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Abstract
Densely distributed sensor networks can revolutionize environmental observations by providing real-time data with an 
unprecedented spatiotemporal resolution. However, field deployments often pose unique challenges in terms of power provi-
sions and wireless connectivity. We present a framework for wirelessly connected distributed sensor arrays for near-surface 
temperature and/or deformation monitoring. Our research focuses on a novel time division duplex implementation of the 
LoRa protocol, enabling battery powered base stations and avoiding collisions within the network. In order to minimize 
transmissions and improve battery life throughout the network, we propose a dedicated delta encoding algorithm that utilizes 
the spatial and temporal similarity in the acquired data sets. We implemented the developed technologies in a AA battery 
powered hardware platform that can be used as a wireless data logger or base station, and we conducted an assessment of 
the power consumption. Without data compression, the projected battery life for a data logger is 4.74 years, and a wireless 
base stations can last several weeks or months depending on the amount of network traffic. The delta encoding algorithm can 
further improve this battery life with a factor of up to 3.50. Our results demonstrate the viability of the proposed methods 
for low-power environmental wireless sensor networks.

Keywords  LPWAN · Collision avoidance · TDD · LoRa · Delta encoding · Environmental sensing

1  Introduction

The quantification, prediction, and management of natural 
resources require multi-scale observations of near-surface 
environmental processes. Existing remote sensing and 
ground-based observations alone lack the spatial and/or 
temporal resolution needed to capture the heterogeneity in 
complex environments, like mountainous watersheds [1]. 
Densely distributed environmental sensor networks can 
overcome some of these limitations, but the concept remains 

largely unused for near-surface monitoring [2]. The slow 
adoption can be attributed to the unique challenges posed by 
field deployments. This includes a lack of power provisions 
and network infrastructure, climatic and topographic impacts 
on radio frequency propagation, and mechanical issues 
related to humidity, moisture, pressure, and even wildlife 
damage. Commercial devices for environmental monitor-
ing (as used in [3]) are usually the result of a dedicated and 
costly design process, and low-cost solutions usually consist 
of prototypes with general purpose hardware (e.g., Arduino, 
Raspberry Pi) [4]. The cost, replicability, and reliability of 
these devices prevents system scale-ups to hundreds or 
thousands of distributed sensors. Another limiting factor in 
large-scale deployments of environmental monitoring sys-
tems, is the wireless connectivity of sensor nodes. Wireless 
networks of densely distributed sensors can provide data 
with an unprecedented spatial and temporal resolution for 
environmental research, providing new insights that improve 
the predictive understanding of ecosystems and their hydro-
biogeochemical processes, and of natural hazards and their 
triggering processes. Real-time data transmission and remote 
access is useful for sensor management and for scheduling 
maintenance, reducing system downtime, and preventing 
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loss of data. In the context of natural resource management 
and infrastructure monitoring, real-time data can drive cru-
cial decision making processes (e.g., water management, 
landslide early warning systems) [5, 6]. Despite the wide 
range of available low-power wide area network (LPWAN) 
technologies, the unique requirements for environmen-
tal monitoring applications result in a non-trivial wireless 
technology implementation. Despite the long range and low 
power consumption of NB-IoT and LTE-M [7], these cel-
lular internet of things (IoT) technologies do not provide a 
solution for environmental sensor networks in remote field 
sites due to their lack of coverage and operation in licensed 
spectrum. Alternatives in unlicensed spectrum include Sig-
fox and LoRaWAN [8]. For sensor nodes, these technologies 
offer an ultra-low power consumption. However, their base 
stations were never designed for power constrained appli-
cations, and backhaul connectivity is usually required [9]. 
Wielandt and Dafflon [10] presented an implementation of 
the LoRa Physical layer in a novel LPWAN protocol stack 
that offers low power consumption for sensor nodes as well 
as base stations. Because all devices in the network are 
time synchronized, packet reception and transmission can 
be scheduled on each side of a link, resulting in an opti-
mized power and spectrum usage through time division 
duplex (TDD)   and frequency hopping spread spectrum 
(FHSS). The resulting network protocol avoids collisions 
in the network and allows the use of single-channel radios 
in the nodes and base stations, drastically reducing system 
complexity, cost, and power consumption of the latter [11]. 
Given the operation in unlicensed frequency bands, colli-
sions with packets from external networks are still possible. 
However, the proposed network protocol is aimed towards 
environmental monitoring applications in remote locations 
where wireless technologies are generally absent.

