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Abstract

This paper deals with the construction, physical interpretation and application of a uniform high-frequency representation
of array Green’s functions (AGFs) for planar rectangular phased arrays of dipoles. An AGF is the basic constituent for the
full-wave description of electromagnetic radiation from large periodic structures. For efficient treatment of high-frequency
phenomena, the AGF obtained by direct summation over the contributions from the individual radiators is globally restructured
via the Poisson sum formula into a series of propagating and evanescent Floquet waves (FWs) together with corresponding
FW-modulated diffracted waves, which arise from FW scattering at the array edges and vertexes. These results are obtained by
high-frequency uniform asymptotics applied to the wave integrals generated by Poisson summation in the spatial or spectral
domains. The final algorithm is physically appealing, numerically accurate, and efficient, owing to the rapid convergence
of both the FW series and the series of corresponding FW-modulated diffracted fields away from the array plane. The use
of the asymptotic AGF in the full-wave analysis of large slot arrays is discussed, with the inclusion of numerical results.
© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Periodic structures are of interest in many current engineering applications, which include phased array antennas
[1–10]. In modeling the performance of such structures, one of the main objectives is the reduction of the often
prohibitive numerical effort that accompanies an element-by-element full-wave analysis based on integral equations
which are structured around the ordinary free space Green’s function. For a periodic array, this array Green’s function
(AGF) is composed of the sum over the individual dipole radiations. As an alternative, we explore replacement of the
element-by-element Green’s function by a global AGF which is constructed via Poisson summation and represents, in
terms of the resulting Poisson-transformed integrals, the collective field radiated by the elementary dipoles. Applying
high-frequency asymptotics, the radiation from, or scattering by, finite phased arrays is interpreted as the radiation
from a superposition of continuous equivalent Floquet wave (FW)-matched source distributions extending over the
entire finite array aperture, from which the FW-based AGF can be calculated efficiently. This approach has been
applied successfully to various prototypical configurations, such as linear arrays of dipoles [3], arrays of line sources
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in free-space [4,5] and on an infinite dielectric slab [6], slits in a finite ground plane [7]. Recently, the method has been
extended to semi-infinite planar dipole arrays [8,9], and to right-angle sectoral planar phased arrays of dipoles [10].

The asymptotic treatment of each FW aperture distribution on a rectangular array leads to a truncated version of
the infinite array FW expansion, plus FW-modulated diffracted contributions from the edges and vertexes of the
array. The asymptotic results can be cast in the format of a generalized geometrical theory of diffraction (GTD)
ray theory which includes periodicity-induced non-specular reflections as well as multiple periodicity-modulated
conical edge diffractions. Since, the FW series and the series of corresponding diffracted fields exhibit excellent
convergence properties far enough away from the array plane so that evanescent FWs and diffracted fields are
negligible, the resulting representation is found to be more efficient than the direct summation over the spatial
contributions from each element of the array. In this paper, the FW-based asymptotic treatment of rectangular AGF
is presented and applied to practical array problems.

2. Statement of the problem

Let us consider a planar rectangular array comprized of phased elementary electric dipoles of unit current
amplitude, located in the (z1, z2) plane, as shown in Fig. 1a. Along the z1 and z2 directions, the interelement
period is given, respectively, by d1 and d2, the interelement linear phase gradient by γ1 and γ2, and the number of
dipoles by M and N . All dipoles are oriented along the unit vector û (the caretˆ denotes a unit vector) and they are
linearly phased.

The AGF �g(�r) of the û-directed magnetic vector potential (the arrow�denotes a vector quantity) at any observation
point �r = z1ẑ1 + z2ẑ2 + yŷ is defined by the source-excited harmonic wave equation

∇2 �g(�r) + k2 �g(�r) = −
N−1∑
n=0

M−1∑
m=0

û e−j(γ1md1+γ2nd2)δ(z1 − md1)δ(z2 − nd2) (1)

with radiation condition at infinity, and suppressed time dependence exp(jωt). In (1), k = ω/c is the free space
wavenumber, c is the wave speed in the ambient medium, and δ the Dirac delta function. The solution is obtained
by finite summation over the individual dipole vector potentials

�g(�r) = ûg(�r) = û

M−1∑
m=0

N−1∑
n=0

g0(�r; md1, nd2) e−j(γ1md1+γ2nd2), (2)

Fig. 1. Actual and auxiliary array geometries: (a) actual rectangular array, (b) auxiliary infinite sectoral arrays.
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Fig. 2. (a) Geometry of planar sectoral array of parallel dipoles oriented along a direction û. d1 and d2 are the interelement spatial periods along
z1 and z2, respectively.

where

g0(�r; z′
1, z

′
2) = exp(−jkR(z′

1, z
′
2))

4πR(z′
1z

′
2)

(3)

is the free-space scalar Green’s function with R(z′
1, z

′
2) = |�r − (z′

1ẑ1 + z′
2ẑ2)|. Due to the slow spatial decay

of g(�r; md1, nd2), the sum in (2) is slowly convergent for large M and N . Collective restructuring into a sum of
truncated FWs alleviates this difficulty. Before doing this, (3) is decomposed into four terms,

g(�r) = g0,0(�r) − gM,0(�r) − g0,N (�r) + gM,N(�r), (4)

where

gµ,ν(�r) =
∞∑

m=µ

∞∑
n=ν

g0(�r; md1, nd2) e−j(γ1md1+γ2nd2) (5)

with (µ, ν) = (0, 0), (M, 0), (0, N), (M,N), respectively. Each term in (4) represents the AGF of a plane infinite
sectoral array with vertex at (0, 0), (Md1, 0), (0,Nd2), (Md1,Nd2), respectively, as shown in Fig. 1b. Note that each
sectoral AGF contribution gµ,ν with (µ, ν) �= (0, 0) can be expressed in terms of g0,0 as

gµ,ν(�r) = g0,0(�r − µd1ẑ1 − νd2ẑ2) e−j(γ1µd1+γ2νd2) (6)

so that we need treat only the contribution g0,0(�r) of the sectoral array with vertex at the origin.
The geometrical quantities associated with this sectoral array are defined in Fig. 2. Note that this array can

be regarded as the superposition, in the z2-direction, of z1-directed semi-infinite line arrays, or vice versa. The
truncating line arrays along the z1 and z2 axes give rise to the edge and vertex diffractions of the sectoral array.

