correlations among 

parameters. Posterior distributions were obtained using Hamiltonian Monte Carlo (HMC) in 

Stan as implemented in R v.4.2.1 using the ‘rstan’ package v.2.21.2 (Carpenter et al. 2017). A 

non-centered parameterization was implemented to improve sampling of the parameter 

space. Sampling was done using three MCMC chains with a training period of 1000 

iterations and sampling of 4000 iterations. All Sspace, Stime, and Sspace − Stime estimates had 

Gelman-Rubin statistics (‘R-hat’) of less than 1.002, and visual examination of trace plots 

confirmed convergence.  

Fitting the model on simulated data (Appendix 2—Note S2), which emulated the 

average range of TMEAN conditions and the signal-to-noise ratio of DOY vs. TMEAN 

observed within species in the data, confirmed that the model could accurately recover the 

parameters of interest (Stime, Sspace, and Sspace − Stime ) for a range of sample and effect sizes 

(Appendix 2—Note S2; Appendix 2—Figs. S6–8). Moreover, apparent plasticity (Stime) and 

apparent adaptation (Sspace − Stime) could be estimated with similar degrees of precision 

(Appendix 2—Fig. S10). 

Because the model did not include an explicit temporal predictor, it may appear to 

ignore widespread trends in phenology and temperature reported in recent decades. However, 
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additional simulation analyses (Appendix 2—Note S3) showed that the model does account 

for temporal trends in phenology among species that experience trends in TMEANAnomaly 

over time and that are responsive to TMEANAnomaly (i.e., non-zero Stime) (Appendix 2—Fig. 

S10a). To evaluate the model’s implicit assumption that trends in TMEANAnomaly cause 

observed trends in phenology, I used the herbarium dataset to determine empirically whether 

observed temporal trends in TMEANAnomaly and a species’ Stime indeed explain observed 

trends in DOY. The same patterns observed in the simulation were recovered (Appendix 2—

Fig. S10b), suggesting that phenology and TMEANAnomaly trends are causally related. 

Moreover, detrending DOY and TMEANAnomaly prior to fitting the model did not affect the 

results, suggesting that omitting time as a covariate was unlikely to generate bias (Appendix 

2—Fig. S11).  

Finally, I evaluated the impact on model estimates of choosing alternative reference 

periods to calculate TMEANNormal (i.e., 1901–2020 vs. 1901–1930, 1931–1960, 1961–1990, 

1991–2020) (Appendix 2—Note S4, Appendix 2—Figs. S12–14). These analyses confirmed 

that period selection was unlikely to have affected the results.  

 

Exploring assumptions 

Herbarium specimens rarely are collected repeatedly at the same location across years. 

Accordingly, few collections over time were obtained in close enough proximity to represent 

single populations. Because of this, Sspace and Stime were estimated using statistical methods 

different from Phillimore et al. (2010) and Delgado et al. (2020) (Appendix 2—Note S5). 

Nevertheless, the interpretation of the model relied on the same simplifying assumptions: 
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spatial slopes reflect variation in DOY among populations along a temperature gradient, 

temporal slopes reflect plasticity, plasticity does not vary within and among populations, and 

the temporal and spatial relationships between phenology and climate are not biased by 

confounding factors.  

I evaluated the plausibility of many of these assumptions. Sspace likely represented 

phenological variation among populations because conspecific specimens were collected 

over vast regions spanning median latitudinal and longitudinal ranges of 1,356 km and 1,819 

km (removing outliers), respectively. In turn, Stime likely reflected the effects of plasticity and 

not adaptation: analyses including only long-lived perennials (unlikely to show 

microevolutionary changes over short periods) yielded very similar results to those presented 

below (Appendix 2—Fig. S15); moreover, detrending DOY and TMEANAnomaly prior to 

fitting the model—which may account for temporal confounds or microevolution (Iler et al. 

2017)—yielded nearly identical estimates (Appendix 2—Fig. S11). Furthermore, I generated 

a single estimate of Stime per species, thus assuming uniform plastic responses within and 

among populations. This assumption was supported by the observation that, for a large 

majority of species, Stime did not vary along geographic gradients of long-term TMEAN, 

long-term PPT, TMEAN seasonality, PPT seasonality, or the joint gradients described by PC1 

and PC2 (Appendix 2—Fig. S16). Cumulative precipitation and photoperiod are unlikely to 

confound Sspace and Stime: accounting for cumulative PPT yielded nearly identical estimates in 

single-species models (Appendix 2—Fig. S17), and an analysis of 120 species collected 

withing geographic ranges restricted to narrower latitudinal bands (≤1°)—and therefore to 

limited geographically-driven variation in photoperiod—yielded results very similar to those 

based on the entire dataset (Appendix 2—Fig. S18). Finally, I detected no biases in Sspace or 
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Stime due to differences in sample size among species (Appendix 2—Fig. S19a, b), phylogeny 

(Appendix 2—Fig. S19c, d), spatial autocorrelation (Appendix 2—Fig. S19e, f), non-linear 

phenology-temperature relationships (Appendix 2—Fig. S20), or difference in range size 

among species (Appendix 2—Fig. S21). 

Although herbarium data has many spatial and temporal collection biases and 

limitations—including preferential collection near roads and urban areas, and sharp decreases 

in collection intensity in recent decades (Daru et al. 2018)—such biases are likely not severe 

in the data (Appendix 2—Note S6, 7, Appendix 2—Figs. 22–29). Estimates of Sspace, Stime, 

and Sspace – Stime were robust to inclusion in the models of factors such as urbanization 

(Appendix 2—Fig. S23) and proximity to major roads (Appendix 2—Fig. S26, 27), and 

showed no evidence of various forms of temporal non-independence (Appendix 2—Fig. 

S29). Collector preferences can result in overrepresentation of certain taxa or traits among 

specimens65. While these biases cannot be ruled out, this study encompassed species from 

106 families and 740 genera, capturing vast functional, evolutionary, and life history 

diversity. Therefore, I consider it unlikely that these results were driven by 

overrepresentation of taxa or traits. Finally, some herbaria obscure location data for 

endangered or heavily poached species. However, since I only included georeferenced 

specimens from well-represented species—of which only 12 (0.7% of the total) are listed as 

endangered by the United States Department of Agriculture (USDA, 2023)—it is unlikely 

that this species list includes many such taxa. 

 

Categorizing sensitivity patterns 
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To assess the prevalence of apparent plasticity and adaptation among species, I categorized 

each species’ Sspace versus Stime patterns as consistent with the effects of plasticity alone (Figs. 

1a,b), adaptation alone (Figs. 1c,d), the joint effects of plasticity and adaptation (co- or 

counter-gradient adaptation; Figs. 1e–h), or neither. Classifications were based on the 

proportion of the posterior probability distribution of Stime and Sspace − Stime lying in the 

direction of their maximum a posteriori (MAP) estimate (i.e., their “probability of direction”, 

henceforth ‘PD’). PD is bound by 0.5 (maximum uncertainty about the effect of the 

predictor) and 1 (certainty of an effect in the direction of the MAP estimate). I subjectively 

considered apparent plasticity (Stime) and adaptation (Sspace − Stime) as significant when their 

PD was ≥ 0.95 (Table 1). Apparent plasticity and adaptation showed similar levels of 

estimation uncertainty both empirically (SD = 0.87 ± 0.34 d/°C for Stime; SD = 0.93 ± 0.32 

d/°C for Sspace − Stime) and in simulation analyses (Appendix 2—Note S2), suggesting 

sensitivity patterns were not substantially more likely to be classified as consistent with 

plasticity than with adaptation (and vice versa) due to estimation uncertainty. 
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Biological Process Empirical Sensitivity Pattern 

Plasticity only 
1. Probability of direction for Stime ≥ 0.95 
2. Probability of direction for Sspace − Stime < 0.95 

Adaptation only 1. Probability of direction for Sspace − Stime ≥ 0.95 
2. Probability of direction for Stime < 0.95 

P
la

st
ic

ity
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nd
 A

da
pt
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Co-gradient 

1. Probability of direction for Stime ≥ 0.95 
2. Probability of direction for Sspace − Stime ≥ 0.95 
3. Sspace and Stime have the same direction 
4. |Sspace| > |Stime| 

Counter-gradient 

1. Probability of direction for Stime ≥ 0.95 
2. Probability of direction for Sspace − Stime ≥ 0.95 

Case 1: 
3. Sspace and Stime have opposite direction 

Case 2: 
4. Sspace and Stime have the same direction  
5. |Sspace| < |Stime| 

Neither 
1. Probability of direction for Stime < 0.95 
2. Probability of direction for Sspace − Stime < 0.95 

 

Table 1—Criteria for classifying the sensitivity pattern of each species. Patterns were classified as 

consistent with the role of plasticity only, adaptation only, the joint effects of plasticity and adaptation 

in a co- or counter-gradient adaptation pattern, or neither adaptation nor plasticity. The probability 

that Stime or Sspace − Stime differed from 0 in the direction of its maximum a posteriori (MAP) estimate 

(i.e., their probability of direction) was obtained from the posterior distribution of these parameters 

for each species.  

 

Phenological niches, local climates, and ecoregions 

To assess how apparent plasticity and adaptation varied with native climate and phenological 

niche among species, I first calculated the mean flowering DOY and the mean coordinates 

along the climate gradients described by PC1 and PC2 among specimens of each species. 

Two generalized additive models (GAMs) were then using Stime or Sspace − Stime as 

responses—assumed to be normally distributed—and a three-variable tensor-product smooth 

of mean flowering DOY, mean PC1, and mean PC2 as a predictor. This design allowed us to 
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assess how native climate and phenological niche jointly determined the apparent roles of 

plasticity and adaptation while accounting for possible interactions and non-linearities. 

Because Stime and Sspace − Stime are estimates, I accounted for parameter uncertainty by 

weighting each observation by the inverse of its posterior variance (i.e., its precision).  

 Additionally, I assessed the relative contributions of apparent plasticity and 

adaptation throughout the season within ecoregions of the contiguous United States. To do 

so, I identified the Level II Ecoregion—as classified by the USA Environmental Protection 

Agency (EPA) (Omernik 1987, Omernik and Griffith 2014)—within which each specimen 

was collected. I used Level II Ecoregions because they provide sufficient ecological detail to 

distinguish regional floras while encompassing areas broad enough for each to capture 

multiple species in the data. To avoid inflating species overlap among regions or the 

influence of species that were rarely sampled within an ecoregion, I arbitrarily considered a 

species as present within an ecoregion if at least 10% of its collections occurred within it. 

Only ecoregions represented by a minimum of 8 species were retained. Under this scheme, 

the median species was classified as occurring within 2 ecoregions (range = 1–7), the median 

ecoregion was represented by 156 species (range = 17–956 for Atlantic Highlands and 

Western Cordilleras, respectively), and pairs of ecoregions shared, on average, 4% of their 

species (range = 0–39%; Appendix 2—Fig. S30). Of the 120 ecoregion pairs examined, 57 

shared less than 1% of species, 100 shared less than 10% of species, and 114 shared less than 

20% of species. 

 Once species × ecoregion combinations were identified (n = 3,570), two GAMs were 

fitted including apparent plasticity (Stime) or apparent adaptation (Sspace − Stime) as a response, 

ecoregion as a categorical predictor, mean flowering DOY as continuous predictor, and a 
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mean flowering DOY × ecoregion spline assessing the ecoregion-specific effects of mean 

DOY on apparent plasticity or adaptation. Again, I accounted for parameter uncertainty by 

weighing each observation by the precision of its corresponding apparent plasticity or 

adaptation estimate. Collection locations in different ecoregions differed substantially in their 

long-term climatic conditions (Appendix 2—Fig. S31). However, I assumed no intraspecific 

variation in Stime across ecoregions, an assumption partially supported by the observation that 

Stime did not tend to vary along climatic gradients within species (Appendix 2—Fig. S16). All 

GAMs were implemented using the ‘mgcv’ package v.1.8-40 in R (R Core Team 2013, Wood 

2017). 

 

D. Results 

Plasticity vs. adaptation as determinants of phenology 

Sspace and Stime of 93% and 79% of species, respectively, differed from 0 with at least 95% 

probability. Sspace and Stime agreed in direction for 94% of species and estimates of both Stime 

and Sspace were negative for 89% and 91% of species, indicating earlier flowering across 

increasingly warmer locations and in warmer-than-average years (Fig. 2a).  

Both apparent plasticity and adaptation were associated with clinal variation in 

flowering time along temperature gradients, with plasticity playing a predominant role 

among species. Sspace and Stime were highly positively correlated, and their magnitude tended 

to correspond 1-to-1 for many species (Fig. 2b). Therefore, flowering shifts in warmer-than-

average years typically had similar direction and magnitude (in days/°C) as those observed 
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across increasingly warmer locations, consistent with a scenario of plasticity as the cause of 

phenological variation along spatial temperature gradients (Figs. 1c,d; Table 1). 

  

Figure 2—Distributions of, and relationship between Sspace and Stime among 1,605 North American 

angiosperms. Shaded regions in (a) correspond to the kernel density distributions of Stime (red) and 

Sspace (blue) among species. Each point in (b) represents a species whose x, y coordinates are given by 

the maximum a posteriori (MAP) estimates for Sspace and Stime, respectively. Colors in (b) indicate 

whether sensitivity patterns were consistent with plasticity (green) or adaptation (magenta) as the sole 

drivers of flowering time variation along the temperature gradient, with both plasticity and adaptation 

in a co- or counter-gradient adaptation pattern (blue, orange), or neither (dark yellow). The straight, 

solid black line in (b) indicates a 1:1 relationship (i.e., Sspace = Stime), whereas the curved solid line 

shows the observed relationship estimated from a generalized additive model (GAM). The shaded 

region along the curved solid line in (b) corresponds to the standard error of the predicted value of 

Stime. The percentage of species showing each pattern is shown in parentheses in the legend. The 95% 

credible interval for the correlation between Sspace and Stime is provided as a text inset in (b).  

 

More species showed sensitivity patterns consistent with plasticity (79%) than with 

adaptation (45%) (see Fig. 1, and a detailed classification scheme in Table 1). Apparent 
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plasticity explained approximately 52% of the variance in flowering-time clines along 

temperature gradients among species (Fig. 2b). Fourty-one percent of species showed 

sensitivity patterns consistent with plasticity as the sole driver of phenological variation 

across gradients. In contrast, only 7% of species showed sensitivity patterns consistent solely 

with adaptation (see Figs. 1a,b). Thirty-eight percent of the species showed both apparent 

local adaptation and evidence of plasticity. Among these, a greater proportion showed 

flowering advances (and co-gradient patterns; 27%) than flowering delays (and counter-

gradient patterns; 10%) resulting from apparent adaptation along temperature gradients (Fig. 

2b). Fourteen percent of species showed patterns that were consistent neither with 

temperature-related plasticity nor with adaptation. These patterns remained consistent when 

analyzing only long-lived species (whose responses to yearly temperature anomalies are 

certain to be plastic) (Appendix 2—Fig. S32). 

  

Plasticity and adaptation across ecological contexts 

Apparent plasticity (Stime) varied substantially among species with different phenological 

niches and across local climates (R2 = 0.55; Fig. 3a,c). Species flowering during late winter 

and spring tended to show flowering advances in warmer-than-average years. Such advances 

decreased in magnitude throughout the season, typically reversing to flowering delays during 

late summer and fall (Fig. 3a,c). The timing of the transition from positive values was 

consistent throughout PC1 (Fig. 3a), but occurred much earlier in arid regions with high 

temperature seasonality along PC2 (Fig. 3c). Apparent adaptation (Sspace − Stime) also varied 

with phenological niche and native climate (R2 = 0.47, Figs. 3b,d). Apparent adaptation 

varied from negative to positive values throughout the growing season, indicating a transition 
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from flowering advances to delays attributable to local adaptation. Such transitions occurred 

much earlier in cool, thermally seasonal regions (i.e., the low range of PC1) (Fig. 3b). 

Apparent adaptation also varied throughout the growing season along PC2, with transition 

from advances to delays under warmer conditions occurring earlier in regions with high 

precipitation (Fig. 3d). 

 

Figure 3—Variation in apparent plasticity (Stime) and apparent adaptation (Sspace − Stime) attributable to 

differences in phenological niche and native climate among species. PC1 (a, b) represents a climate 

gradient of increasing precipitation seasonality, decreasing temperature seasonality, and increasing 

mean annual temperature, whereas PC2 (c, d) corresponds to a gradient of decreasing mean annual 

precipitation and increasing temperature seasonality. The color gradients in each panel represents the 

predicted magnitude of Stime or Sspace − Stime (in days/°C) for a combination of mean flowering DOY 

and PC1 or PC2 values. The predicted surfaces represented by the color gradients were obtained 

using three-variable tensor smooths in a generalized additive modelling (GAM) framework. In each 

panel, the value of the third variable (the one not plotted) was fixed at its mean. 
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 These patterns were mirrored at the regional level: throughout the season, average 

apparent plasticity and adaptation among species transitioned from generating flowering 

advances to generating delays in response to higher temperatures in all sampled ecoregions 

(R2 for Stime = 0.44; R2 for Sspace − Stime = 0.35; Fig. 4). This transition invariably occurred 

during the summer months. The magnitude of apparent adaptation tended to be lower than 

that of apparent plasticity during most of spring and early summer for all ecoregions, but 

their difference tended to be less among species flowering during early spring and the 

magnitude of adaptation was often greater among species flowering during late summer and 

early fall (Figs. 4a–n). Nonetheless, ecoregions differed in the relative contributions of 

apparent adaptation and plasticity among species throughout the season. For example, 

apparent adaptation and plasticity had similar magnitudes within the Western Sierra Madre 

Piedmont (Fig. 4g). In contrast, mean apparent plasticity was consistently greater than 

adaptation among species in the Southeastern USA Plains (Fig. 4j). The difference in 

magnitude between apparent plasticity and adaptation was greatest among early- to mid-

summer flowering species in the Western Cordilleras and Cold Deserts (Figs. 4b, c).  
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Figure 4—Variation in apparent plasticity and apparent adaptation among species with varying 

phenological niches across ecoregions of the United States. Shaded regions in each panel represent 

the 95% confidence interval for the mean apparent plasticity or apparent adaptation among species 

predicted for a given mean flowering date. The predicted mean values for apparent plasticity and 

adaptation were obtained using generalized additive models (GAMs). 

 

E. Discussion 

This study provides evidence that, for 1,605 North American plant species, phenotypic 

plasticity historically has been the primary mechanism generating flowering-time variation 

along temperature gradients. Nonetheless, apparent adaptation and plasticity jointly 

generated phenological variation in a large proportion of species. Both apparent plasticity and 

adaptation consistently generated flowering advances in spring, lesser advances during 
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summer, and flowering delays during early fall, and this pattern was consistent across 

climates and ecoregions. Whether phenological reaction norms to historical climatic 

conditions will remain adaptive under future climatic regimes is unclear (Bonamour et al. 

2019). Nonetheless, these results suggest that plasticity historically has enabled flowering 

phenology to respond quickly to a wide range of temperature conditions among North 

American angiosperms, with adaptation frequently playing an important but context-

dependent role.  

 

Plasticity causes clinal variation in flowering time 

Extensive research has documented phenological plasticity to spatial climatic variation in 

plants (Kramer 1995, Levin 2009, De Frenne et al. 2011, Franks et al. 2014) that can result in 

clinal phenological variation even among short-lived taxa (Vitasse et al. 2013, Ensing and 

Eckert 2019). This study extends these results by showing that the predominance of plasticity 

over adaptation associated with temperature-related variation in phenology over space might 

be the norm among North American species.  

The greater importance of plasticity found in this study does not contradict the well-

established role of phenological adaptation in space and time (Franks et al. 2014), which can 

mediate rapid temporal shifts in phenology (Franks et al. 2007) or facilitate ecological 

invasions (Colautti and Barret 2013, Wu and Colautti 2022). Indeed, 45% of species in the 

data showed evidence of adaptation-driven phenological variation along temperature 

gradients (Fig. 2b). It is also possible non-linear or patchy adaptation patterns were not 

detected, or that the contributions of apparent adaptation and plasticity may be different in 
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regions underrepresented in the data (e.g., the Great Plains and prairies; Appendix 2—Fig. 

S2). Crucially, I only assessed the apparent contributions of plasticity and adaptation to 

observed variation in flowering time over temperature gradients, so these results do not rule 

out the possibility that adaptation is the primary driver of phenological variation along 

gradients of different climatic variables. Finally, determining the exact environmental 

conditions within microsites where herbarium specimens were collected is impossible 

because continental-scale climate products have relatively coarse spatial resolution and 

because specimen coordinates typically are inexact. Climatic variation at the microsite level 

could confound estimates of Sspace and the assessment of the prevalence of local adaptation if, 

for example, different populations along the gradient occupied distinct microsites that 

maintained temperatures more constant than apparent when looking at coarser pixel-level 

averages. However, to my knowledge, such microsite sorting across species ranges has only 

been reported at their trailing edges where climate is most limiting (Ackerly et al. 2020). 

Nonetheless, these potential complexities underscore the ultimate need for molecular or 

quantitative genetic studies to corroborate the broad correlational patterns outlined in this 

study. 

Still, the strong correlation between Sspace and Stime has important implications for 

phenoclimatic research. For example, it suggests that temperature-related variation in 

flowering time among conspecific populations is a good proxy of responsiveness to 

interannual temperature variation. Therefore, space-for-time substitutions might be viable 

approaches for quantifying plastic flowering responsiveness to temperature in North 

American angiosperms, for most of which we lack long-term phenological records 

(Wolkovich et al. 2014, Willis et al. 2017). Specifically, the match between Sspace and Stime 
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shows that substituting space for time might reveal the direction and approximate magnitude 

on flowering sensitivity to temperature over time within species, or relative differences in 

sensitivity among species. However, co-gradient adaptation frequently generated spatial 

sensitivities of greater magnitudes than those over time, demonstrating that Sspace might 

overestimate Stime in many species. 

This study’s results also indicate that plasticity may have generated phenological 

variation across a temperature range (i.e., a median range of 13.7 °C) exceeding the degree of 

warming forecasted for most regions in coming decades. However, such historical plastic 

flowering shifts over space will not necessarily be mirrored by temporal shifts within 

populations as warming trends continue. For example, historical temperature cues may 

become uncorrelated from the factors mediating the fitness consequences of phenology, 

rendering plastic reaction norms maladaptive (Gienapp et al. 2008, Bonamour et al. 2019). 

Plastic phenological shifts associated with warming also may be constrained by physiology 

(Chown et al. 2010) or by other competing cueing mechanisms such as photoperiod or winter 

chilling that may be disrupted by phenological shifts associated with higher temperatures (Fu 

et al. 2015, Güsewell et al. 2017, Wolkovich et al. 2022). These complexities highlight the 

need for research on the fitness consequences of recent and ongoing phenological shifts (Iler 

et al. 2021, De Lisle et al. 2022), and on the interrelated mechanisms underpinning 

associations between multiple abiotic cues (e.g., chilling, forcing, photoperiod, resources) 

and seasonal development beyond model systems (Amasino 2010, Wolkovich et al. 2022). 

 

Plasticity and adaptation vary across ecological contexts 
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Sensitivities transitioned from flowering advances under warming in spring to reduced or no 

responsiveness during summer and even flowering delays in early fall (Figs. 3, 4). This 

pattern implies that temperature trends will likely drive changes to the structure of the 

flowering season during spring and fall under global change, but that other environmental 

factors might play predominant roles during summer.  

These results support studies showing decreases in phenological sensitivity to 

temperature among species throughout the season in temperate biomes (Cook et al. 2012, 

Wolkovich et al. 2012, Mazer et al. 2013, Park et al. 2019), and others showing flowering 

delays among autumn-flowering species or lengthening of the growing and flowering seasons 

under warming (Delgado et al. 2020, Beil et al. 2021, Roslin et al. 2021, Zhou et al. 2022). 

While the causes of this pattern cannot be unambiguously identified, studies have shown that 

warming typically advances phenology during spring due to accelerated developmental rates, 

while phenophases occurring during fall are cued directly by seasonal cooling (Sherry et al. 

2007, Chen et al. 2020, Zohner et al. 2023). This difference would explain why fall-flowering 

species showed phenological delays under warming (i.e., fall cooling occurs later in warmer-

than-average years), or why the transition from advances to delays was more pronounced 

within cool regions with high temperature seasonality (i.e., those showing more pronounced 

cooling during fall; Fig. 3). Regardless of its causes, this study corroborates that transitions 

from spring flowering advances to fall delays because of climatic warming are consistent 

across thousands of species and diverse climate zones and biomes in the continental United 

States.  

Likewise, apparent adaptation throughout the season typically transitioned from 

generating mean flowering advances to generating delays along temperature gradients. The 
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results are consistent with those reported by Delgado et al. (2020), who found changes in the 

direction of apparent plasticity and adaptation throughout the growing season for multiple 

trophic levels (i.e., saprotrophs, primary producers, and primary and secondary consumers) in 

Eastern Europe. That changes in apparent plastic and adaptive responses to warming 

throughout the year might be robust across different phenophases, taxa, trophic levels, or 

climatic regimes across the temperate zone may reflect shared cueing mechanisms or 

selective pressures for different phenological events occurring during the same seasons 

(Roslin et al. 2021), with factors other than temperature (e.g., resources or photoperiod) 

likely driving phenological variation for developmental events in summer. Additionally, the 

greater prevalence of co-gradient adaptation as opposed to counter-gradient adaptation 

suggests that adaptation typically operates to generate greater variation in phenology along 

temperature gradients than generated by plasticity alone.  

 

Conclusions 

This study indicates that phenotypic plasticity is the predominant historical mechanism of 

spatial phenological variation across a wide range of temperature conditions in the 

continental United States; adaptation plays more context-specific roles. Whether and how 

species-level attributes such as functional traits and life history may mediate these relative 

contributions or whether historical responses will tend to be adaptive under non-analog 

climatic conditions remain open questions and important directions for future research. These 

results outline broad correlational patterns whose verification will require direct 

measurements of plasticity and adaptation across species and climate regions. Nonetheless, 

the data—across many biomes and thousands of species—confirmed patterns of plastic and 
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adaptive phenological advances in spring and delays in fall in response to warming observed 

in detailed empirical studies, highlighting the increasing utility of biological collections for 

studying plant responses to global change at vast taxonomic and spatiotemporal scales.  
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IV. Interspecific variation in onset and duration sensitivity mediates flowering 

reassembly under warming3 

 

A. Abstract 

Global warming has caused widespread shifts in plant phenology among species in the 

temperate zone, but it is unclear how population-level responses will scale to alter the 

structure of the flowering season at the community level. This knowledge gap exists largely 

because—while the climatic sensitivity of first flowering within populations has been studied 

extensively—little is known about the responsiveness of the duration of a population’s 

flowering period. This limits our ability to anticipate how the entire flowering periods of co-

occurring species may continue to change under warming. Nonetheless, flowering sensitivity 

to temperature often varies predictably among species between and within communities, 

which may help forecast temperature-related changes to a community’s flowering season. 

However, no studies—empirical or theoretical—have assessed how patterns of variation in 

flowering sensitivity among species could scale to alter community-level flowering changes 

under warming. Here, I provide a conceptual overview of how variation in the sensitivity of 

flowering onset and duration among species can mediate changes to a community’s flowering 

season due to warming trends. Specifically, I focused on the effects of differences in i) the 

mean sensitivity of flowering onset and duration among communities, and ii) the sensitivity 

of flowering onsets and durations among species flowering sequentially through the season 

 
3This chapter has been accepted for publication: 
Ramirez-Parada, T. H., Park, I. W., Record, S., Davis, C. C., & Mazer, S. J. (in press). Scaling flowering onset 
and duration responses among species predicts phenological community reassembly under warming. Ecosphere.  
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within a community. I evaluated the manner and degree in which these forms of between-

species variation in sensitivity might affect the structure of the flowering season—both 

independently and interactively—using simulations, which covered a wide but empirically-

informed range of parameter values and combinations representing distinct community-level 

patterns. These findings predict that communities across the temperate zone will exhibit 

varied and often contrasting flowering responses to warming across biomes, underscoring 

that accounting for the temperature sensitivity of both phenological onset and duration 

among species is essential for understanding community-level flowering dynamics in a 

warming world. 

 

B. Introduction 

Community-level flowering responses to warming are ecologically critical but poorly 

understood 

The flowering season (the portion of the year during which the flowering of most co-

occurring species within communities in the temperate zone occurs) is an ecologically critical 

period that mediates the fitness of plants and of the diverse organisms that depend on floral 

resources for survival and reproduction. The flowering season is the cumulative product (and 

an emergent property) of the blooming period of co-occurring plant species, and its structure 

determines the temporal distribution of floral diversity and abundance within a community. 

This temporal flowering structure mediates several ecological processes. For example, the 

local abundance of floral resources determines pollinator flight distances and the amount of 

pollen or nectar they collect (Zurbuchen et al. 2010, Pope and Jha 2018). Accordingly, floral 
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resource availability can mediate population growth rates among pollinator species (Roulston 

and Goodell 2011). For plants, the density of co-flowering species can mediate various 

ecological processes, including attraction and competition for pollen and seed dispersers, 

herbivory, flower and fruit predation, or gene flow among and within populations (Aide 

1988, Devaux and Lande 2009, Jones and Comita 2010, Gavini et al. 2021). Consequently, 

the seasonal diversity, distribution, and abundance of floral resources influences a suite of 

ecological outcomes that can shape the evolution of life-history strategies (Elzinga et al. 