In comparison to common internet-of-things devices with 
few sensors, environmental monitoring systems often produce 
larger amounts of data, requiring particular attention to data 
transmission and compression. Here, we adopt the network pro-
tocol from [10], and we add a presentation layer that handles 
data compression, effectively reducing network traffic and power 
consumption of nodes and base stations. Most LPWAN devices 
employ standard payload formats (e.g., CayenneLPP [12]) and/
or compression techniques (e.g., Huffman encoding) [13]. For 
the presented implementation, a custom payload format and a 
lossless compression technique is proposed, taking advantage of 
the temporal and spatial similarity in environmental sensor data.

The proposed protocol stack is implemented in a custom 
hardware platform for densely distributed, vertically resolved 
environmental measurements. Each sensor node comprises 
a battery powered data logger that is connected to a sensor 
probe. The sensor probes consist of a tube with an array of 
cascaded, discrete sensors; here we present two use cases, 
one with temperature sensors, and one with alternating 

temperature sensors and accelerometers. When temperature 
sensors are used, the probes can be vertically deployed above 
the ground for snowpack monitoring, or below the ground 
for identifying subsurface thermal regimes, quantifying soil 
thermal parameters, and estimating heat and/or water fluxes. 
When temperature sensors are alternated with accelerom-
eters, the probes can be used to measure soil deformation and 
related thermo-hydrological properties and processes (e.g., 
soil movement driven by permafrost thaw). The mechanical 
design, thermal modeling, and the use case scenarios of these 
sensor arrays have been described and validated by Dafflon 
et al. [14] and Wielandt et al. [15]. This paper focuses on the 
system design, the implementation of the novel network pro-
tocol stack and data compression techniques, and the effect 
on power consumption for sensor nodes and base stations.

2 � Wireless Networks for Environmental 
Monitoring

Figure 1 illustrates the architecture and services in a real-
time environmental monitoring application. Environmental 
sensors connect through LoRa to a low-power base station, 
which communicates over UART with a data publisher. The 
publisher is connected to a server through a wired or wire-
less communication technology (e.g., Ethernet, LTE, NB-
IoT, WiFi). The server hosts Mosquitto [16], a service that 
supports the open publish/subscribe MQTT protocol [17], 
specifically designed for low-cost, low-power operation 
over bandwidth constrained networks. The incoming sen-
sor data is processed by a Python script, which decodes all 
messages and feeds data into a real-time data base. InfluxDB 
is an open-source database specifically targeted at handling 
time series data. [18]. Grafana is the open source service 
we suggest for data visualization [19]. The result is a real-
time database and data visualization platform that can be 
accessed by users. Furthermore, users can use the MQTT 
service to send commands to the sensors for network and/or 
sensor management.

Most of the described protocols and technologies have 
been widely documented and their implementation requires 
little to no research efforts. However, the implementation 
of an LPWAN for remote environmental research applica-
tions poses a unique set of technical requirements that does 
not entirely align with current IoT technologies. Environ-
mental sensors require accurate real-time clocks for regular 
time stamped measurements. Delays in data transmission 
are generally acceptable, but data loss should be avoided. 
Furthermore, remote network deployments require not only 
low-power sensor devices, but also low-power infrastructure.

LoRaWAN relies on LoRa as an underlying physical 
layer technology that provides long-range, low-power 
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connectivity. However, LoRaWAN requires power inten-
sive multi-channel base stations and backhaul connec-
tivity  [9]. The technology reduces collisions by using 
orthogonal spreading factors, however this does not elim-
inate collisions in the network. Furthermore, its fair-use 
policy limits the number of transmissions per day, or at 
least requires a listen-before-talk approach [20]. These 
limitations can be overcome with a novel LoRa based net-
work protocol stack, as presented in [10]. The presented 
stack schedules transmissions in a TDD implementation, 
preventing package collisions. Pseudorandom network 
parameters (e.g., channel, bandwidth (BW), spreading 
factor (SF), code rate) are calculated on both sides of 
the link based on unique parameters (i.e., network name, 
device ID, time stamp). The protocol is particularly use-
ful for environmental monitoring applications, since 

regular measurements, transmissions, and receptions can 
be implemented in the TDD scheme. Figure 2 illustrates 
the different states of a network with one base station and 
two sensor nodes. The base station can either sleep, wake 
up to receive data from sensors, or broadcast a network 
management packet that includes the current time and 
measurement interval. The sensor nodes are mostly asleep, 
but wake up for a variety of reasons:

•	 When a scheduled network management packet is 
expected, the nodes will enter a LoRa receive (Rx) state.

•	 Once every measurement interval, all (m) sensors in the 
array are read out quasi simultaneously and their data is 
added to a buffer (i.e. data aggregation).

•	 After t measurement intervals, the buffer is full and a 
compression algorithm is executed, compressing the 

Figure 1   Architecture and 
services enabling real-time 
environmental monitoring. 
Environmental sensors connect 
through LoRa to a base station, 
which communicates over 
UART with a data publisher. 
The publisher is connected to a 
server with a real-time database 
and a visualization platform for 
users.