3. Analytic methods for AGF

The mathematical basis for restructuring the spatial series in (5) into a more rapidly converging series is based on
the Poisson sum formula [11]. Let us first consider the infinite bilateral version of this formula, which is pertinent
to the infinite array case (Section 3.1), and then proceed to the truncated version for the sectoral array (Section 3.2).
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3.1. Bilateral Poisson summation

The AGF for the infinite array is obtained by implementing the summation in (2) and (3) from −∞ to +∞ for
both indexes n and m. It is well known that the AGF can in this case be restructured into discrete global plane wave
spectra that obey the Floquet dispersion relation. This is achieved directly using the bilateral Poisson summation
formula, which expresses any infinite series of terms indexed by integers (n,m) as an infinite (q, p)-indexed series
of the relevant Fourier transforms (FTs),

g∞(�r) =
∞∑

m,n=−∞
g0(�r; md1, nd2) e−j(γ1md1+γ2nd2) = 1

d1d2

∞∑
p,q=−∞

G(kz1,q , kz2,p), (7)

where G(kz1,q , kz2,p) is the bilateral FT of g(�r; z′
1, z

′
2) [12]

G(kz1, kz2) =
∫ ∞

−∞

∫ ∞

−∞
g0(�r; z′

1, z
′
2) ej(kz1z

′
1+kz2z

′
2) dz1 dz2, (8)

sampled at the spectral points

kz1,q = γ1 + 2πq

d1
, q = 0,±1,±2, . . . , (9)

kz2,p = γ2 + 2πp

d2
, p = 0,±1,±2, . . . . (10)

Eqs. (9) and (10) define the FW wavenumbers (i.e., the FW dispersion relations) along the z1 and z2 directions,
respectively.

The bilateral FT in (8) can be evaluated in the closed form [13, p. 119]

G(kz1, kz2) = e−j�k·�r

ky
, �k = kz1ẑ1 + kz2ẑ2 ± kyŷ, ky =

√
k2 − k2

z1 − k2
z2, (11)

where the upper and lower signs apply to y > 0 and y < 0, respectively. Because of the symmetry, we shall deal
only with y > 0 from here on. Introducing (11) in (7) leads to

g∞(�r) =
∞∑

p,q=−∞
gFW

pq (�r), gFW
pq (�r) = 1

d1d2

e−j�kFW
pq ·�r

kypq
, (12)

where gFW
pq (�r) are the FWs for the infinite array and

�kFW
pq = kz1,q ẑ1 + kz2,pẑ2 + kypqŷ, kypq =

√
k2 − k2

z1,q − k2
z2,p (13)

is the FW propagation vector. For a propagating FW (PFW), �kPFW
pq is real and identifies the radiation (ray) direction

of the pqth PFW (PFWpq). For an evanescent FW (EFW), the y component kypq of �kEFW
pq (perpendicular to the

array) is positive imaginary. The EFWs propagate along the array plane with phase propagation vectorR e(�kEFW
pq ),

maintaining a phase speed less than the speed of light (|R e(�kEFW
pq )| > k), and exhibiting exponential decay along

|y|. Consequently, the series in (12) is very rapidly convergent when the observation point is far enough away from
the array surface.
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3.2. Truncated Poisson summation

The truncated Poisson sum [11],

∞∑
m=0

f (md) = 1

2
f (0) + 1

d

∞∑
q=−∞

∫ ∞

0
f (z) ej(2πq/d)z dz, (14)

transforms a truncated series of samples f (md) into a superposition of q-indexed sampled truncated FTs. The
extension of this formula to two variable functions is the mathematical basis for treating the sectoral AGF defined
in (4). This extension can be accomplished by sequentially applying the one-dimensional truncated Poisson sum in
(14); more analytical details are given in the technical report [14]. This leads to

g0,0(�r) = 1

d1d2

∞∑
p,q=−∞

˜̃
G(kz1q, kz2p) + 1

2d1

∞∑
q=−∞

G̃2(kz1q) + 1

2d2

∞∑
p=−∞

G̃2(kz2p) + 1

4
g(�r; 0, 0), (15)

where ˜̃
G is the two-dimensional truncated FT

˜̃
G(kz1, kz2) =

∫ ∞

0

∫ ∞

0
g0(�r; z′

1, z
′
2) ejkz1z

′
1 ejkz2z

′
2 dz′

1 dz′
2 (16)

and G̃1, G̃2, are truncated FTs of g(�r; z′
1, z

′
2) with respect to one spatial variable, the other variable being fixed at

the origin

G̃1(kz1) =
∫ ∞

0
g0(�r; z′

1, 0) ejkz1z
′
1 dz1, (17a)

G̃2(kz2) =
∫ ∞

0
g0(�r; 0, z′

2) ejkz2z
′
2 dz′

2. (17b)

