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Abstract

Previous research on Bayesian inference, reporting poor
performance by students and experts alike, has often led to
the conclusion that the mind lacks the appropriate
cognitive algorithm. We argue that this conclusion is
unjustified because it does not take into account the
information format in which this cognitive algorithm is
designed to operate. We demonstrate that a Bayesian
algorithm is computationally simpler when the
information is represented in a frequency rather than a
probability format that has been used in previous research.
A frequency format corresponds to the way information is
acquired in natural sampling--sequentially and without
constraints on which observations will be included in the
sample. Based on the assumption that performance will
reflect computational complexity, we predict that a
frequency format yields more Bayesian solutions than a
probability format. We tested this prediction in a study
conducted with 48 physicians. Using outcome and process
analysis, we categorized their individual solutions as
Bayesian or non-Bayesian. When information was
presented in the frequency format, 46% of their inferences
were obtained by a Bayesian algorithm, as compared to
only 10% when the problems were presented in the
probability format. We discuss the impact of our results on
teaching statistical reasoning.

Is the mind, by design, predisposed against performing
Bayesian inference? The classical probabilists of the
Enlightenment, including Condorcet, Poisson, and Laplace,
who equated probability theory with the common sense of
educated people, would have said the answer is no. And
when Ward Edwards and his colleagues (Edwards, 1968)
started to test experimentally whether human inference

follows Bayes’ theorem, they gave the same answer:
although  “conservative,” inferences were usually
proportional to those calculated from Bayes' theorem.

Kahneman and Tversky (1972, p. 450), however, arrived at
the opposite conclusion: “In his evaluation of evidence, man
is apparently not a conservative Bayesian: he is not a
Bayesian at all.” In the 1970s and ’80s, proponents of their
“heuristics-and-biases” program amassed an apparently
damning body of evidence that people systematically neglect
base rates in Bayesian inference problems. This could be
shown not only with students, but also with experts in their
fields, for instance, with physicians (Casscells,
Schoenberger, & Grayboys, 1978; Eddy, 1982).

Thus, there are two contradictory claims as to whether
people naturally reason according to Bayesian inference. In
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this paper we argue that both views are based on an
incomplete analysis: They focus on cognitive processes,
Bayesian or otherwise, without making the connection

between what we will call a cognitive algorithm and an
information format. We (a) provide a theoretical framework
(based on Gigerenzer and Hoffrage, 1995) that specifies why

a frequency format should improve Bayesian reasoning and
(b) present a study that tests this hypothesis.

Algorithms Are Designed for
Information Formats

Our argument centers on the intimate relationship between a
cognitive algorithm and an information format. This point
was made in a more general form by the physicist Richard
Feynman. In his classic The Character of Physical Law
(1967), Feynman places great emphasis on the importance
of deriving different formulations for the same physical law,
even if they are mathematically equivalent (e.g., Newton's
law, the local field method, and the minimum principle).
Different representations of a physical law, Feynman
reminds us, can evoke varied mental pictures and thus assist
in making new discoveries: "Psychologically they are
different because they are completely unequivalent when you
are trying to guess new laws" (p. 53). Likewise, Stephen
Palmer (1978) points out in his analysis of different modes
of representation "that no form of representational
equivalence guarantees that performance characteristics will
be the same for two representations embedded in process
models" (p. 272).

Consider numerical information as one example of an
external representation. Numbers can be represented in
Roman, Arabic, and binary systems, among others. These
representations can be mapped one-to-one onto each other
and are in this sense mathematically equivalent. But the
form of representation can make a difference for an algorithm
that does, say, multiplication. The algorithms of our pocket
calculators, for instance, are tuned to Arabic numbers as
input data and would fail badly if one entered binary
numbers.

Our general argument is that mathematically equivalent
representations of information entail algorithms that are not
necessarily computationally equivalent. This point has an
important corollary for research on inductive reasoning.
Suppose we are interested in figuring out what algorithm a
system uses. We will not detect the algorithm if the
representation of information we provide the system does
not match the representation with which the algorithm



works. For instance, assume that in an effort to find out
whether a system, such as a pocket calculator, has an
algorithm for multiplication, we feed that system binary
numerals. The observation that the system produces mostly
garbage does not entail the conclusion that it lacks an
algorithm for multiplication. We will now apply this
argument to Bayesian inference.