Figure 2   Scheme of TDD trans-
missions, sensor measurements, 
and data compression in a net-
work with one base station and 
two sensor nodes ( t = 3).
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t ⋅ m sensor values. The algorithm reduces the number 
of transmissions required, resulting in a lower overall 
power consumption for sensor nodes and base stations.

•	 The compressed data is transmitted in as many pack-
ets as required ( ≤ t ). There is one transmission window 
per measurement interval for each node. When all com-
pressed data is transmitted, no new transmissions will 
occur until a new compressed data set is available.

Following FCC requirements [21], air time ( Tpacket ) is 
limited to 0.4 s. The air time depends on the duration of 
the packet’s preamble ( Tpreamble ) and payload ( Tpayload ). 
As expressed in (1-4), these values are determined by the 
duration of a LoRa symbol ( TS ). For sensor data transmis-
sions, SF is a trade-off between range and throughput. In 
this research, SF = 9 leads to a maximum payload (PL) of 
66 bytes following (1-4) [22], assuming an 8 bit preamble 
( npreamble = 8 ), BW = 125e3 , 4/5 code rate ( CR = 1 ), cyclic 
redundancy check (CRC) enabled ( CRC = 1 ), explicit 
header ( Hen = 0 ), and low data rate optimization disabled 
( Ropt = 0 ). The package structure is layed out in Fig. 3. The 
packet starts with a 9 bit packet header, containing an 8 bit 
signature for authentication (a pseudorandom bit sequence 
based on the network name, device ID, and time stamp). 
The subsequent ‘TX_complete’ bit indicates if all com-
pressed data has been transmitted, or if another packet will 
follow. When a transmission is complete (TX_complete 
= 1), the base station and the corresponding sensor node 
will sleep through the remaining time slots to conserve 
power, as indicated in Fig. 2. Because of the small header 
size (9 bits vs. 117 bits for LoRaWAN), payloads of up to 
519 bits can be transmitted in each packet. When the size 

(1)TS =
2SF

BW

(2)Tpreamble = (npreamble + 4.25) ⋅ TS

(3)
Tpayload =TS ⋅

(
8 +max

{
0, (CR + 4)

⋅

⌈
8PL − 4SF + 28 + 16CRC − 20Hen

4SF − 2Ropt

⌉})

(4)Tpacket = Tpreamble + Tpayload

of the compressed message exceeds 519 bits, it is split into 
multiple LoRa packets.

Base station transmissions are performed with SF = 12 
and BW = 500e3 , given the limited amount of network 
management data and the importance of network range. 
Following (1-4), this results in a maximum package size of 
30 bytes, as presented in Fig. 4. The message starts with an 
8 bits pseudorandom signature for identification, followed by 
a payload descriptor to identify the payload contents. In the 
most common scenario, the network management payload 
consists of a UTC time stamp (7 bytes, with epoch 00:00:00, 
01/01/2000) and a measurement sample interval (2 bytes).

3 � A Low‑Power Hardware Platform 
with Sensor Node and Base Station 
Functionality

Figure 5 presents a hardware platform that provides the pre-
viously described functionality and meets the requirements 
of a low-cost, low-power, and reliable system for densely 
distributed, wirelessly connected thermal and deformation 
sensor arrays. Each device consists of a main board that can 
be used as a data logger or wireless base station. In order to 
allow standalone as well as networked sensor deployments, 
two wireless technologies are implemented. Bluetooth low 
energy (BLE) is selected for local connectivity to a computer 
or smartphone for data offloading and sensor configuration. 
The choice is motivated by the low power consumption and 
widely demonstrated technological maturity of BLE [23]. 
For long-range networking, we use LoRa technology, as 
previously discussed. In order to implement these technolo-
gies, we selected an NRF52832 ARM Cortex M4 as a low-
power system-on-chip (SoC) with BLE provisions for short-
range communications. This SoC controls a LoRa modem 
(RFM95W) for single channel communications and can be 
programmed to operate as a base station or wireless data log-
ger. The PCF2129AT real-time clock takes care of the time 
sensitive tasks as presented in Fig. 2. A 4 MB low-power 
flash chip is used for storing sensor data on-device, which 
enables data logger functionality in offline configurations 
or data redundancy in online data loggers. In base station 
mode, received sensor data is stored on an optional microS-
DHC memory card, and data is shared with an external data 
publisher over a serial interface, as presented in Fig. 1.