In (15), the AGF is represented by four terms. The first term expresses the radiation due to the pq-indexed FW
planar equivalent current distributions on the sectoral array. The second term is one-half of the radiation of the
truncated line array of dipoles located along edge 1, rearranged equivalently in terms of truncated FW-modulated
q-indexed smooth line sources. The field radiated by these line sources can be interpreted asymptotically as part of
the diffracted field induced by all q-indexed FW truncated at edge 1. The factor 1

2 arises from the truncated Poisson
formula (14) when the sectoral array is viewed as a z2-truncated collection of semi-infinite line arrays along z1
(see Fig. 2). The third term can be interpreted analogously by interchanging z1 and z2. The last contribution is the
radiation from the dipole located at the sectoral array tip, weighted by 1

4 because of the sequential multiplication
of factors 1

2 pertaining to the two intersecting edge line arrays. This latter contribution is part of the FW-induced
vertex-diffracted wave.

3.3. Non-uniform asymptotics and shadow boundaries

Integrals (16), (17a) and (17b) can be evaluated asymptotically in terms of saddle point (SP) and end-point con-
tributions on the truncated integration domain. These various critical points are summarized in Table 1. Considered
hereafter are only real critical points in the space domain, which are associated with propagating FWs, propagating
edge diffracted waves, and vertex diffraction. A more complete treatment of EFW and edge diffracted wave contri-

butions may be found in [8,9]. By using (3) in (15)–(17a) and (17b), the phase function in the ˜̃
Gpq integrand (see

(16)) is f (z′
1, z

′
2) = −kR(z′

1, z
′
2) + z′

1kz1,q + z′
2kz2,q and those of G̃q and G̃p (see (17a) and (17b)) are f (z′

1, 0)
and f (0, z′

2), respectively.
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Table 1
Critical points of the space-domain integralsa

Integral Critical points f (z′
1, z

′
2) = −kR(z′

1, z
′
2) + z′

1kz1,q + z′
2kz2,q Analytic expressions

G̃q (kz1q ) SP:
∂

∂z′
1
f (z′

1, 0) = 0 → z′
1 = z1q → edge-1 diffracted ray z1q = z1 − ρ1,

kz1,q

kρ1,q
= z1 − ρ1 cot β1,q

EP: z′
1 = 0 → vertex-diffracted ray kp1q =

√
k2 − k2

z1q

G̃p(kz2p) SP:
∂

∂z′
2
f (0, z′

2) = 0 → z′
2 = z2p → edge-2 diffracted ray z2p = z2 − ρ2,

kz2,p

kp2,p
= z2 − ρ2 cot β2,p

EP: z′
2 = 0 → vertex-diffracted ray kρ2p =

√
k2 − k2

z2p

˜̃
Gpq(kz1q , kz2p) 2D-SP: ∇f (z′

1, z
′
2) = 0 → (z′

1, z
′
2) = (z1pq, z2pq) → FW z1pq = z1 + y

kz1,q

kypq
= z1 + y

cot β1,q

sin φ1,pq

EP–SP: (z′
1, z

′
2) = (0, z2p) edge-2 diffracted ray z2pq = z2 + y

kz2,p

kypq
= z2 + y

cot β2,p

sin φ2,pq

SP–EP: (z′
1, z

′
2) = (z1q , 0) edge-1 diffracted ray

EP–EP: (z′
1, z

′
2) = (0, 0) vertex-diffracted ray

a The first column refers to the space domain integral. Critical points in the space domain are defined in column 2 (SP: saddle point, EP:
end-point). Column 3 contains the expressions of the critical points.

The integral which defines ˜̃
Gpq is dominated by the 2D-SP contribution (z′

1, z
′
2) = (z1pq, z2pq) satisfying

∇f (z′
1, z

′
2) = 0, whose explicit expression is given in Table 1. The phase at the SP f (z1pq, z2pq) can be rewritten

as �kFW
pq · �r (Table 2) with the FW wavenumber vector �kFW

pq given in (13). The asymptotic pqth contributions from
(z1pq, z2pq) are FW-rays emanating from the array surface at points (z1pq, z2pq), which are generalizations of the
conventional geometrical optic rays (see Fig. 3a). Only propagating FWs imply real values of (z1pq, z2pq). These
asymptotic contributions exist only when z1pq > 0 and z2pq > 0, i.e., when they lie within the truncated integration
domain. This leads to a truncated version of the FW series in (12)

gFW(�r) =
∑
p,q

gFW
pq (�r)UFW,1

pq UFW,2
pq , UFW,1

pq = U(z2pq), UFW,2
pq = U(z1pq), (18)

where U(z) is the Heaviside unit step function: U(z) = 1 for z > 0 and U(z) = 0 for z < 0.
The truncation functions can be rewritten in terms of angular quantities as

UFW,1
pq = U(φSB

1,pq − φ1), UFW,2
pq = U(φSB

2,pq − φ2), (19)

Table 2
Wavevectors and shadow boundariesa

Ray contribution Wavevectors SB

FW-pq ray f (zsq, zsp) = �kFW
pq · �r, �kFW

pq = kz1,q ẑ1 + kz2,pẑ2 + kypqŷ φ1 = φSB
1,pq, φ2 = φSB

2,pq

Edge-1 diffracted rays f (z1q , 0) = �kd,1q · �r, �kd,1q = kz1,q ẑ1 + kpq,1 cosφ1ẑ2 + kpq,1 sin φ1ŷ β1 = βSB
1,q ≡ β1,q

Edge-2 diffracted rays f (0, z2p) = �kd,2p · �r, �kd,2p = kz2,pẑ2 + kρp,2 cosφ2ẑ1 + kρp,2 sin φ2ŷ β2 = βSB
2,p ≡ β2,p