2007). Importantly, many wild plants also support important crop pollinators (Morandin and 

Kremen 2013, Reilly et al. 2020), or produce pollen that is allergenic to humans (Stinson et 

al. 2018, Oh 2022). Accordingly, changes to the structure of the flowering season could have 

important implications for agriculture and human health. 

 In recent decades, warming trends have resulted in widespread shifts in flowering 

time across the temperate zone that could profoundly alter the network of ecological 

interactions within communities (Renner and Zohner 2018) and the overall structure of their 

flowering seasons (Diez et al. 2012, Caradonna et al. 2014, Theobald et al. 2017). Although 

the potential effects of warming on species interactions are well appreciated, it is unclear how 

the flowering responses of populations from different species will scale to jointly alter the 

flowering season at the community level. Few studies have assessed community-level 

changes to the flowering season (e.g., Jabis et al. 2020, Zhou et al. 2022), and they have 

largely focused on simple directional changes to season length. Consequently, existing 

studies encompass few regional floras, and the responses to temperature of more granular 

(and ecologically critical) characteristics of the season—such as the temporal distribution of 

the diversity and abundance of species in flower throughout the season—remain unexamined 
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aside from select study systems (e.g., Caradonna et al. 2014).  Addressing these knowledge 

gaps is difficult because long-term phenological datasets representing enough species to 

characterize the flowering season of a community, or to measure floral resources throughout 

the season, are exceedingly rare (Caradonna et al. 2014, Willis et al. 2017). In turn, although 

remotely sensed spectral data can capture the onset and duration of the growing season across 

much of the temperate zone, a community’s flowering season generates a much weaker 

spectral signal that is typically undetectable through satellite imagery despite successes in a 

few systems (e.g., Chen et al. 2019, Dixon et al. 2021). 

In principle, changes to community-level flowering patterns caused by warming 

could be inferred by aggregating the flowering responses of co-occurring species. However, 

our ability to do so is severely limited by an incomplete understanding of how warming 

affects the blooming periods of populations within species. To date, most phenological 

research has focused on the sensitivity to temperature of the onset of the flowering period 

(i.e., first flowering date, or ‘FFD’), with most studies measuring the effects of temperature 

on the emergence of the first flowering individuals within a population or site (hereafter 

‘SFFD’; Fig. 1) (Fitter and Fitter 2002, Miller-Rushing and Primack 2008, Wolkovich et al. 

2012, Prevéy et al. 2019). In contrast, comparatively little is known about the effects of 

temperature on the duration of the period over which individuals are observed in flower (i.e., 

the temperature sensitivity of population-level flowering duration, hereafter ‘SD’) (Fig. 1b). 

At the individual level, the termination of flowering—whose timing relative to flowering 

onset determines flowering duration—can be induced by different endogenous and 

environmental factors than those triggering its onset (Nagahama et al. 2018, Gonzalez-Suarez 

et al. 2020). Consequently, SFFD might not predict the temperature sensitivity of flowering 
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termination (and by extension, SD), which has been measured directly in a relatively narrow 

range of species and biomes (Li et al. 2021, Zhou et al. 2022). Moreover, population-level 

flowering duration is also driven by variation in flowering onset and duration among 

individuals, and the drivers of such variation (e.g., microenvironmental differences, genetic 

variation in flowering plasticity, resources status) are largely unresolved across regions and 

taxa. These limitations—compounded by a scarcity of long-term observational records of 

flowering duration of individual populations—preclude inferences of the way in which 

blooming period responses to temperature among co-occurring species will scale to alter a 

community’s flowering season (Park et al. 2024). 

 

Figure 1—Population-level sensitivities (a, b) and patterns of variation in sensitivity among co-

occurring species (c-f) that determine the responses of a community’s flowering season to 
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temperature. (a) and (b) respectively show how a population’s first flowering date (‘FFD’) and the 

duration of its flowering period change with temperature, with points respectively representing FFDs 

and durations of a single population across years with different temperatures in the season leading up 

to flowering. The temperature sensitivity of first flowering dates (‘SFFD’) is defined as the slope of the 

relationship between FFD and temperature (a), with negative values indicating earlier FFD under 

higher temperatures, and positive values indicating later FFD under higher temperatures. Similarly, 

the temperature sensitivity of flowering duration (‘SD’;) is measured as the slope of the relationship 

between duration and temperature (b), with negative values indicating shorter flowering periods 

under higher temperature, and positive values indicating longer flowering under higher temperatures. 

As population-level sensitivity metrics, SFFD and SD are mediated by factors affecting the mean and 

variability of phenological plasticity among individuals, such as genetic or microsite differences. In 

turn, c-f show patterns of among-species variation in SFFD and SD. (c) and (e) respectively depict 

variation among communities in average SFFD and SD among species (‘𝑆𝑆𝐹̅𝐹𝐹𝐹𝐹𝐹’ and ‘𝑆𝑆𝐷̅𝐷’), with each 

curve representing the among-species distribution of sensitivities within communities with different 

means. Negative values of 𝑆𝑆𝐹̅𝐹𝐹𝐹𝐹𝐹  or 𝑆𝑆𝐹̅𝐹𝐹𝐹𝐹𝐹 respectively indicate that species tend to advance or contract 

their flowering under warming, whereas positive values respectively indicate that species tend to 

delay or extend their flowering. Values of 0 for these parameters indicate that, on average, first 

flowering dates and flowering durations do not tend to change under warming. (d) and (f) 

respectively show variation among communities in the relationship between the mean flowering date 

and both SFFD (𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹) and SD (𝛽𝛽𝑆𝑆𝐷𝐷) for species flowering successively throughout the season. 

Accordingly, points in (d) and (f) represent species within a community.   Negative values of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  

indicate that SFFD decreases among species as the season progresses. Depending on the community’s 

mean SFFD, these patterns may respectively correspond to a transition from delays to advances 

between early and late flowering species (i.e., SFFD switches sign), a decrease in the degree of delay 

under higher temperatures (i.e., SFFD closer to 0), or increases in the degree of advancement under 
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higher temperatures (i.e., SFFD further from 0 in the negative direction). In turn, positive 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  

indicate that SFFD increases among species as the season progresses (with an interpretation opposite to 

that of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹<0). Similarly, negative values of 𝛽𝛽𝑆𝑆𝐷𝐷  indicate that SD decreases among species as the 

season progresses, which can correspond to a transition from flowering extensions to contractions 

among species throughout the season (i.e., SD switches sign), decreases in the degree of flowering 

extension (i.e., SD becomes less positive), or increases in the degree of flowering contraction (i.e., SD 

becomes more negative).  Positive 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  then indicate increases in SD as the season progresses. 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  

or 𝛽𝛽𝑆𝑆𝐷𝐷equal to 0 respectively indicate no difference in average SFFD and SD among early- and late-

flowering species. For simplicity, (d) and (f) respectively depict scenarios in which 𝑆𝑆𝐹̅𝐹𝐹𝐹𝐹𝐹 and 𝑆𝑆𝐷̅𝐷 equal 

0. 

 

Community-level flowering responses to warming can be predicted from non-random 

variation in sensitivity among co-occurring species 

A recent surge of phenological research has established that flowering sensitivity typically 

varies non-randomly among species within and among communities, which can be leveraged 

to predict how flowering at the community level will change under ongoing warming trends 

(Figs. 1c-f). For example, due to species turnover across regions or variation in sensitivity 

within species ranges, the mean SFFD observed among co-occurring species (hereafter ‘𝑆𝑆𝐹̅𝐹𝐹𝐹𝐹𝐹’) 

often differs between communities (Zhang et al. 2015, Prevéy et al. 2017, Park et al. 2019) 

(Fig. 1c). Moreover, many studies have established that co-occurring species that flower at 

different times within a season tend to show marked differences in the climate sensitivity of 

their first (and peak) flowering dates (i.e., in SFFD) (e.g., Wolkovich et al. 2012, Mazer et al. 

2013, Ramirez-Parada et al. 2023). In relatively mesic communities, such directional 
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variation in SFFD among species throughout the season (hereafter ‘𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹’; Fig. 1d) typically 

consists of greater advances under warming among early-flowering species than among late-

flowering species (Cook et al. 2012). In turn, high-latitude and high-elevation communities 

show more variable patterns that include greater advances among late-flowering species 

(Prevéy et al. 2019). Meanwhile—and although still rare compared to research on flowering 

onset—studies of population-level flowering duration have reported substantial variation in 

mean SD among species in different communities (hereafter ‘𝑆𝑆𝐷̅𝐷’; Fig. 1e), with some 

communities showing average increases and others average decreases in flowering duration 

among species in response to warming (Nagahama et al. 2018, Chen et al. 2020, Hu et al. 

2020, Huang et al. 2020, Jabis et al. 2020, Nam and Kim 2020). Some communities also 

exhibit variation in SD among species that flower at different times throughout the season 

(hereafter ‘𝛽𝛽𝑆𝑆𝐷𝐷’; Fig. 1f), with some exhibiting greater sensitivity among early-flowering and 

others among late-flowering species (Li et al. 2020, Chen et al. 2022). 

Such forms of non-random variation in SFFD and SD among species should have 

distinct impacts on the structure of a community’s flowering season under warming (depicted 

in simplified hypothetical scenarios in Fig. 2). For example, for communities with an 

identical flowering structure before warming (Fig. 2a)—and assuming no other forms of 

variation in SFFD and SD among species (i.e., 𝑆𝑆𝐷̅𝐷,  𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹, and 𝛽𝛽𝑆𝑆𝐷𝐷 all equal 0)—𝑆𝑆𝐹̅𝐹𝐹𝐹𝐹𝐹 should 

determine whether the FFDs of co-occurring species tend to advance or delay under higher 

temperatures. In such cases, warming would significantly alter the start and end of the season 

but not the relative distribution of the flowering periods of different species (Fig. 2b). In 

contrast, directional variation in SFFD as the season progresses (𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹) should mediate the 

degree to which the blooming periods of species tend to converge or diverge within the 
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season (Fig. 2c). For example, 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 > 0 would tend to spread the flowering periods of co-

occurring species, advancing the start and delaying the end of the season (thus lengthening 

it), decreasing flowering overlap among species, and therefore the mean richness of 

flowering species throughout the season. In turn, greater advances among late-flowering 

species would concentrate the blooming periods of different species, shortening the season 

and increasing both the degree of flowering overlap and the average richness of co-flowering 

species throughout the season. Among-species variation in SD should have distinct effects 

from those generated by among-species variation in SFFD. A community’s 𝑆𝑆𝐷̅𝐷 would affect the 

timing of flowering termination among species, predominantly altering their degree of 

flowering overlap, the richness of co-flowering species (or the cumulative flowering intensity 

of the community), and the duration of the season (Fig. 2d). In turn, directional variation in 

SD throughout the season (𝛽𝛽𝑆𝑆𝐷𝐷) would most strongly impact the degree of flowering overlap 

among species and the richness of co-flowering species within it (Fig. 2e).  
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Figure 2—Community-level flowering responses to warming mediated by different forms of non-

random variation in SFFD and SD among co-occurring species. (a) depicts a hypothetical community of 

4 species, with each colored line representing the flowering intensity (interpretable as the number of 

individuals flowering or the cumulative flowering output of the population) each day of the season. In 

turn, b-e show various forms of non-random variation in SFFD or SD among species, and the responses 

to warming that they would generate for the community depicted in (a). Arrows between panels in b-e 

connect each form of among-species variation in SFFD and SD to the community-level flowering 

pattern that would emerge under warming. In each scenario, the community is assumed to exhibit 

only the focal form of among=species variation in SFFD and SD (i.e., other parameters describing non-

random variation among species are assumed to equal 0). Vertical, solid lines in the right-hand panels 

of b-e indicate the start and end of the flowering season for the community before warming (for 

reference).  
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These forms of interspecific variation in sensitivity can generate non-analog 

flowering events in response to warming, with previously asynchronous species now 

overlapping (e.g., spp. 1 and 4, Figs. 2c, d, e), previously synchronous species no longer 

overlapping (e.g., spp. 1 and 3; Figs. 2c, d, e), and species flowering partially outside of (or 

no longer in) the community’s historical flowering season (Figs. 2b-e). Such non-analogous 

synchrony patterns may therefore reassemble the network of interactions mediated by 

flowering (e.g., pollinator attraction or competition) among species within a community 

(Theobald et al. 2017).   

While predicting community-level responses is simple when considering these 

patterns of variation in isolation, realized changes to the structure of the flowering season 

will depend on how these community-level attributes jointly mediate variation in SD and SFFD 

within communities. Moreover, the direction and magnitude of such changes are not 

intuitively obvious. For example, if late-flowering species advance their flowering but delay 

flowering termination, it is unclear whether the end of the season would delay or advance. 

Moreover, directional changes in season length or flowering peaks do not necessarily indicate 

whether floral diversity and abundance—or the network of flowering overlap among 

species—might increase or decrease during different parts of the season. It is also difficult to 

anticipate how these types of non-random variation in sensitivity among species might 

operate in more complex communities (e.g., temperate communities can harbor hundreds of 

species) or what their impact would be for more granular attributes of the flowering season 

(such as the community’s cumulative flowering output each day of the season).  To my 

knowledge, no studies—empirical or theoretical—have assessed whether and how non-
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random variation in SFFD and SD determines temperature-related changes to the structure of 

the flowering season at the community level. This is largely because few datasets document 

the duration of the flowering period of plant populations across multiple years—which is 

needed for measuring the sensitivity of flowering duration to interannual temperature 

variation—and to my knowledge, none have done so comprehensively among co-occurring 

species within a community.  

 

Simulations enable scaling of flowering responses from species to communities 

Studies examining community-level flowering responses to climate are rare and have 

predominantly measured simple attributes of the season (e.g., season length), limiting our 

understanding of how the seasonal distribution of floral diversity and abundance will change 

in response to ongoing warming across regions. Assessing this knowledge gap empirically is 

difficult due to a scarcity of long-term datasets on the phenological sensitivity of both 

flowering onset and termination that also include enough species to reconstruct community-

level patterns. 

To circumvent these limitations, I used computer simulations to evaluate how patterns 

of non-random variation in SFFD and SD among species—some of which have been 

extensively reported in the literature—independently and jointly mediate the seasonal 

distribution of flowering species and the structure of flowering overlaps among species 

within a community. I modeled three forms of among-species variation in sensitivity that 

have been documented in the literature: (1) the degree and direction in which SFFD varies 

among species flowering successively throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹), (2) the degree to 
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which co-occurring species tend to shorten or extend their flowering periods under warming 

(i.e., mean SD among species, or 𝑆𝑆𝐷̅𝐷), and (3) the degree and direction of variation in SD 

among species flowering successively throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐷𝐷) (Fig. 1). I excluded 

𝑆𝑆𝐹̅𝐹𝐹𝐹𝐹𝐹 from the simulations because, although it affects the overall timing of the flowering 

season within the year, it does not alter the timing of each species' flowering period relative 

to the rest of the community, nor the emergent community structure (Fig. 2b, Appendix 3—

Fig. S1). By simulating communities under a range of values for 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝐷̅𝐷, and 𝛽𝛽𝑆𝑆𝐷𝐷, I 

explored three general scenarios: one in which SFFD and SD vary independently among 

species (Scenario 1; Fig. 3a),  and two others in which SD and SFFD are correlated either 

positively (Scenario 2; Fig. 3b) or negatively (Scenario 3) due to their shared covariation 

with the timing of flowering of a species within the season (Fig. 3; Fig. 3c).   

 

Figure 3—Combinations of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷values generating scenarios in which SFFD and SD are (a) 

independent (scenario 1) (b) positively correlated (scenario 2) or (c) negatively correlated (scenario 3) 

across species. Across panels, multiple dashed lines depicting the relationship between SD and mean 

flowering date are shown because communities may differ in the mean sensitivity of SD observed 

among species (i.e., 𝑆𝑆𝐷̅𝐷), which changes the y-intercept of the relationship without altering its slope. 
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The goals of using simulations were multifold. First, I evaluated how species-level 

responses scale to alter community-level attributes beyond simple directional responses to 

season length. Such attributes included changes to the diversity and abundance of flowering 

each day of the flowering season, and to the network of flowering overlaps within the 

community (which mediates the potential for flowering-mediated species interactions). 

Second, I was able to concurrently assess the effects of flowering onset and duration 

sensitivities, identifying their distinct impacts during different portions of the season and on 

specific types of community-level flowering responses. Finally, simulating empirically 

documented forms of among-species variation in sensitivity for a wide range of parameter 

combinations enabled us to explore a much wider range of scenarios—or types of 

communities—than that captured by the few empirical studies conducted to date.  

Overall, the simulations demonstrate that non-random variation in SFFD and in SD 

among species (modeled by 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹,  𝑆𝑆𝐷̅𝐷, and 𝛽𝛽𝑆𝑆𝐷𝐷) is likely to have profound and predictable 

impacts on the structure of the flowering season, underscoring i) the importance of measuring 

the climatic responsiveness of phenological onsets and durations and ii) that characterizing 

patterns of among-species variation will help predict changes in community-level flowering 

patterns and their potential ecological consequences under a changing climate. Importantly, 

recent research suggests that directional variation in temperature sensitivity among species 

active at different times throughout the season—such as that described in this paper—might 

be common among producers, primary and secondary consumers, and saprotrophs (Roslin et 

al. 2021). Therefore, the modes of change described here might have implications for 
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understanding community-level phenological changes beyond plants and flowering 

phenology. 

 

C. Methods 

Simulation Design 

Assigning community-level parameters 

The simulations assessed changes to the flowering season under warming across 

communities differing in the structure of among-species variation in SFFD and SD, which I 

modeled using three parameters (𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝐷̅𝐷, and 𝛽𝛽𝑆𝑆𝐷𝐷; Fig. 1). 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 modeled the degree and 

direction in which SFFD (measured in days/°C) varied among species flowering successively 

throughout the season as a linear relationship between each species-specific SFFD and mean 

flowering date (Fig. 4a). Therefore, a negative 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 indicates decreasing SFFD as the season 

progresses, whereas a positive 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 indicates increasing SFFD. Because mean SFFD was set to 

0 for all communities (as it did not affect the structure of the flowering season; Fig 2b, 

Appendix 3—Fig. S1), negative 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 implies a transition from positive SFFD (i.e., flowering 

delays under warming) to negative SFFD (i.e., flowering advances under warming) between 

early- and late-flowering species in a community. Each simulated community (described 

below) was assigned one of five 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 values ranging from -0.1 (i.e., SFFD decreases by 1 

day/°C for every 10-day increase in mean flowering date among species) to 0.1 (SFFD 

increases by 1 day/°C for every 10-day increase in mean flowering date) in 0.05 increments. I 

approximately set the mid-range of values for 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 (-0.05 to 0.05) based on studies that have 

evaluated the relationship between mean flowering dates and SFFD empirically (e.g., Fitter 



88 
 

and Fitter 2002, Cook et al. 2012, Mazer et al. 2013, Wolkovich et al. 2012, Prevéy et al. 

2019, Park et al. 2019). As most studies comparing phenological sensitivities have been 

conducted within mesic regions of North America and Europe, I included more extreme 

values of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 (-0.1 and 0.1) to account for the possibility of more extreme relationships 

between SFFD and mean flowering date in unstudied systems. 

 

Figure 4—Diagram of the simulation design. For each combination of community-level parameter 

values describing how the temperature sensitivity of first flowering date (SFFD) and of flowering 

duration (SD) varies among species in a community (a, b, c), 200 communities were simulated: half 
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showing a single seasonal peak of first flowering dates (FFDs) among species, and half showing two 

peaks. For each community, 100 species were simulated by combining random first flowering dates 

(drawn from either unimodal or bimodal distributions) and flowering durations (d, e, f). For each 

species, population-level flowering time series were generated from their FFDs and durations 

assuming a bell-shaped flowering curve (g), and the flowering season attributes were calculated for 

each community (h). Then, each species was assigned an SFFD and an SD based on the relationship 

between these sensitivities and mean flowering date determined by its community’s 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 , 𝑆𝑆𝐷̅𝐷, and  

𝛽𝛽𝑆𝑆𝐷𝐷  values (i) prior to generating new flowering periods predicted by each species’ SFFD and SD under 

2 °C warming (j). Flowering season attributes were recalculated for each post-warming community 

(k) and compared to the preseason baseline (l).  

 

I modeled variation among communities in both the mean SD observed among species 

(i.e., 𝑆𝑆𝐷̅𝐷) and in the degree to which SD varied among species flowering successively 

throughout the season. 𝑆𝑆𝐷̅𝐷 indicates whether (and to what degree) a community shows 

average decreases or increases in flowering duration under warming (Fig. 4b). Each 

community was assigned one of five  𝑆𝑆𝐷̅𝐷 values ranging from -5 d/°C (i.e., mean decreases in 

the duration of the flowering period of 5 days per °C among species) to 5 d/°C (i.e., mean 

duration increases of 5 days per °C) in 2.5 d/°C increments. In this scenario, SFFD and SD are 

assumed to be uncorrelated among species. In turn, I modeled 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  as a linear function of 

mean flowering date throughout the season, with values ranging from -0.1 (i.e., SD decreases 

by 1 day/°C for every 10-day increase in the mean flowering date of a species) to 0.1 (SD 

increases by 1 day/°C for every 10-day increase in mean flowering date) in 0.05 increments 

(Fig. 4c). Again, the range of possible values for 𝛽𝛽𝑆𝑆𝐷𝐷was roughly approximated from the few 
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studies that have quantified among-species variation in SD throughout the season (e.g., Chen 

et al. 2020, Li et al. 2020), including more extreme values to acknowledge the possibility of 

stronger relationships (values of -0.1 and 0.1) than those documented to date. As 

communities differed both in 𝛽𝛽𝑆𝑆𝐷𝐷 and 𝑆𝑆𝐷̅𝐷, negative 𝛽𝛽𝑆𝑆𝐷𝐷 can indicate a transition between 

early- and late-flowering species from positive to negative SD (i.e., flowering lengthening to 

contraction), decreases in the degree of flowering lengthening (i.e., lower but still positive SD 

among late-flowering species), or increases in the degree of contraction among late-flowering 

species (i.e., more negative SD). In turn, positive 𝛽𝛽𝑆𝑆𝐷𝐷 can indicate the opposite of each of 

these patterns (i.e., a switch from contractions to lengthening, increases in the degree of 

lengthening, or decreases in the degree of contraction between early- and late-flowering 

species). 

Different combinations of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷 generated distinct relationships between 

SFFD and SD, with a value of 0 for 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 or 𝛽𝛽𝑆𝑆𝐷𝐷 generating independent SFFD and SD (Scenario 

1; Fig. 3a), non-zero 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹and 𝛽𝛽𝑆𝑆𝐷𝐷 of the same sign generating positively correlated SFFD and 

SD through their congruent relationship with mean flowering date (Scenario 2; Fig. 3b), and 

opposite signs generating negatively correlated SFFD and SD through their discordant 

variation throughout the season (Scenario 3; Fig. 3c).  

 

Simulating pre-warming communities—For each of 125 combinations of parameter values (5 

× 5 × 5 combinations of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹,  𝑆𝑆𝐷̅𝐷, and 𝛽𝛽𝑆𝑆𝐷𝐷  values), I simulated 200 initial pre-warming 

communities for a total of 25,000 simulated communities. In each community, 100 species 

were simulated by first generating a random sample of first flowering dates (hereafter, 
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“FFD”) drawn from one of two alternative types of community: those with a single flowering 

peak (i.e., unimodal distribution; 100 communities per parameter value combination; Fig. 4d) 

or those with two weaker flowering peaks (i.e., bimodal distribution; 100 communities per 

combination; Fig. 4e). These community types emulate flowering patterns known to occur in 

North American plant assemblages; unimodal patterns have been reported in mesic 

communities, while bi-modal patterns have been described in semi-arid assemblages 

experiencing summer monsoons and in subalpine communities (e.g., Diez et al. 2012, 

Caradonna et al. 2014). FFDs for the single-peak communities were obtained from a normal 

distribution centered on May 31st, with an SD of 30 days. In turn, FFDs for the bimodal 

communities were obtained from a joint distribution combining two truncated normal 

distributions: one bound between Jan 1st—May 21st, with a mean (or peak) on April 30th and 

an SD of 30 days, and another bound between May 22nd—Dec 31st with mean DOY on Jun 

20th, and an SD of 30 days. Using normal distributions assumes that species within each 

community do not exhibit significant skew in FFD. Although many communities across the 

temperate zone likely do not conform to this assumption, the degree of skew in the 

distribution of FFDs among co-occurring species has not been widely characterized across 

biomes. The choice of normal distributions is agnostic about the prevalence of right- vs. left-

skewed species-level FFD distributions across communities (or of greater first vs. second 

flowering peaks in the case of bimodal communities), and I thus consider it an appropriately 

conservative assumption.  

 Once FFDs were generated, I randomly assigned a flowering duration (in days) to 

each species by drawing values from a truncated normal distribution (lower bound = 14 days, 

mean = 60 days, SD = 10 days; Fig. 4f). Parameters for this truncated normal distribution 
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were chosen to generate a plausible range of variation in population-level flowering durations 

among species, which typically ranged from 14 to 90 days among species within a 

community. I then calculated flowering termination dates by adding the flowering duration of 

each species to its FFD (subtracting one). This approach assumes that the duration of the 

flowering period of a population is independent of its date of onset. 

  Next, the intensity of flowering of each species’ population throughout its flowering 

period was modeled under the simplifying assumption that the time series of flowering 

intensity—interpretable either as the proportion of individuals in flower, the mean number of 

flowers produced per individual, or the floral output of the population each day relative to its 

peak—was bell-shaped with a peak at the median flowering date of each species (Fig. 4g). I 

implemented this by modeling the amplitude of each species’ flowering period using 

truncated normal distributions bound by the flowering onset and termination dates for each 

species, with the median date between onset and termination as the mean, and SD equal to a 

third of the duration of the flowering period. To make the amplitude of the time series 

interpretable—and to make the range of variation in the amplitude of the flowering period 

among species comparable—I scaled each time series to a maximum amplitude of 1 at its 

peak. Consequently, for a given species, each point in the time series indicates the species’ 

proportional flowering intensity relative to its flowering peak. As with the choice of 

distribution to model among-species variation in FFD, the choice of a bell-shaped 

distribution of flowering intensity during the flowering period of each species is agnostic 

about the prevalence of left- vs. right-skewed flowering among species, which is poorly 

documented across biomes. 
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Flowering season baselines prior to simulated warming— To generate a baseline against 

which to compare the structure of the flowering season after warming for every simulated 

community, I calculated: (1) the cumulative intensity of flowering across all species on each 

day throughout the growing season (defined below), (2) the length of the flowering season, 

(3) the amplitude of the season’s flowering peak, and (4) the degree of flowering overlap 

between each pair of species in a community (Fig. 4h).  

The cumulative intensity of flowering for each day throughout the season was 

calculated as the sum of the amplitudes of flowering curves across species. Because the 

amplitude of the flowering curve of a species ranges from 0 (no flowering) to 1 (its flowering 

peak), this community-level metric is bounded by 0 (no species flowering on that date) and a 

theoretical maximum equal to the number of species in the community (100 in all 

simulations), which would represent a scenario in which all species reach their flowering 

peaks on the same date. Accordingly, the more synchronous the flowering period of co-

occurring species within a community, the greater its expected peak cumulative flowering 

intensity. Through this method, each species contributes to the cumulative intensity of the 

season in proportion to the intensity of its flowering on a given date. Consequently, this 

approach does not account for potential differences in the ecological importance of each 

species’ flowering that may originate, for example, from variation among species in 

abundance or in the amount and quality of floral resources provided by individuals. Finally, 

the length of the season was calculated as the uninterrupted period during which at least 10 

species were observed flowering, and the amplitude of the flowering peak as the maximum 

cumulative flowering intensity observed throughout the season.  
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Within each community, I measured flowering overlap among each pair of species 

(for 100 species, 4,950 unique pairs within each community). To do so, the flowering 

distribution of each species in a community was re-standardized so that it integrated to 1. 

Doing so ensured that the area under any segment of a population’s flowering curve 

corresponded to the proportion of the total flowering effort that was observed during that 

period. Then, I measured the area under the intersection of the flowering curves of each pair 

of species. Therefore, the value of the flowering intersection between two species ranged 

from 0 (no overlap) to 1 (identical flowering curves). 

 

Flowering season under warming— Prior to generating post-warming flowering 

distributions, each species was assigned temperature sensitivities for FFD (SFFD) based on its 

mean flowering date and its community’s 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹, and temperature sensitivities for duration 

based on its community’s 𝑆𝑆𝐷̅𝐷 and 𝛽𝛽𝑆𝑆𝐷𝐷 parameters (as well as its mean flowering date) (Fig. 

4i). SFFD was assigned to each species using a normal distribution whose expected value for 

each species (i.e., its mean) was equal to the product between the slope parameter 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹and 

the species’ mean flowering date. Prior to computing these expected values, I centered mean 

flowering dates around the median species in each community, which resulted in an among-

species distribution of SFFD centered around 0 for all simulated communities. As previously 

noted, mean SFFD was set to 0 because its value determined the extent to which the entire 

flowering season advanced or delayed without altering its internal structure (Fig. 2; Appendix 

3—Fig. S1)  
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Additionally, by doing this, I ensured that pre- and post-warming flowering seasons for a 

community were centered around the same date, making it easier to isolate changes to the 

structure of the flowering season resulting from non-random variation in SFFD among species. 

