
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Growth conditions on Hilbert functions of modules

Permalink
https://escholarship.org/uc/item/91n6p1c0

Author
Dellaca, Roger D.

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91n6p1c0
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Growth conditions on Hilbert functions of modules

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Roger D. Dellaca

Dissertation Committee:
Professor Vladimir Baranovsky, Chair

Professor Karl Rubin
Professor Zhiqin Lu

2015



c© 2015 Roger D. Dellaca



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

CURRICULUM VITAE iv

ABSTRACT OF THE DISSERTATION v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Resolutions and Hilbert functions . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Regularity, Hilbert schemes and Quot schemes . . . . . . . . . . . . . . . . . 9
1.4 Chern classes, Hirzebruch-Riemann-Roch . . . . . . . . . . . . . . . . . . . . 11

2 Characterization of Hilbert functions 15
2.1 Monomial, lexicographic and stable modules . . . . . . . . . . . . . . . . . . 16
2.2 Macaulay’s and Green’s Theorems . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Gotzmann’s Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Gotzmann regularity for globally generated coherent sheaves 29
3.1 Gotzmann representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Gotzmann regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 An explicit construction of the Quot scheme . . . . . . . . . . . . . . . . . . 36
3.4 Quot schemes on P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Bounding Chern classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Hilbert functions of modules with known rank and generating degrees 47
4.1 Macaulay and Gotzmann representations adjusted for rank and degree . . . . 48
4.2 Strict bounds on first and second Chern classes . . . . . . . . . . . . . . . . 51
4.3 Rank and degree-adjusted Macaulay, Green, and Gotzmann Regularity . . . 56
4.4 Rank and degree-adjusted Gotzmann Persistence . . . . . . . . . . . . . . . 60
4.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 66

ii



ACKNOWLEDGMENTS

I would like to thank Vladimir Baranovsky, for his limitless patience, great insight, and good
humor. I would also like to thank my other committee members, and the faculty and staff
that have made my experience here so rewarding.

iii



CURRICULUM VITAE

Roger D. Dellaca

EDUCATION

Doctor of Philosophy in Mathematics 2015
University of California Irvine CA

Master of Science in Mathematics 2009
California State University Long Beach, CA

Master of Science in Management Science 1998
and Information Systems
California State University Fullerton, CA

Bachelor of Science in Business Administration 1995
California State University Long Beach, CA

iv



ABSTRACT OF THE DISSERTATION

Growth conditions on Hilbert functions of modules

By

Roger D. Dellaca

Doctor of Philosophy in Mathematics

University of California, Irvine, 2015

Professor Vladimir Baranovsky, Chair

Gotzmann’s Regularity Theorem uses a binomial representation of the Hilbert polynomial of

a standard graded algebra to establish a bound on Castelnuovo-Mumford regularity. Using

this and his Persistence Theorem, Gotzmann provided an explicit construction of the Hilbert

scheme. This author will show that Gotzmann’s Regularity Theorem cannot be extended

to arbitrary modules. However, under an additional assumption on the generating degrees

of a module, Gotzmann’s Regularity Theorem will be proven. The modules satisfying the

additional assumption will correspond to globally generated coherent sheaves. This will be

used to provide an explicit construction of the Quot scheme.

The Gotzmann Regularity bound is known to be strict for standard graded algebras, but not

for globally generated coherent sheaves. In order to address this, new representations for the

Hilbert function and Hilbert polynomial are given that account for the rank and generating

degrees of a module. Generalizations of the theorems of Macaulay, Green, and Gotzmann

will be proven using these representations. The generalized Gotzmann number will give a

strict upper bound for the regularity of modules generated in degree zero. Additionally,

these representations will be used to prove a sharp inequality on the first and second Chern

classes of a globally generated coherent sheaf.

v



Chapter 1

Introduction

Hilbert initiated the study of a graded module through its resolution [21], including Hilbert

functions and Hilbert polynomials. Hilbert originally studied these to answer important

questions in Invariant Theory, but they have found many applications. For example, one

can prove Bèzout’s Theorem and Riemann-Roch and define Dimension Theory using Hilbert

polynomials, and Hilbert functions on the Clements-Lindstrom ring C[x0, . . . , xn]/(x2
0, . . . , x

2
n)

provide numerous results on the combinatorics of simplicial complexes. Hilbert polynomials

were also used in the construction of Hilbert schemes and Quot schemes. Hilbert schemes and

Quot schemes are important because many moduli spaces of interest to Algebraic Geometers

are formed as a quotient of a Hilbert scheme or Quot scheme by a group action.

The resolution of a module can also be used to define Castelnuovo-Mumford regularity,

which has proven very useful due to its interpretation of the geometric and computational

complexity of a module. In particular, the computational complexity of a Gröbner basis

of a module can be formulated in terms of the regularity of the module. The regularity,

generating degrees, and projective dimension bound the shape of the Betti table associated

to the module. Many recent results and open problems are given in [31] and [33].
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A few results on Hilbert functions of standard graded algebras stand out. First, Macaulay

characterized precisely what numerical functions can be the Hilbert function of a standard

graded algebra, by providing a bound on the growth of the Hilbert function in successive de-

grees [26]. Second, Gotzmann showed what happens when equality is achieved in Macaulay’s

growth bound, and found an invariant of a Hilbert polynomial (the Gotzmann number) that

bounds the Castelnuovo-Mumford regularity of any standard graded algebra with the given

Hilbert polynomial; these are known as Gotzmann’s Persistence and Regularity Theorems

[14]. Third, Green provided a bound on the Hilbert function of a module to its restriction

to a generic hyperplane, thus comparing the same degree and successively smaller dimension

[16].

One is interested in extending these results to arbitrary modules. Gasharov extended most

of these results to modules; however, Gotzmann’s Regularity Theorem cannot be extended

to arbitrary modules, as I will show by counterexample. Under an additional assumption on

the generating degrees of a module, I will prove that its Hilbert polynomial has a Gotzmann

representation, and satisfies Gotzmann Regularity; the modules satisfying the additional

assumption will correspond to globally generated coherent sheaves. I will use this to extend

Gotzmann’s construction of the Hilbert scheme to a construction of the Quot scheme.

The Gotzmann Regularity bound is known to be strict for standard graded algebras, but we

will see that it is not strict for globally generated coherent sheaves. In order to address this,

I will give representations for the Hilbert function and Hilbert polynomial that account for

the rank and generating degrees of a module. I will show that these representations allow

for generalizations of Macaulay’s Theorem, Green’s Theorem, and Gotzmann’s Regularity

and Persistence Theorems. Furthermore, the rank-and-degree-adjusted representation will

give a strict bound for Gotzmann regularity of modules generated in degree zero. I will also

use these representations to provide an inequality on the first and second Chern classes of

a coherent sheaf, which will be sharp when the rank-and-degree-adjusted representation is
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used.

The structure of the thesis is as follows. The remainder of this chapter will provide back-

ground material on resolutions, Hilbert functions, regularity, Hilbert and Quot schemes, and

Chern classes. Chapter 2 will provide the classical results on Hilbert functions of standard

graded algebras mentioned earlier, culminating with Gotzmann’s construction of the Hilbert

scheme. Chapter 3 will give the new results on Gotzmann regularity for globally generated

coherent sheaves and the Quot scheme construction. Chapter 4 will give the new results on

rank-and-degree adjusted representations of Hilbert functions and Hilbert polynomials.

1.1 Background

Fix the following notation. Let k be an algebraically closed field, S = k[x0, . . . , xn] the

symmetric algebra on S1 = {x0, . . . , xn}, with m the irrelevant ideal which is generated

by S1. A ring R is graded if R =
⊕

Rd such that each Rd is closed under addition and

RdRe ⊆ Rd+e. The ring S will be graded with the standard grading, that is deg(xi) = 1 for

each i. If R is a graded ring, then a graded R-module M satisfies M =
⊕

Md with each

Md closed under addition and RdMe ⊆ Md+e. If M is a graded S-module, write Md for the

degree d part of M , and M(d) for the twist of M , that is M(d)m = Md+m for each m.

Given a graded R-module M , let M̃ be the corresponding quasicoherent sheaf, and given a

quasicoherent sheaf F on X = Proj(R), let Γ∗(F) = ⊕d∈Z(Γ(F(d)))0 be the corresponding

module. Let OPn or O denote the structure sheaf, and F(d) = F ⊗O O(d).

Proposition 1.1. Let F be a quasicoherent sheaf on Pn. There is a natural isomorphism

Γ̃∗(F) ∼= F .

Proof. See [18, pg. 119].
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On the other hand, modules that differ only up to some finite degree correspond to the same

sheaf; denote sat(M) = Γ∗(M̃) for the saturation of M .

Recall that a sheaf F on X is coherent if it locally has a finite presentation; that is, an open

cover {Ui} of X such that F(Ui) is finitely presented for each i. By abuse of notation, a

vector bundle on X will be the same as the locally free sheaf of OX-modules to which it

corresponds. A line bundle is a vector bundle of rank 1.

Define the sheaf cohomology functors H i(X,F) to be the derived functors of the global

sections functor Γ(F).

If I is a homogeneous ideal of S and M is a graded S-module, define the submodule supported

on I

H0
I (M) = {m ∈M |Idm = 0 for some d}.

The local cohomology modules areH i
I(M), the derived functors ofH0

I (M). Sheaf cohomology

can be related to local cohomology as follows.

Theorem 1.1. Let M be a graded S-module. Then

1. There is an exact sequence

0→ H0
m(M)→M → Γ∗(M̃)→ H1

m(M)→ 0.

2. For i ≥ 2,

H i
m(M) = ⊕dH i−1(Pn, M̃(d)).

Proof. See [10, Proposition A1.11].

4



1.2 Resolutions and Hilbert functions

Some of the most important invariants of a graded module are obtained from a minimal

graded free resolution; in particular, the Hilbert function, Hilbert polynomial, and graded

Betti numbers are described below.

Definition 1.1. A graded free resolution of a graded S-module M is a complex of graded

free S-modules

· · · → F2 → F1 → F0

where each Fi appears in homological degree i, the maps are graded (that is, Fi+1 → Fi

preserves degree), the complex is exact except at F0, and coker(F1 → F0) = M .

The resolution is minimal if the image of Fi+1 is contained in mFi for each i.

When the maps of free modules in the resolution are written as matrices, the last condition is

equivalent to having no invertible elements in the matrix. Intuitively, a graded free resolution

is minimal if a minimal set of generators is chosen in each step of computing the resolution.

The next result shows that the resolutions under consideration exist, are finite, and are

essentially unique.

Theorem 1.2. (Hilbert) Every finitely-generated graded S-module has a minimal free graded

resolution of finite length, and each free module appearing in the minimal resolution is finitely

generated. Any two minimal free graded resolutions of the same module are isomorphic.

Proof. See [10, Theorem 1.1, Corollary 1.2, Theorem 1.6].

Definition 1.2. Let M be a finitely generated graded S-module. The Hilbert function of M
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is defined to be

H(M,d) = dimk(Md),

the dimension of the degree-d part of M as a k-vector space.

Note that the Hilbert function of the shifted polynomial ring is

H(S(−a), d) =

(
n+ d− a

n

)
. (1.1)

When the minimal graded free resolution of a module is restricted to a single degree, it

becomes an exact sequence of vector spaces; the following proposition is the result, which

allows the computation of the Hilbert function from the resolution.

Proposition 1.2. If the finitely generated graded S-module M has a finite graded free res-

olution

0→ Fm → · · · → F1 → F0

with Fi = ⊕jS(−ai,j) for each i, then

H(M,d) =
m∑
i=0

(−1)i
∑
j

(
n+ d− ai,j

n

)
,

with the convention that
(
a
b

)
= 0 if a < b.