Probability Format

In this paper we focus on an elementary form of Bayesian
inference that has been the subject of almost all
experimental studies on Bayesian inference in the last 25
years. The following “mammography problem” (adapted
from Eddy, 1982) is one example:

hy pr

The probability of breast cancer is 1% for a woman at age
forty who participates in routine screening. If a woman
has breast cancer, the probability is 80% that she will
have a positive mammography. If a woman does not have
breast cancer, the probability is 10% that she will also
have a positive mammography.

A woman in this age group had a positive mammography
in a routine screening. What is the probability that she
actually has breast cancer? %

There are two mutually exclusive and exhaustive
hypotheses (H: breast cancer and —H: no breast cancer) and
one observation (D: positive test). All information (base
rate, hit rate, and false alarm rate) is represented in terms of
single-event probabilities attached to a single person. (Here,
they are expressed as percentages; alternatively, they can be
presented as numbers between zero and one.) The task is to
estimate a single-event probability. The algorithm needed to
calculate the Bayesian posterior probability
p(cancerlpositive) from this format can be seen in Figure 1
(left side), where the information is already inserted into
Bayes' rule. The result is .075.

We know from several studies that physicians, college
students (Eddy, 1982), and staff at Harvard Medical School
(Casscells, Schoenberger, & Grayboys, 1978) all have
equally great difficulties with this and similar medical
disease problems. For instance, Eddy (1982) reported that 95
out of 100 physicians estimated the posterior probability to
be between 70% and 80%, rather than 7.5%.

In the last few decades, this probability format has become
a common way to communicate information, found
everywhere from medical and statistical textbooks to
psychological experiments. Not surprisingly, the
experimenters who have amassed the evidence that humans
fail to meet the norms of Bayesian inference have usually
given their subjects information in the probability format
(or its variant, in which one or more of the three percentages
are relative frequencies). But it is only one of many
mathematically equivalent ways of representing information.
It is, moreover, a recently invented notation: Percentages
became common notation only during the 19th century.
How did organisms acquire information before that time?
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Figure 1: Bayesian inference and information representation
(probability format and frequency format with

frequencies as obtained by natural sampling).

Natural Sampling of Frequencies

We assume that as humans evolved, the “natural” format
was frequency as actually experienced in a series of events,
rather than probability or percentage. From animals to
neural networks, systems seem to learn about contingencies
through sequential encoding and updating of event
frequencies. This sequential acquisition of information by
updating event frequencies without artificially fixing the
marginal frequencies (e.g., of disease and no-disease cases) is
what we refer to as npatural sampling (Kleiter, 1994).

Brunswik's ‘“‘representative design” is a special case of
natural sampling (Brunswik, 1955). In contrast, in
experimental research the marginal frequencies are typically
fixed a priori. For instance, an experimenter may want to
investigate 100 people with disease and a control group of
100 people without disease. This kind of sampling with
fixed marginal frequencies is not what we refer to as natural
sampling.

The evolutionary argument that cognitive algorithms were
designed for frequency information, acquired through natural
sampling, has implications for the computations an
organism needs to perform when making Bayesian
inferences. Imagine an old, experienced physician in an
illiterate society. She has no books or statistical surveys and



therefore must rely solely on her experience. Her people
have been afflicted by a previously unknown and severe
disease. Fortunately, the physician has discovered a
symptom that signals the disease, although not with
certainty. In her lifetime she has seen 1,000 people, 10 of
whom had the disease. Of those 10, 8 showed the symptom;
of the 990 not afflicted, 95 did. Now a new patient appears.
He has the symptom. What is the probability that he
actually has the disease?