Once the expected SFFD for each species was calculated, I obtained a randomized value 

around the predicted mean using a random error (i.e., standard deviation) of 3 d/°C. The 

magnitude of the random error was selected to approximate the level of scatter observed 

around the relationship between SFFD and mean flowering date among species reported in 

empirical studies (e.g., Cook et al. 2012, Mazer et al. 2013, Wolkovich et al. 2012, Prevéy et 

al. 2019). 

 When 𝛽𝛽𝑆𝑆𝐷𝐷 = 0 (Fig. 1a, b), SD values were drawn randomly from a normal 

distribution with mean equal to 𝑆𝑆𝐷̅𝐷 (ranging from -5 to 5 d/°C) and standard deviation equal 

to 3 d/°C. In turn, for scenarios where 𝛽𝛽𝑆𝑆𝐷𝐷 ≠ 0 (Fig. 1c-h), SD values for each species were 

obtained from a normal distribution with mean equal to 𝑆𝑆𝐷̅𝐷 plus the product of 𝛽𝛽𝑆𝑆𝐷𝐷 and mean 

flowering date for each species, and a standard deviation of 3 d/°C.  

Then, for each species in each community, post-warming FFDs and durations were 

generated based on (1) their initial FFDs and durations, and (2) their SFFD and SD (Fig. 2j) as: 

(1) 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 

(2) 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑆𝑆𝐷𝐷 × 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 

I used a warming level of 2 °C for all communities because, as many regions in North 

America have already experienced temperature increases of about 1.5 °C, it reflects a 

scenario already occurring in warm years across the temperate zone (IPCC 2022, Chapter 

14). Moreover, some species have documented decreases in phenological sensitivity to 



96 
 

temperature under warmer conditions (Fu et al. 2015), with declines often occurring beyond 

warming thresholds of 2 °C (Guo et al. 2023). Therefore, the assumption that phenology and 

temperature are linearly related is reasonable when simulating responses under a warming 

level of 2 °C. Nonetheless, I also ran simulations with temperature increases of 4 °C to 

determine whether qualitatively different flowering season responses may emerge with 

higher temperature increases.  

From the post-warming FFDs and durations, I obtained flowering termination and 

median dates that were used to generate flowering periods for each species through the same 

procedure described for pre-warming communities (Fig. 4j). I calculated the same attributes 

of the flowering season for communities after warming as for each pre-warming community: 

cumulative flowering intensity throughout the season, season length, and peak amplitude, and 

pairwise flowering overlap among species (Fig. 4k). Then, I measured warming-induced 

changes in the composition of flowering overlaps among species in each simulated 

community using the Bray-Curtis Dissimilarity Index (henceforth ‘BCI’) (Bray & Curtis, 

1957). The BCI is typically used to measure the degree of dissimilarity in species 

composition between communities or sites, accounting both for differences in the identity of 

species present and their abundance. More broadly, however, the BCI measures the 

compositional differences between two sets of observations of categorical entities, and 

therefore can be broadly used to measure compositional dissimilarity for data other than 

species surveys.  In these data, the categorical entities corresponded to each pair of species 

within a community (4,950 unique pairs from among 100 unique species in each community) 

weighted by their degree of flowering overlap. Accordingly, the BCI measured compositional 

dissimilarity in flowering overlaps pre- and post-warming for each simulated community 
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accounting for changes in the identity and degree of overlap for each unique pair of species, 

with values of 0 indicating complete similarity pre- and post-warming for a community (i.e., 

same identity and degree of overlap among species pairs) to 1 (complete mismatch in the 

identity of overlapping pairs).  

Finally, I summarized how variation in SFFD and SD among species affected 

community-level flowering season outcomes under warming by aggregating results from 

simulated communities generated using each combination of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝐷̅𝐷, and 𝛽𝛽𝑆𝑆𝐷𝐷values (Fig. 

4l). Specifically, the range of outcomes—for each metric used—was calculated for the 

central 90% and the median of simulated communities for each pair of parameter values. To 

assess whether the influence of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝐷̅𝐷, and 𝛽𝛽𝑆𝑆𝐷𝐷differed depending on the distributions of 

FFDs among species in a community, changes in season length, peak amplitude, cumulative 

flowering intensity throughout the season, and turnover in species overlap were conducted 

separately for single-peak and bimodal simulated communities  

 

D. Results 

Scenario 1: independent variation in SFFD and SD among species 

Non-random variation among species in SFFD and SD (represented by 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹,  𝑆𝑆𝐷̅𝐷, and 𝛽𝛽𝑆𝑆𝐷𝐷) 

determined the magnitude and direction of changes to the flowering season under warming. 

As expected (Fig. 2), communities in which early species showed advances and late species 

delays in flowering (𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 > 0) tended to show season lengthening and less pronounced 

flowering peaks, whereas those showing the opposite patterns (𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 < 0) tended to show 

season contraction and amplified flowering peaks (Appendix 3—Fig. S2a, b). Also 
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expectedly, among communities in which SD varied with species’ mean flowering dates (i.e., 

𝛽𝛽𝑆𝑆𝐷𝐷  ≠ 0 ), those in which early species tended to contract and late species to extend 

flowering showed season lengthening (or less shortening, depending on their 𝑆𝑆𝐷̅𝐷) and less 

pronounced flowering peaks, whereas communities in which late species tended to contract 

and early species to extend flowering showed the opposite pattern (Fig. S2b, d). The range of 

variation among communities due to differences in 𝛽𝛽𝑆𝑆𝐷𝐷, however, was much narrower than 

that generated by differences in 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 (e.g., Appendix 3—Fig. S2b vs S2d). Ultimately, 

changes to the amplitude and date of seasonal flowering peaks relative to the pre-warming 

baseline were determined by non-random variation in both SFFD and SD among species 

(Appendix 3—Fig. S3), with both sensitivity types either offsetting or exacerbating the 

effects of the other.  

Changes to the distribution of flowering diversity and abundance throughout the 

season—which I measured as cumulative flowering intensity, interpretable also as 

community-wide flowering synchrony— were jointly influenced by 𝑆𝑆𝐷̅𝐷, 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹, and 𝛽𝛽𝑆𝑆𝐷𝐷, but 

their precise effects differed among the early, mid, and late season (Fig. 5). For example, 

changes due to warming during the early flowering season (percentiles 0—33) differed only 

among communities with distinct values of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 , with early-season flowering intensity 

increasing among communities in which FFDs advanced with warming among early species 

and delayed among later flowering species (note yellow line) and declining among 

communities exhibiting the opposite pattern (dark purple line). In contrast, cumulative 

changes during mid and late season varied widely with 𝑆𝑆𝐷̅𝐷  and 𝛽𝛽𝑆𝑆𝐷𝐷 (in addition to 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹) 

among communities. Communities showing average decreases in flowering duration among 

species under warming (𝑆𝑆𝐷̅𝐷 < 0) tended to show decreases in cumulative flowering intensity 
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during the mid and late season, with variation in 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹mediating their magnitude (Fig. 5a). In 

turn, communities whose species showed average increases in duration (𝑆𝑆𝐷̅𝐷 > 0) showed 

increases in cumulative flowering intensity across much of the flowering season and whose 

magnitude was mediated by 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹(Fig. 5c). Variation in SD throughout the season (𝛽𝛽𝑆𝑆𝐷𝐷; Fig. 

5d-f) primarily impacted the timing of changes in cumulative flowering intensity mediated by 

𝑆𝑆𝐷̅𝐷. Among communities with 𝑆𝑆𝐷̅𝐷 < 0, those in which early species contracted flowering 

more than late species (𝛽𝛽𝑆𝑆𝐷𝐷 > 0) showed decreases in cumulative flowering intensity earlier 

in the season (yellow line) than communities where late species contracted more (𝛽𝛽𝑆𝑆𝐷𝐷 < 0, 

purple line; Fig. 5d). The converse was true among communities with 𝑆𝑆𝐷̅𝐷 > 0: those with 

𝛽𝛽𝑆𝑆𝐷𝐷 > 0 showed increases in cumulative flowering intensity later in the season (yellow line) 

than those with 𝛽𝛽𝑆𝑆𝐷𝐷 < 0 (purple line; Fig. 5f). Communities with bimodal flowering 

distributions showed the same pattern of change in cumulative flowering intensity throughout 

the season as those with a single flowering peak (Appendix 3—Figs. S4, 5). Similarly, 

simulating flowering seasons under 4 °C resulted in intensified but qualitatively identical 

patterns of change (Appendix 3—Fig. S6). 
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Figure 5—Changes in cumulative flowering intensity given uncorrelated variation between SFFD and 

SD within communities. Solid-colored lines in a-c correspond to the median change in cumulative 

intensity—across percentiles of the flowering season—due to warming compared to the pre-warming 

baseline among simulated communities with the same combination of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝑆𝑆𝐷̅𝐷 values (and for 

which 𝛽𝛽𝑆𝑆𝐷𝐷 = 0; see Figs. 1a,b). Solid-colored lines in d-f correspond to the median change in 

cumulative intensity due to warming compared to the pre-warming baseline among simulated 

communities with the same combination of 𝛽𝛽𝑆𝑆𝐷𝐷  and 𝑆𝑆𝐷̅𝐷 values (and for which 𝛽𝛽𝑆𝑆𝐷𝐷 = 0; see Figs. 1c,d). 

Shaded regions indicate the 90% range of variation across communities grouped by each combination 

of parameter values. Scenarios of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0 or  𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0 respectively correspond to communities 

where SFFD  or SD varied randomly (around the community mean) among species flowering 

successively throughout the season (middle curves in each panel).  
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Variation in SFFD and SD also altered the network of flowering overlaps among 

species (Fig. 6). Communities showing average decreases in flowering duration among 

species (𝑆𝑆𝐷̅𝐷 < 0) tended to show the greatest changes in the composition of flowering 

overlaps, with the greatest differences observed among those also showing flowering 

advances among early-flowering species and delays among late-flowering species (Fig. 6a), 

or also showing flowering contractions among early species and flowering extension among 

late flowering species (Fig. 5b). Nonetheless, the composition of flowering overlaps changed 

substantially even among communities showing no average changes in flowering duration 

among species (𝑆𝑆𝐷̅𝐷 = 0) and showing no average differences in SD and SFFD among early vs. 

late flowering species (i.e., those communities showing random variation in SD and SFFD 

among species, or 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0 and 𝛽𝛽𝑆𝑆𝐷𝐷 = 0; the middle group of Fig. 5a, b).  

 

Figure 6—Changes in the composition of pairwise flowering overlaps among species due to warming 

across communities under scenarios of independent variation among species in SFFD and SD. In each 

community, change in the composition of flowering overlaps was measured using the Bray-Curtis 
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dissimilarity index, with values of 0 corresponding communities with the same identity and degree of 

pairwise species overlaps, and values of 1 indicating complete dissimilarity in the identity of its 

pairwise overlap pre- and post-warming communities. Colored boxplots in a and b depict the range of 

variation in turnover rates for communities varying in 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹and 𝛽𝛽𝑆𝑆𝐷𝐷 , respectively, with groups across 

the x-axis representing sets of communities with varying 𝑆𝑆𝐷̅𝐷 . In each panel, the horizontal solid black 

line indicates the degree of dissimilarity observed among communities showing no average changes 

in flowering duration (i.e., 𝑆𝑆𝐷̅𝐷 = 0), and random variation in both SFFD and SD among species 

throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0 and 𝛽𝛽𝑆𝑆𝐷𝐷 = 0). 

 

The effects of non-random variation in SFFD and SD among species throughout the 

season (i.e., of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 and 𝛽𝛽𝑆𝑆𝐷𝐷) reversed for communities showing no average changes in 

flowering duration or showing average increases (i.e., 𝑆𝑆𝐷̅𝐷 ≥ 0). For communities with 𝑆𝑆𝐷̅𝐷 =

0, flowering overlap dissimilarity was greatest in those showing flowering delays among 

early-flowering species and advances among late-flowering species, or showing flowering 

extension among early-flowering species and contraction among late-flowering species. 

Finally, communities showing averages increases in flowering duration (𝑆𝑆𝐷̅𝐷 > 0) tended to 

show the least species compositional changes in flowering overlap. However, as was the case 

for communities with 𝑆𝑆𝐷̅𝐷 = 0, compositional changes were least among those showing 

advances among early flowering species and delays and among late flowering species (Fig. 

6a) or showing flowering contractions among early-flowering species and extensions among 

late-flowering species (Fig. 6b). These patterns remained consistent when measuring the 

degree of change in pairwise flowering overlaps based on turnover of interacting pairs (i.e., 
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sum of new overlaps gained or former overlaps lost relative to the total number of 

overlapping pairs pre- and post-warming; Appendix 3—Fig. S7). 

 

 

Scenarios 2 and 3: Correlated variation in SFFD and SD among species throughout the season 

Co-variation between SFFD and SD (mediated by 𝛽𝛽𝑆𝑆𝐷𝐷and 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹) either attenuated or amplified 

changes in flowering intensity during the mid and late season relative to scenarios of 

uncorrelated sensitivities (Fig. 7). Communities in which SFFD and SD were positively 

correlated throughout the season tended to show changes in cumulative flowering intensity of 

nearly twice the magnitude as those generated by equivalent scenarios (i.e., those with the 

same 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑆𝑆𝐷̅𝐷) but in which SFFD and SD varied independently among species (Fig. 7a-

e). In contrast, communities in which SFFD and SD were negatively correlated tended to show 

lesser changes in cumulative flowering intensity (of nearly half the magnitude) compared to 

those observed in scenarios in which SFFD and SD varied independently (Fig. 7f-j) (see Fig. 

S8 for results for all combinations of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹and 𝛽𝛽𝑆𝑆𝐷𝐷). Correlated SFFD and SD for communities 

with 𝑆𝑆𝐷̅𝐷 ≠ 0 also generated amplified or attenuated differences in the degree of change 

between the mid or late season (for positive and negative correlations, respectively) 

(Appendix 3—Figs. S9, S10).  
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Figure 7—Warming-induced changes to cumulative flowering intensity due to correlated variation 

among species between SFFD and SD throughout the season (determined by 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷) across 

communities with a single flowering peak. In each panel, solid-colored lines and shaded regions 

depict the median and 95% range of variation in cumulative flowering intensity change observed 

among communities sharing a combination of values 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷 . Black dashed lines in each panel 

depict a reference scenario of uncorrelated SFFD and SD, with 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹varying within columns but 

𝛽𝛽𝑆𝑆𝐷𝐷coefficient equal to 0 for all panels. Panels a-e show scenarios where SFFD and SD are positively 

correlated among species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same magnitude and the 

same sign). In turn, panels f-j show a scenario in which SFFD and SD are negatively correlated among 

species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same magnitude but opposite sign). 𝑆𝑆𝐷̅𝐷  was 

set to 0 days per °C. Scenarios of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0 or  𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0 respectively correspond to communities 

where SFFD or SD varied randomly (around the community mean) among species flowering 

successively throughout the season. 
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A positive correlation between SFFD and SD (i.e., 𝛽𝛽𝑆𝑆𝐷𝐷and 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹with the same sign) 

resulted in greater changes in season length and peak flowering intensity compared to 

equivalent scenarios in which SFFD and SD varied independently (i.e., those with the same 

𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹and 𝑆𝑆𝐷̅𝐷 but 𝛽𝛽𝑆𝑆𝐷𝐷 = 0) (Appendix 3—Fig. S11a). In contrast, negatively correlated SFFD 

and SD (i.e., 𝛽𝛽𝑆𝑆𝐷𝐷and 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹with different sign) resulted in lesser changes to season length and 

peak flowering intensity (Appendix 3—Fig. S11b). Correlated SD and SFFD also impacted the 

degree of change in the network of flowering overlaps among species within a community 

(Appendix 3—Fig. S12). Specifically, positively correlated SFFD and SD resulted in greater 

compositional changes in flowering overlap compared to a scenario of uncorrelated SD and 

SFFD (Appendix 3—Figs. S12a-e).  In turn, negatively correlated SD and SFFD attenuated rates 

of composition change under warming relative to those expected under independent 

sensitivities (Appendix 3—Fig. S12f-j). 

 

E. Discussion  

Characterizing among-species variation in the sensitivity of flowering onset and duration is 

essential for resolving community-level responses to warming 

Flowering sensitivity to temperature differs widely among co-occurring species; however, 

phenological datasets that include flowering duration and that sample sufficient species to 

characterize flowering dynamics of entire communities are rare (Willis et al. 2017), hindering 

generalizations of how species variation in temperature responses will scale to alter 

community-level flowering patterns.  
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Here, I illustrate the wide range of community-level flowering outcomes that could 

result from non-random variation among species in the temperature sensitivity of both first 

flowering dates (SFFD) and flowering duration (SD). Specifically, using simulations, this study 

shows that three empirically documented forms of among-species variation in sensitivity 

within a community—the magnitude and direction of change in SFFD with the mean 

flowering date of a species (𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹), the mean SD of a community (𝑆𝑆𝐷̅𝐷), and the magnitude and 

direction of change in SD with the mean flowering date of a species (𝛽𝛽𝑆𝑆𝐷𝐷)—may have 

profound impacts on the post-warming structure of the flowering season both independently 

and interactively. While variation in SFFD affected the structure of the entire flowering season, 

variation in SD predominantly impacted its mid and late portions. This suggests that among-

species variation in SFFD and SD will have distinct impacts on flowering-dependent ecological 

processes that occur at different times within the season. Moreover, the severity of simulated 

flowering reassembly depended on whether SFFD and SD were positively or negatively 

correlated among sequentially flowering species throughout the season, which respectively 

amplified or attenuated responses relative to scenarios of independent sensitivities. These 

results further demonstrate that models that solely evaluate changes in onset or median 

flowering dates of a population are insufficient to fully capture these dynamics, emphasizing 

the importance of also accounting for the temperature sensitivity of phenological 

terminations for understanding community-level flowering responses to climate change.  

 

Changing flowering seasons will likely have profound but uncertain consequences from 

populations to communities 
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Redistribution of floral resources within a community—such as that observed in many of the 

simulation scenarios—might result in cascading ecological consequences within an 

ecosystem. For example, the availability and variety of floral resources throughout the season 

within a community strongly mediates the diversity and abundance of its pollinators (Potts et 

al. 2003, Fründ et al. 2010, Scheper et al. 2015).  Studies of specialist bees have 

demonstrated that individuals typically travel longer distances for lesser pollen and nectar 

rewards during periods of floral scarcity (Minckley 1994, Pope and Jha 2018), and local 

scarcity of floral resources have been directly linked to decreases in brood provisioning and 

pollinator population declines in some systems (Williams and Kremen 2007, Schenk et al. 

2018). Although measuring the broad resource base of generalist pollinators is more 

challenging than for specialists, the population sizes of the former are generally positively 

correlated over space and time with the local density of floral resources (Potts et al. 2003, 

Scheper et al. 2015). Therefore, if the flowering intensity of a community decreases, or if 

pollinators are phenologically mismatched with either their specialized mutualist plants (in 

the case of specialists) or with overall peaks in floral abundance (in the case of generalists), 

we might expect significant declines in pollinator abundance or species diversity.  

In turn, net decreases in floral abundance or phenological synchrony between plants 

and their mutualists partners can negatively impact plant fitness through their effects on 

density-dependent processes such as pollinator attraction, fertilization and genetic 

recombination, seed dispersal, or predator attraction and satiation (Nilsson and Wastljung 

1987, Elzinga et al. 2007, Carlo and Morales 2008, Jones and Comita 2010, Bergamo et al. 

2020). Additionally, the pollen of many wind-pollinated tree and grass species across the 

temperate zone is allergenic to humans (Songnuan 2013, Garcia-Mozo 2017, Oh 2022). 
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Therefore, depending on the degree to which variation in SFFD and SD among allergenic 

species matches the broader community-level pattern, the substantial redistribution of 

flowering periods illustrated in many of the simulation scenarios could significantly alter the 

length and intensity of the allergy season. 

The precise consequences of broad community-level changes, however, are not 

straightforward to predict. The simulations describe how the temporal distribution of floral 

resources might respond to warming, but not their overall abundance. Changes in net pollen 

and nectar production among species caused by warming might amplify or attenuate the 

ecological impacts of the changes in the temporal distribution of floral resources. For 

example, if among-species variation in SFFD and SD decrease the density of co-flowering 

species within a given season, then a lower production of floral resources among species that 

remain active during that period would exacerbate the consequence of phenologically-driven 

reductions in the richness of flowering species (e.g., where changes in cumulative flowering 

intensity are negative in Figs. 5, 7), whereas increases in floral resource production might 

attenuate such consequences.  

In many taxa, fitness may be most strongly affected by a small number of species 

interactions. For example, specialist pollinators might rely on one or a few plant species for 

floral resources. Consequently, the persistence of specialist pollinator populations under 

warming depends on the degree to which they remain synchronized with a subset of plant 

species whose flowering shifts might not mirror the community-level pattern. Generalist 

florivores and pollinators might shift their phenology at different rates than the plant 

community (Memmot et al. 2007), and depending on initial patterns of synchrony, these 

changes could result in periods of activity overlapping with a greater or lesser diversity and 
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abundance of floral resources. Moreover, many plant communities are dominated by a 

handful of species (e.g., Sherry et al. 2007) whose flowering responses could deviate from 

the broader community pattern. Finally, while flowering synchrony among species can 

mediate density-dependent ecological processes, whether such processes increase or decrease 

plant reproductive success can vary among species and ecological contexts (Elzinga et al. 

2007), further complicating simple predictions of the ecological consequences of changes to 

the flowering season.  

Considering these complexities, evaluating the effects of warming on the quality and 

quantity of floral resource productions across species is essential for advancing our ability to 

predict the consequences of changes to the flowering season. Similarly, to illuminate the 

broader ecological consequences of their results, studies of flowering responses to climate 

should consider the local abundance and floral output (or other important attributes such as 

allergenic potential) of the species under examination.  

 

Warming-induced changes to the flowering season will differ among temperate communities, 

but critical knowledge gaps remain 

In North America, temperate and semi-arid plant communities consistently show greater 

advances in response to warming among species flowering early in the season compared to 

those flowering later (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 > 0) (e.g., Ramirez-Parada et al. 2023). Therefore, the 

simulations presented here predict that temperate communities should typically show a 

longer flowering season under warming, with a greater proportion of floral resources 

becoming available during its early and late portions, resulting in decreased flowering peaks 
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(Fig. 5a-c). In contrast, patterns of variation in SFFD among species throughout the season can 

vary in direction and magnitude among communities at high latitudes and elevations 

(Schmidt et al. 2016, Prevéy et al. 2019). Nonetheless, greater advances in first flowering 

date among late-flowering than early-flowering species appear to be common in such 

systems (𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 < 0) (e.g., Schmidt et al. 2016, Prevéy et al. 2019), which would result in a 

shorter flowering season with a higher proportion of floral resources becoming available 

around its median (Fig. 5a-c). Therefore, the results imply that such well-documented 

variation in 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 among communities will generate distinct impacts on the structure of the 

flowering season in different regions. 

The warming responses of the mid and late flowering season, however, were also 

highly sensitive to the structure of among-species variation in SD within a community (i.e., 

𝑆𝑆𝐷̅𝐷  or 𝛽𝛽𝑆𝑆𝐷𝐷; Fig. 5d-f), for which geographic variation has not been extensively studied. 

Therefore, although recent research has established that communities often differ in both 𝑆𝑆𝐷̅𝐷  

and 𝛽𝛽𝑆𝑆𝐷𝐷 (e.g., Nam and Kim 2020, Zhou et al. 2022), it is unclear whether and how these 

parameters vary systematically across plant assemblages that occupy different climate zones 

or that differ in the relative abundance of species across functional groups. Furthermore, 

flowering onset and termination can be mediated by different abiotic factors. For example, 

while flowering onset is often controlled by abiotic cues triggering the start or resumption of 

reproductive development (Amasino 2010), the termination of flowering may be mediated by 

constraints on the timing of subsequent phenophases, or by different cues, including the onset 

of physiologically stressful conditions, resource depletion, or seasonal cooling (Desclaux and 

Roumet 1996, Ettinger et al. 2019, Zohner et al. 2023). Therefore, it is likely that SFFD and SD 

will show different patterns of variation across regional floras, precluding the categorization 
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of many biomes into the scenarios explored in the simulations presented here, and 

consequently, general predictions of how the structure of the flowering season will change 

under warming across regions.  

The degree of reassembly of flowering overlaps within a community was mediated 

interactively by non-random variation among species in the sensitivity of flowering onset and 

duration (Fig. 6). Consequently, as geographic differences in patterns of among-species 

variation in SD within communities are not well characterized, it is hard to determine a priori 

which regional floras should show the greatest degree of flowering reassembly under 

ongoing warming. Moreover, the degree of change in community-level flowering patterns 

depended on the degree and direction of correlation between SFFD and SD among species (Fig. 

7, Appendix 3—Fig. S12). As such, determining the ecological contexts in which SFFD and SD 

might be negatively correlated, independent, or positively correlated among successively 

flowering co-occurring species will be key to forecasting community-level phenological 

reassembly due to ongoing climatic change.  

 

Conclusions 

Despite complexities in predicting the ecological consequences of community-level 

flowering shifts and limited knowledge of among-species variation in SD across 

communities, the simulations presented in this study demonstrate that 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝐷̅𝐷, and 𝛽𝛽𝑆𝑆𝐷𝐷  

might have profound impacts in community-level flowering patterns. To date, among-species 

variation in SFFD and SD has been predominantly studied in temperate communities in North 

America and Europe (Piao et al. 2019), and a disproportionate attention to phenological onset 
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dates has limited assessments of flowering duration to comparatively few species. Expanding 

the biogeographic scope of empirical studies quantifying patterns of variation in sensitivity 

among species and a greater research focus on flowering duration are essential steps towards 

understanding how the structure of the flowering season might continue to change across 

geographically, ecologically, and climatically distinct plant assemblages. The worldwide 

abundance, vast temporal and taxonomic scope, and increasing digital availability of 

herbarium records provide rich data with which to estimate these parameters (Park et al. 

2024). Additionally, determining the biomes in which advances or delays in flowering among 

early and late flowering species are typically associated with contractions or extensions in 

flowering duration would help determine where—and how frequently—each of the patterns 

demonstrated in the simulations should occur.  

Finally, although I focused solely on temperature and flowering phenology, the 

simulation design can be extended to examine any phenophase (e.g., leaf out, fruiting), and to 

account for the independent and interactive effect of multiple climate variables for any 

hypothesized forms of structural variation in climate sensitivity among species in a 

community (e.g., non-linear variation in SFFD and SD among flowering species). Recent 

research suggests that differences in sensitivity among species between the early, mid, and 

late season might be common among taxa spanning several trophic levels (Roslin et al. 

2021). Therefore, the effects of among-species variation in sensitivity in mediating 

community-level responses to warming described here might characterize the modes of 

phenological change due to warming not only for flowering, but for a much wider range of 

ecological phenomena. 
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V. Climate change restructures the flowering season across North America but 

effects vary among ecoregions 

 

A. Abstract 

Climate change impacts the structure of the flowering season within communities by shifting 

species distributions and phenology, causing cascading ecological impacts. However, data 

constraints and incomplete knowledge of population-level flowering responses to climate 

limit our understanding of how environmental change may reassemble the flowering season 

across biomes. Using millions of herbarium and occurrence records, I modeled the 

distribution and flowering phenology of 2,837 species across the United States under 

historical, current, and projected climate and land cover conditions, scaling onset, duration, 

and termination responses from species to communities, and from local to continental levels. 

Within species, the onset, duration, and termination of flowering responded differently to 

climate, with substantial variation in sensitivity among species both within and between 

communities. At the community level, climate change altered species composition and the 

timing and duration of flowering seasons, with ecoregion-specific changes in the seasonal 

distribution of co-flowering species diversity and in the network of flowering overlaps 

between species that are projected to intensify with ongoing climate and land use changes. 

This study reveals broad macroecological patterns of change and identifies biomes in which 

the ecological consequences of altered flowering seasons may be most severe. 
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B. Introduction 

The flowering season is crucial for plant fitness and the survival and reproduction of 

organisms that depend on floral resources. Its structure determines the identity, diversity, and 

abundance of floral resources throughout the year, which can mediate pollinator population 

growth rates (Roulston and Goodell 2011) and various density-dependent ecological 

outcomes in plants—such as pollinator success and seed predation—that can shape the 

evolution of their life-history strategies (Elzinga et al. 2007). Recent climate change has led 

to widespread shifts in flowering phenology and plant distributions (Cleland et al. 2007, 

Kelly and Goulden 2008), potentially disrupting ecological interactions through altered 

spatial and seasonal synchrony between species (Renner and Zohner 2018). However, our 

understanding of how these shifts affect community-level flowering patterns is limited due to 

a lack of long-term datasets that represent enough species to characterize a community’s 

flowering season or that measure floral resources throughout the year (e.g., Caradonna et al. 

2014). Additionally, while remote sensing can capture the growing season's start, peak, and 

end, current methods cannot detect the weak spectral signals associated with community-

level flowering patterns at continental scales. 

Inferring community-level flowering patterns from the responses of co-occurring 

species is typically not possible due to an incomplete understanding of how climate affects 

flowering. Most research has concentrated on the onset of the flowering period within 

populations or sites (e.g., Fitter and Fitter 2002, Wolkovich et al. 2012, Prevéy et al. 2019), 

with less focus on its termination and duration. However, at the individual level, flowering 

termination can be influenced by different factors than those affecting onset (Nagahama et al. 

2018, Gonzalez-Suarez et al. 2020). Consequently, responses to climate of flowering 
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termination or duration—which have been measured in few species (e.g., Li et al. 2021)—

may differ from those of flowering onset. These knowledge gaps are compounded by a lack 

of long-term datasets on flowering duration, limiting our ability to predict how species-level 

responses will scale to alter community-level flowering patterns (Park et al. 2024). 