Proof. This follows from induction and the Rank-Nullity theorem for vector spaces and

Equation 1.1.

Once d is large enough so that all the binomial coefficients above are defined, the expression
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becomes a polynomial. Thus, we have the following corollary.

Corollary 1.1. There is a polynomial PM(d) such that H(M,d) = PM(d) for d� 0.

Definition 1.3. The Hilbert polynomial of M is the polynomial PM(d) that agrees with

the Hilbert function in sufficiently large degree. For a coherent sheaf F on Pn, the Hilbert

function and Hilbert polynomial of F are H(F , d) = H(Γ∗(F), d) and PF(d) = PΓ∗(F)(d).

The Hilbert polynomial P of S/I for a homogeneous ideal I gives information about the

variety V (I). The degree of P is the dimension of V (I); if deg(P ) = r and the leading

coefficient of P is c, then the degree of V (I) is r!c.

Example 1.1. If I is the ideal of a set of m points in the projective plane, then the Hilbert

polynomial of S/I is m, showing that V (I) is dimension 0 and degree m.

As a more concrete example, if I is the ideal of (1 : 0 : 0) and (0 : 1 : 0), then I = (xy, z),

and the Hilbert polynomial of S/I is 2, because the only monomials of degree d that are not

in I are xd and yd for all d ≥ 1.

Definition 1.4. Given a graded S-module M with minimal graded free resolution

0→ Fm → · · · → F1 → F0

for each Fi with a finite set of integers j such that

Fi =
⊕

S(−j)βi,j ,

The collection βi,j are the graded Betti numbers of M .

Note that the graded Betti numbers determine the Hilbert function, and so they also deter-

mine the Hilbert polynomial. By Theorem 1.2, they do not depend on the choice of minimal

free graded resolution of the module.
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Example 1.2. Set S = C[x, y, z, w]. Consider I = (x2 − y2, xy − z2) and J = (x2, xy, y3).

The module S/I has a minimal graded free resolution

0→ S(−4)→ S(−2)2 → S,

where S(−2)2 is the direct sum of S(−2) with itself. The graded Betti numbers are

β0,0 = 1, β1,2 = 2, β2,4 = 1.

The module S/J has a minimal graded free resolution

0→ S(−3)⊕ S(−4)→ S(−2)2 ⊕ S(−3)→ S,

with graded Betti numbers

β0,0 = 1, β1,2 = 2, β1,3 = 1, β2,3 = 1, β2,4 = 1.

The Hilbert function of S/I is computed as

HS/I(d) =

(
d+ 3

d

)
− 2

(
d+ 1

d− 2

)
+

(
d

d− 3

)
,

remembering that not all of these binomial coefficients are nonzero for small values of d (in

particular, HS/I(0) = 1, HS/I(1) = 4, and HS/I(2) = 8). However, each of the binomial

coefficients appears in every degree d ≥ 3, at which point the Hilbert function becomes the

Hilbert polynomial PS/I(d) = 4d. Note that S/J has precisely the same Hilbert function as

S/I. To see this, note that the only difference in the graded Betti numbers is the addition

of β1,3 = 1 and β2,3 = 1 for S/J , and these cancel in the formula for the Hilbert function in

Theorem 1.2.
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1.3 Regularity, Hilbert schemes and Quot schemes

Castelnuovo-Mumford regularity was first defined by Mumford in [27]. I will give this defini-

tion first, in terms of sheaf cohomology, which can also be given in terms of local cohomology

for modules; another definition in terms of graded Betti numbers will follow. Regularity has

great utility, in part due to the equivalence of the two definitions.

Definition 1.5. A coherent sheaf F on Pn is called m-regular if

H i(Pn,F(m− i)) = 0 for all i > 0.

The Castelnuovo-Mumford regularity of F , written reg(F), is the smallest m such that F

is m-regular.

By using the relationship between sheaf cohomology and local cohomology in Theorem 1.1,

one can give a similar definition of Castelnuovo-Mumford regularity of a module in terms of

local cohomology.

Definition 1.6. A finitely-generated graded S-module is d regular if

d ≥ max{e|H i
m(M)e 6= 0}+ i for all i ≥ 0.

The Castelnuovo-Mumford regularity of M is the smallest such d.

Note that a module that is not saturated can have larger regularity than its associated

coherent sheaf, but the regularity will agree for a saturated module and its associated sheaf.

An alternative definition is available for the regularity of a module in terms of its graded

Betti numbers.

Definition 1.7. Given a graded S-module M with graded Betti numbers βi,j, the Castelnuovo-
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Mumford regularity of M is

reg(M) = max{j − i|βi,j 6= 0}.

Proposition 1.3. The definitions of Castelnuovo-Mumford regularity of a graded S-module

in terms of local cohomology and in terms of graded Betti numbers agree.

Proof. See [10, Corollary 4.5].

In example 1.2, an examination of the minimal free resolutions of S/I and S/J shows that

they both have regularity 2.

The following lemma shows how regularity behaves in an exact sequence. It will be used in

chapter 4.

Lemma 1.1. Suppose

0→M ′ →M →M ′′ → 0

is an exact sequence of finitely-generated graded S-modules.

1. reg(M) ≤ max(reg(M ′), reg(M ′′));

2. reg(M ′) ≤ max(reg(M), reg(M ′′) + 1).

Proof. See [31, Corollary 18.7].

Mumford used the notion of regularity in his exposition on the Hilbert scheme. I will give

the definition in the simplified case of families over Pn; further details can be found in [28].

The Hilbert functor HilbPn from the category of noetherian schemes to sets assigns to each
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noetherian k-scheme T the family

{X ⊂ Pn × T |X is flat over T}.

Grothendieck showed that this functor is in fact representable by the Hilbert scheme HilbPn .

As a first step in the proof, one shows that the functor naturally decomposes as a coproduct

HilbPn =
∐
HilbPPn ,

which gives the family above with the restriction that the scheme X has Hilbert polynomial

P in each fiber. In a similar vein, the Quot scheme QuotPON represents the Quot functor

which assigns to T the family

{F a quotient of ONPn⊗OT |F is flat over T with each fiber having Hilbert polynomial P}.

1.4 Chern classes, Hirzebruch-Riemann-Roch

We will have a need later on for the definition of Chern classes of a coherent sheaf on Pn.

First we see a simplified definition of Chern classes of a vector bundle on Pn. For a broader

treatment, see for example [11] or [18, Appendix 1]. For a line bundle L = OPn(d), the

first Chern class is c1(L) = dH, where H is the divisor class of the hyperplane section.

Where no confusion exists, we may write c1 = d. The Chern polynomial of the line bundle

L is c(L)(t) = 1 + c1t; in general, the Chern polynomial of a rank r vector bundle will be

c(F) = 1 + c1t + c2t
2 + · · · + crt

r, with Chern classes c1, c2, · · · , cr that will come from the

following splitting principle (see [11, Section 3.2] for more details). If F is a vector bundle

of rank r on a scheme X, there exists a scheme Y and a morphism f : Y → X such that F

11



has a filtration by vector bundles

0 = F0 → F1 → · · · → Fr = F

such that the quotients Fi/Fi+1 are line bundles on Y . Each quotient has a Chern polynomial

1 + αit, and c(F) is the product of these; the αi are called the Chern roots of F .

The Chern character ch(F) of a vector bundle F is computed in terms of the Chern roots

α1, . . . , αr:

ch(F) = eα1 + · · ·+ eαr .

Given an exact sequence

0→ F → G → H → 0,

the Chern polynomial of G is cx(G) = cx(F) · cx(H), and the Chern character of G is ch(G) =

ch(F) + ch(H).

The Todd class of Pn is the Todd class of the tangent bundle TPn (see [18, Appendix 1]):

Td(Pn) =
Hn+1

(1− exp(−H))n+1
,

where H is the class of the hyperplane.

The Hilbert polynomial is related to the Chern classes by the Hirzebruch-Riemann-Roch

Theorem, which computes the Euler characteristic of a vector bundle F on Pn in terms of

the Chern character of F and the Todd class of Pn, which is the Todd class of the tangent
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bundle TPn [11, Theorem 15.2]:

χ(F) =

∫
Pn

ch(F)Td(Pn) = deg(ch(F ) · Td(Pn)),

where the degree is taken in the dimension-zero part of the Chow ring using the degree map

deg : A0(Pn) → Z. Since the Hilbert polynomial of F is χ(F(d)), we can compute the

Hirzebruch-Riemann-Roch formula on F(d) to get the Hilbert polynomial.

In order to use this formula for the Hilbert polynomial of a coherent sheaf that is not a

vector bundle, we will observe that the Chern classes and Chern character coefficients of a

coherent sheaf E satisfy the same relationship that they do for vector bundles. Indeed, any

coherent sheaf has a resolution by locally free sheaves

Fm → · · · → F0,

and the computation of Chern classes does not depend on the resolution chosen (see [4], par-

ticularly Theorem 2, and [11, section B.8.3]). For each locally free sheaf Fi in the resolution

of E , we can assign Chern roots αi,j, thus we can write the Chern polynomial of E as

c(E)(x) =
∏
i

cFi
(x)(−1)i =

∏
i,j

(1 + αi,jx)(−1)i .

Consider the logarithmic derivative

c′E
cE

=
∑
i,j

(−1)i
αi,j

1 + αi,jx

=
∑
i,j

(−1)i
∑
n

(−1)nαn+1
i,j xn

=
∑
n

(−1)n(n+ 1)!chn+1x
n.

Multiplying both sides by cE and equating coefficients gives the same Newton identities

13



between the coefficients of the Chern polynomial and Chern character for the sheaf E that

we get for vector bundles, namely,

jcj =

j∑
i=1

(−1)i−1cj−i(i!chi).

Therefore, the Hirzebruch-Riemann-Roch formula can be applied to a coherent sheaf.

As an example, let us compute the Hilbert polynomial of a rank-2 coherent sheaf on P3 which

will be used in section 3.5.

Example 1.3. Let E be a rank-2 coherent sheaf on P3 with Chern classes c1H,c2H
2 and c3H

3.

By [20, Lemma 2.1], the Chern classes of E(d) are c′1 = (c1 + 2d)H, c′2 = (c2 + c1d+ d2)H2,

and c′3 = c3H
3 respectively, so the Chern character is

ch(E(d)) = rank(E(d)) + c′1 +
1

2
((c′1)2 − 2c′2) +

1

6
((c′1)3 − 3c′1c

′
2 + 3c′3)

= 2 + (c1 + 2d)H +
1

2
(c2

1 − 2c2 + 2c1d+ 2d2)H2

+
1

6
(c3

1 − 3c1c2 + 3c3 + 2d3 + 3c1d
2 + (3c2

1 − 6c2)d)H3.

The Todd class of P3 is

Td(P3) = 1 + 2H +
11

6
H2 +H3.

The Hilbert polynomial is the coefficient of H3 in the intersection:

PE(d) = 1 · 1

6
(c3

1 − 3c1c2 + 3c3 + 2d3 + 3c1d
2 + (3c2

1 − 6c2)d)

+ 2 · 1

2
(c2

1 − 2c2 + 2c1d+ 2d2) +
11

6
· (c1 + 2d) + 1 · 2

=
1

3
d3 + (2 +

1

2
c1)d2 + (

1

2
c2

1 + 2c1 +
11

3
− c2)d

+ c3
1/6 + c2

1 + 11c1/6− c1c2/2− 2c2 + c3/2 + 2.

14



Chapter 2

Characterization of Hilbert functions

This chapter contains previously known results on Hilbert functions and Hilbert polynomials

of standard graded algebras, namely, Macaulay’s Theorem, Green’s Hyperplane Restriction

Theorem, and Gotzmann’s Persistence and Regularity Theorems.