The physician in the illiterate society does not need a
pocket calculator to estimate the Bayesian posterior. All she
needs is the number of cases that had both the symptom and
the disease (here: 8) and the number of symptom cases (here:
8 + 95). The Bayesian algorithm for computing the
posterior probability from the frequency format can be seen
in Figure 1 (right side). The physician does not need to keep
track of the base rate of the disease. Her modern counterpart,
the medical student who struggles with single-event
probabilities presented in medical textbooks, may on the
other hand have to rely on a calculator and end up with little
understanding of the result.

So far, we have seen that Bayesian algorithms are
computationally simpler when information is encoded in a
frequency format rather than a probability format. By
“computationally simpler” we mean that (a) fewer operations
(multiplication, addition, or division) need to be performed
in the frequency format, and (b) the operations can be
performed on natural numbers (absolute frequencies) rather
than fractions (such as percentages). From this observation,
we derive the prediction that a frequency format elicits a
substantially higher proportion of Bayesian algorithms than
a probability format. Henceforth, when we use the term
“frequency format,” we always refer to frequencies as defined
by the natural sampling tree in Figure 1.

Study: Frequency Formats Improve
Bayesian Reasoning

In a study previously conducted with 60 subjects from the
University of Salzburg, Austria (see Gigerenzer & Hoffrage,
1995, Study 1), we demonstrated that the frequency format
elicited a substantially higher proportion of Bayesian
algorithms than the probability format. In 15 different
inferential problems, including the mammography problem,
Bayesian reasoning went up from 16% in the probability
format to 46% and 50% in two versions of the frequency
format. No instruction or feedback was given; the
information format by itself improved Bayesian reasoning.
Similar results were obtained by Christensen-Szalanski and
Beach (1982) and Cosmides and Tooby (1996). Now,
remember that both Casscells et al. (1978) and Eddy (1982)
reported poor performances from the physicians they
investigated. Because Bayesian reasoning is of great
importance in medicine, the goal of the current study was to
see whether not only students but also physicians could gain
from a frequentistic representation of the information. One
might suspect that this method only works with students
who lack experience in diagnostic inference, but not with
physicians who make diagnostic inferences every day. On
the other hand, medical textbooks typically present
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information about base rates, hit rates, and false alarm rates
in a probability format (as in Figure 1, left side). Just as a
pocket calculator is unable to process binary numerals
adequately, physicians may be unable to process statistical
information if it is presented in a format for which their
minds were not designed.

Method

Participants. We investigated 48 Munich physicians, 18
from university hospitals, 16 from private or public
hospitals, and 14 from private practice. Mean age was 42
years and mean time of professional service was 14 years
with a range of one month to 30 years (our sample included
beginners as well as directors of clinics). They were studied
individually.

Materials. We used four medical problems, including the
mammography problem adapted from Eddy (1982). The
other three problems concerned (1) colon cancer and positive
haemoccult blood test, (2) Bechterew’s disease and HL-
Antigen B27, and (3) Phenylketonuria and positive Guthrie-
test as disease and symptom, respectively. We consulted
experts and the literature to determine the best statistical
information available for the base rates, hit rates, and false
alarm rates.

Design and Procedure. For each problem we
constructed two versions: one in the probability format and
one in the frequency format. Participants received a booklet
containing all four problems, two of them in probability
format and two in frequency format. Assignment of
problems to formats, as well as order of formats and
problems were completely counterbalanced.

The physicians worked on the booklet at their own pace
(on average 7 minutes per problem). Each problem was on
one sheet, followed by a separate sheet where the physicians
were asked to make notes, calculations, or drawings. After
filling out the booklet they were interviewed about their
mental processes.

Results

We classified an inferential process as a Bayesian algorithm
only if (a) the estimated probability or frequency was the
same as the value calculated from applying Bayes’ theorem
to the information given (outcome criterion), and the notes
the physicians made while solving the problems and/or the
follow-up interviews suggested that the answer was not just
a guess but a Bayesian computation as defined by the
equations in Figure 1 (process criterion), or if (b) the
solution was obtained by a shortcut algorithm that still
provided the correct answer plus or minus 5 percentage
points.