The growing availability of herbarium specimens and research-grade records from 

community science initiatives (e.g., iNaturalist) provides new opportunities to overcome 

these limitations (Willis et al. 2017, Belitz et al. 2020). These data record the date, location, 

and often the flowering status of individuals, offering snapshots of plant phenology across 

different times and places that have been increasingly used in phenoclimatic research 

(Calinger et al. 2013, Park et al. 2019, Li et al. 2021, Ramirez-Parada 2022, 2024). These 

records are often opportunistically collected from local populations, and collectively 

encompass a combination of individuals flowering early, near the median, or late relative to 

their source populations. When sample sizes are sufficient, these records can reflect the 

distribution of flowering dates under a set of environmental conditions, allowing for 

estimation of the onset, termination, and duration of a species’ flowering period (Belitz et al. 

2023, Austin et al. 2024, Park et al. 2024). 

In this study, I analyzed a dataset of over 2.7 million herbarium and community-

science records for 2,837 species to examine how climate change affects the structure of the 

flowering season in the contiguous United States (CONUS). I modeled each species' 

geographic distribution under historical, current, and future climate conditions, accounting 

for land cover and land use changes. Additionally, I assessed how interannual variation in 

temperature and precipitation—independently and interactively—influence the onset, 

termination, and duration of the flowering period for each species. By concurrently 
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predicting species occurrences and their flowering periods across sites, these analyses 

allowed me to scale changes from individual species to communities and from local to 

continental levels. This approach enabled me to address knowledge gaps in the biogeographic 

patterns of flowering sensitivity and community-level responses to climate change. For 

example, previous studies have shown that flowering onset sensitivity varies among 

communities in different climates and among species blooming at different times of the year 

(e.g., Wang et al. 2015, Prevéy et al. 2017, Ramirez-Parada et al. 2024). However, it is 

unclear how the sensitivity of flowering termination and duration varies among biomes and 

among species flowering on different dates within the same community. By modeling 

distributions and flowering responses for thousands of species, I assessed how sensitivities to 

temperature and precipitation—henceforth ‘STMEAN’ and ‘SPPT’—for flowering onset, 

duration, and termination differ i) among communities distributed across ecoregions with 

varying climate regimes and species compositions, and ii) within communities among species 

that flower at different times of the year. 

Community-level changes in the flowering season have been studied in only a few 

systems (e.g., Jabis et al. 2020, Li et al. 2020, Zhou et al. 2022), with studies primarily 

focusing on simple directional changes in season length. Consequently, studies collectively 

cover only a few regional floras, and more detailed seasonal attributes—such as the temporal 

distribution of flowering diversity—remain unexamined except in select cases (e.g., 

Caradonna et al. 2014, Austin et al. 2024). Similarly, the extent to which changes in 

geographic distributions and flowering responses will result in novel flowering assemblages 

remains unclear for most biomes (Theobald et al. 2017, Austin et al. 2024). To address these 

gaps, I scaled species-level responses to evaluate how recent and future climate change 
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across CONUS affects i) species composition, ii) the start of the flowering season (SOS), iii) 

the end of the flowering season (EOS), iv) the duration of the flowering season (DOS), v) the 

distribution of co-flowering species diversity throughout the year, and vi) the network of 

flowering synchronies among co-occurring species, which determines the potential for 

flowering-mediated interactions between species. 

These analyses offer the most comprehensive assessment of how recent and projected 

climate change impacts flowering patterns across North American floras. This study 

demonstrates that i) recent climate change has significantly affected all characteristics of the 

flowering season, ii) the extent and nature of these changes vary widely among ecoregions, 

and iii) future climate trends could lead to even more severe shifts in flowering patterns than 

currently observed, with uneven effects across CONUS. 

 

C. Methods 

Phenological and Occurrence data 

I compiled specimen records from 220 herbaria, accessed digitally through 16 consortia from 

Mexico, the U.S., and Canada (in July and August 2022; Park et al. 2023). Only specimens 

explicitly recorded as bearing flowers were retained, identified by summarizing unique 

entries in the DarwinCore ‘reproductiveCondition’ column that clearly indicated presence of 

flowers. Specimens missing geographic coordinates, collection dates, or species-level 

identification were excluded. To avoid pseudoreplication, conspecific specimens collected 

within 1 km of each other on the same day were removed. Since over 92% of the remaining 

specimens were collected within the United States, and to match the spatial extent of land 
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use/land cover (LULC) data used in species distribution models (SDMs, I excluded 

specimens collected outside CONUS. Specimens collected before 1958 were also removed to 

align with the temporal range of TerraClimate climatic data used in these analyses. After 

harmonizing species names using the Global Biodiversity Information Facility (GBIF) 

taxonomic backbone, the data were filtered further to include only species represented by at 

least 100 specimens. The day of year (DOY) of collection was used as a proxy for flowering 

date, with an azimuthal correction applied to address the discontinuity between 31 December 

and 1 January, converting prior year DOYs into negative values. 

 I obtained an additional 13.2 million research-grade occurrence records from GBIF 

for species well-represented in the flowering phenology dataset (accessed July 11, 2024; 

https://www.gbif.org/occurrence/download/0021084-240626123714530). These records, 

primarily from iNaturalist and herbarium sources, were combined with those from Park et al. 

(2023). I removed duplicates using the ‘occurrenceID’ column in DarwinCore. To match the 

temporal and spatial extent of LULC data for SDMs, I retained only occurrences collected 

between 1999 and 2023, and limited the dataset to occurrences within CONUS. 

Preliminary analyses of GBIF occurrences revealed significant spatial biases towards 

urban areas and major roads. To address this, I identified occurrences within urban areas as 

defined by the US Census Bureau (2012) using the ‘tigris’ package v2.1. I thinned the data 

using the ‘spThin’ package v0.2.0 (Aiello-Lammens et al., 2015), keeping only occurrences 

of the same species recorded at least 20 km apart within urban areas. Additionally, I removed 

occurrences within 2 km of ‘primary roads’ mapped by the US Census Bureau (2012). To 

further reduce spatial bias, another thinning step was applied, keeping only conspecifics 

recorded at least 5 km apart regardless of urban or road proximity. After cleaning using 
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BONAP records (detailed in the next section), I retained only species with at least 50 

occurrences to ensure adequate data for species distribution modeling. 

Final cleaning of specimens and occurrences using BONAP 

 Species misidentifications or geolocation errors in herbarium and occurrence 

databases can bias SDMs or phenoclimatic models by distorting the climate space or 

flowering period represented among by observations. To mitigate this, I removed implausible 

records using expertly curated data from the Biota of North America Program's (BONAP; 

Kartesz, 2015) North American Plant Atlas (NAPA), which documents 19,039 taxa from 227 

families across 3,067 counties across CONUS. BONAP compiles species presence/absence 

from herbarium records, museums, and bibliographic reviews, most of which is verified by 

taxonomic and floristic experts. Species names were harmonized across the specimen, 

occurrence, and BONAP datasets using BONAP’s taxonomic backbone. I then excluded 

observations from counties where BONAP did not report occurrences for the species. 

After taxonomic harmonization and BONAP cleaning, the final phenology dataset 

included 1,042,939 specimens (collected from 1958 to 2022) representing 2,837 species in 

1,042 genera and 139 families. The final occurrence dataset contained 1,673,454 records 

(collected from 1999 to 2023), comprising the same species, genera, and families. Of these, 

1,369,657 were human observations from iNaturalist, and 303,797 were herbarium 

specimens not included in Park et al. (2023).  

 

Climate data 
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I obtained historical monthly climatic rasters from TerraClimate (Abatzoglou et al. 2018) 

available from January 1958 to December of 2023 at a 4km × 4km resolution. These data 

consisted of monthly time series for minimum temperature (TMIN), mean temperature 

(TMEAN), maximum temperature (TMAX), and cumulative precipitation (PPT), as well as 

modeled water balance metrics including actual evapotranspiration (AET), climate water 

deficit (DEF), soil moisture (SOIL), and snow water equivalent (SWE). 

 

Climate variables for species distribution modelling 

I used monthly climate data to calculate annual bioclimatic variables known to influence 

plant distributions. For each year and location across CONUS, I computed annual means (or 

sums for precipitation), minimum and maximum monthly values (e.g., mean minimum 

temperature of the coldest month, mean maximum of the warmest month), annual ranges 

(difference between maximum and minimum mean monthly values), and seasonality 

(standard deviation of the 12 monthly values). For temperature, I also calculated the 

approximate mean diurnal temperature range (mean difference between TMAX and TMIN 

across months) and approximate isothermality (mean approximate diurnal range divided by 

the annual range). For precipitation, I seasonality was calculated relative to cumulative 

annual precipitation within each site. Minimum monthly SWE was removed from the 

analyses, as it was 0 across CONUS. This resulted in 31 climate variables: 7 for temperature, 

5 related to PPT, AET, DEF, SOIL, and 4 for SWE, calculated annually across all CONUS 

locations. For each occurrence record, I computed long-term averages of these variables over 

the 20 years preceding its collection date. Additionally, I obtained elevation data from USGS, 

calculating mean elevation and elevational heterogeneity within 800m × 800m grid cells. The 
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coarser resolution for elevation was used to account for uncertainties in georeferencing of 

herbarium specimens, which may lead to merger of incorrect values especially in steep areas 

where altitude changes rapidly (Gamble & Mazer, 2022).  

Since many of the climate variables were highly collinear (Appendix 4—Fig. S1) and 

are causally related, I performed a principal component analysis (PCA) to reduce the 

dimensionality of the climate space. The PCA used 20-year averages of all variables for the 

most recent period available (2004-2023) across all 4 km × 4 km grid cells in CONUS. I 

retained the five principal components (PCs) with eigenvalues ≥ 1, which collectively 

explained 88.2% of the variance in the climate data (Table S1). PC1 represented a gradient of 

increasing aridity, PC2 a gradient of decreasing temperature and increasing temperature 

seasonality, and PC3 a gradient of increasing elevational heterogeneity and mean elevation 

with decreasing temperature seasonality. PC4 primarily captured increasing soil moisture, 

while PC5 reflected increasing actual evapotranspiration and elevation (Appendix 4—Fig. 

S2). I then projected the 20-year average climate conditions associated with each occurrence 

record onto these PCA axes, reducing the number of climatic predictors from 33 variables to 

5. 

 To predict species distribution across different periods, I calculated 20-year averages 

for each of the 33 climate variables for the historical period (1961-1980) and the present 

period (2001-2020). I also obtained projected climate conditions from TerraClimate for a 

scenario where global temperatures rise by 2°C above pre-industrial levels. This scenario is 

not tied to a specific time frame or emissions pathway; instead, TerraClimate interpolates 

climate normals from 1985-2015, adjusting for the changes in means and seasonality 
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expected under 2°C of warming. I then projected historical, present, and future climatic 

conditions onto the 5 principal components derived from the 2001-2020 data. 

 

Climate variables for phenoclimatic modelling 

Variation in TMEAN and PPT among sites and years of specimen collection was partitioned 

into spatial and temporal components by calculating long-term means (reflecting geographic 

differences in chronic climatic conditions) and year-specific deviations (reflecting 

interannual differences). For each species at each site and year, I obtained data for the 

climatic conditions during the 3-month periods leading up to its average flowering onset, 

peak, and termination. To estimate conditions approximately before flowering onset, I used 

the 10th percentile collection date of each species and calculated the mean TMEAN and 

cumulative PPT for the 3 months leading up to that month. The same approach was applied 

for the 50th percentile (flowering median) and 90th percentile (flowering termination) 

collection dates. For each specimen, I characterized its site’s long-term TMEAN and PPT 

(normals) by averaging the observed conditions across all years between 1961 and 1990 for 

each 3-month period approximating that species’ flowering onset, median, and termination. I 

then calculated climatic deviations (anomalies) from the 1961-1990 normals in the year of 

each specimen's collection for these 3-month periods. 

Assuming phenological changes are driven by interannual variation in TMEAN and 

PPT rather than spatial phenology-climate relationships, I calculated deviations from 1961-

1990 normals for all 3-month windows. This was done for the historical period (1961-1980), 

the present period (2001-2020), and the future 2°C warming scenario. These TMEAN and 
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PPT deviations were then used to predict changes in flowering onset and termination between 

reference periods at each species' occurrence site. 

 

Land use and land cover data 

I obtained land use and land cover (LULC) data from the National Land Cover 

Database (NLCD) (USGS, Dewitz 2019), available for 2001, 2004, 2006, 2008, 2011, 2013, 

2016, 2019, and 2021. The NLCD uses Landsat spectral data to classify 30m resolution grid 

cells into land cover and land use classes, providing a consistent, high-resolution dataset 

across CONUS. I separated each year's multiclass raster into layers representing the presence 

or absence of each LULC type. I retained all cover classes except those not present in 

CONUS (e.g., lichen, moss, sedge classes from Alaska) or those that were rare (e.g., barren 

land). For land cover, I kept forest classes (deciduous, evergreen, mixed), scrubland 

(shrub/scrub), herbaceous grasslands, and wetlands (herbaceous and woody). For land use, I 

included four urban categories (open, low, mid, high) and two agricultural classes (cultivated 

crops, pasture/hay). To match the format of the LULC data available for forecasting and 

backcasting (see next paragraph), I aggregated all urban classes into a single category. To 

account for uncertainty in occurrence coordinates and because plant occurrence can be 

influenced by landscape context at broader scales than 30m (Mazerolle & Villard, 1999), I 

measured the proportion of each class cover within 750m × 750m grid cells (625 30m cells) 

around each occurrence. LULC class proportions were sourced from the NLCD layer closest 

to the year of collection for each record. These class proportions were then used as predictors 

in species distribution modeling. 
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Because NLCD data was available only from 2001 to 2021, I obtained historical 

(1961-1980) and future (2061-2080) LULC projections from the Earth Resources 

Observation and Science Center (EROS) (USGS; Sohl et al. 2014, Sohl et al. 2016) at a 

250m resolution. EROS' projections use the same modeling framework as NLCD, integrating 

land use trends with spatial explicit allocation based on regional suitability for each LULC 

class. Though EROS projections were based on the Special Reports Emissions Scenarios 

(SRES) from the IPCC (2000)—replaced later by Representative Concentration Pathways 

(RCP; IPCC 2013) and Shared Socioeconomic Pathways (SSP; IPCC 2021)—they align 

closely with RCP and SSP scenarios (Rogelj et al. 2012, Riahi et al. 2016). I chose the B1 

scenario for forecasting, as it is the closest match to RCP4.5 and SSP2-3, representing 

'middle-of-the-road' emissions and development scenarios. As with NLCD data, I calculated 

the proportion of each land cover class in 750m resolution blocks (containing 9 grid cells) to 

generate historical and future predictions used in SDMs. 

 

Analyses 

Training SDMs 

Species distributions were modeled using presence-background random forest 

classifier models implemented in the ‘randomForest’ package v4.7-1.1 (Liaw & Wiener 

2002). Random forests are a supervised machine learning technique that uses an ensemble of 

decision trees to identify relationships between a response (presence/background data) and 

predictors (climatic and LULC variables). By combining multiple decision trees, the 

ensemble often performs better than any single model, leveraging the "wisdom of the 
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crowds." This approach does not require predefined model structures (e.g., linear 

relationships) and its non-parametric nature allows for discovering complex relationships and 

interactions (Cutler et al. 2007). This flexibility was crucial for these analyses of thousands 

of species with diverse distributional responses to climate and LULC. Additionally, random 

forests are computationally efficient and have been demonstrated to be among the most 

accurate SDM methods available (Valavi et al. 2022). 

SDMs for each species were trained using occurrence data from 1999-2021. This 

period ensured availability of high-quality LULC data from NLCD within two years of each 

collection date. All models included the 5 bioclimatic PCs and the proportion of each LULC 

class around collection sites as predictors. To address the challenge of selecting pseudo-

absences—where it is often unclear if unoccupied regions are due to sampling bias or true 

distributional patterns—I used curated BONAP records to identify counties where each 

species was not documented. I drew 10,000 random locations per species from these counties 

(excluding areas within 2km of major roads). For these locations, I obtained 20-year climatic 

averages (2001-2020) projected onto the 5 climatic PCs and LULC variables from a 

randomly selected year between 2001 and 2021. To address class imbalance, I downsampled 

pseudo-absences to match the number of occurrences in each initial tree. Each species-

specific model used 500 trees with a maximum of 5 predictors at each split.  

Decision trees are built using bootstrap samples of the data. Typically, these samples 

contain about 2/3 of the original data, with the remaining third (out-of-bag or ‘OOB’ data) 

used to calculate each tree's error rate (Cutler et al. 2007). I evaluated model performance by 

averaging the error rates across all trees, which provides an unbiased estimate of the model’s 

generalization error. Specifically, I calculated the true skill statistic (TSS), which is the sum 
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of the true positive rate (TPR) and true negative rate (TNR) minus one. The median TSS 

among species was 0.91 (range: 0.51 to 0.99). 

The SDMs output a probability of occurrence under specific environmental 

conditions, derived from the proportion of trees predicting the positive class. Given that 

SDMs used presence-only data, these probabilities are interpreted as habitat suitability rather 

than actual probabilities of occurrence. To set a suitability threshold for considering a species 

present at a site, I calculated the receiving operating curve (ROC) for each model and 

determined the threshold (0-1) that maximized the true positive rate (minimizing false 

negatives) while keeping the false positive rate below 0.05. While this criterion maximized 

true positive detection at the expense of higher false negative rates, this tradeoff is justified 

since implausible occurrence predictions could be identified and removed using BONAP 

county records. 

 

Training phenoclimatic models 

For each species, I modeled how flowering onset, termination, and duration varied 

with long-term climatic conditions and interannual climatic variation. I used quantile 

regression (via the ‘quantreg’ package v5.97, Koenker et al. 2019) to assess how collection 

date distributions among conspecifics responded to geographic and interannual variations in 

TMEAN and PPT (i.e., normal and anomalies, respectively). I used the 10th percentile of the 

distribution to represent population-level flowering onset, the 90th percentile to represent 

flowering termination, and the interquartile distance between them to represent flowering 

duration. I chose the 10th and 90th percentiles and focused on well-sampled species because 
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estimation of extreme quantiles can be biased with small samples. Moreover, recent 

simulations show that quantile regression accurately estimates 10th and 90th percentiles of 

opportunistically sampled data for sample sizes similar to ours (Park et al. 2024), and this 

approach has been effective in studying phenological distributions in both plants and insects 

(Belitz et al. 2023, Austin et al. 2024). 

In each species-specific model, predictors included TMEAN normal, PPT normal, 

and their interaction for the 3-month period before the average date of flowering onset or 

termination, as well as TMEAN anomaly, PPT anomaly, and their interaction during the same 

period (6 predictors total). The coefficients for the main terms in these quantile regressions 

indicate how the 10th and 90th percentiles of flowering are affected by geographic or 

interannual variation in TMEAN and PPT, assuming average values for interacting variables. 

Interaction coefficients between normals represent the degree to which long-term 

precipitation affects the magnitude of phenological changes due to variation in long-term 

TMEAN across sites (or vice versa), whereas the interaction coefficients between anomalies 

indicate how the effects of interannual variation in TMEAN varies among drier- or wetter-

than-average years (and viceversa). 

This approach models phenological variation as a response to: i) geographic variation 

in chronic TMEAN and PPT conditions across sites, using temporally invariant normals from 

1961-1990, and ii) TMEAN and PPT anomalies reflecting temporal variation within sites, 

which primarily capture plastic phenological responses (Ramirez-Parada et al. 2024). Thus, I 

assumed that any temporal changes in a species' flowering season within sites are driven by 

deviations from their 1961-1990 TMEAN and PPT normals. 
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Species-level predictions of distributions and phenology 

Each species' SDM was used to generate habitat suitability maps for historical (1961-1980), 

present (2001-2020), and future (2 °C warming, B1 LULC scenario for 2080) conditions. 

Predictors were resampled to a 12km resolution for computational ease. Suitability estimates 

were then converted to binary occurrence maps by applying a threshold that maximized the 

true positive rate (see ‘Analyses—Training SDMs’ subsection). Presence-only SDMs can 

predict unsuitable areas outside a species' range or beyond its dispersal capacity. To address 

this, predictions were constrained to within 40km of counties where BONAP confirmed each 

species' presence, which allowed for moderate range expansion to areas adjacent to currently 

occupied regions between periods. These SDMs predicted substantial variation in species 

richness across CONUS, from 56 to 1,445 species (from a total 2,837) for the historical 

period (Appendix 3—Fig. S4). Species richness was generally lowest in arid regions of the 

Great Plains and higher in the West compared to the East, consistent with more 

comprehensive assessments of plant diversity in North America (e.g., Daru et al. 2024). 

Each species’ phenoclimatic model were used to predict flowering onset, termination, 

and duration for each location where the species was projected to occur during historical, 

present, and future periods. This was done by applying deviations of average TMEAN and 

PPT conditions from the 1961-1990 normals for each period. Climate rasters were resampled 

to a 12km resolution before estimating phenological onset, termination, and duration for each 

site and period. 

 

Geographic variation in flowering sensitivity 
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I assessed how sensitivity of population-level flowering onset, termination, and duration to 

interannual variation in TMEAN and PPT varied among communities across CONUS. First, I 

calculated the mean sensitivity to TMEAN and PPT anomalies for species in each 12km grid 

cell using the coefficients from their main effects in the quantile regressions (with interacting 

anomalies set to their average value of 0). Species with different flowering times often show 

significant variation in climate sensitivity, affecting community-level responses to warming 

(Ramirez-Parada et al. 2024). Accordingly, to measured flowering sensitivity varied among 

species throughout the flowering season, sensitivities to TMEAN and PPT anomalies were 

regressed against the median flowering date for each species within a location. The 

regression coefficients were then multiplied by the range of DOYs from the 5th to the 95th 

percentile median flowering dates within each location. This provided the average change in 

sensitivity between the 5th and 95th percentile median flowering dates in the community (in 

d °C⁻¹ for TMEAN and d 100mm⁻¹ for PPT). 

 

Changes in community composition and flowering structure 

The SDM and phenoclimatic modeling provided predictions for species presence, flowering 

onset, and termination under historical, present, and future conditions. I used these 

predictions to measure changes in species composition between historical and present 

periods, and between present and future scenarios. Specifically, I assessed species gains and 

losses proportionally to local species richness in the previous period and calculated overall 

species turnover (gains + losses divided by species present in both periods). 
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Next, I examined changes in the start, end, and duration of the flowering season 

across these periods. The onset of the flowering season was defined as the DOY when 5% of 

species had started flowering (5th percentile), and the end as the DOY when 95% of species 

had ceased flowering, with duration as the span between these dates. For each location, I 

calculated the difference in days for the season's start, end, and duration between historical 

and present conditions, and between present and future conditions. I also measured changes 

in the richness of flowering species each month by calculating the percent difference in 

species numbers under historical versus present and present versus future conditions, relative 

to local species richness in the preceding period.  

Finally, I assessed how patterns of flowering synchrony among species change in 

response to environmental trends. For each location, I first calculated the overlap in 

flowering periods between each pair of species in each period, calculating changes in overlap 

between historical and present conditions, or present and future conditions. Flowering 

overlap ranged from 0 (no overlap) to 1 (complete overlap in flowering dates). If a species 

was present in one period but absent in the other, the overlap for that pair was considered 0 in 

both periods. Using these pairwise overlaps, I measured changes in flowering synchrony 

within each community using the Bray-Curtis Dissimilarity Index (BCI) (Bray and Curtis, 

1957). While BCI is typically used to assess species composition dissimilarity between 

communities using abundance data, it is also applicable to other categorical data. In this 

context, BCI measured compositional differences in flowering overlaps between periods, 

reflecting changes in both the identity and degree of overlap among species pairs. BCI values 

range from 0 (complete similarity) to 1 (complete dissimilarity), indicating how flowering 

synchrony shifts between periods for each community. 
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D. Results 

Variation in onset, duration, and termination sensitivities 

Across CONUS, mean STMEAN for both flowering onset and termination was 

predominantly negative, indicating that species generally advance both the start and end of 

their flowering periods in warmer-than-average years (Fig. 1a, b). Mean STMEAN was 

consistently greater for flowering onset than for termination, leading to average increases in 

flowering duration under higher temperatures among species in most communities (Fig. 1c). 

There was significant variation in mean STMEAN of onset and termination among ecoregions, 

with the highest sensitivities observed in the Western Cordillera and the lowest in the semi-

arid prairies of the Great Plains. 

Within communities, the mean STMEAN for flowering onset and termination varied 

significantly throughout the season, with increasingly positive values (i.e., smaller advances 

or greater delays) among successively flowering species (Fig. 1d, e). The STMEAN of 

flowering termination generally increased more than that of flowering onset as the season 

progressed. This caused the STMEAN of flowering duration to increase throughout the season 

in most communities (Fig. 1c). Onset and duration sensitivities typically did not change at the 

same rate, leading to significant variation in seasonal patterns of STMEAN for flowering 

duration across CONUS (e.g., Western Cordillera vs. Warm Deserts). 

The mean SPPT for flowering onset and termination were generally positive across 

CONUS, indicating that species usually started and ended flowering later under wetter 

conditions (Fig. 1g, h). However, the mean SPPT of flowering termination was more variable 
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than that of flowering onset, with extensive regions showing negative values (i.e., earlier 

flowering under wetter conditions). This caused substantial regional variation in the mean 

SPPT of flowering duration, with a notable lengthening of the flowering period among species 

in Warm Deserts and semi-arid prairies, and widespread shortening in Cold Deserts, the 

Western Cordillera, and most Eastern ecoregions (Fig. 1i). 

Throughout the season, the mean SPPT for flowering onset and termination generally 

decreased (Fig. 1j, k), suggesting that, under wetter conditions, late-flowering species either 

delayed flowering onset and termination less or advanced more compared to early-flowering 

species. As with STMEAN, the seasonal variation in mean SPPT was greater for flowering 

termination than for flowering onset, with regional differences leading to variable patterns of 

seasonal change in the SPPT of flowering duration (Fig. 1l). 

  



138 
 

 

Figure 1—Geographic variation in flowering sensitivity to temperature (STMEAN) and precipitation 

(SPPT) within and among communities across the conterminous United States. Panels a, b, and c show 

the mean STMEAN for flowering onset, termination, and duration (in days per °C) for species predicted 

to co-occur in each 12 km grid cell in 2001-2020. Panels d, e, and f illustrate the average change in 

STMEAN between species flowering early (5th percentile median flowering dates) and late (95th 

percentile median flowering dates). Positive values indicate greater delays or lesser advances in 

flowering with warmer temperatures as the season progresses. Panels g, h, and i display variation in 

mean SPPT among co-occurring species in each grid cell. Panels j, k, and l show the change in mean 

SPPT among species throughout the season. For graphing, the color scale was capped to the central 

99% of the data to avoid distortion of the range from extreme values. Insets in each panel depict the 

distribution of the focal parameter, with vertical bars indicating a value of 0 and the x-axis value 

representing the mean. Subdivisions labeled 1-18 represent level II ecoregions. 1) Mediterranean 
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California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) Cold Deserts, 5) Warm Deserts, 6) 

Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) South-Central Semi-arid Prairies, 9) 

West-Central Semi-arid Prairies, 10) Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood 

Shield, 13) Central USA Plains, 14) Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA 

Plains, 16) Tamaulipas-Texas Semi-arid Plains, 17) Mississippi Alluvial and Southeast USA Coastal 

Plain, 18) Atlantic Highlands. 

 

Changes in species composition 

The SDMs predicted moderate but regionally variable species gains and losses across 

CONUS due to climate and land cover changes from the historical (1961-1980) to the present 

period (2001-2020) (Fig. 2a, b). Gains and losses were most pronounced in the Great Plains, 

with the greatest gains in the Temperate Prairies and Central USA plains, and the largest 

losses in the South-central Semi-arid Prairies. Eastern and Western ecoregions saw 

comparatively lower changes, resulting in the highest species turnover in the central U.S. and 

the lowest in the Western Cordilleras (e.g., Rocky Mountains) and Southeastern USA Plains 

(Fig. 2c). Within the Great Plains, the areas experiencing the greatest species gains and losses 

occurred respectively East and West of the 100th meridian West, a longitudinal boundary 

separating the humid Eastern and arid Western climates (Seager et al. 2018). Climate change 

differentially impacted both sides of the 100th meridian between the historical and present 

period (1961-1980, and 2001-2020, respectively), with intensifying water deficit in the West 

and wetter conditions in the East (Appendix 4—Fig. S2).  

Future climate and land cover changes are expected to cause species gains of similar 

magnitude to those from historical to present periods, with the most pronounced gains also 
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expected in the Great Plains (but not in the Central USA Plains) (Fig. 2d). Projected species 

losses were much greater than in recent decades, especially in the Great Plains and Central 

USA Plains (Fig. 2e). Western ecoregions are expected to see more severe losses than during 

recent decades, while Eastern ecoregions remain relatively stable. Overall, the greatest 

species turnover is predicted for the Great Plains, primarily driven by losses, with moderate 

turnover in Western ecoregions and mild changes in Eastern ecoregions (Fig. 2f). The areas 

of greatest projected species losses and turnover in the central United States are also 

predicted to experience the greatest aridification, agricultural intensification, and loss of 

grasslands in coming decades (Appendix 3—Figs. S3, S4). 