Vertex-diffracted ray f (0, 0) = �kv · �r; �kv = k�r
|�r|

a The second column contains the expressions of the wavevectors associated with the various ray contributions. The third column contains
the analytical expressions of shadow boundary planes of FW and shadow boundary cones of edge diffracted rays (β1,q = cos−1(kz1,q/k);
β2,p = cos−1(kz2,p/k)).
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Fig. 3. (a) Ray description of the field radiated by the sectoral array of dipoles. The diffraction cone of the propagating z1-edge diffracted
ray originates at the q-dependent point Q1,q on edge 1. The SBC that truncates the domain of existence has the same aperture angle β1,q as
the diffraction cone and it is centered at the vertex. (b) Geometry of the shadow boundaries (SB). The FW–SB planes truncate the domain of
existence of an FW with index pq. The truncated FWpq exists under the “roof” formed by the intersection of the two FW–SB. The diffracted
rays from edges 1 and 2 are truncated at the shadow boundary cones (SBC) with axes along edges 1 and 2. These two SBCs intersect along the
intersection line of the two FW–SBs. This intersection line coincides with the propagation vector �kpq of the pq-FW.

where φi is the transverse-to-zi observation angle (see Fig. 2). The domain of existence of the FWpq (the FWpq-
illuminated region) is thereby truncated at the shadow boundary planes (SB) φ1 = φSB

1,pq, where for PFWs, φSB
1,pq ≡

φ1,pq = cos−1(kz2,p/kρ1,q) and kρ1,q =
√
k2 − k2

z1,q (with analogous definition for φSB
2,pq).

The asymptotic treatment of (16) also includes the contributions from the 1D-SP at the boundary of the spatial
integration domain; these are given by z1q and z2p shown in Table 1, which satisfy the equations ∂/∂z′

1f (z
′
1, 0) = 0

and ∂/∂z′
2f (0, z

′
2) = 0, respectively. The corresponding ray contributions are FW-induced edge diffracted rays from

edges 1 and 2, respectively. The same critical points and ray interpretation of the relevant asymptotic contributions
pertain to the line integrals in (17a) and (17b) for edges 1 and 2, respectively. The phase at the SP can be expressed as
f (z1q, 0) = �kd,1q · �r , where �kd,1q (defined in Table 2) is the vector wavenumber of the q-indexed edge diffracted ray.
For |kz1,q | < k (see Fig. 3a) this ray reaches the observer along a diffraction cone with angle β1,q = cos−1(kz1,q/k),
emerging from the diffraction points z1q ; |kz1,q | > k implies complex values of z1q which correspond to evanescent
diffracted waves and are not treated here. Edge-2 diffracted rays are analogously obtained from the z2-SP in the
integrands of (16) and (17b). The above rays are FW-modulated generalizations of the smooth-edge diffracted rays
in conventional GTD.

The diffracted ray contributions from edge 1 are the same as those for a semi-infinite array of dipoles [8,9] with
the edge aligned along the corresponding edge of the sectoral array, but they abruptly emerge or disappear when,
for a moving observer, z1q crosses the vertex z1 = 0. Thus, edge 1-diffracted rays are multiplied by the truncation
function

Ud,1
q ≡ U(z1,q) = U(βSB

1,q − β1), (20)

expressed in terms of the conical angles βSB
1,q ≡ β1,q = cos−1(kz1,q/k) and indicating that the diffracted field is con-

fined by the shadow boundary cone SBC1,q (Fig. 3a and b). The SBC1,q , centered at the vertex, has the same aperture
as the diffraction cone (19). Analogous considerations apply to thep-indexed, q-independent z2-edge diffracted rays,
whose domain of existence is confined by U

d,2
p ≡ U(z2,p) = U(βSB

2,p − β2) with βSB
2,p ≡ β2,p = cos−1(kz2,p/k).

The vertex-diffracted ray contributions arise from the 2D end-point (EP) at (z′
1, z

′
2) = (0, 0) of (16) and from

the 1D EPs at z′
1 = 0 and z′

2 = 0 of (17a) and (17b), respectively (Table 1). The phase f (0, 0) at these EPs can be
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written as �kv · �r , where �kv ≡ k�r/r = kr̂ (see Table 2) is the wave propagation vector of the vertex-diffracted ray
centered at the vertex. This ray also comprises the contribution 1

4g(�r; 0, 0).
Grouping all the asymptotic terms pertaining to the various wave species (i.e., FWs, edge diffracted waves and

vertex wave) together, the sectoral AGF is expressed as

g0,0(�r) ∼ gFW(�r) +
∑
q

Ud,1
q gd,1q (�r) +

∑
p

Ud,2
p gd,2p (�r) + gv(�r) (21)

with gFW(�r) are the truncated FWs defined in (18) and gd,1q (g
d,2
p ) contain the q-indexed (p-indexed) edge-diffracted

contributions from edge 1 (edge 2) due to the integrals (16), (17a) and (17b), and gv(�r) contains all vertex contri-
butions, including 1

4g(�r; 0, 0).

3.4. Spectral domain version of the truncated Poisson sum

In the vicinity of the shadow boundary of any FW or edge-diffracted wave species, non-uniform asympto-
tics generally becomes inapplicable. Uniform asymptotic methods must be invoked there in order to ensure
smooth compensation of the abrupt emergence or disappearance of any particular wave species across its SB. The
(FW–SB)-(edge-diffracted) compensation mechanism away from the vertex is the same as that from a semi-infinite
array of dipoles with its edge aligned along the sectoral array edge [8,9]. Near the vertex, the two FW–SB transitions
interact with the vertex-induced SBC transitions, due to the truncation of the corresponding edge diffracted fields
(Fig. 3a and b). The confluence of these four SB transitions near the vertex defines the asymptotics pertaining to
vertex diffraction [10].