The temperature sensor array consists of a series of 
TMP117A sensors with a resolution of 0.0078125 ◦ C and 

Figure 3   Packet structure for compressed sensor data. When the size of 
a compressed message exceeds 519 bits, it is split into multiple LoRa 
packets. Figure 4   Packet structure for network management transmissions.
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a factory-assured accuracy of ±0.1 ◦C [24], which was fur-
ther improved to ±0.015 ◦ C using a calibration technique 
described in [14]. The high resolution and accuracy of the 
sensors enables observations of important environmental 
processes, e.g., freeze-thaw interfaces. For the temperature/
deformation array each temperature sensor is accompanied 
by an ADXL345 accelerometer, allowing deformation meas-
urements with a 0.390 mm resolution and a 95% confidence 
interval of ±0.73 mm per meter of probe length [15]. The 
sensors are connected to the SoC through an I 2 C bus. In 
order to enable sensor arrays of up to 2 m long, the bus speed 
is limited to 100 kHz and an I 2 C bus buffer with integrated 
current sources is used (TCA9803). Each temperature sensor 
on the bus is accompanied by a D-type flip-flop, creating a 
shift register along the sensor array that is used for individu-
ally addressing each sensor.

All components in the system are selected for their opera-
tion in the 1.8 V - 3.6 V range, enabling the use of two 
AA batteries without a need for voltage regulators. Our 

application uses Energizer L91 Li/FeS2 cells, which have 
been rated at 3500 mAh for temperatures between −40 ◦ C 
and 60 ◦C [25]. The red blocks in Fig. 5 mark all the com-
ponents that are directly connected to the power supply. The 
green blocks indicate the parts that are powered down with a 
load switch (TPS22919) whenever possible. This eliminates 
the impact of the MicroSDHC card and the entire sensor 
array on the device’s sleep power.

4 � Data Compression for Environmental 
Sensor Arrays

4.1 � Use Case 1: Thermal Sensor Arrays

The thermal sensor arrays consist of a series of m TMP117A 
sensors [24]. Each sensor produces an output of 2 bytes, 
expressing the temperature in two’s complement format with 
a 0.0078125 ◦ C resolution. For each measurement, a time 

Figure 5   Block diagram of the 
hardware platform with LoRa 
sensor node or base station 
functionality for environmental 
sensor arrays. Red blocks are 
directly connected to the power 
supply, green blocks can be 
switched off.
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stamp (4 bytes) is stored, along with a 10 bits value of the 
battery voltage (stored as 2 bytes), followed by m tempera-
ture values of 2 bytes each. For a temperature probe with 
17 sensors, this means that each sample takes up 40 bytes. 
Given the weight of LoRa transmissions in a device’s power 
budget [26] and the application’s tolerance towards delayed 
sensor data, we follow an approach of data aggregation over 
time, followed by compression, as proposed in [27] and 
illustrated in Fig. 2. Both data aggregation and compression 
can minimize energy consumption and network traffic, espe-
cially in tree-based network topologies where relay nodes 
reduce traffic by e.g, eliminating redundant data [28]. In this 
research, a star topology is employed, limiting opportunities 
for tree-based data aggregation. Other aggregation strategies 
are application driven, e.g., event based reporting, feature 
extraction. The application domain for our technology is 
environmental science and model development, hence we 
adopt a regular data reporting strategy without data reduc-
tion. Table 1 shows the aggregated temperature data, which 
forms a data set that exhibits similarity over time and space, 
because the sensors are deployed in a linear array to meas-
ure near-surface temperature gradients, and measurements 
are repeated regularly. While LPWAN payloads are often 
transmitted with lossy compression [29] or no compression 
at all (e.g., CayenneLPP [12]), some studies have investi-
gated lossless data compression in LPWAN networks [13, 
30]. Dictionary based compression techniques (e.g., Huff-
man encoding) can be a solution for efficient lossless com-
pression, but lost packets can impact decoding in the long 
term and the exchange of dictionaries would cause pro-
hibitive overhead for our monitoring system. The required 
reliability and the limited number of dynamic, noisy, and 

high-resolution temperature data points, would result in 
frequent dictionary updates [31]. In this work we employ 
a delta encoding scheme, which allows the exploitation of 
spatial and temporal similarity with limited computational 
efforts. Instead of transmitting the entire collection of 16 bit 
temperature values, only T1,1 is transmitted as a reference 
value, followed by a series of ΔT  values. First, the varia-
tion over space is captured by the ΔT1,j values, as expressed 
in (5). Next, the temporal variability is captured according 
to (6). k expresses the required number of bits for the spa-
tial variability ( ΔT1,j ) values, and l represents the required 
number of bits for the temporal variability.

In order to transmit the compressed data set, a message is 
composed, as presented in Fig. 6. The first 4 bits represent 
a data format identifier that defines the message format and 
provides flexibility in terms of future sensors and compres-
sion protocols. Next, m, k, and l are specified (respectively 
5, 4, and 4 bits), as well as the battery voltage at the time 
of compression Vbat (10 bits). Finally, the compressed tem-
perature data set is included starting with a 16 bits value 
for T1,1 . The total size of the message with compressed data 
( smessage,temp ) is determined by (7).