 

Figure 2—Predicted species gains, losses, and turnover between historical (1961-1980) and present 

(2001-2020) environmental conditions, and between present and future conditions. Percentages were 

calculated using species distributions from the preceding period as a baseline (1961-1980 for panels 

a-c, 2001-2020 for panels d-f). Future conditions are based on 2 °C warming and 2080 land use 

scenarios. The color scales are capped at the 99th percentile of the data to prevent distortion from 

extreme values. Insets show the distribution of each metric across locations, with vertical black lines 

indicating 0% and the x-axis value representing the mean. Subdivisions labeled 1-18 represent level II 

ecoregions.  1) Mediterranean California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) 
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Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) 

South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies, 11) 

Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-

Appalachian Forests, 15) Southeastern USA Plains, 16) Tamaulipas-Texas Semi-arid Plains, 17) 

Mississippi Alluvial and Southeast USA Coastal Plain, 18) Atlantic Highlands. 

 

Changes to the start, duration, and end of the flowering season 

Climate change-induced shifts in species distributions and flowering phenology altered the 

start, end, and duration of the flowering season across ecoregions. SOS advanced between 

the historical and present periods, with the largest shifts in the Sierra Nevada and Klamath 

Mountains (Fig. 3a). EOS was delayed in Eastern ecoregions, while responses in the West 

were more variable (e.g., some areas of the Western Cordillera saw delays, others did not) 

(Fig. 3b). SOS and EOS generally moved in opposite directions, with SOS showing larger 

shifts where they moved in the same direction. Consequently, the flowering season duration 

(DOS) increased across most of CONUS, with the greatest increases in the Klamath 

Mountains and Western Cordillera, and decreases mainly in the Warm Desert and some areas 

within the semi-arid prairies of the Great Plains (Fig. 3c). 

Future environmental conditions were projected to generate more drastic changes 

than those observed in recent decades. SOS advances were projected to be larger, with fewer 

areas showing SOS delays (e.g., Warm Deserts) (Fig. 3d). EOS delays were projected to be 

greater and more consistent across regions than in recent decades (e.g., few EOS advances in 

Western ecoregions) (Fig. 3e). As a result, DOS was predicted to increase significantly across 

most of CONUS (Fig. 3f). 
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Figure 3—Change in the start, end, and duration of the flowering season under recent and future 

climatic and land cover change. a, b and c depict changes in the start, end, and duration of the season 

predicted between the historical (1961-1980) and present (2001-2020) periods. d, e, and f show 

predicted changes between recent conditions and future conditions expected under 2 °C of warming 

and land cover patterns for the year 2080 under the Special Report on Emissions Scenario (SRES) B1. 

For graphing, the color scale was capped to the central 99% of the data to avoid distortion of the 

range from extreme values. Insets in each panel show the distribution of the focal metric across all 

locations within the conterminous United States, with vertical black lines representing values of 0 

days and the marked value in the x-axis representing the mean. Subdivisions in each panel—labeled 

1-18—represent level II ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine 

West Coast Forest, 4) Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) Upper 

Gila Mountains, 8) South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 10) 

Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) 

Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA Plains, 16) Tamaulipas-Texas Semi-

arid Plains, 17) Mississippi Alluvial and Southeast USA Coastal Plain, 18) Atlantic Highlands. 

 

Change in the seasonal distribution of flowering species diversity 
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Flowering species diversity remained mostly unchanged during the winter months before the 

flowering season in most regions (Fig. 4a, b), but increased by February in low-latitude 

ecoregions with early spring conditions (e.g., Warm Deserts) (Fig. 4c). More significant 

changes occurred in spring, with widespread increases due to the earlier onset of spring 

across CONUS (Fig. 4d-f). Decreases first occurred in April and May in regions experiencing 

early onset of summer drought (e.g., Warm Deserts) or where sharp species losses between 

historical and present periods occurred (e.g., South-Central Semi-arid Prairies; Fig. 2b). More 

ecoregions experienced declines in flowering diversity during summer (Fig. 4g-i), with the 

onset of declines occurring earlier in the year in arid ecoregions (e.g., May to June for Cold 

Deserts vs. June to July for the Western Cordillera). Fall changes were smaller across 

CONUS (Fig. 4j-l), except in regions that experienced sharp species gains or losses (e.g., 

South-Central Semi-arid Prairies, Southeastern USA Plains; Fig. 2a, b). 
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Figure 4—Changes between historical and recent periods in the richness of species flowering each 

month across the conterminous United States. The color scale in each panel shows the change in the 

number of species observed in flowering in that month for each location relative to the total species 

diversity of that site during the historical period (1961-1990). For graphing, the color scale was 

capped to the central 99% of the data to avoid distortion of the range from extreme values. Insets in 

each panel show the distribution of changes across all locations within the conterminous United 

States for that month, with vertical black lines representing values of 0% and the marked value in the 

x-axis representing the mean. Subdivisions in each panel—labeled 1-18—represent level II 

ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) 

Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) 

South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies, 11) 

Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-
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Appalachian Forests, 15) Southeastern USA Plains, 16) Tamaulipas-Texas Semi-arid Plains, 17) 

Mississippi Alluvial and Southeast USA Coastal Plain, 18) Atlantic Highlands. 

 

Under projected climate conditions, decreases in flowering species diversity were 

larger and more widespread across ecoregions compared to recent decades. Changes during 

winter were modest (Fig. 5a-c), and increases in spring flowering diversity were more 

modest than in recent decades, with declines occurring earlier in many ecoregions (e.g., 

Warm Deserts, Mediterranean California) (Fig. 5d-f). Summer and fall changes in flowering 

diversity largely reflected projected species gains and losses (Fig. 2), with sharp decreases in 

regions facing severe species losses (e.g., Great Plains) (Fig. 5g-l). In contrast, flowering 

diversity was projected to increase during summer and fall in many Eastern ecoregions (e.g., 

Southeast USA Plains, Southeast USA Coastal Plain) (Fig. 5g-l), which were predicted to 

have mild species losses, moderate gains, and delayed EOS (Figs. 2d-f, 3d-f). 
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Figure 5—Changes between present and future environmental conditions in the richness of species 

flowering each month across the conterminous United States. The color scale in each panel shows the 

projected change—under a 2 °C warming scenario—in the number of species observed flowering 

each month in each location relative to the total species diversity of that site during the present period 

(2001-2020). For graphing, the color scale was capped to the central 99% of the data to avoid 

distortion of the range from extreme values. Insets in each panel show the distribution of changes 

across all locations within the conterminous United States for that month, with vertical black lines 

representing values of 0% and the marked value in the x-axis representing the mean. Subdivisions in 

each panel—labeled 1-18—represent level II ecoregions. 1) Mediterranean California, 2) Western 

Cordillera, 3) Marine West Coast Forest, 4) Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre 

Piedmont, 7) Upper Gila Mountains, 8) South-Central Semi-arid Prairies, 9) West-Central Semi-arid 
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Prairies, 10) Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA 

Plains, 14) Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA Plains, 16) Tamaulipas-

Texas Semi-arid Plains, 17) Mississippi Alluvial and Southeast USA Coastal Plain, 18) Atlantic 

Highlands. 

 

Changes in the composition of flowering synchronies 

Changes in patterns of flowering synchrony among species were overwhelmingly determined 

by shifts in species composition across CONUS, so the degree of flowering dissimilarity 

between periods largely resembled geographic patterns in species turnover among sites (Fig. 

6). Flowering dissimilarity between periods was more severe under projected environmental 

conditions than observed in recent decades, with the greatest reassembly observed in 

ecoregions across the Great Plains and in the Central USA Plains. 
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Figure 6—Dissimilarity in the composition of flowering synchronies among sympatric species. The 

color scale represents the Bray-Curtis Dissimilarity index, with values of 0 indicating no changes in 

species composition and degree of flowering overlap, and values of 1 indicating all pairs of 

overlapping species were gained or lost relative to the preceding period. For graphing, the color scale 

was capped to the central 99% of the data to avoid distortion of the range from extreme values. Insets 

in each panel show the distribution of changes across all locations within the conterminous United 

States for that month, with vertical black lines representing a BCI value of 0 and the marked value in 

the x-axis representing the mean. Subdivisions in each panel—labeled 1-18—represent level II 

ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine West Coast Forest, 4) 

Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila Mountains, 8) 

South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 10) Temperate Prairies, 11) 

Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA Plains, 14) Ozark, Ouachita-

Appalachian Forests, 15) Southeastern USA Plains, 16) Tamaulipas-Texas Semi-arid Plains, 17) 

Mississippi Alluvial and Southeast USA Coastal Plain, 18) Atlantic Highlands. 
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E. Discussion 

Restructuring of the flowering season under climate change could have cascading 

consequences across trophic levels, but data constraints and incomplete knowledge of 

species’ flowering responses to climate limit our understanding of community-level 

responses. Modeling the distribution and flowering phenology of thousands of species across 

the conterminous United States shows that—within species—the onset, duration, and end of 

flowering respond differently to temperature and precipitation, with broad variation in mean 

sensitivity among and within communities. Climate change has resulted in widespread shifts 

in species composition and the timing and length of the flowering season across ecoregions, 

leading to region-specific changes in the seasonal distribution of flowering diversity and 

patterns of flowering overlap that are projected to intensify under ongoing climate trends. 

These findings outline broad macroecological changes, revealing uneven impacts of climate 

change on the identity, diversity, and flowering patterns of co-occurring species across 

biomes. 

 

Onset and termination respond differently to temperature and precipitation 

Previous studies indicate that the mean STMEAN of flowering onset varies across communities 

(e.g., Cook et al. 2012, Zhang et al. 2015, Panchen and Gorelick 2017, Prevéy et al. 2017, 

Park et al. 2019, Miller et al. 2023) and that greater mean sensitivity of onset than 

termination often extends flowering among species (Zhang et al. 2015, Augspurger and Zaya 

2020, Bucher and Romermann 2020, Li et al. 2021, Chen et al. 2023, Austin et al. 2024). By 

assessing sensitivities for onset, termination, and duration within a spatially explicit 
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framework, these results corroborate these findings throughout CONUS while also 

uncovering novel patterns of variation within and between communities. For example, 

STMEAN and SPPT of flowering termination and duration showed more regional variability than 

those of flowering onset. Consequently, as most research has focused on flowering onset, 

these results caution against extrapolating patterns of variation in phenological firsts to make 

inferences about variation in termination and duration among species and regions.  

 Within communities, this study’s findings support studies showing decreasing 

phenological sensitivity to temperature throughout the season in temperate biomes (e.g., 

Cook et al. 2012, Mazer et al. 2013, Park et al. 2019) and others showing advances in spring 

but delays in autumn phenology under warming (Delgado et al. 2020, Beil et al. 2021, Li et 

al. 2021, Roslin et al. 2021). These results are consistent with the hypothesis that temperature 

advances phenology during spring due to accelerated developmental rates, while 

phenophases occurring during autumn are cued directly by seasonal cooling, which may be 

lessened or delayed in warmer-than-average years (Fu et al. 2018, Zohner et al. 2023). 

However, termination sensitivity to temperature decreased but did not reverse to delays late 

in the season in some regions (e.g., Western Cordillera), and remained stable or even 

transitioned from delays to advances in others (e.g., arid ecoregions of the South and 

Southwest), highlighting that the primary cuing mechanisms for flowering termination (e.g., 

photoperiod, drought) vary among floras (Gill et al. 2015). Overall, seasonal changes in onset 

and termination STMEAN generated stark differences among regions in the direction and 

degree to which flowering duration sensitivity varies throughout the season (e.g., South-

Central Semi-arid Prairies versus the Western Cordillera), suggesting that the impacts of 
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warming on floral resource availability early and late in the season will vary among 

ecoregions. 

Mean SPPT also varied markedly throughout the season, with different geographic 

patterns among communities from those of STMEAN. Consequently, the joint impacts on 

flowering of correlated temperature and precipitation variation (e.g., responses to warmer- 

and drier-than-average conditions) are likely to be highly idiosyncratic across regions. If so, 

dissimilar geographic variation in STMEAN and SPPT among and within communities might 

explain why the effects of precipitation on phenology can be highly heterogeneous at large 

spatial scales (Peñuelas et al. 2004, Wang et al. 2022). 

   

Flowering reassembly is widespread but regionally variable 

This study reveals major changes in the structure of the flowering season, driven by shifts in 

i) species composition, ii) the season’s timing and duration, iii) the seasonal distribution of 

co-flowering species diversity, and iv) flowering synchronies between species. These 

changes could have cascading ecological impacts. For instance, the seasonal availability and 

diversity of floral resources strongly influences pollinator diversity and abundance (Potts et 

al. 2003, Fründ et al. 2010, Scheper et al. 2015). Specialist bees often travel further for fewer 

resources under floral scarcity, reducing brood provisioning (Minckley 1994, Williams and 

Kremen 2007, Pope and Jha 2018, Schenk et al. 2018), and populations sizes of generalist 

pollinators tend to correlate with local floral density (Potts et al. 2003, Scheper et al. 2015). 

Thus, decreases in flowering diversity or phenological mismatches can result in pollinator 

declines, potentially disrupting ecosystem services like crop pollination (Woodcock et al. 
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2018). In turn, decreases in phenological synchrony between plant species can affect their 

fitness by impacting density-dependent processes like pollinator attraction, fertilization, seed 

dispersal, or flower and seed predation (Nilsson and Wastljung 1987, Elzinga et al. 2007, 

Carlo and Morales 2008, Jones and Comita 2010, Bergamo et al. 2020). Additionally, pollen 

from many wind-pollinated trees and grasses is allergenic to humans, so longer population- 

and community-level flowering might intensify the allergy season (Anderegg et al. 2021). 

 The wide regional variation in flowering reassembly reported here shows that 

potential ecological impacts likely differ across floras. For example, the diversity of co-

flowering species sharply increased early and decreased late in the season in many 

ecoregions (e.g., Western Cordillera, Cold Deserts, Mediterranean California), which could 

result in opposing effects on density-dependent processes such as pollinator attraction or 

insect foraging success during spring and summer. Some communities experienced consistent 

declines in flowering diversity throughout the year due to substantial species losses (e.g., 

areas of the South-Central Semi-arid Prairies), which could decrease the diversity of 

organisms reliant on flowers throughout the year. Other regions experienced consistent 

increases in flowering diversity throughout the year due to net species gains (e.g., 

Southeastern ecoregions), which may not affect different seasons disproportionately but 

could alter ecological processes through novel species interactions. Regardless of specific 

patterns, these alterations to flowering diversity and flowering synchrony within 

communities have the potential to substantially alter the selective environments encountered 

by plants and interaction taxa across CONUS (Elzinga et al. 2007). 

Although the nature and degree of ecological impacts may vary across ecoregions, 

these analyses identify biomes that might be particularly vulnerable to climate change. 
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Flowering reassembly due to phenological shifts and species turnover was most pronounced 

within the Great Plains, where it was primarily driven by severe species losses. These areas, 

located around the 100th meridian West—a bioclimatic boundary separating the humid East 

from the arid West (Sieger et al. 2018)—saw increasingly arid conditions in the West and 

more humid conditions in the East between the historical and present periods (Appendix 4—

Fig. S2). This aligns with studies showing that drier conditions reduce biomass, shift species 

dominance, and cause rapid species losses in grasslands (Chase et al. 2000, Cleland et al. 

2013, McDougall et al. 2024). Future projections indicate that aridification will intensify 

throughout the South-Central U.S. (a region harboring most of the United State’s agricultural 

land) generating species losses that may be worsened by ongoing grassland conversion to 

agriculture (Appendix 4—Fig. S4). To the extent that losses in flowering species diversity 

reduce pollinator diversity and abundance, these trends might have proximate impacts on 

human welfare through widespread disruptions to crop pollination services. 

Interestingly, regions like the Sierra Nevada and Cascades within the Western 

Cordillera (facing strong aridification) or many Southeastern ecoregions (facing substantial 

land cover changes) showed much lower historical and projected species turnover than the 

Great Plains. While I cannot identify the ultimate causes of these trends from these analyses, 

the greater changes observed across the Great Plains might be caused by potential limits to 

species ranges imposed by the arid-humid bioclimatic boundary, with aridification trends 

leading to local extirpation of humidity-adapted species at the boundaries of their ranges 

(Barnes and Harrison 1982, Epstein et al. 1996, Anderegg and HilleRisLambers 2015, 

Berdugo et al. 2020).  
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Limitations and future directions 

This study provides a broad macroecological outline of changes to the flowering season due 

to the combined effects of flowering responses and shifts in species distributions across 

North American ecoregions. However, multiple factors make it difficult to predict specific 

ecological consequences from these changes. First, these results show shifts in the timing and 

diversity of flowering across scales, but not in the overall abundance of floral resources, 

which could amplify or reduce the ecological impacts of altered flowering times. For 

example, if warming decreases the density of co-flowering species, reduced flower 

production per species would worsen the effects of lower flowering richness, while increased 

production could mitigate these effects. Additionally, many plant communities are dominated 

by a few species whose flowering responses may deviate from the wider community. 

Similarly, ecological outcomes often depend on a handful of species interactions (e.g., fitness 

of specialist pollinators and their mutualist plants) whose responses might not match those of 

the wider community. Given these and other complexities, assessing the effects of climate 

change on floral resource production is crucial to determine whether the spatiotemporal 

redistribution of co-flowering diversity will lead to concordant changes in floral resource 

availability. In turn, forecasting more precise ecological outcomes will require focusing 

analyses on key species based on local abundance, floral output, functional traits, or other 

relevant attributes. 
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VI. Appendix 1—Supplementary materials for II 

 

Note S1—Herbarium data sources 

Data used in this study was contributed by the Yale Peabody Museum of Natural History, 
the George Safford Torrey Herbarium at the University of Connecticut, the Acadia University 
Herbarium, the Chrysler Herbarium at Rutgers University, the University of Montreal 
Herbarium, the Harvard University Herbarium, the Albion Hodgdon Herbarium at the 
University of New Hampshire, the Academy of Natural Sciences of Drexel University, the 
Jepson Herbarium at the University of California-Berkeley, the University of California-
Berkeley Sagehen Creek Field Station Herbarium, the California Polytechnic State 
University Herbarium, the University of Santa Cruz Herbarium, the Black Hills State 
University Herbarium, the Luther College Herbarium, the Minot State University Herbarium, 
the Tarleton State University Herbarium, the South Dakota State University Herbarium, the 
Pittsburg State University Herbarium, the Montana State University-Billings Herbarium, the 
Sul Ross University Herbarium, the Fort Hays State University Herbarium, the Utah State 
University Herbarium, the Brigham Young University Herbarium, the Eastern Nevada 
Landscape Coalition Herbarium, the University of Nevada Herbarium, the Natural History 
Museum of Utah, the Western Illinois University Herbarium, the Eastern Illinois University 
Herbarium, the Northern Illinois University Herbarium, the Morton Arboretum Herbarium, 
the Chicago Botanic Garden Herbarium, the Field Museum of Natural History, the University 
of Wisconsin-Madison Herbarium, the University of Michigan Herbarium, the Indiana 
University Herbarium, the Universidad de Sonora Herbarium, the Centro de Investigaciones 
Biológicas del Noroeste, S. C., the Instituto Politécnico Nacional, CIIDIR Unidad Durango, 
the University of California-Riverside Herbarium, the San Diego State University 
Herbarium, the Granite Mountains Desert Research Center, the University of South Carolina 
Herbarium, the Auburn University Museum of Natural History, the Clemson University 
Herbarium, the Eastern Kentucky University Herbarium, the College of William and Mary 
Herbarium, the Appalachian State University Herbarium, the University of North Carolina 
Herbarium, the University of Memphis Herbarium, the Mississippi State University 
Herbarium, the University of Mississippi Herbarium, the University of Southern Mississippi 
Herbarium, the Mississippi Museum of Natural Science, the Marshall University Herbarium, 
the Longwood University Herbarium, the Herbarium of Western Carolina University, the 
Northern Kentucky University Herbarium, the Salem College Herbarium, the Troy 
University Herbarium, the Arizona State University Herbarium, the University of Arizona 
Herbarium, the Desert Botanical Garden, the Deaver Herbarium, the Navajo Nation 
Department of Fish and Wildlife, the Grand Canyon National Park Herbarium, the University 
of New Mexico Herbarium, the Western New Mexico University  Herbarium, the Museum of 
Northern Arizona, the Gil National Forest Herbarium, the Arizona Western College 
Herbarium, and the Natural History Institute. 
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Note S2—Stan code for varying-intercept and varying-slopes Bayesian Model 
stan_mod1 <- "data{ 
  int<lower=1> N;  
  int<lower=1> N_ID;  
  real AzimuthDOY[N]; 
  int type[N];  
  real Tmin_AnnDev_max[N];  
  real Tmin_Normal_max[N];  
  int ID[N]; 
} 
parameters{ 
  matrix[6,N_ID] z_N_ID;  
  cholesky_factor_corr[6] L_rho;  
  vector<lower=0>[6] sigma_sp_i; 
  vector[N_ID] sig_sp; 
} 
transformed parameters{ 
  vector<lower=0>[N] sigma = exp(sig_sp[ID]); 
  matrix[N_ID,6] v_N_ID; 
  vector[N_ID] a;  
  vector[N_ID] a2;  
  vector[N_ID] b1;  
  vector[N_ID] b2; 
  vector[N_ID] b3; 
  vector[N_ID] b4; 
  matrix[6,6] rho; 
  v_N_ID = (diag_pre_multiply(sigma_sp_i,L_rho)*z_N_ID)'; 
    a = col(v_N_ID,1); 
    a2 = col(v_N_ID,2); 
    b1 = col(v_N_ID,3); 
    b2 = col(v_N_ID,4); 
    b3 = col(v_N_ID,5); 
    b4 = col(v_N_ID,6); 
    rho = L_rho * L_rho';  
 
} 
model{ 
  vector[N] mu; 
  L_rho ~ lkj_corr_cholesky( 2 ); 
  sigma_sp_i ~ exponential( 1 ); 
  to_vector(z_N_ID) ~ normal( 0 , 1 ); 
  sig_sp[ID] ~ normal(0,5); 
   
  for ( i in 1:N ) { 
   AzimuthDOY[i] ~ normal( a[ID[i]] * (type[i] == 0) +  
                           a2[ID[i]] * (type[i] == 1) +  
                           b1[ID[i]] * Tmin_Normal_max[i] *(type[i] == 0) +  
                           b2[ID[i]] * Tmin_AnnDev_max[i] * (type[i] == 0) +  
                           b3[ID[i]] * Tmin_Normal_max[i] * (type[i] == 1) +  
                           b4[ID[i]] * Tmin_AnnDev_max[i] * (type[i] == 1), 
                           sigma[i]); }}  
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Figure S1—Hypothetical time series (solid black line), long-term mean (i.e., normal; LT; 
dashed red line), and anomaly in the year of collection or observation (YOC; orange arrows) 
of mean minimum temperature (TMIN) observed at a site of phenological monitoring or 
herbarium specimen collection. For a given YOC (OBS; solid black square), the observed 
climate condition and climate anomaly (orange double-headed arrow) are displayed. Long-
term, mean climate conditions at the site are the average observed climate conditions 
between 1901 and 2016 for the season of interest (3 months leading to and including mean 
flowering dates for each species). Values higher than the long-term mean line represent years 
in which TMIN was higher-than-average for that location, whereas those below the long-term 
mean represent years in which TMIN was lower than average. TMIN anomalies represent the 
difference between observed climate conditions in a year of collection and long-term, mean 
conditions (i.e., normals) for that site.  
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Figure S2 – Correspondence between quantiles of the TMIN normal envelope spanned by 
herbarium collections and field observations in the NPN for 21 species in the continental 
United States. 
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Species  Standardized DOY Sens. to TMIN anomaly 
(d/°C) Sens. to TMIN normal (d/°C) 

  NPN Herb. NPN Herb. NPN Herb. 

 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Acer  
circinatum 107 134 138 168 -6.8 3.1 -6.1 1.1 -10.5 3.8 -7.6 2.7 

Acer  
negundo 92 108 118 133 -5.3 -2.1 -3.4 -0.5 -8.6 -1.3 -8.1 -1.7 

Achillea  
millefolium 179 206 191 194 -3.8 1.2 -4.5 -3.6 -13.3 0.9 -5.0 -2.1 

Adenostoma  
fasciculatum 150 181 147 162 -11.8 -3.8 -9.3 -0.2 -11.7 2.8 -9.2 -0.3 

Asclepias  
tuberosa 165 208 208 238 -1.5 2.5 -5.4 -2.5 -9.0 5.2 -4.7 3.6 

Baccharis  
pilularis 221 253 237 282 2.5 7.8 0.1 8.6 -1.7 8.1 -2.9 7.4 

Cornus  
canadensis 152 164 154 166 -6.2 -2.4 -5.9 -3.2 -7.2 1.4 -6.7 -0.8 

Cornus  
florida 84 96 88 105 -5.3 -3.1 -5.3 -3.3 -5.3 -1.4 -6.8 -0.6 

Cornus  
sericea 153 165 160 170 -5.0 -0.7 -4.2 -2.0 -9.9 0.8 -4.4 0.6 

Eriogonum  
fasciculatum 157 195 166 182 -8.1 -1.0 -9.7 -5.1 -6.6 8.0 -5.1 1.6 

Fouquieria  
splendens 98 124 102 120 -8.2 0.8 -9.4 -0.9 -16.7 -1.2 -8.5 0.6 

Fragaria  
virginiana 136 145 141 149 -5.9 -1.6 -5.3 -3.9 -5.1 3.2 -6.2 -1.8 

Impatiens  
capensis 189 239 190 228 -1.4 4.3 0.1 4.7 -2.5 8.9 0.5 8.2 

Larrea  
tridentata 112 130 109 120 -13.6 -6.8 -12.9 -8.1 -7.4 3.2 -5.1 1.7 

Prosopis  
velutina 146 187 132 175 -15.8 -3.0 -12.5 -2.8 -12.4 0.7 -8.2 -0.1 

Prunus  
virginiana 132 145 147 154 -7.9 -3.6 -3.3 -1.7 -10.3 -0.4 -6.5 -1.9 

Quercus  
agrifolia 88 107 87 105 -5.1 3.3 -7.3 2.0 -11.1 -0.4 -7.7 1.8 

Quercus  
rubra 113 125 173 193 -4.2 -1.5 -4.3 -0.2 -5.8 0.4 -4.4 3.8 

Symphoricarpos  
albus 182 198 189 197 -4.1 0.3 -3.0 -0.4 -7.3 2.5 -5.6 0.9 

Tilia  
americana 157 218 185 222 -6.4 2.9 -4.4 0.8 -7.2 6.3 -4.0 4.9 

Vaccinium  
corymbosum 104 112 122 141 -6.9 -4.7 -4.0 0.3 -7.7 -1.0 -7.1 -2.4 

 

Table S1 – 95% credible intervals (CRIs) for estimates for standardized flowering dates, 
sensitivity to TMIN normal, and sensitivity to TMIN anomaly derived from USA-NPN and 
herbarium data for 21 species in the continental United States. 
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VII. Appendix 2—Supplementary materials for III 

 

 

Figure S1—Phenological sensitivities to interannual and spatial temperature variation for 
five species exemplifying various relative contributions of plasticity and adaptation. (a) 
Sensitivity patterns of the panicle aster (Symphyotrichum lanceolatum, Asteraceae), a 
widespread perennial herb primarily occupying moist habitats across the United States. Its 
lack of responsiveness to TMEANAnomaly (i.e., non-significant Stime) and significantly greater 
responsiveness to TMEANNormal (i.e., significant Sspace – Stime) are consistent with a scenario 
in which adaptation is the sole driver of flowering time variation along the temperature 
gradient (see Fig. 1a,b in the main text). (b) Sensitivity patterns of the sixweeks fescue 
(Festuca octoflora, Poaceae), a widespread annual grass most abundant in arid prairies and 
deserts. F. octoflora exhibits significant Stime that does not substantially differ from Sspace (i.e., 
non-significant Sspace – Stime), a pattern consistent with plasticity as the sole cause of variation 
in flowering time along the temperature gradient (Fig. 1c,d in the main text). (c) Sensitivity 
patterns of the checker bloom (Sidalcea malviflora, Malvaceae)¸a perennial herb widespread 
in the West Coast of the United States. S. malviflora exhibits significant responsiveness to 
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interannual temperature variation (i.e., significant Stime) and significantly greater sensitivity 
to spatial variation (i.e., Sspace has greater magnitude and the same direction as Stime; Sspace – 
Stime is significant), a scenario consistent with the joint effects of plasticity and adaptation in 
a co-gradient pattern (Fig. 1e,f in the main text). (d) Sensitivity patterns of the whitish 
gentian (Gentiana algida¸Gentianaceae), a herbaceous perennial occupying mid-to-high 
elevations in the southern, mid, and northern Rocky Mountains. Its significant responsiveness 
to interannual TMEAN variation (i.e., significant Stime) and significantly lesser 
responsiveness to geographic temperature variation (i.e., Sspace has lesser magnitude or 
opposite direction than Stime; Sspace – Stime is significant) is consistent with the joint effects of 
plasticity and local adaptation along the temperature gradient in a counter-gradient pattern 
(Fig. 1g,h in the main text). (e) Sensitivity patterns of silverweed (Potentilla anserina, 
Rosaceae), a widespread perennial herb occurring primarily in moist soils near bodies of 
water. Its apparent lack of sensitivity to interannual and geographic variation in temperature 
(and its non-significant Sspace – Stime) make it inconsistent with the apparent roles of either 
plasticity or adaptation.  Solid lines in each panel correspond to the regression lines of DOY 
vs. TMEANAnomaly or TMEANNormal, with colored ribbons indicating the standard error of the 
predicted value of the response at each value of the predictor. 
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Note S1—Hosting herbaria and databases used to access data 

Herbaria hosting the specimen data used in this study (Darwin Core Institution 
Codes): 

ACAD, AMES, BALT, BLMRD, BSCA, CalBG, SFV, UCR, SD, SDSU, SBBG, 
UCJEPS, IRVC, LOB, CDA, OBI, RSA, CSUSB, CSLA, GMDRC, FSC, LA, JOTR, 
POM, DAV, OBS, HSC, UCSC, UCSB, MACF, PUA, JROH, SCFS, SOC, UNLV, 
OSC, CHRB, CM, NY, University of Connecticut, Université de Montréal 
Biodiversity Centre, ANSP, Rutgers University, UConn, University of New 
Hampshire, NEBC, GH, A, YPM, Yale Peabody Museum of Natural History, Woods 
Hole Oceanographic Institution, ECON, Harvard University, University of Maine, 
Memorial University of Newfoundland, VT, ELH, Harvard, HUDC, Utah State 
University, ENLC, RENO, USU, BRY, SUU, RM, UT, NTS, EDOBLM, NDOA, 
BLM, SEINet, WSCO, NPS, SLCTNL, MARY, UNISON, HCIB, CIAD, BCMEX, 
IBUG, UJED, URUZA, UAEH, UADY, DEK, EIU, IND, MOR, MSC, WIS, MU, 
BUT, CINC, MICH, MWI, NC, F, LUC, CHIC, KE, MIN, ILL, PH, TAWES, PAC, 
APSC, USFWS, BHSC, USFS/BHSC, LCDI, MISU, CSCN, KSP, MSUB, FHKSC, 
MSUNH, PPWD, ASU, ARIZ, ASC, NAVA, DES, RHNM, USFS, UNM, SNM, 
MNA, SJNM, JEMEZ, KAIB, AWC, NHI, BTA, TAF, MUR, USCH, TROY, NCU, 
USF, MISSA, FLAS, DUKE, SWSL, SEL, WILLI, NCSM, BOON, MMNS, ANHC, 
AUA, LSU, CLEMS, NCSC, VDB, MISS, UNCC, USMS, TENN, PEMB, MUHW, 
GA, UARK, NLU, KNK, WVA, STAR, ODU, WWC, HBSH, NO, ENO, SC, ECUH, 
UAM, NCZP, CATU, HTTU, CAU, WEWO, WCUH, GMUF, URV, UOS, APCR, 
EKY, UCHT, MEM, SBAC, VPI, FARM, SFSU, dtnm, gtnp, WYAC, FBNM, USNH, 
YELLO, GRTE, dtnp, DTNM, RMBL, DBG, FLD, WSC, MESA, PUSC, COLO, 
ALAM, CIBO, SAT, SRSC, BRIT, TAC, PAUH, TTC, TLU, JWC, OKL. 