The high-frequency formulation which uniformly describes the sectoral AGF in the various transition regions
will be developed by applying the truncated Poisson summation formula (15) in the rectilinear spectral domain
(kz1, kz2). To this end, we write the truncated FTs in (17a) and (17b) in terms of a bilateral FT G(kz1, kz2) in (8) by
using a spectral convolution of G(kz1, kz2) with the FT, −1/kz1kz2 of the 2D unit step function U(z1)U(z2),

˜̃
G(kz1,q , kz2,p) =

∫ ∞

−∞

∫ ∞

−∞
−G(kz1, kz2)

(kz1,q − kz1)(kz2,p − kz2)
dkz1 dkz2. (22)

The same spectral convolution may be applied to the one-dimensional integrations in (17a) and (17b),

G̃1(kz1,q) =
∫ ∞

−∞
G1(kz1, z

′
2 = 0)

j(kz1,q − kz1)
dkz1, (23a)

G̃2(kz2,p) =
∫ ∞

−∞
G2(kz2, z

′
1 = 0)

j(kz2,p − kz2)
dkz2, (23b)

where G1(kz1, z
′
2 = 0) and G2(kz2, z

′
1 = 0) are the bilateral FTs of g0(�r; z′

1, 0) and g0(�r; 0, z′
2), respectively. Since

the unit step function U is represented as a residue from a clockwise spectral integration around the pole 1/kzi, the
integration contours in (22), (23a) and (23b) are indented clockwise around the poles kz1,q and kz2,p.

The functions G1(kz1, z
′
2 = 0) and G2(kz2, z

′
1 = 0) can be represented in terms of an inverse FT as

G1(kz1, z
′
2 = 0) = ∫∞

−∞G(kz1, kz2) dkz2, and G2(kz2, z
′
1 = 0) = ∫∞

−∞G(kz1, kz2) dkz1, thus leading to the double
spectral integral representations

G̃1(kz1,q) =
∫ ∞

−∞

∫ ∞

−∞
G(kz1, kz2)

j(kz1,q − kz1)
dkz1 dkz2, (24a)

G̃2(kz2,p) =
∫ ∞

−∞

∫ ∞

−∞
G(kz1, kz2, )

j(kz2,p − kz2)
dkz1 dkz2. (24b)
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Analogously, using the inverse FT of (8) evaluated at (z′
1, z

′
2) = (0, 0) yields

1

4
g0(�r; 0, 0) = 1

4

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
G(kz1, kz2) dkz1 dkz2. (25)

After insertion of (22), (24a), (24b) and (25) into (15), interchange of the order of summation and integration, and
symmetric regrouping of the q-indexed and p-indexed series, one obtains

g0,0(�r) =
∫ ∞

−∞

∫ ∞

−∞
G(kz1, kz2)


1

2
+

∞∑
q=−∞

1

jd1(kz1,q − kz1)




1

2
+

∞∑
p=−∞

1

jd2(kz2,p − kz2)


 dkz1 dkz2.

(26)

Using the identity

1

2
+ 1

jdi

∞∑
i=−∞

1

kzi,ξ − kzi
= 1

2
+ 1

2j
cot

[
1

2
di(γi − kzi)

]
= 1

1 − ejdi (kzi−γi )
= Bi(kzi), i = 1, 2 (27)

along with (11) leads to the compact form

g0,0(�r) = 1

8π2j

∫ ∞

−∞

∫ ∞

−∞
1

ky
B1(kz1)B2(kz2) e−j�k·�r dkz1 dkz2, (28)

where ky is defined in Eq. (11). The representation (28) is the same as that in [10], which has been derived directly
from the space domain summation in (5).

3.5. Uniform asymptotic evaluation of the AGF

The high-frequency behavior of the exact solution given by the spectral double integral (28) is parameterized
by the critical points in the integrand which also govern the strategies for the uniform asymptotic approxima-
tions. The critical points are defined and described in Table 3; kz1-poles at kz1,q (due to B1) and kz2-poles at
kz2,p (due to B2); first-order (kz1, kz2)-SP (k̄z1s , k̄z2s), due to the phase k · �r . Asymptotic evaluation of (28)
parameterizes the sectoral AGF behavior in terms of the phenomenologies of two semi-infinite arrays (SIAs)
with edge aligned along the two edges of the sector. As formulated in [10], these phenomenologies are ex-
tracted from the spectral integrals in (24a) and (24b) by sequential deformation of the two integration contours
into local steepest descent paths (SDPs) through SPs. This operation is complicated by the fact that the SPs and
the SDPs must be tracked in two complex planes (kz1, kz2) simultaneously. Remaining cognizant of the con-
stituent SIA solutions, the problem is addressed by deforming the original integration path locally into the com-

plex kz2-SDP along the 45◦ line through the kz1-dependent SP kz2s(kz1) =
√
k2 − k2

z1 cosφ1 (see Table 3). This
leads to

g0,0(�r) = ḡ0,0(�r) + I2(�r), I2(�r) =
∫ ∞

−∞

∑
p

B2p(kz1) e−jkI2p(kz1) dkz1, (29)

where ḡ0,0 is the same as in (28), but along the deformed local SDP in the kz2 variable (see Table 3), and I2(�r)
arises from the kz1-dependent residues at the poles kz2,p intercepted during the deformation. In (29), B2p(kz1) =
−B1(kz1)[4π jd1ky2,p]−1U [kz2s(kz1) − kz2,p], with ky2,p =