Depending on m, k, and l, the length of the composed 
message can exceed the maximum length of a data pack-
age. However, t time slots are available for transmitting 
the message, and the message can be split up into parts of 
≤ 519 bits , as demonstrated in the packet structure in Fig. 3. 
The proposed compression algorithm is lossless, which 
means that all received data can be decoded without any 
loss of accuracy. However, under extreme conditions (e.g., 
a large number of sensors, significant spatial and or tempo-
ral variability in measurements) the size of a compressed 
message could exceed the available network throughput 
( t × 519 bits ). In this case all incoming data will be decod-
able, but the tail of the compressed message would be lost.

(5)ΔT1,j = T1,j−1 − T1,j j ∈ {2,… ,m}

(6)ΔTi,j = Ti−1,j − Ti,j i ∈ {2,… , t} j ∈ {1,… ,m}

(7)
smessage,temp = 4 + 5 + 4 + 4 + 10 + 16

+ k ⋅ (m − 1) + l ⋅ m ⋅ (t − 1) [bits]

Table 1   Uncompressed temperature data points aggregated over time 
and space.

Figure 6   Message structure for 
compressed temperature data.
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4.2 � Use Case 2: Temperature/Deformation Sensor 
Arrays

The temperature/deformation probes contain an array of 
m pairs of TMP117A temperature sensors and ADXL345 
accelerometers [15]. The accelerometers are used in static 
conditions, regularly sampling the Earth’s gravitational vec-
tor along three axes (x, y, z). These measurements enable 
the calculation of each sensor’s tilt and thus the shape of the 
entire probe and its deformation over time. Each temperature 
value is represented as a 2 bytes value, and each accelerom-
eter generates three 10 bits values ( ax , ay , az ) to indicate the 
acceleration in two’s complement format with a resolution of 
0.0039 g [32]. For a probe with 16 temperature/acceleration 
sensor pairs, this results in a total sample size of 736 bits 
(92 bytes). Given the maximum packet size of 519 bits, data 
compression does not only result in a reduced power con-
sumption, but it is actually required to ensure that all data 
can be transmitted using the proposed protocol. In order to 
compress the measurement values, t samples are accumu-
lated over time, in analogy to the compression algorithm 
for thermal sensor arrays. Table 2 presents the resulting data 
set, with temperature values exhibiting the same temporal 
and spatial similarity as explained before, so we employ the 
same delta encoding scheme for these values. Acceleration 
values exhibit different characteristics over time and space, 
justifying a modified approach for data compression. Unlike 
temperatures, which exhibit daily variations, the soil move-
ments of interest are usually small, slow, and not reversible, 
resulting in a lot of potential for data compression. However, 
spatial similarity is not guaranteed, as soil deformation can 
be highly heterogeneous. Therefore, we generate a set of ref-
erence values ( ai,ref ,x , ai,ref ,y , ai,ref ,z ) for all m accelerometers. 
These reference values are used to calculate each sensor’s 
delta values ( Δaj,i,x , Δaj,i,y , Δaj,i,z ). Given the slow variations 
in deformation measurements, reference values do not need 
to be updated in every message. Instead, reference values 
can be updated gradually and spread over multiple messages. 

The number of reference values included in each message 
is a trade-off between compression rate and possible data 
loss: having all reference values included in each message 
results in low compression rates, but it guarantees that every 
received message can be decoded. When reference values 
are spread over multiple messages, higher compression rates 
can be achieved, but a single packet loss can affect multiple 
message decodings. In this research, we arbitrarily chose to 
include the reference values of two accelerometers in each 
message. For an m = 16 probe with t = 4 and a sampling 
interval of 15 min, this means that the entire reference data 
set will be refreshed every 8 hours. The calculation of ref-
erence values and delta values is presented in 8. In order 
to determine which reference values to update and trans-
mit, a daily sample count (c) is used. Any network device 
with a synchronized clock and knowledge of the sampling 
interval can calculate c, so this value does not need to be 
included in the message. For deformation measurements, 
the expected acceleration values are ax = 1 g , ay = 0 g 
and az = 0 g because the probes are deployed vertically in 
the soil [15]. We use these expected values in the calcula-
tion of reference values, which allows a reduction of the 
number of bits per reference value (p). The number of bits 
per delta value is defined as (q). Assuming that p ≥ 3 and 
q ≥ 1 , each value can be encoded in the message header 
using just 3 bits, as presented in Fig. 7. This table shows the 
data format (designated as ‘0001’) for temperature/defor-
mation arrays, consisting of a 49 bits header, followed by 
the first measurement sample’s encoded temperature and 
acceleration values (which includes two accelerometers’ 
updated reference values, according to 8). Subsequently, 
the temperature and acceleration values for the remaining 
samples are appended. This approach allows the receiver to 
start decoding the oldest measurement samples in messages 
that have not yet arrived completely (i.e. messages that have 
been split into multiple packets because they exceeded the 
519 bits packet payload size). The total size of a message 
( smessage,acc ) is expressed by 9.