Herbarium specimen data were accessed and downloaded from the following 
platforms: 

SEINET, the Consortium of Pacific Herbaria, the Consortium of California Herbaria, the 
Consortium of Northeastern Herbaria, the Consortium of Pacific Northwest Herbaria, the 
consortium of MidAtlantic Herbaria, the Consortium of Canadian Herbaria, the 
Consortium of Midwest Herbaria, the North American Network of Small Herbaria, The 
Consortium of Northeastern Herbaria, the Red de Herbarios de Noroeste de México, the 
SouthEast Regional Network of Expertise and Collections (SERNEC), and the Texas 
Oklahoma Regional Consortium of Herbaria (TORCH). 
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Figure S2—Sampling intensity and long-term climatic conditions across collection sites in the 
continental United States. Pixels correspond to 20 × 20-km grid cells, with their color representing (a) 
the total number of specimens collected and (b) their mean PC1 and PC2 values. PC1 represents a 
gradient of increasing precipitation seasonality, decreasing temperature seasonality and increasing 
long-term mean annual temperature. In turn, PC2 represents a gradient of decreasing long-term mean 
annual precipitation and increasing temperature seasonality (see ‘Climatic data’). 
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Figure S3—Correlation between TMEANNormal and TMEANAnomaly among species. (a) 
Distribution of correlation coefficients among 1,605 angiosperms in the continental United 
States. (b) Relationship between normal vs. anomaly correlations and the latitudinal range of 
a species. (c) Relationship between normal vs. anomaly correlations and the elevational range 
of a species.. Contour lines in (b) and (c) correspond to bivariate density plots for each of the 
correlations between TMEANNormal and TMEANAnomaly and the predictor (latitudinal or 
elevational range). 
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Figure S4—Distribution of temperature ranges among species. Temperature ranges were 
calculated using the central 90% of specimens of each of 1,605 species across the continental 
United States for both TMEANNormal and TMEANAnomaly. 
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Figure S5—Normal temperatures during winter and the periods preceding flowetring among 
species. (a) Average winter temperatures and (b) average TMEANNormal (for the 3-month 
period leading up to mean flowering dates) experienced by 1,605 angiosperm species with 
varying mean months of flowering. 
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Note S2—Model performance on simulated data: estimation accuracy and precision 

Our estimate of apparent adaptation is derived from the difference of two random variables 
(i.e., Sspace − Stime). As such, apparent adaptation may show greater estimation uncertainty 
than apparent plasticity (Stime), which could result in lower probability of direction for 
apparent adaptation estimates compared to those of the same magnitude for apparent 
plasticity. If so, our criteria for classifying sensitivity patterns as consistent with plasticity or 
adaptation (see Table 1 of the main text) would be biased towards plasticity. Similarly, any 
directional biases in estimating Sspace and Stime may be compounded when estimating their 
difference, making our estimates of apparent adaptation less reliable. 

To assess whether our model (see Methods: Analyses in main text; and 
Supplementary Note 2) could reliably recover estimates of apparent plasticity (Stime) and 
apparent adaptation (Sspace − Stime), we simulated data and assessed how estimation accuracy 
and precision varied depending on 1) the average sample size among species, 2) the 
magnitude of the true value of Sspace − Stime, and 3) whether Sspace − Stime and Stime differed in 
a co- or counter-gradient manner.  

Simulation outline 

In each iteration of the simulation, we generated batches of 30 species, with 5 species 
within each batch sharing an assigned true value of Sspace – Stime (i.e., apparent adaptation) 
varying from 0 to 5 d/°C in increments of 1 d/°C. In each batch, every species shared a 
sample size of 100, 200, 300, 400, or 500 observations. After repeating the process for 30 
iterations and pooling results across them, we obtained a total of 150 simulated species for 
each combination of true Sspace – Stime and sample size. Each batch of 30 species was 
eventually analyzed using the model described in the ‘Methods: Analyses” section of the 
main text (Stan code provided in Supplementary Note 2); accordingly, we chose to simulate 
30 species per iteration to balance 1) computational constraints, given that multi-species 
models with thousands of species, as those in the main text, may take days/weeks to run, 2) 
the need to analyze results in a multi-species context, and 3) the need to cover a sufficient 
range of sample and effect sizes (i.e., the magnitude of Sspace ̶  Stime in d/°C) 

We assigned each simulated specimen of a species long-term TMEAN conditions in 
their site of collection (i.e., TMEANNormal) and deviations from the long-term average in the 
year of collection (i.e., TMEANAnomaly) by sampling values from actual TMEAN conditions 
within species in our data. Specifically, we subset the actual herbarium specimen dataset to 
include only those species meeting the most stringent sample size requirement (i.e., 776 
species with 500+ specimens), and sampled random pairs of TMEANNormal and 
TMEANAnomaly values from a single species (calculated during the 3-month period preceding 
the mean flowering date of the sampled species) equal to the focal sample size. Sampling 
TMEANNormal and TMEANAnomaly from real observations ensured that the simulated data 
were generated using a realistic range of temperature conditions that helped replicate the 
signal-to-noise ratio found in our data for the relationships between DOY and each TMEAN 
variable.  

Next, for each species, we sampled a “true” Stime parameter from a normal 
distribution with mean = -4 d/°C and SD = 3 d/°C, values consistent with much of the 
literature estimating phenological sensitivity to temperature across species (e.g., Wolkovich 
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et al. 2012, Calinger et al. 2013). Next, we generated a “true” Sspace parameter by randomly 
adding (or subtracting) the true Sspace – Stime (0 to 5 d/°C) to (or from) Stime. Based on Sspace 
and Stime, we then generated predicted DOYs for each specimen of the focal species using its 
assigned TMEANNormal and TMEANAnomaly in the following linear equation: 

Predicted DOY = Sspace × TMEANNormal + Stime × TMEANAnomaly 

Since we were interested in modelling parameters that measure variation in DOY due to 
temperature (Sspace, Stime, and Sspace – Stime), the numerical values of the response are 
immaterial in these analyses. Therefore, for simplicity, we assigned an intercept of 0 to all 
simulated species.  

To generate realistic DOYs, we added normally distributed noise to each predicted DOY 
obtained in the previous step. For each species, we did this by randomly drawing observation 
errors from a normal distribution with mean equal to the predicted DOY of each specimen. In 
turn, to generate a realistic degree of variance around the predicted DOY, we used the 
specimen data to first generate an among-species distribution of standard deviations in the 
residual variation in DOY after fitting a linear regression of DOY vs. TMEANNormal and 
TMEANAnomaly for each species represented by a minimum of 100 specimens in our data. 
Next, we defined the standard deviation of the normal distribution used to generate noise 
around the predicted DOYs by sampling a standard deviation from the distribution generated 
in the previous step. As we did when sampling TMEANNormal and TMEANAnomaly, setting the 
dispersion parameter based on the actual data helped preserve the signal-to-noise ratio for 
DOY vs. TMEANNormal and TMEANAnomaly that we are likely to observe in real herbarium 
datasets. Once the DOYs for a batch of 30 simulated species were generated, we fitted the 
model presented in the main text (See Methods: Analyses in the main text; Stan code for the 
model is provided in Supplementary Note 2) using one MCMC sampling chain, 300 
iterations for warmup, and 2000 for sampling. As in the analyses in the main text, Sspace – 
Stime was estimated within the “generated quantities” block in STAN as the difference 
between Sspace and Stime, fully propagating their estimation uncertainty when generating Sspace 
– Stime. All R-hat values for Sspace, Stime, and Sspace – Stime estimates obtained across iterations 
were less than 1.01. 

After model fitting, we calculated estimation error as the difference between the maximum a 
posteriori (MAP) estimate of Sspace – Stime for each simulated species and its true Sspace – Stime. 
In turn, for each simulated species, we measured estimation uncertainty in Stime and Sspace – 
Stime, respectively, as the standard deviation of their posterior distributions. We then grouped 
results by sample size and true value of Sspace – Stime (150 species per combination) to assess 
how sample and effect sizes affected 1) the ability of the models to recover the parameters 
and 2) the uncertainty of the estimates (i.e., their precision). We then further grouped results 
based on whether the true Stime and Sspace – Stime values for species represented a co- or 
counter-gradient apparent adaptation pattern (Table 1), eliminating species for which true 
Sspace – Stime was set to equal 0 (i.e., no apparent adaptation, precluding an assignment of co- 
or counter-gradient adaptation). As the direction of Sspace – Stime in our model was random, 
grouping by true Sspace – Stime, sample size, and co- vs. counter-gradient patterns resulted in a 
variable number of simulated species per group (min = 62, median = 75, max = 88). 
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Simulation Results 

Overall, we found that our model produced accurate estimates of Sspace, Stime, and Sspace – Stime 
and that estimates of apparent plasticity and adaptation showed very similar degrees of 
precision. The distribution of estimation errors for Sspace and Stime among simulated species 
was centered on or very close to 0 across all sample size categories, with decreasing 
variability in accuracy for increasing sample sizes (Supplementary Figure 5). Sspace estimates 
tended to show less variability in error than Stime estimates, a result consistent with the 
greater signal-to-noise ratio (relative to DOY) observed for TMEANNormal vs. TMEANAnomaly 
(Supplementary Figure 3).  

 

Figure S6—Estimation error of simulated (a) Sspace and (b) Stime. Boxes bound values 
between the 25th and 75th percentiles, whereas solid lines range from the 5th to the 95th 
percentiles. The solid, horizontal lines in each box indicate the medians. 

 

Accordingly, we found that the distribution of estimates of Sspace – Stime was 0-centered 
among species for all combinations of effect size and sample size (Supplementary Figure 6), 
indicating that the models did not show systemic biases when estimating differences between 
Sspace and Stime. The magnitude of the estimation error was consistent across true Sspace – Stime 
values, but the variability in accuracy moderately increased with higher values of true Sspace – 
Stime. The variability in estimation error decreased with sample size for all values of true 
Sspace – Stime. 
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Figure S7—Error among simulated species for Sspace – Stime estimates relative to true values 
of Sspace – Stime for different sample and effect sizes. Boxes bound values between the 25th and 
75th percentiles, whereas solid lines range from the 5th to the 95th percentiles. The solid, 
horizontal lines in each box indicate the medians. 

 

Moreover, the absolute error of apparent adaptation estimates did not differ substantially 
among species showing apparent co- or counter-gradient adaptation patterns regardless of 
sample size or the true value of Sspace – Stime (Supplementary Figure 7). The magnitude of 
estimation error decreased with sample size but did so only marginally for sample sizes >300 
observations. 
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Figure S8—Variation in absolute error of Sspace – Stime estimates for simulated species 
showing co- or counter-gradient apparent adaptation. Species differed in both sample size 
and the true magnitude of Sspace  ̶  Stime. Boxes bound values between the 25th and 75th 
percentiles, whereas solid lines range from the 5th to the 95th percentiles. The solid, horizontal 
lines in each box indicate the medians. 

 

Apparent adaptation and plasticity showed similar degrees of estimation uncertainty for all 
sample size categories and true values of Sspace – Stime, with only marginally greater 
uncertainty for Sspace – Stime across groups (mean difference in posterior SD = 0.035 ± 0.013 
d/°C; Supplementary Figure 8). Estimation uncertainty for both parameters decreased 
substantially with sample size for all values of true Sspace – Stime. 
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Figure S9—Estimation uncertainty of apparent plasticity (Stime) and apparent adaptation 
(Sspace – Stime). Estimates were derived from simulations of species differing in their true 
value of Sspace – Stime and in the number of observations per species. Boxes bound values 
between the 25th and 75th percentiles, whereas solid lines range from the 5th to the 95th 
percentiles. The solid, horizontal lines in each box indicate the medians. 

 

Conclusions 

Together, our results demonstrate that the model presented in the main text does not exhibit 
systemic biases when estimating apparent plasticity and adaptation. Crucially, the estimation 
uncertainties of Stime and Sspace – Stime were similar despite the fact that Sspace – Stime is the 
difference between two random variables, suggesting that our classification method (Table 1 
in the main text) should not result in a substantially larger likelihood of classifying a species’ 
sensitivity pattern as consistent with apparent plasticity (i.e., P(Stime ≠0) ≥ 0.95) than with 
apparent adaptation (i.e., P(Sspace – Stime ≠0) ≥ 0.95). Finally, while the simulation showed 
increases in estimation precision with sample size, the magnitude of such increases declined 
as sample size increased. This observation—and the fact that the analyses presented in the 
main text included species represented by a median of 491 specimens (min = 300, max = 
6,192)—suggests that estimation uncertainty would decrease marginally by using higher 
sample size cutoffs for inclusion of species in our models, which would come at the cost of 
substantial taxonomic breadth (e.g., requiring > 500 specimens would retain only 776 spp. 
while requiring > 300 specimens retained  1,605 species). 

Although these results demonstrate that our model can recover the parameters of interest with 
sufficient accuracy and precision, our simulations assumed neither phylogenetic nor spatial 
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structure in DOY, Sspace, Stime, or Sspace – Stime among species. However, the model presented 
in the main text was fitted under the same set of assumptions, and we confirmed that 
accounting for phylogeny or spatial autocorrelation did not substantially affect our estimates 
(Extended Data Fig. 7). Similarly, the model presented in the main text included many more 
species and larger sample sizes (specimens per species) than these simulations. The larger 
scale of the model in the main text, however, should improve model performance, as a larger 
number of groups should improve estimation of hyper-parameters—such as among-species 
means or standard deviations—thus improving partial pooling of species-specific effects. 

Accordingly, we conclude that these simulations—in combination with other Supplementary 
analyses verifying assumptions such as the lack of substantial effects of phylogeny or spatial 
autocorrelation on our estimates—demonstrate the statistical reliability of the model used to 
derive the results presented in the main text.  
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Note S3—Does our model account for temporal trends in temperature and phenology 
observed over recent decades? Demonstration through simulations and empirical analysis. 

Our model (see Methods: Analyses in main text; and Supplementary Note 2) did not include 
an explicitly temporal term (i.e., year), and as such, it may appear to omit the potential 
influence of widespread warming and temporal shifts in phenology observed in recent 
decades. However, because TMEANAnomaly represents an interannually variable predictor, 
values for recent decades do indeed show temporal trends due to recent global warming. 
Therefore, to the extent that shifts in phenology are caused by TMEAN increases, our model 
should not only account for temporal trends in temperature, but also in phenology. Moreover, 
the magnitude of such phenological trends should depend on a species’ sensitivity to 
TMEANAnomaly (i.e., on Stime), as we would expect temperature increases to generate 
flowering shifts only among species that are responsive to interannual temperature variation.  

To demonstrate this, we used simulations—much like those described in Supplementary Note 
3—to assess whether temporal trends in temperature generated concordant trends in 
phenology, and whether the magnitude of those phenological trends was mediated by Stime. 
Moreover, to evaluate the assumption that temporal trends in phenology are generated by 
increases in TMEANAnomaly in our data, we used the herbarium dataset to determine whether 
observed temporal trends in TMEANAnomaly and a species’ Stime explain observed trends in 
DOY.  

 

Simulation outline 

To assess whether our model would generate temporal trends in phenology, we simulated 
data for 1,605 species (as many as in our main analyses) following a similar procedure to the 
simulation described in our previous response: we generated DOYs by 1) randomly assigning 
sensitivities to TMEANNormal and TMEANAnomaly (i.e., Sspace and Stime) to a simulated species, 
2) randomly selecting temperature conditions from real observations within species in our 
dataset,  3) generating predicted DOYs based on Stime, Sspace, and TMEANNormal and 
TMEANAnomaly, and 4) adding randomly distributed noise to the predicted DOYs.  

In each iteration of our simulation, we generated data for a single species, first assigning it a 
random Stime parameter obtained from a normal distribution with a mean of -4 d/°C and 
standard deviation of 3 d/°C, and a randomly selected Sspace – Stime parameter of 0, 1, 2, 3, 4, 
or 5 d/°C. We then generated an Sspace parameter by randomly adding (or subtracting) Sspace – 
Stime to (or from) Stime. Next, the focal species was randomly assigned an initial sample size 
of 100, 200, 300, 400, or 500 specimens, and for each sample, we obtained a pair of 
TMEANNormal and TMEANAnomaly values obtained from observations of species represented 
by at least 500 specimens in our data (776 species). As the onset of rapid warming began in 
the late 20th century, in each iteration, we retained only simulated specimens assigned 
TMEAN conditions from the year 1980 and onwards. If the resulting sample consisted of less 
than 30 observations, we skipped to the next iteration, discarding the current simulated 
species. In turn, if a simulated sample met this criterion, we generated predicted DOYs for 
each specimen of the focal species using the following linear equation: 

Predicted DOY = Sspace × TMEANNormal + Stime × TMEANAnomaly 
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As in Supplementary Note 3, we were interested in modelling parameters measuring 
variation in DOY due to temperature (Sspace, Stime, and Sspace – Stime), so the numerical values 
of the response are immaterial in these analyses. Therefore, for simplicity, we assigned an 
intercept of 0 to all simulated species. 

This approach generated simulations with sample sizes ranging from 30 to 479 observations 
(median = 167). To generate simulated DOYs, we then sampled values from a normal 
distribution with mean equal to the predicted DOY of each specimen. In turn, the standard 
deviation was drawn from an among-species distribution of standard deviations for the 
residual variation in DOY obtained after fitting a linear regression of DOY vs. TMEANNormal 
and TMEANAnomaly (as described in Supplementary Note 3).  

For each dataset simulated this way, we quantified temperature and phenological trends by 
fitting two simple regressions that included TMEANAnomaly or DOY as a response and year as 
a predictor. The coefficients from these regressions (indicating the rate of change of 
TMEANAnomaly or DOY per year) were stored in each iteration, as well as the Stime value used 
to simulate the data. Once the target threshold of 1,605 species was reached, we stopped the 
simulation and assessed whether temporal trends in sampled TMEANAnomaly and Stime 
explained simulated trends in DOY using the following linear regression: 

   Phenological Trend = β1 × TMEANAnomaly Trend + β2 × TMEANAnomaly Trend 
× Stime 

Empirical assessment 

We complemented these simulations by assessing whether—among species in our data—
temporal trends in TMEANAnomaly and a species’ sensitivity to them (Stime) indeed mediated 
observed trends in phenology between 1980 and 2020. First, we subset the dataset to include 
only specimens collected from the year 1980 onwards. While all 1,605 species were retained 
after this step, subsetting resulted in sample sizes ranging from 34 to 4600 observations 
(mean = 410). As in the simulation, we calculated temporal trends in phenology and 
temperature by fitting two linear regressions, including TMEANAnomaly or DOY as a response 
and year as the only predictor. Then, we quantified the degree of responsiveness to 
interannual temperature variation by estimating Stime from a regression of DOY vs. 
TMEANNormal (as a control) and TMEANAnomaly.  Finally, as in the simulated dataset, we 
assessed whether phenological trends were jointly explained by TMEANAnomaly trends and 
Stime by fitting the same regression model as for the simulation. 

 

Results 

Simulated species showed average trends in phenology of -1.4 days/decade, generated from 
sampled TMEANAnomaly conditions showing average trends of 0.24 °C/decade. As predicted, 
the magnitude of phenological trends was mediated by the magnitude of both a species’ 
sensitivity to TMEANAnomaly and of the temporal trend in TMEANAnomaly (Supplementary 
Figure 9a). Accordingly, species for which Stime was close to 0 tended to show no temporal 
trends in DOY regardless of the magnitude of the temporal trends in TMEAN anomaly; in 
turn, species responsive to TMEANAnomaly tended to show phenological trends proportional to 
the magnitude of the temperature trend. Accordingly, species that were more sensitive tended 
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to show greater increases in the magnitude of phenological trends for equivalent increases in 
the magnitude of the temperature trends.   

We detected the same patterns in the specimen dataset: phenological trends were mediated by 
the degree of warming and the sensitivity to temperature of a species (Supplementary Figure 
9b). However, the magnitude of phenological trends tended to be moderately greater than that 
of the trends obtained from the simulated data. Specifically, species in the dataset showed 
average trends in phenology of -1.9 d/decade for average trends in TMEANAnomaly of the 
same magnitude as those in the simulate data (0.24 °C/decade).   

 

Figure  S10—Relationship between temporal trends in flowering phenology (DOY) and the 
interaction between temporal trends in TMEAN anomaly and species sensitivity to TMEAN 
anomaly. This relationship was evaluated for (a) simulated data, and (b) 1,605 species 
represented by 658,778 specimens collected from 1980 onwards (i.e., after the approximate 
onset of rapid global atmospheric warming). Solid lines correspond to the regression lines 
obtained from the model described in Supplementary Note 4, with colored ribbons showing 
the standard error of the mean trend in DOY predicted by each value of the trend in TMEAN 
anomaly. 

The results from our simulation demonstrate that—despite not including an explicitly 
temporal term—the model presented in the main text does account for trends through time in 
phenology due to trends in the TMEANAnomaly data caused by climate warming. However, 
this model assumes that temporal trends in phenology result exclusively from species 
responses to increasing TMEANAnomaly. If temporal trends in DOY and TMEANAnomaly were 
not causally related in our data, omitting their shared temporal trend in the model (e.g., by 
excluding time as a covariate) could lead to spurious results (Iler et al. 2017). Reassuringly, 
we recovered the same patterns using real data: the magnitude of a species’ phenological 
trends was mediated by its sensitivity to TMEANAnomaly and by the magnitude of temporal 
trends in TMEANAnomaly. These results suggest that observed phenological trends are indeed 
causally related to increases in TMEAN over time. Moreover, detrending DOY and 
TMEANAnomaly prior to fitting the model did not affect estimates of Stime (Extended Data Fig. 
3), further indicating that DOY and TMEANAnomaly are mechanistically correlated, and that 
omitting temporal trends in the model is unlikely to bias our results. 
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Conclusions 

The analyses outlined above demonstrate that 1) our results are robust to selection of 
different reference periods over which to calculate TMEANNormal, 2) that the model 
presented in the main text does account for temporal trends in temperature and phenology, 
and 3) that its assumptions (i.e., phenological shifts are caused by temperature shifts) are 
reasonable for our data.  
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 Figure S11—Estimates with and without detrending DOY and TMEANAnomaly. Iler et al. 
(2017) showed that shared temporal trends between DOY and temperature can generate 
spurious relationships between these variables that often disappear when the phenological 
and temperature time series are detrended prior to estimating their relationship. Alternatively, 
a non-spurious but trended relationship between DOY and temperature might reflect the 
effects of adaptation to directional changes in temperature, at least in short-lived species. 
Therefore, relationships between phenology and temperature that persist following 
detrending are more likely to reflect phenological plasticity. Accordingly, we assessed 
whether estimates of sensitivity to TMEANAnomaly (Stime) presented in the main text could be 
confounded by temporal trends in DOY and TMEANAnomaly. To do so, we first ran single-
species linear regressions using DOY or TMEANAnomaly as responses and year as a single 
predictor, storing the resulting residuals as detrended versions of both responses. Then, for 
each species, we ran two linear models of DOY against TMEANNormal and TMEANAnomaly: 
one with observed DOY and TMEANAnomaly and another with detrended DOY and 
TMEANAnomaly. Trended and detrended estimates of sensitivity to TMEANAnomaly were very 
highly correlated among species, suggesting that TMEAN sensitivity estimates presented in 
the main text do not reflect the confounding effect of shared temporal trends. Similarly, 
detrending DOY and TMEANAnomaly did not substantially alter estimates of Sspace and Sspace − 
Stime. a–c, In each panel, points represent the combinations of trended or detrended estimates 
of Sspace, Stime, or Sspace − Stime for each species in the data, whereas diagonal black lines 
correspond to 1:1 to relationships denoting perfect agreement between trended and detrended 
estimates. Solid blue lines in each panel indicate the observed relationship between trended 
and detrended estimates, with the shaded region around the trend line (nearly imperceptible 
due to the large sample size) indicating the standard error of the predicted value. 
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Note S4—Rationale for using TMEANNormal calculated between 1901 and 2020, and impacts 
of using TMEANNormal for different reference periods.  

Because there is a long-term trend in temperature due to climate warming across most sites 
of specimen collection, it is possible that the 120-year window used to calculate 
TMEANNormal will result in biases relative to the conditions that individuals or their source 
populations experienced preceding the collection of a specimen. Specifically, long-term 
temperatures (i.e., TMEANNormal) used in our models could be much too warm for specimens 
collected in the early 1900s and much too cool for specimens collected in the 2000s.  

We used TMEANNormal with the objective of characterizing long-term temperature conditions 
of each site of specimen collection, whose variation therefore represents spatial temperature 
gradients for each species irrespective of the years in which the specimens were collected. In 
doing this, the main motivation is not to capture the conditions that a plant or its source 
population experienced prior to a specimen’s collection, but to differentiate locations within 
species’ ranges based on their chronic temperature conditions. Here, we aim to describe 
geographic temperature gradients (i.e., variation across locations), not the numerical 
temperature average that most closely matches conditions in the decades prior to the 
collection of a specimen. If alternative ways of measuring such geographic temperature 
gradients (i.e., TMEANNormal estimated over different time periods) do not substantially 
impact differences in long-term conditions observed among sites, then they should reveal the 
same associations between phenology and geographic temperature variation (i.e., they should 
result in equivalent estimates of Sspace). 

Nonetheless, to assess possible pitfalls of calculating TMEANNormal over the entire study 
period, we evaluated the degree to which our choice of reference period affected estimates of 
Sspace and Stime. To do so, we measured the relationship between TMEANNormal for winter 
(Dec, Jan, Feb), spring (Mar, Apr, May), summer (Jun, Jul, Aug), and fall (Sep, Oct, Nov) 
calculated between 1901 and 2020 vs. those obtained using four 30-year reference periods 
(1901-1930, 1931-1960, 1961-1990, or 1991-2020) among all unique collection locations in 
our data. Before calculating TMEANNormal for all these periods, we downscaled the spatial 
resolution of the data to 111m (4 decimal points of a degree) to make the analyses 
computationally feasible, which yielded a total of 588,650 unique locations. We then 
calculated winter, spring, summer, and Fall TMEANAnomaly between 1901 and 2020 for each 
unique site of collection (approximately 72 million site-by-year combinations) relative to 
TMEANNormal calculated using each 30-year reference period, comparing their values to 
those obtained using TMEANNormal from 1901 to 2020. Finally, we evaluated how the choice 
of reference period for calculating normals and anomalies affected estimates of Sspace, Stime, 

and Sspace – Stime. To do this, we fitted single-species models (for each of 1,605 spp. included 
in the main analyses) of DOY vs. TMEANNormal and TMEANAnomaly relative to the 1901-
1930, 1931-1960, 1961-1990, 1991-2020, or 1901-2020 periods. As in the main analyses, 
TMEANNormal and TMEANAnomaly were averaged over the 3-month period preceding the 
mean flowering date of each species. We then compared estimates of Sspace, Stime, and Sspace – 
Stime based on TMEANNormal estimated from 1901-2020 to those obtained using TMEAN 
variables for each alternative 30-year period. 