Macaulay’s Theorem was a major early result on Hilbert functions. It characterizes all

possible functions that can be a Hilbert function of a standard graded algebra, by establishing

an upper bound on the growth of the Hilbert function from degree d to d + 1. Gotzmann’s

Persistence Theorem establishes the behavior of the Hilbert function when the Macaulay

growth bound is achieved. Green’s Hyperplane restriction Theorem provides a different type

of bound; in particular, given a scheme X and a generic hyperplane section H, it gives a

lower bound on the Hilbert function for the smaller-dimensional X ∩H in degree d in terms

of the Hilbert function of X in degree d.

Gotzmann’s Regularity Theorem uses the results on Hilbert functions above to establish

a bound on the regularity of any ideal with a given Hilbert polynomial. Gotzmann uses

this to provide an explicit construction of the Hilbert scheme HilbPPn by stating the precise

Grassmannian into which the Hilbert scheme embeds, and the condition that characterizes

15



the embedding.

First I will discuss the notions of monomial, lexicographic, and stable modules, which are used

later in this chapter and in future chapters. Then I will provide the definitions for Macaulay

representations, Macaulay and Green transformations, and the theorems discussed above.

2.1 Monomial, lexicographic and stable modules

The notions of monomial, lex, and stable modules are important because we have operations

to deform an arbitrary module successively to these more restrictive classes of modules;

furthermore, the behavior of Hilbert functions and Betti numbers under these operations

can be controlled.

Let F = Se1 + · · ·+ Ser with deg(ei) = di for each i.

Definition 2.1. A monomial ideal I ⊆ S is an ideal that is generated by monomials. A

monomial submodule M ⊆ F is generated by module monomials miei, where each mi is a

monomial of S.

Note that a monomial submodule must be of the form I1e1 + · · · + Irer where each Ii is a

monomial ideal of S.

Definition 2.2. Define the lexicographic (lex) order on the monomials of S as follows:

xe00 · · ·xenn > xf00 · · ·xfnn if the lowest i such that ei 6= fi satisfies ei > fi. A lex-segment in Sd

is a set of the first r(d) monomials of degree d in the lex order; a lex-segment ideal (or lex

ideal) is an ideal that is a lex-segment in each degree.

Define the lex order on module monomials by fei > gej if i < j, or if i = j and f > g in the

lex order on monomials of S. Lex-segment submodules are defined analogously to lex-segment

ideals.
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Definition 2.3. Let I ⊂ S be a monomial ideal. I is strongly stable if whenever i < j and

g is a monomial such that gxj ∈ I, then gxi ∈ I. For a prime p, we say that k ≤p l if, when

we write k =
∑
kip

i and l =
∑
lip

i, we have ki ≤ li for each i. A monomial ideal I ⊂ S is

p-stable if for every monomial m ∈ M , if xlj||m and i < j then (xi/xj)
km ∈ M for every

k ≤p l.

Let M = I1e1 + · · ·+ Irer ⊆ F be a monomial submodule. M is strongly stable ( p-stable) if

each Ii is strongly stable (p-stable) and mdj−diIj ⊆ Ii for each i < j.

When k has characteristic p, strongly stable modules are called standard Borel-fixed modules

by Pardue, and p-stable modules are called non-standard Borel-fixed modules by Pardue [29,

Definition 7]. Note that strongly stable modules are p-stable for each prime p.

It is clear from the definitions that a lex ideal is strongly stable. Also note that a lex

submodule can be written L = L1e1 + · · · + Lrer, where each Li is a lex ideal. Strongly

stable ideals have a well-understood minimal free resolution, from which we can deduce the

regularity.

Proposition 2.1. If I is a strongly stable ideal of S, then the regularity of I is equal to the

maximal degree in a minimal generating set of I.

Proof. See [32, Corollary 3.1].

In particular, since a lex ideal is strongly stable and a lex submodule is a direct sum of lex

ideals, a lex submodule has a linear resolution; that is, the maximal generating degree of

the minimal resolution increases by one in each homological degree.

Lex modules are known to have maximal Betti numbers, as expressed in the next theorem.

Theorem 2.1. If M is a graded submodule of F and L is the lex submodule with the same
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Hilbert function as M , then

βi,j(M) ≤ βi,j(L) for all i, j.

Proof. This was proven by Bigatti [3] and Hulett [22] for ideals in characteristic zero, and

by Hulett [23] for modules in characteristic zero; Pardue [29] proved the result for modules

in arbitrary characteristic.

A different type of monomial ordering is given in the following definition.

Definition 2.4. The weight ordering <w with weight vector w = (w0, . . . wn, v1, . . . , vr) is

given by
∑
xαiei <w

∑
xαjej if

∑
i

∑
k αi,kwk + eivi <

∑
j

∑
k αj,kwk + ejvj; that is, the

order is given by performing a dot product on the combination of the exponents and basis

elements with the weight vector.

Proposition 2.2. Assume N is a submodule of F with initial submodule in(N) under a

given ordering. Then there exists a weight vector w with positive integer entries such that

in(N) is the initial module of N under the weight ordering <w.

Proof. See [2, Proposition 1.8].

The following comes from [29]. It is an extension of the polarization used by Hartshorne in

the proof of the connectedness of the Hilbert scheme.

Definition 2.5. Let P = k[zijk] with 0 ≤ i ≤ n, 1 ≤ k ≤ r and 1 ≤ j < J for some J

sufficiently large. Let F ′ be the free P -module with basis e′1, . . . , e
′
r with the same generating

degrees as e1, . . . , er. For a monomial ideal I, the k-polarization I(pk) of I is the monomial

ideal in P generated by

{zpk(µ) =
∏

zijk|xµ is a minimal generator of I}.
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If N = I1e1 + · · ·+ Irer is a monomial submodule of F , then the polarization of N is

N (p) = I
(p1)
1 e′1 + · · ·+ I(pr)

r e′r.

Let L = {hijk} be a collection of linear forms in S. Define σL : P → S by σL(zijk) = hijk,

and σ′L : F ′ → F by σ′L(
∑
fiei) =

∑
σL(fi)ei.

In particular, given a monomial submodule N and a generic set of linear forms L, the

operation σ′L(N (p)) performs a polarization (that is, adds enough variables so that every

term is squarefree), followed by taking generic hyperplane sections. The following proposition

shows that the graded Betti numbers are unchanged under k-polarization.

Proposition 2.3. If N is a submodule of F and L is a generic collection of linear forms,

then the graded Betti numbers of F/N and F/σ′L(N (p)) are the same.

Proof. See [29, Corollary 15].

Example 2.1. Set S = C[x, y, z, w]. In example 1.2, we saw the ideals I = (x2−y2, xy−z2)

and J = (x2, xy, y3). Note that I is not a monomial ideal, but J is; in fact, J = in(I)

using the lex ordering. However, J is not a lex ideal, since y3 ∈ J but xz2 /∈ J . The ideal

J = (x2, xy, xz2, xzw2, xw4, y5, y4z2) is a lex ideal; indeed, I contains the first 2 monomials

in degree 2, the first 8 monomials in degree 3 and so on, under the lex order. In fact, all

three of these ideals have the same Hilbert function.

2.2 Macaulay’s and Green’s Theorems

Macaulay’s and Green’s theorems are foundational in the characterization of Hilbert func-

tions. These will depend on the behavior of two transformations on a sort of representation
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of a positive integer as a sum of binomial coefficients. I will describe these in this section.

First we will define the Macaulay representation and its transformations.

Definition 2.6. Given a, d ∈ N, the dth Macaulay representation of a is the unique expres-

sion

a =

(
k(d)

d

)
+

(
k(d− 1)

d− 1

)
+ · · ·+

(
k(δ)

δ

)
,

with δ ∈ Z, satisfying k(d) > · · · > k(δ) ≥ δ > 0. Given this representation, the dth

Macaulay transformation of a is

a〈d〉 =

(
k(d) + 1

d+ 1

)
+

(
k(d− 1) + 1

d

)
+ · · ·+

(
k(δ) + 1

δ + 1

)
,

and the Green transformation is

a〈d〉 =

(
k(d)− 1

d

)
+

(
k(d− 1)− 1

d− 1

)
+ · · ·+

(
k(δ)− 1

δ

)
.

Example 2.2. The 3rd Macaulay representation of 11 is

(
5

3

)
+

(
2

2

)
,

the Macaulay transformation is

11〈3〉 =

(
6

4

)
+

(
3

3

)
= 16.
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and the Green transformation is

11〈3〉 =

(
4

3

)
+

(
1

2

)
= 4.

Green’s theorem bounds the Hilbert function of a standard graded algebra after slicing by a

generic hyperplane. It provides easier proofs of the rest of the main theorems in this chapter.

Theorem 2.2. (Green’s Hyperplane Restriction Theorem) Let R = S/I be a graded k-algebra

and n ≥ 1 and integer. For a general linear form h,

H(R/hR, d) ≤ H(R, d)〈d〉.

Proof. Following [16, Theorem 1]: Fix the following notation. Let W = Id, let H be the

hyperplane given by the vanishing of h, let c = H(R, d) and cH = H(R/hR, d). We will

proceed by induction on dimension and degree; the result is clear when n = 0 and when

d = 1. Write the dth Macaulay representation of cH as

cH =

(
k(d)

d

)
+ · · ·+

(
k(1)

1

)
,

and set δ = min{m|k(m) ≥ m}. From the definition of the Green transformation, it is

sufficient to show that

c ≥
(
k(d) + 1

d

)
+ · · ·+

(
k(δ) + 1

δ

)
.

Assume to the contrary. Then

c− cH <

(
k(d)

d− 1

)
+ · · ·+

(
k(δ)

δ − 1

)
.
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Write W (−H) for the subspace of Sd−1 consisting of polynomials P such that PH ∈ W .

From the exact sequence

0→ W (−H)→ W → WH → 0,

it follows that

c = cH + codim(W (−H)).

Assume H∗ is another general hyperplane. From the restriction sequence

0→ WH(−(H ∩H∗))→ WH → WH∩H∗ → 0

it follows that

codim(WH) = codim(WH∩H∗) + codim(WH(−(H ∩H∗))).

Observe that W (−H∗)H ⊆ WH(−(H ∩ H∗)), so codim(W (−H∗)H) ≥ codim(WH(−(H ∩

H∗))); substituting into the last equation, we have

codim(WH) ≤ codim(WH∩H∗) + codim(W (−H∗)H).

Note that WH∩H∗ is the restriction of WH ⊆ S/hS to a generic hyperplane, and W (−H∗)H

is the restriction of W (−H) ⊆ Sd−1 to a generic hyperplane, so they satisfy the inductive

hypothesis. Thus codim(WH∩H∗) ≤ (cH)〈d〉 and codim(W (−H∗)H) ≤ (c− cH)〈d−1〉. Thus

cH ≤ (cH)〈d〉 + (c− cH)〈d−1〉.

We consider two cases for δ, using the previous Macaulay representation for c− cH . First, if
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δ = 1, then
(
k(δ)−1
δ−1

)
> 0, so

(c− cH)〈d−1〉 ≤
(
k(d)− 1

d− 1

)
+ · · ·+

(
k(2)− 1

1

)

and

(cH)〈d〉 =

(
d(d)− 1

d

)
+ · · ·+

(
k(1)− 1

1

)
.

Adding these two expressions, we have

cH ≤
(
k(d)

d

)
+ · · ·+

(
k(1)− 1

1

)
< cH

(since δ = 1, so
(
k(1)−1

1

)
<
(
k(1)

1

)
), which is a contradiction.