Table 2   Uncompressed 
temperature and acceleration 
values aggregated over time and 
space.
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(8)
∀i ∈ {1, ..., t}

∀j ∈ {1, ...,m}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai,ref ,x = Δai,j,x = ai,j,x − 1

ai,ref ,y = Δai,j,y = ai,j,y
ai,ref ,z = Δai,j,z = ai,j,z
p = max

u ∈ {x, y, z}

i, j

(⌈log2 �Δai,j,u�⌉ + 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

if i = 1 and

⌊ j
2
⌋ ≡ c

t

�
mod

m

2

�

(Ref. values)

Δai,j,x = ai,j,x − ai,ref ,x
Δai,j,y = ai,j,y − ai,ref ,y
Δai,j,z = ai,j,z − ai,ref ,z
q = max

u ∈ {x, y, z}

i, j

(⌈log2 �Δai,j,u�⌉ + 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

otherwise

(Δ values)

(9)
smessage,acc =49 + k ⋅ (m − 1) + l ⋅ m ⋅ (t − 1)

+ 2 ⋅ 3 ⋅ p + (m ⋅ t − 2) ⋅ 3 ⋅ q [bits]

Figure 7   Message structure 
for compressed temperature 
and acceleration data with 
i ∈ {2,⋯ , t} , j ∈ {1,⋯ ,m} , 
u ∈ {x, y, z}.  

Figure 8   Thermal data series 
for an above ground sensor 
array ( m = 29 ). The array was 
deployed at the 300 km2 East 
River watershed, Colorado, 
and temperatures were sampled 
every 15 min.
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5 � Results

5.1 � Data Compression

To evaluate the efficiency of the proposed compression 
algorithm and its impact on the battery life of nodes and 
base stations, three data sets were acquired. The spatial 
and temporal profiles for these use cases are considerably 

different, so we evaluate the compression algorithm for each 
scenario. Figure 8 presents a 10 months data series with 
15 min measurement intervals for an above ground ther-
mal sensor array ( m = 29 ) for snowpack monitoring in the 
East River watershed, Colorado [33]. The data are charac-
terized by pronounced diurnal temperature cycles that fade 
under snow cover, enabling an estimation of snow thick-
ness over time [34]. Figure 9 depicts subsurface temperature 

Figure 9   Thermal data series 
for a subsurface sensor array 
( m = 17 ). The array was 
deployed at the East River 
watershed, Colorado, and tem-
peratures were sampled every 
15 min.

Figure 10   Data series for a 
subsurface sensor array for 
deformation and temperature 
sensing ( m = 19 ). The array 
was deployed at a watershed 
near Nome, Alaska, and data 
were sampled every 15 min.
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data ( m = 17 ) for the same location, measurement interval, 
and time frame as the snowpack sensor array. Diurnal tem-
perature variations can be observed near the surface, but 
temperatures at greater depth show more temporal stability. 
Figure 10 shows the temperature and acceleration values for 
a subsurface probe deployed on the Seward Peninsula, near 
Nome, Alaska, measuring every 15 min over a 6 months 
period. The temperature data show diurnal variations near 
the surface, as well as a deepening freezing front over time. 
As the freezing front evolves, we can also observe a change 
in acceleration values, indicating soil deformation.

For each data set, Table 3 compares several performance 
indicators for compressed and uncompressed data. The com-
pressed data is evaluated as a function of t: as more data is 
aggregated over time, the efficiency of the compression algo-
rithm can be expected to increase. However, higher values of 
t result in larger delays and a larger impact of packet loss. In 
order to assess the performance of the algorithm we consider 

the number of transmitted packets, and the total size of the 
data set in KB, which leads to an easier to assess compres-
sion ratio (compressed to uncompressed data set size).

Table 3 clearly indicates the impact of t for all data sets. 
Low values of t result in a strong compression of the data, 
but in the case of snowpack measurements this does not nec-
essarily lead to a proportional decrease in transmitted pack-
ets. This can be explained by the potentially inefficient filling 
of LoRa packets: higher values of t lead to larger smessage 
values, which means that more LoRa packets contain the 
maximum payload of 66 bytes. One can also remark that the 
impact of t diminishes as its value increases. Given the larger 
delays and the increased impact of packet loss, we advise a 
compromise of t ∈ {3,… , 5}.