 

Results 
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The values of TMEANNormal calculated between 1901 and 2020 (hereafter ‘1901-2020 
normals’) were nearly identical to those obtained using alternative periods. For every season, 
1901-2020 normals showed correlation coefficients greater than 0.99 and 1:1 in relationship 
to normals for other reference periods (Supplementary Figure 10). This is likely because the 
magnitude of temperature increases in recent decades—and the magnitude of variation in 
temperature trends among sites—is negligible compared to the range of geographic variation 
in long-term conditions typically spanned by a species. For example, locations in our data 
showed average increases of 0.23 °C/Decade in mean spring temperature between 1980 and 
2020, whereas the average species spanned a 99% range of spring TMEANNormal conditions 
of 13.1 °C throughout its range. 

 
Figure S12—Relationship between winter, spring, summer, and autumn TMEANNormal 
calculated between 1901 and 2020 vs. those obtained using different reference periods.  

 

Similarly, seasonal TMEANAnomaly calculated using 1901-2020 TMEANNormal (hereafter 
“1901-2020 anomalies”) were highly correlated with those obtained using normals for 
different reference periods (mean correlation = 0.97; Supplementary Figure 11). The 
relationship between 1901-2020 anomalies and those calculated relative to normals for other 
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periods had a mean slope of 0.95, indicating that 1901-2020 anomalies tended to span, on 
average, a marginally narrower range of variation. 

 
Figure S13—Relationship between TMEANAnomaly calculated using 1901—2020 
TMEANNormal relative to those obtained using TMEANNormal for different periods.  

  

Estimates of Sspace, Stime, and Sspace – Stime obtained using normals for 1901-2020 (hereafter 
‘1901-2020 estimates’) were highly correlated to those obtained using other reference 
periods (Supplementary Figure 12). Estimates of Sspace were least sensitive to period 
selection, with estimates for all periods showing nearly identical values and 1:1 relationships 
with those obtained using 1901-2020 normals and anomalies (r > 99; Supplementary Figure 
12a-d). Similarly, 1901-2020 estimates of Stime  and Sspace – Stime were highly correlated to 
those obtained using different periods (r ≥ 0.89, mean r = 0.93; Supplementary Figures 12d-
l). The relationships between 1901-2020 Stime or Sspace – Stime and those obtained using 
alternative reference periods tended to deviate slightly from a 1:1 line, with estimates of 
slightly lesser magnitude than those obtained using different reference periods (i.e., slopes < 
1 reflecting estimates closer to 0 in both the positive and the negative range). However, the 
magnitude of the deviation from the 1:1 relationship was nearly identical for Stime and Sspace – 
Stime (mean Stime β= 0.84; mean Sspace – Stime β= 0.84), indicating that selecting alternative 
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periods for calculating TMEANNormal would have very similar effects on estimates of 
apparent plasticity and apparent adaptation of the same magnitude. 

 

 
Figure S14—Relationship between estimates of Sspace, Stime, and Sspace - Stime obtained using 
TMEAN conditions calculated over different reference periods. 

 

Together, these results demonstrate that the choice of period over which to calculate 
TMEANNormal does not substantially affect resulting patterns of geographic and interannual 
variation in temperature. Estimates of Sspace, Stime, and Sspace - Stime calculated using 1901-
2020 normals and anomalies were largely equivalent to those obtained using alternative 
reference periods. While 1901-2020 estimates of apparent plasticity and adaptation (Stime, and 
Sspace - Stime) tended to have slightly lower magnitude than those for other reference periods, 
the magnitude of these differences was nearly identical for estimates of apparent plasticity 
and of apparent adaptation (i.e., slopes in Supplementary Figure 12e-l). In other words, 
estimates of Stime and Sspace – Stime of similar sign and magnitude would change by nearly the 
same amount when calculating TMEANNormal over a different period. Therefore, choice of 
TMEANNormal should not influence the likelihood that species are classified as showing 
sensitivity patterns consistent with apparent plasticity or apparent adaptation. 
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Note S5—Motivation for using a statistical design different from that in Phillimore et al. 
(2010) 

 

Phillimore et al. (2010) generated spatial and temporal slopes by modeling the effects 
on frog spawning phenology of long-term, mean temperature among spatial grid cells 
(assumed to represent populations) and of the anomalies in the year of phenological 
observations from mean temperature conditions in each population. They used a generalized 
linear mixed-effects modelling approach (GLMM), treating phenology and temperature as a 
bivariate response and population and year as random effects, and estimated spatial and 
temporal slopes from population- and year-specific terms in the variance-covariance matrix 
of the model. Although statistically robust and largely derived from quantitative genetics 
theory, their method requires intensive sampling across space and time so that sufficient 
sampling within spatial units (at spatial scales fine enough that could be plausibly interpreted 
as populations) would be achieved across multiple years. Indeed, Phillimore et al. (2010) 
piloted this approach using a single-species dataset of 55,602 frog spawning dates from 
across Great Britain, a sample size unattainable for even the best sampled species in our 
extensive dataset.  

Delgado et al. (2020) successfully applied this approach to a dataset consisting of 
occurrence dates for various phenological events across multiple taxa (including plants, 
saprotrophs, and primary and secondary consumers) using smaller sample sizes per species 
than those in Phillimore et al. (2010). However, phenological observations in Delgado et al.’s 
dataset were made regularly at individual sites over time, enabling extensive sampling within 
each location and relatively precise estimation of occurrence dates. In contrast, although they 
are abundant and spatiotemporally extensive, herbarium specimens of a given species rarely 
are collected repeatedly at the same location over many years. Because of this, even among 
the well-sampled species in the data set analyzed here, we found few areas with repeated 
observations across years and at spatial scales small enough to plausibly represent single 
populations. Additionally, specimens could have been collected at any time between the onset 
and termination of a phenophase (Panchen et al. 2019), which introduces noise to the 
phenological signal and increases the sample size required to estimate phenology-climate 
relationships (Ramirez-Parada et al. 2022).  

Thus, we estimated spatial and temporal TMEAN sensitivities using different 
statistical methods from those in Phillimore et al. (2010) and Delgado et al. (2020), 
partitioning observed TMEAN conditions in sites and years of collection into climate 
normals and anomalies, and measuring sensitivities in a varying-slopes and varying 
intercepts Bayesian GLMM framework instead (see Methods: Analyses in the main text). Our 
methods relied on the same set of biological assumptions, whose plausibility we evaluated in 
the analyses referenced within the ‘Methods: Exploring assumptions’ subsection. 
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Figure S15—Distributions of and relationship between Sspace and Stime among 201 long-lived 
species in the continental United States. The solid black line in (b) indicates a 1:1 
relationship corresponding to perfect agreement between sensitivity types. The solid curved 
line indicates the line of best fit obtained from a Generalized Additive Model (GAM) of Stime 
vs. Sspace, with the shaded area around it denoting the standard error of the predicted mean 
value. Each point in (b) represents a species whose x, y coordinates are given by the 
maximum a posteriori (MAP) estimates for Sspace and Stime, respectively. Point shapes and 
colors in (b) indicate whether sensitivity patterns were consistent with plasticity or adaptation 
as the sole drivers of flowering time variation along the temperature gradient, with both 
plasticity and adaptation having significant effects in a co- or counter-gradient adaptation 
pattern, or not showing statistically significant adaptation nor plasticity. The percent of 
species showing each pattern is shown in the legend in parenthesis. The 95% credible interval 
for the correlation between Sspace and Stime is provided as a text inset in (b). 

 The subset of 201 species was selected based on growth form data from the United 
States Department of Agriculture Plant Database (USDA Plant Database, 
https://plants.usda.gov). We downloaded all records of growth habit information available 
through the search tool, and subset the resulting dataset to contain only species represented 
among the 1,605 species included in the analyses presented in the main text. We then retained 
only flowering specimens from species classified as “Tree” (n = 5), “Shrub” (n = 164), 
“Subshrub” (n = 27) or “Vine” (n = 5), which yielded a dataset of 201 species. Using this 
subset dataset, we ran the same varying intercepts, varying slopes model, obtaining estimates 
of sensitivity to TMEANNormal and TMEANAnomaly and of their difference for each species, as 
well as an estimate of their correlation accounting for parameter uncertainty. The resulting 
patterns closely mirrored those of the larger dataset, with a high correlation and agreement in 
magnitude between Sspace and Stime, and similar relative frequencies among species for each 
sensitivity pattern. 
 

https://plants.usda.gov/
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Figure S16—Variation in Stime across geographic climatic gradients for 1,605 across the 
coterminous United States. (a) Distribution of interaction terms between TMEANAnomaly and 
long-term climatic conditions within sites of specimen collection, including (a) 
TMEANNormal, (b) PPT Normal, (c) TMEAN Seasonality, (d) PPT Seasonality, (e) the 
gradient of increasing temperature and precipitation seasonality described by PC1, and (f) the 
gradient of decreasing precipitation and increasing temperature seasonality described by 
PC2. The interaction coefficients for all variables were obtained from single-species models 
including flowering DOY as a response, the focal long-term climatic variable and 
TMEANAnomaly as a predictor, and an interaction term between them. Long-term climatic 
variables were standardized (mean = 0, SD = 1) before fitting the models. Accordingly, the 
interaction terms quantify the change in the slope of TMEANAnomaly vs. DOY (Stime, in 
days/°C) for an increase of 1 SD in the long-term climatic variable. The values for the 25th, 
50th and 75th percentiles of each distribution is indicated in each panel as a text inset, as well 
as the proportion of species for which the interaction coefficient had a p value greater than 
0.01.  

Within a species, phenological sensitivity to temperature can vary among portions of 
the range with different long-term climatic conditions. Therefore, differences between Sspace 
and Stime presented in the main text may result from variation in the DOY–TMEANAnomaly 
slope across the geographic climatic gradients and not from the effects of adaptation across 
the gradient. Despite this, found no evidence of pervasive variation in Stime along various 
geographic climatic gradients, suggesting intraspecific variation in phenological sensitivity is 
unlikely to generate the patterns reported in the main text.   
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Figure S17—Consequence of including precipitation in models estimating Sspace and Stime. 
Relationship between estimates of flowering sensitivity to TMEANNormal (Sspace) (a, c) and 
TMEANAnomaly (Stime) (b, d) with or without accounting for the effects of cumulative 
precipitation normal and anomaly (x-axis and y-axis, respectively) during the same 3-month 
periods used to calculate TMEANNormal and TMEANAnomaly for each species (see Methods in 
main text). Panels (a) and (b) show the relationships between estimates from temperature-
only models with those obtained from models including PPT normal and net PPT anomaly 
for the focal 3-month period in the year of collection. In turn, panels (c) and (d) show the 
same relationship but with estimates from a model including PPT normal and PPT anomaly 
proportional to the long-term average for that period (i.e., divided by the PPT normal). 
Proportional anomalies were included to account for differences in the biological significance 
that the same amount of precipitation might have in chronically dry compared to chronically 
wet locations. 

The method developed by Phillimore et al. (2010) assumed that the variables causing 
phenological variation along spatial temperature gradients were correctly identified and 
included in the model. Although temperature has been found to be a predominant 
environmental cue inducing flowering in temperate biomes, other variables such as 
precipitation, or those that emerge from the interaction between temperature and 
precipitation, such as snow cover or water stress, routinely have been implicated in 
phenological variation in many North American species. Therefore, it is possible that 
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differences in spatial vs. temporal patterns of temperature-related phenological variation 
might stem from the confounding effects of phenologically important variables not included 
in our models. Estimates of phenologically important variables such as the timing of 
snowmelt or the onset of drought conditions in xeric environments are not available at the 
temporal and spatial scales spanned by our data. However, most of these variables are highly 
correlated with precipitation and temperature over space and time, and including both of 
these variables in phenoclimatic models might account for the effects of predictors other than 
temperature and precipitation. Accordingly, we assessed whether estimated Sspace and Stime 
changed when accounting for the effects of long-term cumulative precipitation (PPT normal) 
and PPT anomalies in the year of collection, separately assessing the effects of both net PPT 
anomalies and of anomalies scaled proportionally to long-term means (PPT normal) for the 
focal 3-month period. Estimates of phenology-temperature relationships in space and time 
did not change substantially when including precipitation variables, resulting in a very high 
correlation between estimates from temperature-only models and those from models 
including precipitation (r = 0.95 or 0.96). Therefore, the estimates presented in the main text 
are unlikely to be biased by the omission of precipitation during the months leading up to 
flowering. 
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Figure S18—Distribution of and relationship between Sspace and Stime among species 
collected within narrow latitudinal bands. These analyses included 157 species with 200 or 
more specimens collected within a latitudinal band of 1° (~111km) in the continental United 
States (analogous to Figure 3 of the main text). The solid black line in (b) indicates a 1:1 
relationship corresponding to perfect agreement between the two types of sensitivity. The 
solid curved line indicates the line of best fit obtained from a Generalized Additive Model 
(GAM) of Stime vs. Sspace, with the shaded area around it denoting the standard error of the 
predicted mean value. Each point in (b) represents a species whose x, y coordinates are given 
by the maximum a posteriori (MAP) estimates for Sspace and Stime, respectively. Point shapes 
and colors in (b) indicate whether sensitivity patterns were consistent with plasticity or 
adaptation as the sole drivers of flowering time variation along the temperature gradient, with 
both plasticity and adaptation having significant effects in a co- or counter-gradient 
adaptation pattern, or not showing statistically significant adaptation nor plasticity. The 
percent of species showing each pattern is shown in the legend in parenthesis. The 95% 
credible interval for the correlation between Sspace and Stime is provided as a text inset in (b). 

 Both temperature and photoperiod are known to be the predominant environmental 
cues controlling both vegetative and reproductive phenology among plants in temperature 
regions. Therefore, across latitudinal ranges such as those spanned by most species in our 
data (median 90% latitudinal range = 5.7°), it is possible that differences in Stime and Sspace 
(e.g., geographic temperature gradients) might reflect the confounding influence of 
latitudinal shifts in photoperiod on our estimates of sensitivity to TMEANNormal. To account 
for this possibility, we identified 157 species in our data that were well sampled (200 or more 
specimens) within narrow latitudinal bands (≤ 1°). Using this subset of species and including 
only specimens from such 1° bands, we ran the same varying intercepts, varying slopes 
model, obtaining estimates of Stime and Sspace and their difference for each species, and an 
estimate of their correlation accounting for parameter uncertainty. The results did not 
qualitatively differ from those presented in the main text, with a high correlation between 
Sspace and Stime, and similar relative frequencies of each sensitivity pattern among species.. 
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Figure S19—Effects of sample size differences, spatial autocorrelation and phylogeny on estimates 
of Sspace and Stime. Comparison of Sspace and Stime estimates obtained by (a) homogenizing sample sizes 
among species, (b) accounting for spatial autocorrelation among observations and (c) accounting for 
phylogenetic relationships among species against estimates generated ignoring these factors (as those 
presented in the main text). In (a, b), we fit the model presented in the main text using a thinned 
dataset were each species was represented by 300 specimens, comparing its output to that of the 
model in the main text. In (c, d), we compared the results of models omitting or accounting for 
phylogenetic relationships. We selected a random subset of 300 species from which to generate a 
phylogeny, thinning these data to include only 300 specimens for each species (to make the model 
computationally tractable). Sspace and Stime estimates that did not account for phylogeny were obtained 
using the model described in the main text. In turn, the model accounting for phylogeny included a 
prior for the covariance structure of species-specific parameters consisting of the evolutionary 
distance between 
each pair of species as estimated from a phylogenetic hypothesis and a model of trait divergence 
among species. The phylogenetic tree (or hypothesis) was generated using the R package 
‘v.PhyloMaker’ version 0.1.071 and generated a phylogeny resolved to the genus level. Using this 
tree, we then calculated the 
variance–covariance phylogenetic matrix predicted by a Brownian model of trait evolution using the 
R package ‘ape’ version 5.6-2. Finally, both models were implemented using the ‘brms’ package 
version 2.18.073. Finally, in (e, f) we compared estimates obtained from models ignoring or 
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accounting for spatial autocorrelation of the residuals. All Sspace and Stime estimates were obtained 
using single-species models, but those accounting for spatial autocorrelation included a covariance 
structure for the residuals determined by the geographic distance between each pair of points. All 
models were fitted using the ’nlme’ package version 3.1 in R. Estimates of Sspace and Stime obtained 
accounting for or ignoring spatial autocorrelation were nearly identical across species. Across panels, 
the x-axes show the estimates obtained when omitting the focal factor (sample size, phylogeny, or 
spatial autocorrelation), whereas the y-axes show estimates obtained when accounting for it. Solid 
black lines represent a 1:1 line, representing perfect agreement in magnitude and direction between 
estimates. Sspace and Stime estimates obtained ignoring sample size differences, phylogeny and spatial 
autocorrelation were highly correlated to estimates obtained from models accounting for these factors. 
Accordingly, we consider it unlikely that omitting these factors could have biased our results. 
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Figure S20—Assessing evidence for non-linear phenology-temperature relationships. 
Comparison of R2 values obtained using 10-fold cross-validation of models of flowering 
DOY versus TMEANNormal and TMEANAnomaly obtained from (A) linear regressions assuming 
linear relationships between phenology and temperature or (B) generalized additive models 
(GAMs) accounting for potential non-linear relationships. The shaded region in each panel 
represents the among-species kernel distribution of cross-validated R2 values obtained using 
each model type (linear regression or GAM). The mean and SD of R2 values each is 
presented as a text inset in each panel. 

 The model that generated the sensitivity estimates presented in the main text assumed 
linear relationships between flowering dates and TMEANNormal and TMEANAnomaly. To verify 
whether such an assumption was warranted for our data, we compared the predictive ability 
of single-species models assuming linear relationships between phenology and temperature 
(fitted using linear regression) and models accounting for possible non-linear relationships 
(fitted using Generalized Additive Models). We reasoned that if omitted non-linear 
relationships between flowering time and temperature were pervasive in our data and 
potentially biased our results, then models accounting for non-linear relationships would tend 
to perform better than linear regressions among species in our data. We used 10-fold cross-
validation to compare the out-of-sample performance (quantified through R2 values) of linear 
regressions and GAMs. For each model type (linear regression or GAM), this procedure 
randomly split the observations for each species into 10 groups, each of which was omitted 
from a model estimated from the remaining 9 groups. The performance of each of these 
models was then assessed against the observations omitted in fitting the model, generating 10 
out-of-sample R2 values for each model type (linear or GAM) per species. We then compared 
the distribution of mean cross-validated R2 values obtained from linear models and GAMs to 
assess whether non-linear models explained additional variance. 

GAMs did not perform better than linear models among species in our data; in fact, 
linear models exhibited marginally higher R2 values among species than GAMs (0.23 vs. 
0.22). Therefore, we conclude that the assumption of linearity is warranted in the analyses 
presented in the main text. 
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Figure S21—Effects of geographic range on apparent plasticity and adaptation. 
Relationships between the latitudinal and longitudinal range spanned by the central 90% of 
specimens of a species and estimates of apparent plasticity (Stime) and apparent adaptation 
(Sspace – Stime). Blue lines in each panel correspond to best-fit lines obtained using generalized 
additive models (GAMs). R2 are provided as text insets in each panel. 

 Although apparent plasticity and adaptation showed marginally greater magnitude 
among species with narrower latitudinal and longitudinal range, these relationships explained 
a very small proportion of the variance. Therefore, we conclude that it is unlikely that 
differences in latitudinal or longitudinal range size could confound the results presented in 
the main text. GAMs using apparent plasticity or apparent adaptation as a response and 
including both latitudinal and longitudinal range as predictors also explained a marginal 
proportion of the variance (R2 = 0.08 and R2 = 0.05, respectively). 
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Note S6—Assessing collection patterns relative to major roads and population density and 
their effects on estimation of apparent plasticity and adaptation. 

Daru et al. (2018) showed severe spatial collection biases for collections within Australia, 
South Africa, and New England (USA), chief among them the concentration of specimen 
collection near major roads and urban areas. Such environments might show different 
climatic conditions from undisturbed areas. To the extent that such microenvironments might 
be severely different and not captured by available climate products, estimates of phenology-
climate relationships obtained without accounting for these factors could be inaccurate. 

 However, Daru et al. (2018) also showed that these regions differed in the degree of 
specimen clustering around major roads or urban areas, suggesting the severity of these 
biases might not be universal. As our analyses relied on an overwhelmingly non-overlapping 
set of collections from those analyzed by Daru et al. (2018), the severity of these biases in 
our dataset was unknown. Accordingly, we conducted analyses describing the extent of 
spatial bias in our data with respect to population density (a common proxy for urbanization; 
Park et al. 2023) and proximity to major roads (i.e., what Daru et al. [2018] call 
“infrastructure bias”). Then, we assessed whether including proximity to roads and 
population density into our models in various ways affected our estimates of Sspace, Stime, and 
Sspace – Stime.  

 

Population density 

As urbanization typically encompasses large areas, climatic data resolved at the 4km level 
(e.g., that used in our study) are likely to capture its effects on local climatic conditions. For 
example, Park et al. (2023) used 4km-by-4km climate data from PRISM and population 
density information from the US Census Bureau to show that geographic and temporal 
climatic variation and urbanization interactively mediate variation in phenology across the 
Eastern coastal plain of the United States. If urbanization affects phenology by modifying 
climate, such effects should be captured by the PRISM data used in our study. However, if 
urbanization affects the slopes of phenology-climate relationships (e.g., Park et al. 2023), our 
estimates might be biased, as we omitted interactions between urbanization and climate in 
our models. 

To evaluate these possibilities, we obtained decadal population density estimates for 
each county of the United States between 2000 and 2020 from the US Census Bureau using 
the tidycensus package v.1.4.4 in R (Walker 2023). To match the temporal extent of the 
specimen and census data, we subset the data to include only specimens collected from 1990 
onwards. This yielded a dataset of 562,631 specimens (54% of the full dataset), with 663 
species represented by 300+ specimens. Then, we linked each collection to the population 
density of its county from the census following its decade of collection. To examine whether 
specimens were disproportionately collected in highly populated areas, we compared the 
population density of collection locations in our data to that of an equally sized random 
sample of points across the contiguous United States. Random points were assigned to 
decades in the same proportion as observed in our dataset (39% in the 90s, 43% in the 2000s, 
and 18% in the 2020s) and linked to the corresponding US Census Bureau decadal 
population density data. Next, for each species, we assessed whether accounting for 
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population density affected our estimates by including population density (log-transformed) 
into a model of DOY vs. TMEANNormal and TMEANAnomaly, entering the model either as a 
predictor, or both as a predictor and in interaction terms with both temperature variables. 
Estimates of Sspace, Stime, and Sspace – Stime obtained from both types of model were compared 
to those obtained omitting population density. 
 

Results 

The distribution of population densities among specimen collection locations showed marked 
peaks compared to the random sample of locations (Supplementary Figure 13), reflecting a 
concentration of specimen collections within areas of the United States of differing 
population density (e.g., Southern California, Rocky Mountains, New England, etc.; 
Extended Data Fig. 2). Overall, specimens were more likely to be collected in relatively 
densely populated areas, with 19% of specimens occurring in areas with 100 or more 
residents per km2 compared to 8% for the random sample of points. However, specimens 
were also disproportionately collected in areas of low population density, with the modal 
specimen being collected in counties with approximately 4 residents per km2. Moreover, 
<1% of species were collected within counties with 994 residents per km2 or more (i.e., the 
median population density of urban areas in the United States as of 2020). 

 

Figure S22—Population density of collection locations vs. random locations. Distribution of 
county-level population density among collection locations of 562,631 specimens collected 
since 1990 and of an equally sized random sample of points across the contiguous United 
States. Decadal county-level population densities were obtained from the US Census Bureau 
for the years 2000, 2010, and 2020).  
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Including population density in our models did not substantially alter estimates of 
Sspace, Stime, and Sspace – Stime. Estimates generated from models including population density 
(with or without interaction terms) were highly correlated to those obtained when excluding 
population density, and tended to agree in both direction and magnitude (i.e., they were 
sorted along a 1:1 line) (Supplementary Figure 14). 

 

 

Figure S23—Effects of accounting for population density in our models. Comparison of 
estimates of Sspace, Stime, and Sspace – Stime obtained from models omitting urbanization (y-
axes) and those from models including urbanization either as a predictor, or both as a 
predictor and in interaction terms with TMEANNormal and TMEANAnomaly (x-axes). Models 
were fit separately for each of 662 species represented by 300 or more specimens collected 
since 1990.  

 

Summary and conclusions 

Specimens were disproportionately collected in areas of high population density compared to 
a random set of locations in the United States, but we also observed higher-than-random 
collection intensity in counties with low population density. Nonetheless, including 
population density (both as a linear or interaction term) yielded nearly identical estimates of 
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Sspace, Stime, and Sspace – Stime. This suggests that population density—and by proxy, 
urbanization—do not result in substantial climatic effects that are not captured by PRISM 
data, and that the interactive effects of urbanization and temperature on flowering time might 
not be (on average) large enough to result in biased estimates when omitting interactions. 

Many limitations of this analysis are of note. For example, we could only access 
population density data at the county level, but such density might not be homogenous, and it 
is possible that conditions in the site of collection of a specimen do not match the county 
mean (especially among western counties, which are typically larger). Similarly, we had to 
use collections from recent decades to match the temporal extent of the census data, 
excluding 46% of observations. While the excluded data were collected throughout a period 
of lower overall population density (1896-1989), collection biases might have changed over 
time, and it is conceivable that the urbanization bias among early collection could be greater 
despite lower national population density. Additionally, it is possible that omitting 
urbanization might bias estimates of climate variables other than temperature. Nonetheless, 
these results suggest that—at least for temperature and flowering time—omission of 
urbanization does not lead to biased estimates of Sspace and Stime.    

 

Proximity to major roads 

Following Daru et al. (2018), we measured infrastructure bias as the proximity of each 
collection location to a major road within the US. We obtained shapefiles of primary and 
secondary roads for the year 2020 from the US Census Bureau using the tigris package 
v.2.0.3 in R (Walker 2016), and calculated distance to the nearest one for each specimen. As 
with our analyses of population density (Supplementary Figures 13, 14), we used specimens 
collected from 1990 to ensure that most roads in the census maps were present at the time of 
collection. To assess whether collection locations clustered around major roads, we generated 
a sample of 562,631 random points (same sample size as our post 1990 specimen data) and 
compared its distribution of to that of the collection locations in our data. Proximity to major 
roads can only bias our results if, for most species, a sizeable proportion of specimens occurs 
close enough to roads for them to experience altered microclimatic conditions. Because the 
exact spatial scale at which roads might affect microclimates is unclear, we measured the 
proportion of specimens of each species occurring within various distance thresholds of a 
major road: 50m, 100m, 500m, and 1km. 

Finally, we assessed whether including distance to road in models measuring Sspace 
and Stime affected our estimates. As the scale at which distance to road will affect 
microclimatic conditions is unclear, we included it in our models in a variety of ways. First—
in addition to TMEANNormal and TMEANAnomaly—we included distance to road as a predictor 
(without interaction terms), either as a continuous variable (log-transformed), or as a one of 
three dummy variables indicating whether a specimen occurred within 50m, 100m, or 500m 
of a road. Then, we fitted versions of these models including interaction terms between the 
temperature variables and the version of distance to road that entered the model. Each model 
was only fit for a species if at least 30 specimens occurred within the distance threshold used 
in the model. Accordingly, model type captured a different number of species: all 663 species 
for continuous distance, 561 species for the 500m threshold, 205 species for the 100m 
threshold, and 70 species for the 50m threshold. This approach generated 8 sets of Sspace and 
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Stime estimates (2 per each distance to road variable) that we compared to those obtained from 
models excluding distance to major roads. 

 

Results 

Specimens were more likely to be collected near major roads than randomized locations 
across the US: 4.4% of specimens were collected within 100m of a major road compared to 
2% among random locations. However, overall, specimens tended to be collected further 
from major roads than expected at random. The median specimen and random location were 
5.8km vs. 3.8km away from a major road (42% greater distance among specimens), and the 
modal specimen and random location were 9.1km vs. 4.7km away from a major road (94% 
greater distance among specimens) (Supplementary Figure 15).  

 

 
Figure S24—Distance to roads of specimen collection location vs. random locations. 
Distribution of distance to major roads for 562,631 collection locations of specimens and for 
an equal number of randomly generated locations within the continental United States. 
Geospatial data for major roads (i.e., primary and secondary) was obtained from the US 
Census Bureau for the year 2020. 

 

Additionally, we found that, for most species, only a small proportion of specimens 
tended to occur very close to major roads (Supplementary Figure 16). For the median 
species, only 2% of specimens were collected within 50m of a major road, and only 4% 
within 100m. While the median proportion of specimens for greater distance thresholds was 
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much greater for the 500m and 1km thresholds (11% and 17%, respectively), the likelihood 
that roads affect microclimates decreases substantially with distance. 

 

 

 
Figure S25—Distribution of the proportion of specimens of a species occurring within 50m, 
100m, 500m, or 1000m of a major road. Each colored distribution is generated from the 
proportion of specimens within a distance threshold across 1,605 species included in our 
analyses. Geospatial data for major roads (i.e., primary and secondary) was obtained from the 
US Census Bureau for the year 2020. 