√
k2 − k2

z1 − k2
z2,p, contains poles at kz1 = kz1,q due

to B1(kz1) in (27) and incorporates a spectral truncation function; the phase I2p(kz1) in the integrand is defined in



272 S. Maci et al. / Wave Motion 34 (2001) 263–279

Table 3
Critical points of the spectral domain integralsa

Integrals and spectral phases Critical points (k̄z1s , k̄z2s ) = (k cosβ1, k cosβ2) Analytic expressions

g0,0(�r) → (28) 2D-SP: ∇̄I(kz1, kz2) = 0, (k̄z1s , k̄z2s ) ⇑ vertex ray I(k̄z1s , k̄z2s ) = �kv · �r = kr

I(kz1, kz2) ≡ �k · �r; �k = kz1ẑ1 + kz2ẑ2 + kyy Poles: (kz1, kz2) = (kz1,q , kz2,p) → truncated FW I(kz1,q , kz2,p) = �kFW
pq · �r

1D-SP:
∂

∂kz2
I(kz1, kz2) = 0; kz2s (kz1) (see Fig. a) kz2s (kz1) =

√
k2 − k2

z1 cosφ1

1D-SP:
∂

∂kz1
I(kz1, kz2) = 0; kz1s (kz2) (see Fig. b) kz1s (kz2) =

√
k2 − k2

z2 cosφ2

g00 = g00 + I1,SDP + I2,SDP + gFW

I1,SDP(�r) → (31) → edge-1 diffracted rays SP:
∂

∂kz2
I1q (kz2) = 0; ks2,q ks2,q =

√
k2 − k2

z1,q cosφ1

I1q (kz2) = kz2z2 + kz1,q z1 + y
√
k2 − k2

z2 − k2
z1,q Poles: kz2 = kz2,p → SB1 transition region I1q (ks2,q ) = �kd,1q · �r

I2,SDP(�r) → (30) → edge-2 diffracted rays SP:
∂

∂kz1
I2p(kz1) = 0; ks1,p ks1,p =

√
k2 − k2

z2,p cosφ2

I2p(kz1) = kz1z1 + kz2,pz2 + y
√
k2 − k2

z1 − k2
z2,p Poles: kz1 = kz1,q → SB2 transition region I2p(ks1,p) = �kd,2p · �r

a The first column refers to the spectral integrals and defines relevant spectral quantities. Critical spectral points are defined in column 2.
Column 3 contains expressions for the phase function and other spectral quantities evaluated at the critical points. ∇̄ is the gradient in the spectral
domain.

Table 3. The kz1 real-axis integration path of I2(�r) is then deformed into the local SDP through the SP of I2p(kz1),
and the residues at the poles intercepted during this deformation yield the truncated FW series in (18),

I2(�r) = gFW(�r) + I2,SDP(�r) (30)

where gFW(�r) denotes the truncated FW sum in (18) with I2,SDP the same as I2 but with the kz1-integration path
along the local SDP. A similar contour deformation is now applied to ḡ0,0(�r). The kz1-integration path is deformed

locally into the complex kz1-SDP along the 45◦-line through the kz2-dependent SP kz1s(kz2) =
√
k2 − k2

z2 cosφ2

(see Table 3),

ḡ0,0(�r) = g0,0(�r) + I1,SDP(�r), I1,SDP(�r) =
∑
q

∫
SDP
B1q(kz2) e−jkI1q (kz2) dkz2 (31)

with g0,0(�r) the same as in (28), but along local SDP integration contours in both variables (see Table 3, and
I1,SDP(�r) arising from the kz1-dependent residues at the poles kz2,p intercepted during the deformation. In (31),

B1q(kz2) = −B2(kz2)[4π jd2ky1,q ]−1U [kz1s(kz2) − kz1,q ], with ky1,q =
√
k2 − k2

z2 − k2
z1,q , contains poles at

kz2 = kz2,p due to B2(kz2) defined in (27) and incorporates a spectral truncation function; the phase I1q(kz2) in the
integrand is defined in Table 3.
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The two integrals Ii,SDP(�r) with i = 1 and 2 in (31) and (30), respectively, represent the diffracted waves from
edges 1 and 2. Their critical points are summarized in Table 3, and their uniform asymptotics is carried out by the
Van der Waerden (VdW) method for single integrals [15] as described next.

3.5.1. Truncated edge diffracted waves
The SDP integrations in (30) are reduced to a canonical form by selectively adding and subtracting in the integrand

a “regularizing” function which accommodates relevant configurations of any number of poles with respect to the
SP. For the integral in (31)

I1,SDP(�r) =
∫

SDP

∑
q

(
B1q(kz2) − R1q

(kz2 − kz2p)

)
e−jkI1q (kz2) dkz2 + -I, (32)

whereR1q = 1/(4πd1d2)U [kz2s(kz1)− kz2,p] is the residue at the pole kz2pq and -I can be expressed in terms of
a Fresnel canonical function. Using first-order Taylor expansion around the SP of the kz2-integral in (32) leads to

I1,SDP(�r) ∼
∑
q

gd,1q (�r)U(βSB
1,q − β1), (33)

where gd,1q (�r) is defined in Table 4. The function F in this table is the transition function of the uniform theory of
diffraction [16]. This function tends to unity for “large” amplitude of its argument δ1,pq, i.e., for observation points
“far” from the SBs. In the same observation range, the quantity (1 −F) is of asymptotic order (kρqρ)−1, so that the
dominant asymptotic contribution to the diffraction coefficient is B2(ks2,q) = B2(kρ1,q cosφ1) in Table 4, which
characterizes the non-uniform edge diffraction field. Thus, the “large δ1,pq” range connects the transition function

F in the second term of gd,1q (�r) (in Table 4) smoothly with the non-uniform first term in an overlapping region.
Note that “large δ1,pq” can be reached: (a) by specifying φ1,pq ≈ φ1 and/or ρ1 small with large enough k, or (b) by
specifying k with large enough (φ1,pq −φ1) and/or ρ1. This type of asymptotic “patching” will be utilized repeatedly
later on.