Second, if δ > 1, then using the Macaulay representation for c− cH , we have

(c− cH)〈d−1〉 <

(
k(d)− 1

d− 1

)
+ · · ·+

(
k(δ)− 1

δ − 1

)
,

where the strict inequality follows since k(δ)− 1 > δ − 1. Adding this to the expression for

(cH)〈d〉 gives

cH <

(
k(d)

d

)
+ · · ·+

(
k(δ)

δ

)
= cH ,

which is also a contradiction. Therefore, cH ≤ c〈d〉.

Macaulay characterized the Hilbert functions of all standard graded algebras. We will first

need a lemma.
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Lemma 2.1. Given positive integers a, d, the Macaulay transform satisfies

(a+ 1)〈d〉 =

 a〈d〉 + k(1) + 1 if δ = 1

a〈d〉 + 1 if δ > 1

Proof. See [5, Lemma 4.2.13].

Theorem 2.3. (Macaulay [26]) Assume that h : Z→ Z is a numerical function. Then h is

the Hilbert function of a standard graded algebra if and only if h(0) = 1 and h(n+1) ≤ h(n)〈n〉

for all n ≥ 1.

Proof. For the backward implication, see [5, Theorem 4.2.10]. The proof of the forward

implication will follow [16, Theorem 2]. Keep the same notation as in the previous theorem.

Write W1 = Id+1 and c1 = codim(W1). From the restriction sequence on W1 and the

containment W ⊆ W1(−H), we have

c1 = codim(W1(−H)) + codim((W1)H) ≤ c+ codim((W1)H).

Write the d+ 1 Macaulay representation of c1:

c1 =

(
k(d+ 1)

d+ 1

)
+ · · ·+

(
k(1)

1

)
.

From Green’s Theorem, we have

codim((W1)H) ≤
(
k(d+ 1)− 1

d+ 1

)
+ · · ·+

(
k(1)− 1

1

)
,

so

c ≥
(
k(d+ 1)− 1

d

)
+ · · ·+

(
k(1)− 1

0

)
.
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As in the last proof, there are two cases for δ. If δ = 1, then k(d) ≥ 1. The right hand side

of the last inequality is not a Macaulay representation, but by applying Lemma 2.1 with

a =

(
k(d+ 1)− 1

d+ 1

)
+ · · ·+

(
k(2)− 1

1

)
,

we have

c〈d〉 = (a+ 1)〈d〉 ≥
(
k(d+ 1)

d+ 1

)
+ · · ·+

(
k(2)

2

)
+ k(2) > c1,

since k(2) > k(1). If δ > 1, then

c〈d〉 ≥
(
k(d+ 1)

d+ 1

)
+ · · ·+

(
k(δ)

δ

)
= c1.

2.3 Gotzmann’s Theorems

Gotzmann noted that, considering the Macaulay representation of the Hilbert function in

sufficiently high degree, one may build a similar representation for the Hilbert polynomial.

This representation will be used in Gotzmann’s Regularity Theorem, below.

Definition 2.7. Given a polynomial P (d) ∈ Q[d], a Gotzmann representation of P is a

binomial expansion

P (d) =

(
d+ a1

d

)
+

(
d+ a2 − 1

d− 1

)
+ · · ·+

(
d+ as − (s− 1)

d− (s− 1)

)
,

with a1, · · · , as ∈ Z and a1 ≥ · · · ≥ as ≥ 0.

Proposition 2.4. The Hilbert polynomial of a subscheme of Pn has a unique Gotzmann

representation.
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Proof. See [34, Corollary B.31].

Definition 2.8. The number of terms in the Gotzmann representation of a scheme’s Hilbert

polynomial is called the Gotzmann number of a scheme.

Example 2.3. Assume X is a scheme with Hilbert polynomial PX(d) = 3d + 2. This has

Gotzmann representation

3d+ 2 =

(
d+ 1

d

)
+

(
d

d− 1

)
+

(
d− 1

d− 2

)
+

(
d− 3

d− 3

)
+

(
d− 4

d− 4

)
,

and the Gotzmann number of PX(d) is 5.

Gotzmann’s Regularity Theorem bounds the Castelnuovo-Mumford regularity by the Gotz-

mann number. The proof of the generalization in Chapter 3 will be similar to the proof of

this result cited below, and is omitted here.

Theorem 2.4. (Gotzmann’s Regularity Theorem [14]) If X is a projective k-scheme with

Gotzmann number s, then IX is s-regular.

Proof. See [34, Theorem B.33].

The next result determines what happens when equality is reached in Macaulay’s growth

bound from the last section. The proof follows [16], and contrasts with a different proof

needed to generalize this result in Chapter 4.

Theorem 2.5. (Gotzmann’s Persistence Theorem) [14] Suppose I is a graded ideal of S

generated in degree at most d. If H(S/I, d+ 1) = H(S/I, d)〈d〉, then

H(S/I, s+ 1) = H(S/I, s)〈s〉 for all s ≥ d.

Proof. Following [16]: By induction on dimension, where dimension 1 is clear. With the same

notation as in Macaulay’s Theorem, the restriction sequence for W1 and the containment
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W ⊆ W1(−H) implies c1,H ≥ c1 − c. Note that

(c〈d〉)
〈d〉 ≥ c

〈d〉
H ≥ c1,H ≥ c1 − c = (c〈d〉)

〈d〉,

where the first inequality holds since cH ≤ c〈d〉 by Green’s Theorem, the second inequality

holds by Macaulay’s Theorem, the third inequality holds by the observation on the restriction

sequence, and the last equality is by hypothesis. Thus

c
〈d〉
H = c1,H .

By the inductive hypothesis, codim(WH)s+1 = codim(WH)
〈s〉
s for all s ≥ d. By Gotzmann’s

Regularity Theorem, the saturation of I/H is d-regular in S/H. The same argument as in

Gotzmann’s Regularity Theorem shows that the saturation of I is also d-regular. Thus for

all s ≥ d, we have

H(S/sat(I), s) ≤ H(S/I, s) ≤ PS/I(s) = PS/sat(I)(s) = H(S/sat(I), s);

so equality holds, and persistence holds by the Gotzmann representation of the Hilbert

function.

Example 2.4. Consider an ideal I in S = C[x, y, z, w] such that the Hilbert function is

H(S/I, 2) = 2 =
(

2
2

)
+
(

1
1

)
. By Macaulay’s Theorem, H(S/I, 3) ≤

(
3
3

)
+
(

2
2

)
= 2, and similarly

in higher degrees; therefore, the Hilbert polynomial of S/I is a constant, either 2, 1, or 0. If

H(S/I, 3) = 2, then by Gotzmann’s Persistence Theorem, PS/I = 2. If H(S/I, 3) = 1, then

either H(S/I, 4) = 1 and PS/I = 1 by Persistence, or H(S/I, 4) = 0 and PS/I = 0. Finally,

if H(S/I, 3) = 0, then PS/I = 0. There is a lex ideal with each of these possible Hilbert

functions.

Gotzmann used the theorems on Regularity and Persistence to construct the Hilbert scheme.
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Let

Gs = Gr(Ss, P (s)) (2.1)

be the Grassmannian of P (s)-codimensional vector subspaces of Ss, and similarly for

Gr(Ss+1, P (s+ 1)); and

W = {(F,G) ∈ Gs × Gs+1|F · S1 = G}. (2.2)

Theorem 2.6. The Hilbert scheme HilbPPn is isomorphic to W .

Proof. See [14, Satz 3.4].
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Chapter 3

Gotzmann regularity for globally

generated coherent sheaves

One would be interested in extending Gotzmann’s construction of the Hilbert scheme to a

construction of the Quot scheme. In order to do so, Gotzmann’s Regularity and Persistence

theorems need to be extended to modules. Gasharov extended the Persistence theorem; how-

ever, Gotzmann’s Regularity theorem does not extend to all modules, because a Gotzmann

representation does not always exist, which will be shown below. However, a Gotzmann

representation exists for the Hilbert polynomial of a globally generated coherent sheaf. This

allows the extension of Gotzmann’s Regularity Theorem to this class of sheaves. This will

be used to extend Gotzmann’s construction to the Quot scheme QuotP (OrPn) of quotients of

OrPn with Hilbert polynomial P .

The following is Gasharov’s extension of Macaulay’s Theorem (part 1) and Gotzmann’s

Persistence Theorem (part 2).

Theorem 3.1. Assume F is a free graded S-module with l the maximal degree of its gen-

erators, N a submodule of F and M = F/N . For each pair (p, d) such that p ≥ 0 and
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d ≥ p+ l + 1, we have:

1. H(M,d+ 1) ≤ H(M,d)〈d−l−p〉;

2. If N is generated in degree at most d and H(M,d+1) = H(M,d)〈d−l−p〉, then H(M,d+

2) = H(M,d+ 1)〈d+1−l−p〉.

Proof. See [12, Theorem 4.2].

However, Gotzmann’s Regularity Theorem does not extend directly to all modules, because

not all Hilbert polynomials of graded S-modules have Gotzmann representations, as the next

example shows.

Example 3.1. Consider OP1(−1). It has Hilbert polynomial P (d) = d. By reason of degree,

the Gotzmann representation would have to have
(
d+1

1

)
= d + 1 as its first term; and the

Gotzmann representation can only add more positive terms, so no Gotzmann representation

exists.

In the next section, we will see that when the generating degrees of a module are at most

zero, then the module has a Gotzmann representation. These modules correspond to globally

generated coherent sheaves. Subsequently, I will prove Gotzmann’s Regularity Theorem for

this class of modules, and extend Gotzmann’s construction to the Quot scheme.

3.1 Gotzmann representations

As before, assume a graded module F = Se1 + · · ·+Ser with deg(ei) = fi and f1 ≤ · · · ≤ fr;

furthermore, assume fr ≤ 0. Note that a quotient module of F corresponds to a globally

generated coherent sheaf on Pr. This section will establish the following proposition.

30



Proposition 3.1. If M is a submodule of F , then PF/M(d) has a unique Gotzmann repre-

sentation.

To prove this proposition, some lemmas are necessary. The first is a restatement of an earlier

result in the framework of schemes.

Theorem 3.2 ([26]). Let H : N→ N and let k be a field. The following are equivalent.

1. H is the Hilbert function of a projective k-scheme.

2. H(0) = 1 and H(d)〈d〉 ≤ H(d+ 1) for all d.

Lemma 3.1. The following are equivalent.

1. P is the Hilbert polynomial of a projective k-scheme.

2. P has a Gotzmann representation.

Proof. 1⇒ 2 is given by Gotzmann’s Regularity Theorem. Conversely, if

P (d) =

(
d+ a1

a1

)
+

(
d+ a2 − 1

a2

)
+ · · ·+

(
d+ as − (s− 1)

as

)
,

then define H(d) as

H(d) =

(
d+ a1

a1

)
+

(
d+ a2 − 1

a2

)
+ · · ·+

(
ad+1

ad+1

)

for d ≤ s− 2, and H(d) = P (d) for d ≥ s− 1. Then

H(0) =

(
a1

a1

)
= 1.
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If d ≤ s− 2, then

H(d+ 1) =

(
d+ 1 + a1

a1

)
+ · · ·+

(
ad+1 + 1

ad+1

)
+

(
d+ 1 + ad+2 − (d+ 1)

ad+2

)
=

(
d+ a1 + 1

d+ 1

)
+ · · ·+

(
ad+1 + 1

1

)
+

(
ad+2

0

)
= H(d)〈d〉 +

(
ad+2

0

)
≥ H(d)〈d〉;

and if d ≥ s− 1, then

H(d+ 1) = H(d)〈d〉.