 

Inclusion of distance to major roads—with or without interaction terms—did not 
substantial impact our estimates of Sspace, Stime, and Sspace – Stime. Models including distance to 
road with or without interaction terms were very highly correlated to those that only included 
TMEANNormal and TMEANAnomaly (r > 0.96 for all estimates), and their magnitude and 
direction tended to correspond in a 1:1 ratio (Supplementary Figures 17, 18).  
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Figure S26—Accounting for distance to roads in our models without interactions. 
Comparison of estimates of Sspace, Stime and Sspace – Stime obtained including distance to major 
roads as a predictor (without interaction terms; x-axes) to those obtained omitting distance to 
roads (y-axes). Distance to road was included in four different ways across models: as a 
continuous variable (log-transformed) or as one of three dummy variables indicating whether 
a specimens occurred within 50m, 100m, or 500m of a road.  
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Figure S27—Accounting for distance to roads in our models with interactions. Comparison 
of estimates of Sspace, Stime and Sspace – Stime obtained including distance to major roads as a 
predictor (with interaction terms between distance to roads and TMEANNormal and 
TMEANAnomaly) to those obtained omitting distance to roads. Distance to road was included 
in four different ways across models: as a continuous variable (log-transformed) or as one of 
three binary variables indicating whether a specimens occurred within 50m, 100m, or 500m 
of a road. 

 

Summary and conclusions 

While a slightly greater proportion of specimen collections occurred near major roads 
relative to randomized locations across the United States, specimens tended to occur further 
from major road than expected at random sample of locations (Supplementary Figure 17). 
Moreover, only a small proportion of specimens per species was collected within relatively 
short distances from roads (i.e., within 50m or 100m) (Supplementary Figure 18). These 
patterns suggest that, despite some degree of opportunistic sampling near highly accessible 
areas, botanists contributing to the datasets that we obtained might have preferentially 
collected away from major infrastructure (at least since the 1990s). However, it is 
conceivable that these patterns might have differed for collections earlier in the 20th century 
for which we do not have temporally resolved road data. 
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Ultimately, estimates of the effects of TMEANNormal and TMEANAnomaly were robust 
to inclusion of distance to road in the models (Supplementary Figures 17, 18). This lack of 
apparent effects of distance to roads on our estimates might be because they do not tend to 
substantially bias the climate space captured by the data (Kadmon et al. 2004). Alternatively, 
this might be caused by the fact that the microclimatic effects of roads often operate at spatial 
scales much lower than 50m (Delgado et al. 2007). If so, such fine-scale effects would be 
unlikely to alter our results, as species tended to show a very low proportion of specimens 
within 50m of a road, and such proportion would be substantially lower for smaller distance 
thresholds. 
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Note S7—Assessing the temporal distribution of specimens and the potential for 
temporal non-independence among observations 

Herbarium data are unevenly distributed over time, and collections might often sparsely 
sample recent decades during which most global warming has occurred (Daru et al. 2018). 
Collections may be clustered within individual years, or the date of collection of conspecific 
individuals in a phenophase might not be independent among years, as trends in climate over 
time might also cause trends in phenology. 

 To explore these potential issues, we characterized the temporal distribution of our 
data, and assessed the proportion of specimens within each species collected before the 
approximate onset of rapid warming in North America (1980), and during the 20th century. 
While a rigorous analysis of temporal autocorrelation and its potential impact on estimates of 
Sspace and Stime would require auto-regressive (AR) models—or at least analysis of 
residuals—relying on complete time series during the study period (or also on imputation 
methods for incomplete time series provided missing observations are few and occur 
randomly). Unfortunately, most species have several multi-year gaps, making our data 
unsuitable for these approaches. 

Accordingly, we evaluated whether models accounting for various forms of temporal 
non-independence generated different estimates from model assuming temporal 
independence among observations (such as that in the main text). First, to account for 
potential temporal non-independence resulting from temporal trends in both temperature and 
phenology in each species, we included year as a predictor in a model of DOY vs. 
TMEANNormal and TMEANAnomaly. Second, as rapid warming trends only started towards the 
end of the 20th century (ca. 1980), and as temperatures have fluctuated non-linearly over 
time, we included year as a non-linear predictor using a spline smooth within a Generalized 
Additive Model (GAM; mgcv package v.1.8.40, Wood 2017). Finally, uneven sampling 
across years within species might result in an overrepresentation of years and climatic 
conditions; accordingly, we ran a third type of model including year as a random effect 
(through the lme4 package v.1.1-30, Bates et al. 2015), allowing for variation in the intercept 
of specimens clustered within the same year. Estimates of Sspace and Stime (and their 
difference) for each species obtained using each type of model were compared to those 
obtained from models omitting year (as did the model in our main analyses). 

 

Results 

Specimens in our data were collected between 1896 and 2020, with collection intensity 
fluctuating but tending to increase over time (Supplementary Figure 19). The number of 
specimens collected each year decreased gradually throughout the 2010s, likely reflecting 
lags in digitization for more recent collections. Overall, 62% of our data was collected 
following the onset of rapid warming trends (ca. 1980), with 35% collected during the 20th 
century. This temporal distribution was mirrored at the species level. The median species had 
61% of its specimens collected on or after 1980, and 34% of its specimens collected in the 
21st century.  
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Figure S28—Temporal distribution of the 1,038,027 specimens included in the analyses 
within the main text. Colored segments divided by dashed lines indicate year of collection 
deciles, and therefore divide the data in 10 bins of 103,802 or 103,803 specimens. The width 
of each segment indicates the period over which each successive batch of ~103,802 
specimens was collected. Bars show the number of specimens collected within a single year. 

Including year in our models did not generate substantially different estimates from 
those obtained from models omitting year (Supplementary Figure 20). Regardless of the way 
in which year entered the model, estimates of Sspace, Stime, and Sspace – Stime were highly 
correlated to those models including only TMEANNormal and TMEANAnomaly (r ≥ 0.92), and 
their magnitude and direction tended to correspond in a 1:1 ratio. 
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Figure S29—Assessing potential for temporal non-independence. Comparison of estimates 
of Sspace, Stime, and Sspace – Stime obtained omitting year vs. those obtained by including year as 
a linear predictor, a random effect, or a non-linear predictor. Models were fit separately for 
each of the 1,605 species included in our main analyses. 

Conclusions 

Species in our data were typically represented by sizeable proportions of specimens collected 
before and after the onset of rapid warming and during the much warmer conditions of the 
21st century. Accordingly, we conclude that our data likely provide sufficient observations 
before, during, and after the onset of warming trends to properly capture variation across the 
spectrum of conditions spanning the 20th and early 21st centuries.  

While time-series analysis methods for assessing temporal autocorrelation where not 
applicable to our data, including year in our models in ways that account for various possible 
scenarios of non-independence generated estimates highly consistent with those from models 
including only TMEANNormal and TMEANAnomaly. Together with the analyses showing 
extensive sampling before and after the onset of rapid warming for most species 
(Supplementary Figure 19), as well as those demonstrating no evidence of non-linear 
phenology-temperature relationships (Appendix 2—Fig. S20), these results suggest that the 
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models presented in the main text are likely to estimate Sspace, Stime, and Sspace – Stime 
accurately.  

 

 

 

 

 

Figure S30—Compositional similarity among ecoregions of the United States. Proportion of 
species (n = 1,605) shared between pairs of Level II Ecoregions within the contiguous United 
States. The proportion of species overlap for each pair was calculated as the number of 
species occurring in both ecoregions (i.e., those for which at least 10% of the specimen were 
collected within that ecoregion) divided by the total number of unique species present in the 
two ecoregions combined. 
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Figure S31—Climatic space captured among specimen collection locations across 
ecoregions. Variation in long-term climatic conditions among sites of specimen collection 
occurring within different Level II ecoregions throughout the contiguous United States. 
Variation in long-term conditions was calculated using principal components (PCs). PC1 
represents a gradient of increasing precipitation seasonality (PPT seas. in the legend), 
decreasing MAT seasonality (T° seas.), and increasing mean annual temperature (MAT) 
normal (Mean T°). In turn, PC2 represents a gradient of decreasing mean annual precipitation 
(Mean PPT), and increasing MAT seasonality. 
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Figure S32—Distributions of and relationship between Sspace and Stime among 201 long-lived 
species in the continental United States. The solid black line in (b) indicates a 1:1 
relationship corresponding to perfect agreement between sensitivity types. The solid curved 
line indicates the line of best fit obtained from a Generalized Additive Model (GAM) of Stime 
vs. Sspace, with the shaded area around it denoting the standard error of the predicted mean 
value. Each point in (b) represents a species whose x, y coordinates are given by the 
maximum a posteriori (MAP) estimates for Sspace and Stime, respectively. Point shapes and 
colors in (b) indicate whether sensitivity patterns were consistent with plasticity or adaptation 
as the sole drivers of flowering time variation along the temperature gradient, with both 
plasticity and adaptation having significant effects in a co- or counter-gradient adaptation 
pattern, or not showing statistically significant adaptation nor plasticity. The percent of 
species showing each pattern is shown in the legend in parenthesis. The 95% credible interval 
for the correlation between Sspace and Stime is provided as a text inset in (b). 

 The subset of 201 species was selected based on growth form data from the United 
States Department of Agriculture Plant Database (USDA Plant Database, 
https://plants.usda.gov). We downloaded all records of growth habit information available 
through the search tool, and subset the resulting dataset to contain only species represented 
among the 1,605 species included in the analyses presented in the main text. We then retained 
only flowering specimens from species classified as “Tree” (n = 5), “Shrub” (n = 164), 
“Subshrub” (n = 27) or “Vine” (n = 5), which yielded a dataset of 201 species. Using this 
subset dataset, we ran the same varying intercepts, varying slopes model, obtaining estimates 
of sensitivity to TMEANNormal and TMEANAnomaly and of their difference for each species, as 
well as an estimate of their correlation accounting for parameter uncertainty. The resulting 
patterns closely mirrored those of the larger dataset, with a high correlation and agreement in 
magnitude between Sspace and Stime, and similar relative frequencies among species for each 
sensitivity pattern. 

  

https://plants.usda.gov/
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VIII. Appendix 3—Supplementary materials for IV 

 

 

 

Figure S1—Time series of cumulative flowering intensity under 2 °C of warming for three 
communities differing only in the mean temperature sensitivity of first flowering date (i.e., in mean 
SFFD) among species. These communities were generated from the same initial set of 100 simulated 
species, each randomly assigned first flowering dates, flowering durations, flowering termination 
dates, and mean flowering dates as described in the “Methods” section of the main text. Species were 
then assigned random duration sensitivities (i.e., SD), with the mean SD among species set at 0 
days/°C. In turn, each species was assigned three SFFD values. An initial SFFD was obtained as 
described in the “Methods” section of the main text, resulting in a distribution of SFFD values among 
species centered at 0 days/°C. Then, we assigned two additional SFFD values for each species: one 
generated by adding and another by subtracting 5 days/°C to the initial SFFD assigned to each species. 
This resulted in 3 different sets of SFFD, each showing identical variation among species but differing 
in their mean. Using each of these three SFFD distribution, we simulated a time series of flowering 
intensity for each species under 2 °C of warming, and calculated the cumulative flowering intensity of 
the community as described in the “Methods” section of the main text. This resulted in three post-
warming time series of cumulative flowering intensity differing only in the among-species mean SFFD 
used to generate them. 

 Generating identical communities that differed only in their mean SFFD among species merely 
shifted the relative position of an otherwise identical flowering season under 2 °C of warming. As we 
were interested in assessing changes to the temporal distribution of flowering species at the 
community level—not the precise position of the flowering season within the year—we set mean SFFD 
to be 0 in all simulations for simplicity.   
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Figure S2—Percent change in flowering season length and seasonal peaks in cumulative flowering 
intensity relative to the pre-warming baseline due to independent variation among species in SFFD and 
SD for communities with a single flowering peak. Colored boxplots in a and b depict the range of 
variation in season length change for communities varying in 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 , with groups across the x-axis 
representing sets of communities with varying 𝑆𝑆𝐷̅𝐷 . In turn, colored boxplots in a and b depict the 
range of variation in season length change for communities varying in 𝛽𝛽𝑆𝑆𝐷𝐷 . 
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Figure S3—Variation in cumulative flowering intensity—the sum of the amplitude of species-level 
flowering curves on each day—throughout the season under 2 °C warming given independent 
variation among species in SFFD and SD. The black dashed line in all panels corresponds to the pre-
warming time series of median cumulative flowering intensity across all simulated communities with 
the same 𝑆𝑆𝐷𝐷  value. Dashed black lines in a-c correspond to the median post-warming cumulative 
flowering intensity among simulated communities with the same combination of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝑆𝑆𝐷𝐷 values 
(and for which 𝛽𝛽𝑆𝑆𝐷𝐷 = 0; see Figs. 1a,b). In turn, solid-colored lines in d-f correspond to the median 
post-warming cumulative flowering intensity among simulated communities with the same 
combination of 𝛽𝛽𝑆𝑆𝐷𝐷  and 𝑆𝑆𝐷𝐷 values (for which 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0; see Figs. 1c,d). Shaded regions across panels 
indicate the 90% range of variation across communities grouped for each parameter combination. 
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Figure S4—Variation in cumulative flowering intensity—the sum of the amplitude of species-level 
flowering curves on each day—throughout the season under 2 °C warming given independent 
variation among species in SFFD and SD within communities with two flowering peaks. The black 
dashed line in all panels corresponds to the pre-warming time series of median cumulative flowering 
intensity across all simulated communities with the same 𝑆𝑆𝐷𝐷  value. Dashed black lines in a-c 
correspond to the median post-warming cumulative flowering intensity among simulated 
communities with the same combination of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝑆𝑆𝐷𝐷 values (and for which 𝛽𝛽𝑆𝑆𝐷𝐷 = 0; see Figs. 
1a,b). In turn, solid-colored lines in d-f correspond to the median post-warming cumulative flowering 
intensity among simulated communities with the same combination of 𝛽𝛽𝑆𝑆𝐷𝐷  and 𝑆𝑆𝐷𝐷 values (for which 
𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0; see Figs. 1c,d). Shaded regions across panels indicate the 90% range of variation across 
communities grouped for each parameter combination. 
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Figure S5— Changes in cumulative flowering intensity due to uncorrelated variation between SFFD 
and SD within communities with two flowering peaks. Solid-colored lines in a-c correspond to the 
median change in cumulative intensity—across percentiles of the flowering season—due to warming 
compared to the pre-warming baseline among simulated communities with the same combination of 
𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝑆𝑆𝐷̅𝐷 values (and for which 𝛽𝛽𝑆𝑆𝐷𝐷 = 0; see Figs. 1a,b). Solid-colored lines in d-f correspond to 
the median change in cumulative intensity due to warming compared to the pre-warming baseline 
among simulated communities with the same combination of 𝛽𝛽𝑆𝑆𝐷𝐷  and 𝑆𝑆𝐷̅𝐷 values (and for which 𝛽𝛽𝑆𝑆𝐷𝐷 =
0; see Figs. 1c,d). Shaded regions indicate the 90% range of variation across communities grouped by 
each combination of parameter values. 
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Figure S6— Changes in cumulative flowering intensity due to uncorrelated variation between SFFD 
and SD within communities with a single flowering peak under 4 °C of warming. Solid-colored lines 
in a-c correspond to the median change in cumulative intensity—across percentiles of the flowering 
season—due to warming compared to the pre-warming baseline among simulated communities with 
the same combination of 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝑆𝑆𝐷̅𝐷 values (and for which 𝛽𝛽𝑆𝑆𝐷𝐷 = 0; see Figs. 1a,b). Solid-colored 
lines in d-f correspond to the median change in cumulative intensity due to warming compared to the 
pre-warming baseline among simulated communities with the same combination of 𝛽𝛽𝑆𝑆𝐷𝐷  and 𝑆𝑆𝐷̅𝐷 values 
(and for which 𝛽𝛽𝑆𝑆𝐷𝐷 = 0; see Figs. 1c,d). Shaded regions indicate the 90% range of variation across 
communities grouped by each combination of parameter values. 
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Figure S7—Change in the composition of flowering overlap among species within communities 
based on the number of new overlapping pairs (a, b), formerly overlapping pairs lost (c, d), and the 
turnover of overlapping species pairs based on gains and losses (e, f). In each community, the 
proportion of overlaps gained was measured as the number of post-warming overlapping pairs that 
did not overlap before warming, divided by the total number of overlapping pairs post warming. 
Species were considered to overlap if the intersection of their population-level flowering curves 
equaled 10% or more of the area under the curve for either species. Overlap losses were measured as 
the number of overlapping pairs that overlapped pre warming but did not post warming, divided by 
the total number of overlapping pairs pre warming. Overlap turnover was measured as the sum of the 
gains and losses in overlapping pairs after warming, divided by the total number of overlapping pairs 
observed pre and post warming. Colored boxplots in a and b depict the range of variation in turnover 
rates for communities varying in 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹and 𝛽𝛽𝑆𝑆𝐷𝐷 , respectively, with groups across the x-axis 
representing sets of communities with varying 𝑆𝑆𝐷𝐷 . In each panel, the horizontal solid black line 
indicates the degree of dissimilarity observed among communities showing no average changes in 
flowering duration (i.e., 𝑆𝑆𝐷̅𝐷 = 0), and random variation in both SFFD and SD among species 
throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0 and 𝛽𝛽𝑆𝑆𝐷𝐷 = 0)  
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Figure S8—Warming-induced changes to cumulative flowering intensity for all combinations of 
𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷across communities with a single flowering peak (with 𝑆𝑆𝐷̅𝐷 = 0). In each panel, colored 
lines (other than red) and shaded regions depict the median and 95% range of variation in cumulative 
flowering intensity change observed among communities sharing a combination of values 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 
𝛽𝛽𝑆𝑆𝐷𝐷 . Red lines in each panel depict a reference scenario of uncorrelated SFFD and SD, with 
𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹varying within columns but 𝛽𝛽𝑆𝑆𝐷𝐷coefficient equal to 0 for all panels. Panels a, g, m, s, and y 
show scenarios where SFFD and SD are positively correlated among species throughout the season (i.e., 
𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same magnitude and the same sign), corresponding to the panels in Figs. 7a-e. 
In turn, panels e, i, m, q and u show a scenario in which SFFD and SD are negatively correlated among 
species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same magnitude but opposite sign), 
corresponding to Figs. 7f-j.  
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Figure S9—Warming-induced changes to cumulative flowering intensity due to correlated variation 
among species between SFFD and SD throughout the season (determined by 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷) across 
communities with a single flowering peak (𝑆𝑆𝐷̅𝐷 = −5 days per °C). In each panel, colored lines (other 
than red) and shaded regions depict the median and 90% range of variation in cumulative flowering 
intensity change observed among communities sharing a combination of values 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷 . Red 
lines in each panel depict a reference scenario of uncorrelated SFFD and SD, with 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹varying within 
columns but 𝛽𝛽𝑆𝑆𝐷𝐷coefficient equal to 0 for all panels. Panels a-e show scenarios where SFFD and SD are 
positively correlated among species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same 
magnitude and the same sign). In turn, panels f-j show a scenario in which SFFD and SD are negatively 
correlated among species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same magnitude but 
opposite sign). 𝑆𝑆𝐷̅𝐷  was set to 0 days per °C. 
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Figure S10—Warming-induced changes to cumulative flowering intensity due to correlated variation 
among species between SFFD and SD throughout the season (determined by 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷) across 
communities with a single flowering peak (𝑆𝑆𝐷̅𝐷 = 5 days per °C). In each panel, colored lines (other 
than red) and shaded regions depict the median and 95% range of variation in cumulative flowering 
intensity change observed among communities sharing a combination of values 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷 . Red 
lines in each panel depict a reference scenario of uncorrelated SFFD and SD, with 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹varying within 
columns but 𝛽𝛽𝑆𝑆𝐷𝐷coefficient equal to 0 for all panels. Panels a-e show scenarios where SFFD and SD are 
positively correlated among species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same 
magnitude and the same sign). In turn, panels f-j show a scenario in which SFFD and SD are negatively 
correlated among species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same magnitude but 
opposite sign). 𝑆𝑆𝐷̅𝐷  was set to 0 days per °C. 
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Figure S11— Change in flowering season length (a, b) and peak flowering intensity (c, d) for 
scenarios of independent vs. correlated SFFD and SD (blue boxes and red boxes, respectively) among 
sequentially flowering species throughout the season. For communities with correlated SFFD and SD, 
results are presented separately for those showing (a, c) positively correlated SFFD and SD throughout 
the season (Scenario 2) and (b, d) negatively correlated SFFD and SD throughout the season (Scenario 
3). For communities with correlated SFFD and SD in (a, c),  𝛽𝛽𝑆𝑆𝐷𝐷  increases from -0.1 to 0.1 along the x-
axis, generating communities for whom 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹and  𝛽𝛽𝑆𝑆𝐷𝐷had the same direction and magnitude. In (b, 
d),  𝛽𝛽𝑆𝑆𝐷𝐷  decreases from 0.1 to -0.1 along the x-axis, resulting in communities for which 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹and  
𝛽𝛽𝑆𝑆𝐷𝐷had the same magnitude but opposite direction. In contrast, blue boxes depict reference scenarios 
of uncorrelated SFFD and SD, with 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹varying along the x-axis, 𝛽𝛽𝑆𝑆𝐷𝐷coefficient equal to 0, and 𝑆𝑆𝐷̅𝐷= 0. 
Results are shown only for communities showing a single flowering peak. 
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Figure S12— Changes in the composition of pairwise flowering overlaps among species under 
warming for scenarios of independent vs. correlated SFFD and SD (blue boxes and red boxes, 
respectively) among sequentially flowering species throughout the season. In each community, 
change in the composition of flowering overlaps was measured using the Bray-Curtis dissimilarity 
index, with values of 0 corresponding communities with the same identity and degree of pairwise 
species overlaps, and values of 1 indicating complete dissimilarity in the identity of its pairwise 
overlap pre- and post-warming communities. Panels a-e show scenarios where SFFD and SD are 
positively correlated among species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same 
magnitude and the same sign). In turn, panels f-j show a scenario in which SFFD and SD are negatively 
correlated among species throughout the season (i.e., 𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹  and 𝛽𝛽𝑆𝑆𝐷𝐷  have the same magnitude but 
opposite sign). Panels from left to write (i.e., a to e and f to j) represent increasing values of the mean 
sensitivity of flowering duration in a community (𝑆𝑆𝐷̅𝐷), from average decreases to average increases in 
flowering duration among species. In each panel, the horizontal solid black line indicates the degree 
of dissimilarity observed among communities showing no average changes in flowering duration (i.e., 
𝑆𝑆𝐷̅𝐷 = 0), and random variation in both SFFD and SD among species throughout the season (i.e., 
𝛽𝛽𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = 0 and 𝛽𝛽𝑆𝑆𝐷𝐷 = 0). 
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IX. Appendix 4—Supplementary materials for V 

Figure S1—Correlations among 2004-2023 normals for 31 climatic variables, mean 
elevation, and elevation heterogeneity across 4km resolution grid cells throughout the 
conterminous United States. Climate variables include annual sums or means, maximum 
monthly values, minimum monthly values, annual monthly range, and seasonality for 
precipitation (PPT), temperature (T°), actual evapotransporation (AET), climate water deficit 
(DEF), soil moisture (SOIL), and snow-water equivalent (SWE). Variables for T° also 
include approximate mean daily range, and isothermality. Seasonality for precipitation was 
calculated proportionally to the mean cumulative annual precipitation in each site. 
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 PC1 (1.9, 43%) PC2 (1.7, 43%) PC3 (1.3, 9%) PC4 (1.2, 6%) PC5 (1.1, 5%) 

PPT - Annual range -0.15 -0.21 0.14 -0.05 0.22 

PPT - Seasonality 0.20 -0.10 0.10 -0.11 0.18 

PPT - Monthly 
maximum -0.19 -0.18 0.10 -0.09 0.16 

PPT - Monthly 
minimum -0.22 0.02 -0.11 -0.17 -0.20 

PPT - Annual sum -0.23 -0.12 0.01 -0.10 -0.03 

T° - Annual range 0.01 0.27 -0.20 0.29 0.08 

T° - Seasonality -0.07 0.26 -0.25 0.23 0.00 

T° - Monthly 
minimum 0.08 -0.30 0.04 -0.22 -0.07 

T° - Monthly 
maximum 0.16 -0.20 -0.20 -0.02 -0.03 

T° - Annual mean 0.09 -0.29 -0.12 -0.22 -0.05 

T° - Diurnal range 0.21 -0.01 0.04 0.10 0.19 

T° - Isothermality 0.16 -0.21 0.18 -0.16 0.12 

AET - Annual range -0.17 -0.02 -0.19 -0.11 0.49 

AET - Seasonality -0.20 0.04 -0.15 -0.12 0.42 

AET - Monthly 
maximum -0.19 -0.13 -0.19 -0.07 0.35 

AET- Monthly 
minimum -0.09 -0.26 -0.06 0.06 -0.15 

AET - Annual mean -0.20 -0.19 -0.16 0.02 0.07 

DEF - Annual range 0.24 -0.04 0.08 0.15 0.11 

DEF - Seasonality 0.24 -0.03 0.10 0.19 0.09 

DEF - Monthly 
maximum 0.25 -0.05 0.07 0.06 0.07 

DEF- Monthly 
minimum 0.16 -0.06 -0.02 -0.38 -0.16 

DEF - Annual mean 0.25 -0.06 0.03 -0.11 -0.02 

SOIL - Annual range -0.16 -0.18 0.21 0.27 0.01 

SOIL - Seasonality -0.16 -0.18 0.21 0.26 -0.01 

SOIL - Monthly 
maximum -0.19 -0.17 0.18 0.23 -0.06 

SOIL - Monthly 
minimum -0.21 -0.13 0.08 0.11 -0.19 

SOIL - Annual mean -0.21 -0.16 0.14 0.16 -0.15 

SWE - Annual range -0.14 0.24 0.21 -0.19 -0.02 

SWE - Seasonality -0.14 0.24 0.21 -0.20 -0.02 
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Table S1—Loadings from a principal component analysis (PCA) of 2004-2023 normals for 
31 climatic variables, mean elevation, and elevation heterogeneity across 4km resolution grid 
cells throughout the conterminous United States. Loadings are reported for the 5 principal 
components (PCs) explaining more variance than any input variable in the data. Highlighted 
values in each column correspond to the 5 input variables with the highest loadings on each 
PC. Values next to each PC’s name indicate its eigenvalue and variance explained 

 

 

  

SWE - Monthly 
maximum -0.14 0.24 0.21 -0.19 -0.02 

SWE – Annual mean -0.13 0.24 0.22 -0.21 -0.02 

Mean Elevation 
(800m) 0.14 0.10 0.28 0.13 0.25 
Elevational 
heterogeneity 

 

0.01 0.01 0.46 -0.02 0.19 
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Figure S2—Climate change between the historical period (1960-1980) and the present 
period (2001-2020), and between the present period and projected conditions under a 
scenario of 2°C warming above pre-industrial levels. Climate change is shown as the 
difference in the 5 principal components summarizing 31 climatic variables, as well as mean 
elevation and elevational heterogeneity within 4km grid cells throughout the conterminous 
United States (see ‘Methods’ section of the main text) between periods. The variables listed 
in each legend correspond to those with the greatest loadings for each PC. Positive and 
negative signs next to each variable indicate whether positive or negative values in the color 
scale are associated to increases or decreases between periods. Subdivisions labeled 1-18 
represent level II ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine 
West Coast Forest, 4) Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) 
Upper Gila Mountains, 8) South-Central Semi-arid Prairies, 9) West-Central Semi-arid 
Prairies, 10) Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) 
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Central USA Plains, 14) Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA 
Plains, 16) Tamaulipas-Texas Semi-arid Plains, 17) Mississippi Alluvial and Southeast USA 
Coastal Plain, 18) Atlantic Highlands. 

 

 

 
Figure S3—Predicted species richness (from a total of 2,837 species) within 12km resolution 
grid cells across the conterminous United States estimated for the 2001-2020 period, and the 
percent that have herbaceous, graminoid, or woody growth habit. Subdivisions labeled 1-18 
represent level II ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine 
West Coast Forest, 4) Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) 
Upper Gila Mountains, 8) South-Central Semi-arid Prairies, 9) West-Central Semi-arid 
Prairies, 10) Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) 
Central USA Plains, 14) Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA 
Plains, 16) Tamaulipas-Texas Semi-arid Plains, 17) Mississippi Alluvial and Southeast USA 
Coastal Plain, 18) Atlantic Highlands.  
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Figure S4—Change in land cover between 1980 and 2020, and between 2020 and 2080 
under SRES B1 scenario of land use and land cover change. Each panel shows changes in the 
proportion of 250m cells of the focal class found within each 750m resolution grid cell across 
the conterminous United States (CONUS). Subdivisions labeled 1-18 represent level II 
ecoregions. 1) Mediterranean California, 2) Western Cordillera, 3) Marine West Coast 
Forest, 4) Cold Deserts, 5) Warm Deserts, 6) Western Sierra Madre Piedmont, 7) Upper Gila 
Mountains, 8) South-Central Semi-arid Prairies, 9) West-Central Semi-arid Prairies, 10) 
Temperate Prairies, 11) Mixed Wood Plains, 12) Mixed Wood Shield, 13) Central USA 
Plains, 14) Ozark, Ouachita-Appalachian Forests, 15) Southeastern USA Plains, 16) 
Tamaulipas-Texas Semi-arid Plains, 17) Mississippi Alluvial and Southeast USA Coastal 
Plain, 18) Atlantic Highlands. 

 

 
 

 

 