When we compare the different scenarios, it is clear 
that subsurface temperature data offers the greatest poten-
tial for compression. This can be attributed to the single 
data type (there is only thermal data and no acceleration 

Table 3   Performance of the compression algorithm for two 10-month datasets, and the impact on power consumption.

∗t = None represents the results for uncompressed data
∗∗ In the base station power projections we assume a scenario with 100 connected nodes that exhibit the same compression ratios

Temperature - Subsurface m = 17

t None∗ 2 3 4 5 6 7 8
Size data set [KB] 936 419 380 364 355 350 348 346
Compression ratio 1.000 0.448 0.406 0.388 0.379 0.374 0.372 0.370
# Transmitted packets 23,298 11,699 9,458 8,806 7,267 6,962 6,889 6,692
Power Node Battery life [days] 1,734 2,654 2,958 3,060 3,330 3,389 3,404 3,444

Power savings factor 1.00 1.53 1.71 1.76 1.92 1.95 1.96 1.99
Base Battery life∗∗ [days] 32 64 79 85 103 107 108 112

Power savings∗ factor 1.00 2.00 2.47 2.66 3.22 3.34 3.38 3.50

Temperature - Snowpack m = 29

t None∗ 2 3 4 5 6 7 8
Size data set [KB] 1,606 810 801 804 807 811 815 819
Compression ratio 1.000 0.536 0.530 0.532 0.533 0.537 0.539 0.542
# Transmitted packets 23,617 20,540 15,739 15,973 14,418 14,819 14,039 14,204
Power Node Battery life [days] 1,734 1,908 2,259 2,240 2,380 2,343 2,418 2,401

Power savings factor 1.00 1.10 1.30 1.29 1.37 1.35 1.39 1.38
Base Battery life∗∗ [days] 32 37 49 48 53 52 54 54

Power savings∗ factor 1.00 1.17 1.52 1.50 1.66 1.61 1.70 1.68

Temperature/Deformation – Subsurface m = 19

t None∗ 2 3 4 5 6 7 8
Size data set [KB] 1,873 1,257 1,200 1,173 1,159 1,148 1,143 1,138
Compression ratio 1.000 0.671 0.641 0.626 0.619 0.613 0.610 0.608
# Transmitted packets 39,730 24,413 20,393 19,975 19,754 19,283 19,074 18,831
Power Node Battery life [days] 1,023 1,496 1,703 1,728 1,742 1,771 1,785 1,800

Power savings factor 1.00 1.46 1.67 1.69 1.70 1.73 1.75 1.76
Base Battery life∗∗ [days] 16 26 32 32 33 33 34 34

Power savings∗ factor 1.00 1.62 1.94 1.98 2.00 2.05 2.08 2.10
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measurements along x, y, and z axes), and the low spatial 
and temporal variability that can be observed in Fig. 9. 
The compression ratios for snowpack temperature measure-
ments are higher because of the strong diurnal variation in 
above ground temperatures as shown in Fig. 8, leading to 
a larger entropy. The results for subsurface temperature/
deformation measurements indicate compression ratios as 
low as 0.608. Despite the low spatial and temporal tem-
perature variability, the compression ratio is significantly 
higher than for the other scenarios. This can be linked to 
the fact that each measurement contains three 10 bits accel-
eration values, in comparison to a single 16 bits tempera-
ture value. Despite the highest compression ratios for the 
temperature/acceleration values, the impact of the com-
pression algorithm is the most significant for this applica-
tion. In a scenario without compression the entire data set 
would require 39,730 packet transmissions, equalling two 
transmissions per measurement. The compression algo-
rithm reduces the number of packet transmissions to less 
than one per measurement, not only improving battery life, 
but ensuring the usability of the proposed network proto-
col. In related work [30], compression ratios between 0.48 
and 0.62 are reported. The difference in data sets prevents a 
direct comparison of algorithm performance, but the results 
presented in this paper demonstrate the potential of spatial 
and temporal similarity for compression purposes.

5.2 � Power Consumption

The power consumption of the nodes and base stations is a 
function of the presented hardware layout, communication 
protocol, compression algorithm, and acquired data. In order 
to assess the battery life of each device in the network, a 
power profile was recorded for each system state. For the cal-
culation of these profiles, we measured the DC current along 
the VCC line under a constant voltage of 3.3765 V using a 
Keithley DMM6500 6.5 digit digital multimeter. Figure 11 
presents the results of these measurements, along with the 
required energy for each event. The sleep state is character-
ized by an average power consumption Pavg , which takes into 
account the 1 Hz power spikes that are associated with BLE 
advertising. The presented results emphasize the impact of 
LoRa communications on a device’s energy budget. The 
aggregated data can not be reduced due to the nature of the 
application and network topology, but the presented data 
compression technique can reduce network traffic with a 
minimal energy impact of 225μJ per compression, indicating 
the computational simplicity of the algorithm. The energy 
cost of a LoRa transmission is measured at 174 mJ , which 
means that the compression algorithm pays off when LoRa 
transmission can be reduced at least 1/772 (0.13%), a goal 
that is significantly exceeded as indicated in Table 3. As 
a result, trade-offs in the configuration of the compression 

Figure 11   Power profile for 
each system state, as presented 
in Fig. 2.