By Macaulay’s criterion, H is the Hilbert function of a projective k-scheme, and H has

Hilbert polynomial P .

Lemma 3.2. If P and Q are polynomials with Gotzmann representations, then P + Q has

a Gotzmann representation.

Proof. By Lemma 3.1, P and Q are Hilbert polynomials of projective k-schemes X and

Y respectively. There exists a projective space PN such that X and Y can be embedded

disjointly. Then X∪Y is a projective k-scheme with Hilbert polynomial P+Q, so by Lemma

3.1, P +Q has a Gotzmann representation.

Lemma 3.3. The polynomial

(
d+ n+ 1

n

)

has a Gotzmann representation.
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Proof. One easily sees that

(
d+ n+ 1

n

)
= 1 +

(
d+ 1

1

)
+

(
d+ 2

2

)
+ · · ·+

(
d+ n

n

)
.

Lemma 3.2 then gives the result.

Proof. (of Proposition 3.1): By Theorem 2.1, we can assume F/M = S/I1e1 + · · ·+ S/Irer.

There exist Gotzmann representations

PS/Ij(d) =

(
d+ aj,1
aj,1

)
+

(
d+ aj,2 − 1

aj,2

)
+ · · ·+

(
d+ aj,sj − (sj − 1)

aj,sj

)
.

It is sufficient to show that PS/Ij(d+ 1) has a Gotzmann representation. Note that

PS/Ij(d+ 1) =

(
d+ aj,1 + 1

aj,1

)
+

(
d+ aj,2
aj,2

)
+ · · ·+

(
d+ aj,sj − (sj − 2)

aj,sj

)
;

The first term has a Gotzmann representation by Lemma 3.3; the remaining terms are a

Gotzmann representation; the sum of these two polynomials has a Gotzmann representation

by Lemma 3.2. By Lemma 3.1, this is the Hilbert polynomial of some projective k-scheme,

and by Proposition 3.1 the Gotzmann representation is unique.

3.2 Gotzmann regularity

We can now prove Gotzmann regularity for globally generated sheaves. The argument is

very similar to the one given for the case of ideals from [34].

Proposition 3.2. If F is a rank-r free S-module with module generators having degree at
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most zero, N a graded submodule of F and M = F/N , with Gotzmann representation

PM(d) =

(
d+ a1

a1

)
+

(
d+ a2 − 1

a2

)
+ · · ·+

(
d+ as − (s− 1)

as

)
, (3.1)

then the associated sheaf Ñ is s-regular.

Proof. As in [12], we can assume that the largest degree of a module generator of F is 0;

otherwise, twist F and N by the same amount to cause it, and such twist only makes the

Castelnuovo-Mumford regularity smaller by the amount of the twist. We can also assume N

is saturated, and that N 6= F .

Induct on the number n = dimS − 1. The case n = 0 is trivial.

In the case n ≥ 1, there exists h ∈ S1 such that h is M -regular. Indeed, if no h ∈ S1 is

M -regular, then (S1) = ∪h∈S1h is a zero-divisor on M , so there exists a non-zero z ∈ F \N

such that S1z ⊂ N , contradicting N saturated.

Set

S ′ = S/hS(−1), F ′ = F/hF (−1), N ′ = N/hN(−1), M ′ = M/hM(−1).

Then M ′ satisfies the hypotheses of Proposition 3.1, so we can write

PM ′(d) =

(
d+ b1

b1

)
+

(
d+ b2 − 1

b2

)
+ · · ·+

(
d+ br − (r − 1)

br

)
, (3.2)

and Ñ ′ is r-regular.

Also, from the exact sequence 0→M(−1)
h→M →M ′ → 0, it follows that

PM ′(d) = PM(d)− PM(d− 1). (3.3)
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Equations (3.1), (3.2) and (3.3) give

PM ′(d) =

(
d+ a1 − 1

a1 − 1

)
+

(
d+ a2 − 2

a2 − 1

)
+ · · ·+

(
d+ at − t
at − 1

)
, (3.4)

where t ≤ s is largest such that at 6= 0.

There exists a projective k-scheme with Gotzmann representations (3.2) and (3.4), so t = r

and bi = ai − 1 for i = 1, . . . , r.

From the induction hypothesis, Ñ ′ is r-regular, so for all q ≥ 1, we have

Hq(Ñ ′(d− q)) = 0

for all d ≥ r, so

Hq(Ñ(d− q)) = 0

for all q ≥ 2 and all d ≥ s. To show that this also holds for q = 1 and all d = s, suppose to

the contrary that H1(Ñ(s− 1)) 6= 0.

Let m be the maximal homogeneous ideal of S. Recall that the Hilbert function and Hilbert

polynomial can be related to the local cohomology [9, Corollary A1.15]:

H(M,d)− PM(d) =
∑
i

(−1)iH i
mMd. (3.5)

Since N is saturated and F is 0-regular, H0
m(M) = 0 and H i

m(M) = H i+1
m (N) for all i ≥ 1.

From the relations H i
m(N) =

⊕
dH

i−1(Ñ(d)) for i ≥ 2, and equation 3.5, H(M, s − 1) <
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PM(s− 1). So we can write

H(M, s− 1) ≤
(
s− 1 + a1

s− 1

)
+ · · ·+

(
1 + as−1

1

)
,

and so

H(M, s) ≤ H(M, s− 1)〈s−1〉

≤
(
s+ a1

a1

)
+ · · ·+

(
2 + as−1

as−1

)
< PM(s).

By repeating the last step, we have H(M,d) < PM(d) for all d ≥ s, a contradiction. There-

fore, Ñ is s-regular.

The following corollary on regularity for arbitrary coherent sheaves is immediate.

Corollary 3.1. Suppose F is a coherent sheaf on Pn and a ∈ Z≥0 such that F(a) is generated

by global sections and F(a) has Gotzmann regularity s. Then F is s+ a-regular.

3.3 An explicit construction of the Quot scheme

Let us use the above results and those of Gasharov to extend Gotzmann’s construction of

the Hilbert scheme to a construction of the Quot scheme. Write O = OPn . For simplicity,

consider QuotP (Or), the quotients of Or with Hilbert polynomial P . By Proposition 3.1,

P has a Gotzmann representation, say with Gotzmann number s. By Proposition 3.2, any

coherent sheaf which is a quotient of Or with Hilbert polynomial P is generated in degrees

at most s, and all cohomology vanishes in degrees at least s.

The construction of the Quot scheme follows as in the construction of the Hilbert scheme.
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Let

Gs = Gr(Srs , P (s)) (3.6)

be the Grassmannian of P (s)-codimensional vector subspaces of Srs , and similarly

Gs+1 = Gr(Srs+1, P (s+ 1));

and

W = {(F,G) ∈ Gs × Gs+1|F · S1 = G}. (3.7)

Theorem 3.3. The Quot scheme QuotP (Or) is isomorphic to W .

The proof will follow [14, Satz 3.4]. Before beginning the proof, let us fix some notation.

Write QuotrP for QuotP (Or). Write W for the functor that will be represented by W , and Gs

for the functor of Gs. For an affine scheme T = SpecA and the projection π : T × Pn → T ,

recall that an element of W(A) is a pair (F,G) of locally free direct summands of Srs ⊗ A

and Srs+1 ⊗ A of co-ranks P (s) and P (s+ 1) respectively, such that F · S1 = G.

Two lemmas will be given first. Their proofs are the same as the case of Hilbert schemes

and ideals as given in their sources.

Lemma 3.4. For any d ≥ s with s being the Gotzmann number of P , the subfunctor W(A)

of Gs(A) is representable by the scheme W , and the first projection embeds W in Gs; and W

contains the image of QuotrP under the closed diagonal embedding.

Proof. The same argument from [24, Proposition C.28] for the Hilbert scheme will be used.

It is sufficient to consider an affine open subscheme U of Gs(A) with coordinate ring A. Let

F be the universal submodule of Srd corresponding to the inclusion of U . Let u : F n+1 → Srd+1
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be the multiplication map by x0, . . . , xn. Set q = r
(
d+n
n

)
−P (d+1). We obtain a subscheme V

of U by combining the closed condition rank(u) ≤ q and the open condition rank(u) > q−1.

Let B be an A-algebra. An element of W(B) can be written (F ⊗B,G⊗B); the map u⊗B

satisfies the two rank conditions above, so we have an injection

i : W(B)→ V (B)

via the projection onto the first coordinate. It remains to show that i is a bijection.

Let F ′ = F ⊗ B ∈ V (B). Set C = coker(u) ⊗ B. From the assumption on the rank of u,

the Fitting ideals of C satisfy Fittq(C) = A and Fittq−1(C) = 0, so C is locally free by [9,

Proposition 20.8]. Set S ′ = S⊗B and G′ = F ′ ·S ′1. Then G′ is a direct summand of (S ′d+1)r

of corank q, so (F ′, G′) ∈ W(B), therefore i is a bijection, and V represents the restricted

functor W|U .

Since V (A) ∼= W (V ) ⊆ Gs(A), we can lift to an embedding of V into Gs.

Thus we can use

W ′ = {F ∈ Gs|corank(F · S1) = P (s+ 1)}

interchangeably with W .

Lemma 3.5. If A is a local Noetherian ring with maximal ideal m and A/m = k, S =

A[x0, . . . , xn], N is a graded submodule of Sr generated by Nd such that sat(N ⊗ k) is d-

regular, and M = F/N with dimMd ⊗ k = P (d), then the following are equivalent:

1. Mn is free of rank P (n) for all n ≥ d

2. Mn is free of rank P (n) for all n� 0
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3. M ⊗ k has Hilbert polynomial P , and Md+1 is flat with rank P (d+ 1).

Proof. The argument is the same as [14, Satz 1.5]. The equivalence of 1 and 2 is by [17,

Corollaire 7.9.9], and clearly 1⇒ 3.

To show 3 ⇒ 2, assume that Md+1 is flat. Writing R for the syzygy module of N (with an

exact sequence 0 → R → Sm → N → 0), one may argue as in Section 1.4 of [14] to show

that R⊗ k is generated by R1⊗ k, or we may note that sat(N ⊗ k)≥d has a linear resolution

by [6, Proposition 1.3.1], and that sat(N ⊗ k) and N ⊗ k agree in degree d and larger, since

they have the same Hilbert function for n ≥ d.

Now if v � 0 and x⊗ 1 ∈ ker(Nd+v ⊗ k → Srd+v ⊗ k), then writing x = fy with f ∈ Nd and

y ∈ Smv , we have y ⊗ 1 ∈ Rv ⊗ k = (Sv−1 ⊗ k)R1, hence y ∈ Sv−1R1 + mSmv . It follows that

x ∈ mNd+v, thus Nd+v ⊗ k → Srd+v ⊗ k is an injection; therefore a basis for Md+v ⊗ k can be

lifted to a basis for Md+v and Md+v is free.

Proof. (of Theorem 3.3)

Let (F,G) be the universal element of W(W ) and set M = ⊕d(Srs+d/Sd · F ). Note that

QuotrP is the maximal subscheme of W such that M ⊗W OQuotrP
is flat over QuotrP with

Hilbert polynomial P . For each d ≥ s, take Zd to be the maximal subscheme of W such that

Md ⊗OZd
is flat over OZd

with rank P (d). By Theorem 3.1 #1, dimMd ⊗ k(p) ≤ P (d) for

all p ∈ W and d ≥ s, hence Zd is closed. There exists d0 such that Zd0 = Zd for all d ≥ d0,

since the Zd form an ascending chain, so QuotrP = Zd0 is closed.

Now consider the set Z of points p ∈ W such that M ⊗W k(p) has Hilbert polynomial P .