The results confirmed our prediction: Across all 96
individual problem solutions for the probability format (48
physicians times two problems), 10% were correct, whereas
for the frequency format, 46% were correct (tyf=190=5-5
p<0.001). Figure 2 shows the absolute frequencies of
Bayesian solutions for the four problems.
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Figure 2: Number of Bayesian algorithms in the four
problems. (Maximum number possible: 24.)

Thus difference in performance is reflected in the remarks the
physicians made while working on the problems. For
instance, when working on probability-format problems,
several made complaints such as “I simply can’t do that.
Mathematics is not my forte,” or “There is a formula, but at
the moment [ can’t derive it.” However, with a frequency
format, some typical remarks were, “Now it's different. It’s
quite easy to imagine. There i1s a frequency; that’s more
visual,” or “Oh, how nice--this is just like the word
problems we did in elementary school. A first grader could
do this. Wow, if someone can’t solve this...!” Like the
Bayesian algorithms, the non-Bayesian algorithms were also
format-specific: In 18 (5) out of the 96 probability
(frequency) versions, our physicians gave the hit rate,
p(DIH), as the posterior. For the algorithm that we termed
likelihood subtraction, p(DIH) p(DI-H), the corresponding
numbers were 20 (5) out of 96. Two of the algorithms that
were dominant in the frequency format were base rate only,
p(H), which was applied in 1 (15) out of 96 cases in the
probability (frequency) format, and percentage positive,
p(D), where frequency of use was 0 (9) out of 96,
respectively. (Less frequent algorithms are not reported here).
For 28 (12) out of the 96 problem solutions in the
probability (frequency) version we were unable to identify
any algorithm at all.

The physicians spent about 25% more time on the
probability problems, which reflects that they found these
more difficult to solve. Many of them reacted -- cognitively,
emotionally, and physiologically -- differently to probability
and frequency formats. They were more often nervous when
information was presented in probabilities, and they were
less skeptical of the relevance of statistical information to
medical diagnosis when the information was in frequencies.
Bayesian responses were age correlated: The older half of the
physicians (more than 40 years old) contributed only 37% of
the Bayesian solutions, the younger half 63%.

Discussion

We return to our initial question: Is the mind, by design,
predisposed against performing Bayesian inference? The
conclusion of 25 years of heunstics-and-biases research
would suggest as much. This previous research, however,
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has consistently neglected the insight that mathematically
equivalent information formats need not be psychologically
equivalent. An evolutionary point of view suggests that the
mind is tuned to a frequency format, which is the
information format humans encountered long before the
advent of probability theory. We have shown that
mathematically equivalent representations of information can
entail computationally different Bayesian algorithms and we
reported a study conducted with physicians that demonstrated
how performance can be improved by presenting the
information in the frequency rather than the probability
format.

This striking result can be useful for teaching statistical
reasoning--a field that is still neglected, not only in high
school mathematics education but often in research as well.
Up until now, only a few studies have attempted to teach
Bayesian inference, mainly by outcome feedback, and with
little or no success. The present framework suggests an
effective way to teach Bayesian inference and statistical
reasoning in general: Instead of teaching rules and how to
insert probabilities into them, it seems to be more
promising to teach representations and how to translate
probabilities into frequency representations. Sedlmeier and
Gigerenzer (1996) implemented both methods in a
computerized tutorial system. And indeed they could show
that teaching representations yielded performances more than
twice as good as those obtained by rule training. Moreover,
the advantage remained stable 5 weeks after training, whereas
the effect of the rule-learning program had shown the usual
rapid decay.

However, besides teaching statistical reasoning, there is a
much more direct impact of our results. Physicians are often
reporied to become uneasy or even angry when asked for
statistical information (Eddy, 1988), and to believe that their
patients do not understand, or do not want to understand, the
uncertainties inherent in diagnosis and therapy (Katz, 1988).
We imagine that a frequency format might help improve the
communication between patients and physicians (Bursztajn
et al.,, 1981) and provide a tool for helping the patient to
become a more apt decision maker.
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