(a)

(d) (e)

(b) (c)
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algorithm in our applications are solely related to data delays 
and potential impacts of packet loss, not energy cost.

The acquired power profiles are used to estimate the bat-
tery life for each configuration of the compression algorithm 
in Table 3. For these calculations we consider 15 min meas-
urement intervals and we do not take user initiated BLE data 
transfers into account. The selected AA batteries provide an 
energy supply of 41,580 J [25]. Since the power consumption 
of base stations depends on the amount of network traffic [10] 
we assume a scenario of a single base station with 100 sen-
sor nodes, all exhibiting the same compression ratios. The 
results in Table 3 demonstrate that thermal sensor nodes can 
last for > 4.5 years on a single pair of AA batteries with-
out data compression. For temperature/deformation arrays 
( m = 19 ), a battery life of 2.8 years can be expected, since 
each uncompressed measurement sample results in two LoRa 
packet transmissions. LoRa transmissions account for 70% of 
the energy, the sleep state is responsible for 27%, and sensor 
measurements use 2%. This indicates the potential benefit 
of the compression algorithm. As can be seen in Table 3 a 
node’s battery life can even be doubled under favorable con-
ditions (subsurface temperature sensors with t = 8 ). For base 
stations, the potential battery life improvement is even more 
significant. For the scenario without data compression the 
battery life is only one month in networks of temperature 
sensors, or 16 days in networks of temperature/deformation 
sensors. For base stations, 98% of the energy budget is asso-
ciated with the Rx state. This can be improved considerably 
if all sensor nodes in the network perform data compression. 
In the case of subsurface temperature arrays, base station bat-
tery life can be extended with a factor of up to 3.50. This ena-
bles autonomous operation in remote field sites for multiple 
months or even a year for base stations that use a small solar 
panel or multiple pairs of AA batteries. One can remark that 
the compression algorithm has a stronger impact on the bat-
tery lifetime of the base stations than the sensor nodes. This 
is explained by the higher relative importance of the sleep 
state in a sensor node’s power budget, whereas base station 
power consumption is almost solely attributed to the Rx state. 
In [29], Väänänen et al. present a LoRaWAN sensor platform 
with various lossy data compression methods. The platform 
exhibits a 467μW sleep power consumption (i.e. 6 times more 
than the platform presented in this paper), which results in a 
total battery lifetime of 492 days without compression. The 
best performing compression algorithm realizes a power sav-
ings factor of 1.28 (versus 1.99 in our research). Another 
solution is presented in [13], which reports a power savings 
factor of 1.45 for a lossless compression method. In related 
work, the power consumption of an iC880a LoRaWAN con-
centrator is reported. Consuming at least 1.44 W, this would 
result in a battery life of less than 8 hours when operating on 
a couple of AA batteries, which is significantly lower than 
any scenario presented in this paper.

6 � Conclusions

Distributed environmental sensor arrays for above and below 
surface sensing require specific provisions in terms of power 
and connectivity. In this study, we presented a framework that 
covers the network protocol, a data compression technique, and 
a hardware platform that can be used as a wireless base station 
or a data logger for environmental sensor arrays. The presented 
wireless interface uses LoRa in a TDD implementation, ena-
bling battery operated base stations and eliminating limitations 
concerning package collisions and fair use policies. A lossless 
data compression method was developed, relying on spatial 
and temporal similarity in the acquired data. This algorithm 
was implemented in a custom AA battery powered hardware 
platform and the power consumption was analyzed for vari-
ous scenarios. As a wireless sensor node, the device exhibits a 
battery life of > 4.5 years, which can even be doubled with the 
proposed compression algorithm. As a LoRa base station, the 
platform’s battery life is limited to several weeks or months, 
depending on the network configuration. However, the pro-
posed compression algorithm can increase the battery lifetime 
with a factor of up to 3.50, making environmental distributed 
sensor deployments a viable option. In future work, we will 
further investigate the impact of measurement sampling inter-
vals, the number of nodes, the number of sensors per node, etc. 
We will also develop relay nodes and deploy a sensor network 
in a mountainous watershed to study performance as a function 
of topography, vegetation, and antenna siting.
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