Note that Zd0 ⊆ Z. By Lemma 3.5, for any p ∈ Z, we have Md ⊗W Op is free of rank P (d)

over Op for all d ≥ s, so M ⊗W Op is free over Op with Hilbert polynomial P , thus p ∈ Zd0 .

It follows that Z is the set of points for which Md0 ⊗W Op is free of rank P (d0) over Op, so

Z is an open subset of W , and thus QuotrP is an open subscheme of W .
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Since QuotrP is an open and closed subscheme of W , it remains to show that all connected

components of W are contained in QuotrP , for which it is sufficient to check geometric points.

Let (F,G) ∈ W(K) be a geometric point. Then M = ⊕d(Srs+d/Sd · F ) has Hilbert function

P (s) and P (s+ 1) in degrees s and s+ 1, so by Theorem 3.1 #2, M has Hilbert polynomial

P , so (F,G) is in the image of QuotrP . Therefore, QuotrP
∼= W .

3.4 Quot schemes on P1

Consider this construction for the Quot scheme

Q = QuotP (OrP1),

with P (d) = k(d+ 1) +m. The Gotzmann representation of P is

(
d+ 1

1

)
+

(
d

1

)
+ · · ·+

(
d− k + 2

1

)
+
k(k − 1)

2
+m,

so the Gotzmann number of P is

s =
k(k + 1)

2
+m.

Thus,

Q ∼= {F ∈ Gr(r(s+ 1), k(s+ 1) +m)|codimF · S1 = k(s+ 2) +m}.

Let F ∈ Q, and let l be an integer at least the Castelnuovo-Mumford regularity of F . We
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have an exact sequence

0→ K(l)→ Or(l)→ F(l)→ 0.

Set V = H0(K(l)) ⊂ Srl . Then dimV = (r−k)(l+1)−m. If dimV ·S1 = (r−k)(l+2)−m,

one expects an element F in Gr((r − k)(l + 1) − m, r(l + 1)) and an element G = F · S1

in Gr((r − k)(l + 2) − m, r(l + 2)). The Porteous formula gives a degeneracy locus with

codimension

[2(r − k)(l + 1)− 2m− (r − k)(l + 2) +m][r(l + 2)− (r − k)(l + 2) +m]

=[(r − k)l −m][k(l + 2) +m].

So the expected dimension of Q is

[(r − k)(l + 1)−m][k(l + 1) +m]− [(r − k)l −m][k(l + 2) +m] = (r − k)k + rm.

On the other hand, given

0→ K → Or → F → 0

we can write K = ⊕O(−ti), and since the Hilbert polynomial of F is k(d + 1) + m, we

have r − k summands of K, each ti is non-negative, and
∑
ti = m. In order to compute

dimHom(⊕O(−ti),Or)/Aut(⊕O(−ti)), we need a bound on dimAut(⊕O(−ti)).

Rewrite K = ⊕O(−ti) by gathering common twists, as

K = ⊕si=0O(i)ei .

Then dimAutK =
∑

0≤i≤j≤s (j − i+ 1)eiej. This dimension is bounded as follows.
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Lemma 3.6. Assume m and n are integers such that 0 ≤ m ≤ n and e0, e1, . . . , en are such

that
∑
ei = m and

∑
iei = n. Then

∑
0≤i≤j≤n

(j − i+ 1)eiej ≥ m2,

with a unique solution giving equality.

Proof. Observe that

∑
0≤i≤j≤n

(j − i+ 1)eiej =
n∑
i=0

e2
i +

∑
0≤i<j≤n

(j − i+ 1)eiej

≥
n∑
i=0

e2
i +

∑
0≤i<j≤n

2eiej

= m2,

and equality occurs only if there are at most two non-zero exponents. Assume 0 < ei ≤ m,

and ei + ei+1 = m and iei + (i+ 1)ei+1 = n. Then n = i(ei + ei+1) + ei+1 = im+ ei+1, with

0 ≤ ei+1 < m. By the Division Algorithm, such a solution exists and is unique.

So

dimHom(⊕O(−ti),Or)/Aut(⊕O(−ti))

= dimH0(⊕O(ei)
r)− dimAut(⊕O(−ti))

≤ r(r − k)− rm− (r − k)2

= (r − k)k + rm,

agreeing with the previous computation; and the uniqueness makes Q irreducible of the

expected dimension. The result of this computation gives the following:

Proposition 3.3. The Quot Scheme QuotP (OrP1) with P (d) = k(d+1)+m having Gotzmann
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number

r(r + 1)

2
+m,

is the irreducible scheme given by the degeneracy locus of

Gr((r − k)(
r(r + 1)

2
+m+ 1)−m, r(r(r + 1)

2
+m+ 1))

with rank (r − k)k + rm.

Iarrobino and Kleiman [24] showed that the maximal Castelnuovo-Mumford regularity of a

scheme with Hilbert polynomial P is equal to the Gotzmann number of P . However, this

is not the case for globally generated sheaves. In fact, the following example shows that we

can use the Gotzmann construction to embed a Quot scheme into a smaller Grassmannian

than the Gotzmann number gives.

Example 3.2. Consider Q = QuotP (O3
P1), where P (d) = 2(d+ 1). The Gotzmann number

of P is 3, and the Castelnuovo-Mumford regularity of a sheaf F ∈ Q is 0. Set

W0 = {F ∈ Gr(S3
0 , P (0))|codimF · S1 = P (1)}

= {F ∈ Gr(3, 2)|codimF · S1 = 4}

∼= P2

and

W3 = {F ∈ Gr(S3
3 , P (3))|codimF · S1 = P (4)}

= {F ∈ Gr(12, 8)|codimF · S1 = 10}.

Note that Q ∼= W3, but that by the last section, Q embeds into W0. Given a point F ∈ W0,
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one shows that F · S3 ∈ W3, so Q ∼= W0.

3.5 Bounding Chern classes

Given a rank 2 globally generated vector bundle F with Chern classes c1 and c2, [7] gives

a bound for c2 in terms of c1, using the vanishing of a section of F along a smooth curve.

Recall that a vector bundle is split if it can be written as a direct sum of line bundles.

Proposition 3.4. If E is a non-split rank-2 globally generated vector bundle on P3 with

c1 ≥ 4, then

c2 ≤
2c3

1 − 4c2
1 + 2

3c1 − 4
.

Proof. See [7], Lemma 1.5.

We can use the results herein to give a larger bound, but a bound that applies to any globally

generated coherent sheaf.

Let E be a rank 2 globally generated coherent sheaf on P3 with Chern classes c1, c2 and c3.

Note that c3 may be non-zero, since we are not restricting attention to vector bundles. The

Hilbert polynomial was computed in example 1.3:

PE(d) =
1

3
d3 + (2 +

1

2
c1)d2 + (

1

2
c2

1 + 2c1 +
11

3
− c2)d+ c, (3.8)

where

c = c3
1/6 + c2

1 + 11c1/6− c1c2/2− 2c2 + c3/2 + 2
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is given for completeness; although it has no bearing on the following computation, it will

be used again in the next chapter.

Since E is globally generated, PE(d) has a Gotzmann representation; write

PE(d) = P3 + P2 + P1 + P0,

where Pi is the sum of binomial coefficients in the Gotzmann representation of degree i.

Since E is rank 2, it follows that

P3 =

(
d+ 3

3

)
+

(
d+ 2

3

)
=

1

3
d3 +

3

2
d2 +

13

6
d+ 1,

so

PE − P3 =
1

2
(1 + c1)d2 + (

1

2
c2

1 + 2c1 +
3

2
− c2)d+ c− 1.

This tells us that c1 ≥ −1, but in fact c1 ≥ 0 for any globally generated coherent sheaf on

Pn. To see this, assume F is a rank r globally generated sheaf on Pn with Hilbert polynomial

P (d); the top two terms of P (d) are rdn/n! + (r(n+ 1)/2 + c1(F))dn−1/(n− 1)!. By reason

of rank, the torsion subsheaf tors(F) has a Hilbert polynomial of degree at most n − 1; so

the Hilbert polynomial of the torsion-free quotient F shows that c1(F) ≥ c1(F).

So now assume in addition that F is torsion-free. For a hyperplane i : H ↪→ Pn, there is an

exact sequence

0→ F(−1)→ F → FH → 0,

and c1(F) = c1(FH). Since there exists a line L such that FL is a vector bundle, the result

c1 ≥ 0 follows from induction on n.
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Next, it follows that P2 has c1 + 1 terms:

P2 =

(
d

2

)
+ · · ·+

(
d− c1

2

)
=

1

2
(1 + c1)d2 − 1

2
(c1 + 1)2d+ b,

where b = 1
6
(c3

1 + 3c2
1 + 2c1). So

PE − P3 − P2 = (c2
1 + 3c1 + 2− c2)d+ c− 1− b.

This leading coefficient must be non-negative for there to be a Gotzmann representation.

Therefore we have shown:

Proposition 3.5. Let E be a rank 2 globally generated coherent sheaf on P3. Then its first

and second Chern classes satisfy the inequality

c2 ≤ c2
1 + 3c1 + 2.

This bound will be improved in the next chapter, and an example will be given there.
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Chapter 4

Hilbert functions of modules with

known rank and generating degrees

We saw in the last chapter that the Gotzmann regularity bound may not be achieved for

globally generated coherent sheaves. In this chapter, the Macaulay and Gotzmann repre-

sentations will be adjusted to account for the rank and generating degrees of a module.

The representation for the Hilbert function is in a sense less granular than that given by

Hulett in [23], but which uses the same number of repeated terms in all degrees. This allows

generalizations of the theorems of Macaulay, Green, and Gotzmann. The generalized Gotz-

mann regularity bound is strict for a module generated in degree zero, achieved by the lex

submodule with the same Hilbert polynomial, which was not necessarily so for the standard

Gotzmann number.

These results can be used to embed the Quot scheme QuotPOPn
into a smaller dimensional

Grassmannian using the construction given in the last chapter. Additionally, I will show that

any such rank r ≥ 1 sheaf on Pn satisfies an inequality of its first 2 Chern classes, c2 ≤ c2
1,

which improves the bound given in the last chapter; and this new bound is achieved for any
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r ≥ 1, and n ≥ 2, and any c1 ≥ 0.

4.1 Macaulay and Gotzmann representations adjusted

for rank and degree

For this section, take F = Se1 + . . . + Sem, with deg(ei) = fi for i = 1, . . . ,m, satisfying

f1 ≤ · · · ≤ fm, and M a quotient module of F of rank r.

The following proposition establishes a Macaulay representation of a Hilbert function ad-

justed by the rank and generating degrees of a module.

Proposition 4.1. We can write the Hilbert function of M as

H(M,d) =
m∑

i=m−r+1

(
d− fi + n

n

)
+ ρd,

with 0 ≤ ρd ≤
∑m−r

i=1

(
d−fi+n

n

)
for each d.

Proof. By Theorem 2.1, there exists a lex submodule L ⊂ F such that H(M,d) = H(F/L, d).

Note that the rank of F/L is the same as the rank of M . It follows that

L =
m−r⊕
i=1

Iiei

for some monomial ideals I1, . . . , Ir of S. The existence of the representation is immediate.

Next, we establish an adjusted Gotzmann representation of a Hilbert polynomial in two

ways; the second will be a coarser version of the first.

Proposition 4.2. We can write the Hilbert polynomial of M as follows:
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1. If fm−r ≤ 0, then the Hilbert polynomial of M can be written

PM(d) =
m∑

i=m−r+1

(
d− fi + n

n

)
+QM(d),

with QM(d) having a unique Gotzmann representation.

2. If fm ≤ 0, then the Hilbert polynomial of M can also be written

PM(d) = r

(
d+ n

n

)
+Q′M(d),

with Q′M(d) having a unique Gotzmann representation.