Table 4
High-frequency uniform representation of the AGFa

Total AGF g0,0(�r) ∼ ∑
p,qU

FW,1
pq UFW,2

pq gFW
pq (�r) +∑

qU
d,1
q gd,1q (�r) +∑

pU
d,2
p gd,2p (�r) + gv(�r)

Edge-1 diffraction gd,1q (�r) ∼ e−j�kd,1q ·�r

2d1
√

2π jρ1kρ1,q

(
B2(ks2,q ) +

∑
p

(F (δ2
1,pq) − 1)

jd2(kz2,p − ks2,q )

)
, B2(ks2,q ) = [1 − ejd2(ks2,q−γ2)]−1

Edge-2 diffraction gd,2p (�r) ∼ e−j�kd,2p ·�r

2d2
√

2π jρ2kρ2,p

(
B1(ks1,p) +

∑
q

(F (δ2
2,pq) − 1)

jd1(kz1,q − ks1,p)

)
, B1(ks1,p) = [1 − ejd1(ks1,p−γ1)]−1

Canonical transition function F(x) = 2j
√
x ejx

∫∞√
x

e−jt2 dt ;

(
δ1,pq = √

2kρ1,qρ1 sin( 1
2 (φ1,pq − φ1))

δ2,pq = √
2kρ2,pρ2 sin( 1

2 (φ2,pq − φ2))

)

Vertex diffraction gv(�r) ∼ e−jkr

4πr

(
B1(k̄z1s )B2(k̄z2s ) + B2(k̄z2s )(F (a

2
q ) − 1)

jd1(kz1,q − k̄z1s )
+ B1(k̄z1s )(F (b

2
p) − 1)]

jd2(kz2,p − k̄z2s )

+ (T (aq , bp,w) − F(a2
q ) − F(b2

p) + 1)

−d1d2(kz1,q − k̄z1s )(kz2,p − k̄z2s )

)

Canonical transition function T (aq , bp,W)

= aqbp

jπ
√

1 − W 2

∫ ∞

−∞

∫ ∞

−∞
ej(ξ2+2ωξη+η2)

(ξ − (aq/
√

1 − W 2))(η − (bp/
√

1 − W 2))
dξ dηaq

=
√

2kr sin( 1
2 (β1,q − β1)), bp =

√
2kr sin( 1

2 (β2,p − β2));ω = cot β1 cot β2 = cosφ1 cosφ2

a Uniform asymptotic constructs and definition of transition functions.
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When |kz1,q | > k, the resulting diffracted field is evanescent along the ρ1 direction, with exponential decay term
exp(−|kρ1,q |ρ1), since in this case kρ1,q = −j|kρ1,q | (see (17a) and (17b)). The radially attenuated diffracted waves
are negligible even relatively close to the edge so that the q-series of diffracted rays in (14) can be truncated in such
a way as to include only propagating diffracted waves (those with |kz1,q | < k). This renders the FW formulation
substantially more efficient than element-by-element summation. The treatment of the integral I2,SDP(�r) proceeds
like that above with interchange of indexes 1 and 2 and indexes q and p; i.e., I2,SDP(�r) ∼ ∑

pg
d,2
p (�r)U(βSB

2,p − β2)

with g
d,2
p (�r) defined in Table 4.

3.5.2. Vertex-diffracted wave
The vertex-diffracted field is given by

g0,0(�r) = 1

8π2j

∫
SDP

∫
SDP

1

ky
B1(kz1)B2(kz2) e−j�k·�r dkz1 dkz2, (34)

where the integration paths are those in Table 3. The asymptotic evaluation of this integral g0,0(�r) ∼ gv(�r) is
performed by a generalization of the 1D VdW procedure to 2D integrals. The VdW method involves mapping
the given integrand (both phase and amplitude) onto the simplest canonical integrand that accommodates the
relevant configuration of critical points. Reduction to the canonical form is accomplished by selectively adding and
subtracting “regularizing” portions in the integrand which, as mentioned earlier, can involve an arbitrary number
of poles. In [10], regularization has been carried out for only that (p, q) pole which is closest to the SP. The results
shown in Table 4 involve a canonical function T (a, b,w) that extends over a limited region Q in the (kz1, kz2)

spectral domain, large enough to accommodate the asymptotic isolation of the SP and poles at its boundary, and
with its center defined by SP-pole coalescence. The appealing structure of T (a, b,w) is based on a modification
of a less explicit four-parameter function introduced in [17]. Similar canonical functions have also been employed
and discussed in [18,19] for description of double diffraction problems. The chosen normalization ensures that
T (a, b,w) tends to unity for large values of the parameters a and b (i.e., for poles far from the SP). The numerical
evaluation of T (a, b,w) can be performed as in [18–20] in terms of standard generalized Fresnel integrals [21,22].
Large values of the arguments aq and bp, away from the SP, define the onset of the non-uniform regime where
T → 1. This criterion determines the extent of the local region Q mentioned at the beginning of this section, which
permits patching from the locally uniform asymptotics inside Q onto the non-uniform asymptotics exterior to Q.