Proof. Again writing

F/L = S(−f1)/I1 ⊕ · · · ⊕ S(−fm−r)/Im−r ⊕
m⊕

i=m−r+1

S(−fi)

with PM(d) = PF/L(d), apply Proposition 3.1 to

S(−fr+1)/Ir+1 ⊕ · · · ⊕ S(−fm)/Im

to give the first result. For the second result, since f1, . . . , fm ≤ 0, we can repeatedly apply

the formula

(
d+ n+ 1

n

)
= 1 +

(
d+ 1

1

)
+

(
d+ 2

2

)
+ · · ·+

(
d+ n

n

)

from the proof of Lemma 3.3 to the binomial coefficients

m⊕
i=m−r+1

S(−fi)
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until we are left with

PM(d) = r

(
d+ n

n

)
+Q′M(d),

where Q′M(d) is the sum of QM(d) and the remaining binomial coefficients from the previous

step. Apply Lemma 3.2 to the terms in Q′M(d) to give a Gotzmann representation.

Definition 4.1. The first representation in the last proposition will be called a rank-and-

degree adjusted Gotzmann representation, and the second a rank-adjusted Gotzmann rep-

resentation.

Remark 4.1. If M = S/I is a quotient of S, then r = 1 and m = f1 = 0, and in this case

both representations specialize to the Gotzmann representation for the Hilbert polynomial of

S/I. If the last r generating degrees of F are all zero, then the rank-and-degree adjusted

Gotzmann representation and the rank-adjusted Gotzmann representation are the same.

Also, this allows a rank-and-degree adjusted Gotzmann representation for a module that does

not correspond to a globally generated coherent sheaf, as long as the rank of the module is at

least as large as the number of generators of positive degree.

Example 4.1. Set S = C[x, y, z] and F = Se1 + Se2 + Se3, where the generating degrees

of F are f1 = f2 = −1, f3 = 0. Assume M = F/Se3. The Hilbert polynomial of M is

PM(d) = 2
(
d+3

2

)
. The rank-and-degree adjusted Gotzmann representation is

PM(d) =

(
d+ 3

2

)
+

(
d+ 2

2

)
+

(
d+ 1

d

)
+ 1,

and the rank-adjusted Gotzmann representation is

PM(d) = 2

(
d+ 2

2

)
+

(
d+ 1

d

)
+

(
d

d− 1

)
+ 3.
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The standard Gotzmann representation is

PM(d) =

(
d+ 2

d

)
+

(
d+ 1

d− 1

)
+

(
d− 1

d− 2

)
+

(
d− 2

d− 3

)
+

(
d− 3

d− 4

)
+ 11.

Note that QM(d) has Gotzmann number 2, and Q′M(d) has Gotzmann number 5. The stan-

dard Gotzmann number is 16.

4.2 Strict bounds on first and second Chern classes

As a first application, we will refine the inequality on Chern classes of a rank r = 2 globally

generated coherent sheaf on P3 given in the last chapter. This bound will be strict, and

applies to all positive ranks r and all dimensions n of Pn.

Theorem 4.1. Let E be a rank r ≥ 1 globally generated coherent sheaf on Pn for an integer

n ≥ 0. Then the first and second Chern classes of E satisfy the inequality

c2 ≤ c2
1.

Proof. If n ≤ 1, then c2 = 0, and c1 ≥ 0 for any such globally generated sheaf on Pn, so

assume that n ≥ 2. We will only use the top 3 terms of the Hilbert polynomial, so it is

sufficient to write the Todd class and Chern character as

Td(Pn) = 1 +
n+ 1

2
H +

(n+ 1)(3n+ 2)

24
H2 + · · ·

where H is the class of a hyperplane, and

ch(E(d)) =
m∑
i=0

(−1)ich(Fi(d)),
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where

0→ Fm → · · · → F0 → E

is a resolution of E by locally free sheaves, and

ch(Fi(d)) =
(αi,1 + d)n + · · ·+ (αi,ri + d)n

n!
Hn

+
(αi,1 + d)n−1 + · · ·+ (αi,ri + d)n−1

(n− 1)!
Hn−1

+
(αi,1 + d)n−2 + · · ·+ (αi,ri + d)n−2

(n− 2)!
Hn−2 + · · ·

Now, we compute the top 3 terms of the Hilbert polynomial using Hirzebruch-Riemann-Roch:

PE(d) = r
dn

n!
+

(
r(n+ 1)

2
+ c1

)
dn−1

(n− 1)!

+

(
c2

1 − 2c2 + (n+ 1)c1

2
+
r(n+ 1)(3n+ 2)

24

)
dn−2

(n− 2)!
+ · · · ,

where ci = ci(E).

Write the rank-adjusted Gotzmann representation of PE as

PE(d) = Pn + Pn−1 + · · ·+ P0,

where Pi is the sum of binomial coefficients in the Gotzmann representation of degree i.

Note that

Pn = r

(
d+ n

n

)
= r

dn

n!
+
r(n+ 1)

2

dn−1

(n− 1)!
+
r(n+ 1)(3n+ 2)

24

dn−2

(n− 2)!
+ · · · ,
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where the third term is determined by

∑
1≤i<j≤n

ij =
(n− 1)n(n+ 1)(3n+ 2)

24

using a straightforward induction argument.

Then

PE − Pn = c1
dn−1

(n− 1)!
+

(
c2

1 − 2c2 + (n+ 1)c1

2

)
dn−2

(n− 2)!
+ · · ·

If c1 = 0, then PE −Pn = −c2
dn−2

(n−2)!
+ · · · , which requires c2 ≤ 0 for there to be a Gotzmann

representation; otherwise,

Pn−1 =

(
d+ n− 1

n− 1

)
+

(
d+ n− 2

n− 1

)
+ · · ·+

(
d+ n− c1

n− 1

)
= c1

dn−1

(n− 1)!
+

(
(n+ 1)c1 − c2

1

2

)
dn−2

(n− 2)!
+ · · ·

So we have

PE − Pn − Pn−1 = (c2
1 − c2)

dn−2

(n− 2)!
+ · · · ,

with a non-negative leading coefficient for there to be a rank-adjusted Gotzmann represen-

tation, therefore c2 ≤ c2
1.

Example 4.2. Let S = C[x0, . . . , xn], with n ≥ 2, let a > 0 be an integer, and take

N = (xa0, x
a
1)S,

and let E be the sheaf associated to N . Then E(a) is globally generated of rank 1, and from
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the resolution

0→ S(−a)→ S2 → N(a)→ 0

it follows that E(a) has Chern polynomial

ct(E(a)) =
1

1− at
= 1 + at+ a2t2 + · · · ,

with c1 = a and c2 = a2 achieving the strict bound in the theorem. For r > 1, take a direct

sum of E with Or−1.

Bounds can also be computed for higher Chern classes. For example, consider rank-2 vector

bundles on P3, discussed in section 3.5, with Hilbert polynomial in equation (3.8).

From the work above, we consider two cases:

Case 1: c1 = 0: Then

PE − P3 = −c2d− 2c2 + c3/2.

Next compute

P1 = (d+ 1) + d+ · · ·+ (d− (−c2 − 2))

= −c2d+ 1− (−c2 − 2)(−c2 − 1)

2

= −c2d−
c2

2 + 3c2

2

so

PE − P3 − P1 =
c2

2 − c2 + c3

2
≥ 0.
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Case 2: c1 > 0: Then the top 2 terms of P2 come from above and the constant term is

c3
1/6− c2

1 + 11c1/6,

so

PE − P3 − P2 = (c2
1 − c2)d+ 2c2

1 − c1c2/2− 2c2 + c3/2.

Next compute

P1 = (d+ 1− c1) + (d− c1) + · · ·+ (d− c1 − (c2
1 − c2 − 2))

= (c2
1 − c2)d− c4

1/2− c3
1 + c2

1c2 + 3c2
1/2− 3c2/2 + c1c2 − c2

2/2.

so

PE − P3 − P2 − P1 =
c4

1 + 2c3
1 + c2

1 − 2c2
1c2 − 3c1c2 + c2

2 − c2 + c3

2
≥ 0.

Thus in general we have

c3 ≥ −c4
1 − 2c3

1 − c2
1 + 2c2

1c2 + 3c1c2 − c2
2 + c2.

When the first and second Chern classes achieve the equality c2 = c2
1 as in the last example,

we have c3 ≥ c3
1.
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4.3 Rank and degree-adjusted Macaulay, Green, and

Gotzmann Regularity

We would like to extend Macaulay’s theorem, Green’s Theorem, and Gotzmann’s Regularity

and Persistence Theorems to these representations. I will prove persistence in the next

section; the others are proven in this section. As before, assume F = Se1 + · · · + Sem with

deg(ei) = fi and f1 ≤ · · · ≤ fm.

First we will require a lemma giving more properties of Green and Macaulay transformations.

Lemma 4.1. Assume a, b and d are positive integers.

1. a〈d〉 + b〈d〉 ≤ (a+ b)〈d〉

2. a〈d〉 + b〈d〉 ≤ (a+ b)〈d〉

3. a〈d+1〉 ≤ a〈d〉

4. a〈d+1〉 ≤ a〈d〉

Proof. See [12, Lemmas 4.4 and 4.5].

Proposition 4.3. If N is a submodule of F such that M = F/N has rank r, and Hilbert

function

H(M,d) =
m∑

i=m−r+1

(
d− fi + n

n

)
+ ρd.

1. For all d ≥ fm−r + 1,

H(M,d+ 1) ≤
m∑

i=m−r+1

(
d+ 1− fi + n

n

)
+ ρ

〈d−fm−r〉
d .
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2. For a general element h ∈ S1, writing F ′ = F/hF , M ′ = F/(N +hF ) and S ′ = S/hS,

we have

H(M ′, d) ≤
m∑

i=m−r+1

(
d− fi + n− 1

n− 1

)
+ (ρd)〈d−fm−r〉

for all d ≥ fm−r + 1, where H(M ′, d) = dimS′(M
′
d).

Proof. As before, the lex module with the same Hilbert function can be written

L =
m−r⊕
i=1

Iiei

for some lex ideals I1, . . . , Ir of S. Note that

H(M,d) = H(F/L, d)

=
m∑

i=m−r+1

(
d− fi + n

n

)
+H(S/I1, d− f1) + · · ·H(S/Im−r, d− fm−r).

Then for d ≥ fm−r + 1,

H(M,d+ 1) = H(F/L, d+ 1)

≤
m∑

i=m−r+1

(
d+ 1− fi + n

n

)
+H(S/I1, d− f1)〈d−f1〉 + · · ·H(S/Im−r, d− fm−r)〈d−fm−r〉

≤
m∑

i=m−r+1

(
d+ 1− fi + n

n

)
+H(S/I1, d− f1)〈d−fm−r〉 + · · ·H(S/Im−r, d− fm−r)〈d−fm−r〉

≤
m∑

i=m−r+1

(
d+ 1− fi + n

n

)
+ ρ

〈d−fm−r〉
d

where the first inequality is by Macaulay’s Theorem, the second and third inequalities are
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by Lemma 4.1.

For the second statement, write I ′i and for the image of Ii in S ′ and L′ for the image of L in

F ′. By [15, Theorem 3.18], we have H(M ′, d) ≤ H(F ′/L′, d), and H(S ′/I ′i, d) = H(S/I, d)〈d〉

for each lex ideal Ii and for all d > 0 by [25, Proposition 5.5.23]. Then for d ≥ fm−r + 1,

with the last two inequalities by Lemma 4.1,

H(M ′, d) ≤ H(F ′/L′, d)

=
m∑

i=m−r+1

(
d− fi + n− 1

n− 1

)
+H(S/I1, d− f1)〈d−f1〉 + · · ·H(S/Im−r, d− fm−r)〈d−fm−r〉

≤
m∑

i=m−r+1

(
d− fi + n− 1

n− 1

)
+H(S/I1, d− f1)〈d−fm−r〉 + · · ·H(S/Im−r, d− fm−r)〈d−fm−r〉

≤
m∑

i=m−r+1

(
d− fi + n− 1

n− 1

)
+ (ρd)〈d−fm−r〉.

Next, the rank and degree-adjusted form of Gotzmann regularity is proved.

Theorem 4.2. Assume F = Se1 + · · · + Sem with deg(ei) = fi and f1 ≤ · · · ≤ fm, such

that fm−r ≤ 0, and N is a submodule of F such that M = F/N has rank r, and Hilbert

polynomial

PM(d) =
m∑

i=m−r+1

(
d− fi + n

n

)
+Q(d)

where QM(d) has Gotzmann number s. Then the saturation of N is max(s, fm)-regular.

Furthermore, if fm−r = 0 and s ≥ fm, then this bound is achieved by the lex submodule.

Proof. The proof of regularity is essentially the same as the previous proof in the last chapter,

by induction on dim(S) − 1, and will be sketched. From a saturated module N with M =
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F/N , we obtain M ′ = M/hM(−1) which still has rank r since h is M -regular, and satisfies

the hypotheses of Proposition 4.2 (1), so the uniqueness of the Gotzmann representation for

QM ′(d) gives

PM ′(d) =
m∑

i=m−r+1

(
d− fi + n− 1

n− 1

)
+

(
d+ a1 − 1

a1 − 1

)
+ · · ·+

(
d+ at − (t− 1)

at − 1

)

for some t ≤ s, where

QM(d) =

(
d+ a1

a1

)
+ · · ·+

(
d+ as − (as − 1)

as

)

is the Gotzmann representation of QM(d). The same concluding argument as in the last

chapter, using Proposition 4.3 in place of Theorem 3.1, shows that M is (s− 1)-regular, and

since F is fm-regular, by Lemma 1.1 (2), N is max(s, fm)-regular.

To show strictness when fm−r = 0 and s ≥ fm, consider a given Hilbert polynomial

P (d) =
m∑

i=m−r+1

(
d− fi + n

n

)
+Q(d)

with Q(d) having Gotzmann number s. The saturated lex module L with F/L having the

same Hilbert polynomial is

L = S(−f1)⊕ · · · ⊕ S(−fm−r−1)⊕ Lm−r.

for a lex ideal Lm−r with PS/Lm−r(d) = Q(d).

Since fm−r = 0 and reg(Lm−r) = s, it follows that reg(L) = s.

Remark 4.2. In particular, rank-adjusted Gotzmann regularity is strict for modules gen-

erated in degree zero, just as standard Gotzmann regularity is strict for ideals. This is in

contrast to example 3.2, where no submodule achieves the regularity given by the standard
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Gotzmann number.

The following proposition establishes an ordering on the different Gotzmann numbers that

can be seen in example 4.1.

Proposition 4.4. Assume P is the Hilbert polynomial of a quotient module M with rank

r, and generating degrees f1, . . . , fm, such that f1 ≤ . . . ≤ fm ≤ 0. Write Grd for the

rank-and-degree adjusted Gotzmann number (that is, the Gotzmann number of QM(d) from

Proposition 4.2 (1)), Gr for the rank-adjusted Gotzmann number (the Gotzmann number of

Q′M(d) from Proposition 4.2 (2)), and G for the Gotzmann number (from chapter 3). Then

Grd ≤ Gr ≤ G.

Proof. We will construct saturated modules with the same Hilbert polynomial that have

known regularity. Write F1 = Se1 +· · ·+Ser+1 with degrees deg(e1) = fm−r+1, . . . , deg(er) =

fm, deg(er+1) = 0, and F2 = Ser+2+· · ·Se2r+2, with all degrees zero. There exists a saturated

lex ideal I1 of S with Hilbert polynomial P (S/I1) = QM ; set L1 = I1er+1, and note that

P (F1/L1) = P . There is also a saturated lex submodule L2 = I2e2r+2 of F2 with Hilbert

polynomial P (F2/L2) = P (so that P (S/Ir+2er+2) = Q′M). We have reg(L1) = Grd; similarly,

reg(L2) = Gr. By Proposition 3.2, L2 is G-regular, so Gr ≤ G. Now consider the saturated

submodule L1 + F2 of F1 + F2. We still have reg(L1 + F2) = Grd by Lemma 1.1 (1), and

L1 + F2 is Gr-regular by Theorem 4.2, so Grd ≤ Gr.

4.4 Rank and degree-adjusted Gotzmann Persistence

It remains to prove rank-and-degree adjusted Gotzmann Persistence. This is not a straight-

forward application of [12], because the deformation to a monomial module does not a priori
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preserve the hypotheses. Instead, we will prove this similar to the proof for ideals given in

[13].

Theorem 4.3. Assume (in addition to previous assumptions on F , N , and M = F/N) that

N is generated in degree at most d and d ≥ fm−r + 1. If

H(M,d+ 1) =
m∑

i=m−r+1

(
d+ 1− fi + n

n

)
+ ρ

〈d−fm−r〉
d ,

then

H(M,d+ 2) =
m∑

i=m−r+1

(
d+ 2− fi + n

n

)
+ ρ

〈d−fm−r+1〉
d+1 .

The proof follows from extensions of some other results to modules, which will be given in

the following lemmas.

Definition 4.2. Suppose the module M has Betti numbers βi,j. A consecutive cancellation

is the process of choosing i, j such that βi,j and βi+1,j are positive, and replacing βi,j, βi+1,j

with βi,j − 1, βi+1,j − 1 respectively.

The following Lemma is the extension of [30, Theorem 1.1] to modules.

Lemma 4.2. If N is a submodule of F and M = F/N , then the graded Betti numbers of

F/N are obtained from those of F/in(N) by consecutive cancellations.

Proof. By Proposition 2.2, there exists a weight vector (w0, . . . wn, v1, . . . , vm) with positive

entries such that xα1ei > xα2ej if and only if α1,0w0 + · · · + α1,nwn + fivi > α2,0w0 + · · · +

α2,nwn + fjvj. Let Ñ be the homogenization of N as a S̃ = S[t]-module with respect to the

grading deg(xi) = wi and deg(t) = 1 on S̃, and extending to F̃ = ⊕S̃(−fj). Note that every

generator of Ñ comes from an element in N with every term other than the initial term

multiplied by a positive power of t. Also t and t− 1 are F̃ /Ñ -regular.
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Write F for a minimal graded free resolution of F̃ /Ñ . By [9, Theorem 15.17], F ⊗ S̃/(t)

is a minimal free graded resolution of F̃ /Ñ ⊗ S̃/(t) ∼= F/in(N), and F ⊗ S̃/(t − 1) is a

(not necessarily minimal) graded free resolution of F/N . Thus, we can remove a trivial

complex from F⊗ S̃/(t−1) to get a minimal free resolution of F/N , resulting in consecutive

cancellation of the Betti numbers from F/in(N) to F/N .

Example 4.3. In example 1.2, we saw I = (x2 − y2, xy − z2) and in(I) = (x2, xy, y3) in

S = C[x, y, z, w], with the graded Betti numbers of S/I

β0,0 = 1, β1,2 = 2, β2,4 = 1

and the graded Betti numbers of S/in(I)

β0,0 = 1, β1,2 = 2, β1,3 = 1, β2,3 = 1, β2,4 = 1

differing by the consecutive cancellation of β1,3 and β2,3.

The following lemma uses the construction from [29] given in section 2.1.

Lemma 4.3. If N is a submodule of F and L is the lex submodule of F such that the Hilbert

functions of F/N and F/L agree, then N can be deformed to L using a finite sequence of

the following operations:

1. general change of coordinates

2. taking the initial module

3. the operation σ′L(N (p)) from Proposition 2.3.

Proof. See [29, Proposition 30].
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Proof. (of Theorem 4.3): Given N , we deform to the the lex submodule L using the oper-

ations above. Clearly the first operation preserves Betti numbers; by Proposition 2.3, the

third operation preserves Betti numbers also. By Lemma 4.2, the second operation can only

increase Betti numbers in such a way that the Betti numbers of F/N can be recovered from

those of F/L by consecutive cancellations.

By the assumption on H(F/L, d) and H(F/L, d+ 1), it follows that L has no generators in

degree d+ 1. Assume that

H(M,d+ 2) <
m∑

i=m−r+1

(
d+ 2− fi + n

n

)
+ ρ

〈d−fm−r+1〉
d+1 .

Then L has a generator in degree d+ 2. But N is generated in degrees at most d. This must

be explained by consecutive cancellation with a non-zero Betti number β1,d+2 of L.

Since F/L can be written ⊕mS/Li(−fi) and lex ideals have linear resolutions by Proposition

2.1, it follows that the non-zero first syzygy of degree d+ 2 must result from a generator of

degree d+ 1, which is a contradiction.

Since we have rank-adjusted regularity and persistence, we can use the rank-adjusted Gotz-

mann number to determine the Grassmannian into which to embed the Quot scheme from

section 3.3, QuotP (OrPn) .

Example 4.4. In section 3.4, we saw that the Hilbert polynomial P (d) = k(d+ 1) +m has

Gotzmann number

s =
k(k + 1)

2
+m;

however, when this is being used for QuotP (OrP1
), we can use the rank-adjusted Gotzmann

number of m. This agrees with the lower number used to embed the Quot scheme QuotP (O3
P1)

when P (d) = 2(d+ 1), as given in example 3.2.
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The next example shows the improvement in the regularity bound for a rank-k sheaf on P2

with Hilbert polynomial

P (d) = k

(
d+ 2

2

)
+m1(d+ 1) +m2.

The standard Gotzmann number is

s =
1

24
k(k + 1)(3k2 − k + 10 + 12m1) +

1

2
m1(m1 + 1) +m2,

and the rank-adjusted Gotzmann number is

s =
1

2
m1(m1 + 1) +m2.

4.5 Future work

In this section, I will mention two opportunities for future work. The first opportunity

is to consider Hilbert and Quot schemes by fixing a sheaf F other than OrPn from which

to take quotients. After an appropriate twist, F can be embedded into some OrPn , so we

have a subscheme of the Grassmannian constructed herein. However, it is possible that we

can construct an embedding into a smaller-dimensional Grassmannian. The question is: to

what extent can we generalize the theorems of Macaulay, Green, and Gotzmann in rings

other than the polynomial ring? For questions about regularity, it is natural to restrict

attention to Koszul k-algebras, since these are the rings R for which all graded R-modules

have finite regularity [1] (with respect to minimal free graded R-resolutions). McCullough

and Peeva say that it is an interesting open problem to find analogues over Koszul rings of

conjectures or results on regularity over a polynomial ring, and Conca, de Negri and Rossi

pose some specific questions in this vein in [8, Section 5]. Another important generalization
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is to explicitly construct the Quot scheme of a trivial bundle over a smooth projective curve,

which is studied for its intersection theory.

The second opportunity for future work is to apply these results to classes of finitely generated

modules such as the cohomology modules of a vector bundle. For example, the conjecture

of Hartshorne on the indecomposability of a rank-2 vector bundle on P5 [19] has been inves-

tigated in spacial cases by explicit methods, such as the consideration of globally generated

vector bundles with small first Chern class [7]. It would be interesting to consider growth

conditions on the cohomology modules to limit the Hilbert functions that such modules can

take.
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