The vertex-diffracted gv(�r) in Table 4 incorporates the transition from a vertex-dominated spherical wave to an
edge-dominated cylindrical wave, and it compensates for the discontinuities across the SBCs of edge diffracted
rays β1,q = β1 and β2,p = β2; the respective parameters aq and bp vanish there. The asymptotically dominant
terms in the compensation mechanism at β1,q = β1 are those involving F(a2

q), and the corresponding reduced

form of T (aq, bp,w), for β2 �= β2,p, behaves like F(a2
q). Analogous considerations apply to β2,p = β2. At the

simultaneous intersection of the edge diffracted conical SBC1,2 and the truncated FW planar SB1,2 (see Fig. 3), both
aq and bp vanish; the corresponding T (aq, bp,w) function transforms the vertex-induced field locally into a plane
wave to match the FW. Finally, since the F and T functions tend to unity for large aq and bp, i.e., far from conical
shadow boundaries, the quantities [1 − F ] and [T (aq, bp,w) − F(a2

q) − F(b2
p) + 1] they are of asymptotic order

(kr)−1, whence the dominant asymptotic term is jB1(k̄z1s)B2(k̄z2s). Complete analytic tracking of this uniform
asymptotic matching in overlapping shadow boundary transition regions is demonstrated in [23]. Results for the
vector electromagnetic field are obtained from the above by substituting for the spectral Green’s function of the
potential the spectral dyadic Green’s function of the field (explicit expressions are found in [10]).

3.6. Directive elements and array far zone field

When the observer is in the far zone of each element of an actual array with element pattern function �Q(β1, β2),
but in the Fresnel zone of the total array, the field of the actual array may be approximated through multiplication
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of the AGF by �Q(β1, β2). When observing in the far zone of the total array (i.e., r > 2D2/λ, where D is the
largest array dimension), the amplitude of the AGF can be identified as the familiar array factor in the principle of
pattern multiplication [24]. Under these conditions, the angular transition regions and shadow boundaries between
the propagating FW and the FW-induced edge diffracted rays disappear. The far field pattern is thus given by the
combination of the non-uniform diffracted rays from the four vertices, analogous to what occurs for GTD-scattering
by a metallic rectangular plate illuminated by a plane wave [25], where the singularities of the diffracted rays at the
shadow boundaries cancel, and the field everywhere is well-behaved.

4. Numerical results

We now present numerical results which illustrate the application and accuracy of the asymptotics in Section 3. In
Section 4.1, we test the accuracy of the AGF. In Section 4.2, we consider application of the AGF to a typical side-wall
slotted waveguide resonant array. Finally, we briefly describe how the high-frequency AGF can be incorporated in
an integral equation analysis for determining the element currents.

4.1. Validation test

Numerical tests have been performed on a “large” square array of dipoles in order to validate the high-frequency
formulation in Table 4. Next, we use the AGF to calculate co-polar and cross-polar components due to a 50 × 50
element, side-wall slotted waveguide resonant array in broadside configuration. For convenient determination of the
cross-polar components, and to gain physical insight, we decompose the total AGF into two 25×50 sub-array AGFs,
as shown in Fig. 5. The two sub-arrays have interelement periods of d1 = 1.4λ, d2 = 0.5λ (one being shifted by 0.7λ
with respect to the other), therefore radiating three FWs each; the slots of each sub-array are tilted through +10◦ and
−10◦, respectively (see Fig. 5a). Co-polar, and cross-polar components of the electric field are calculated in Fig. 5b
and c, on the E-plane at a radial distance r = 50λ. An element-by-element summation over the contribution from
each dipole serves as a reference. From a variety of near field scans carried out for different array parameters and
dipole orientations, we have selected one example because of space limitations. The quality of the analytic–numerical
comparison in the example of Fig. 4 is typical of what we have found throughout. The dashed curve denotes the
radiated field without vertex contributions, thereby illustrating how the vertex-diffracted waves compensate for the
disappearance of the edge diffracted waves at their SBCs, rendering the total radiated field continuous.

Fig. 4. Electric field for a rectangular array (γ1 = γ2 = 2/λ). The solution is based on (18) and Table 4. Scan close to a vertex in a plane normal to
the array and at 45◦ between the edges, containing the array normal. Asymptotic solution (continuous curve), reference solution (dotted curve),
asymptotic solution without vertex contribution (dashed curve) (a) angular and (b) radial component.
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Fig. 5. Actual array as a superposition of two sub-arrays. Co-polar components (a) and cross-polar components (b) of the electric field along
the E-plane at a distance r = 50λ from the center of the array. Solid curves: total radiated field. Dashed and dotted curves: sub-array fields.
Summing the two sub-array co-polar components give the main beam of the total field radiated by the array. Vice versa, summing the two
sub-array cross-polar components cancels the main beam and only the lateral lobes remain. The results from the reference element-by-element
solution was superimposed with those from the asymptotics so that they have not been reported.

Strong cross-polar components arise from the slot tilts which give rise to equivalent magnetic currents oriented
along z1. The dotted and dashed curves represent the field radiated by the sub-arrays, while the solid curves represent
their sum to synthesize the total field. Each sub-array field has three maxima, tied to the three FWs (p, q) = (0,−1),
(0,0), and (0,1). In Fig. 5b, the two sub-array co-polar components are summed to yield the broadside beam of the
total field radiated by the array. The side lobes cancel as expected since the original array interelement period is
d1 = 0.7λ. The cancellation is attributed to the 0.7λ shift between the two arrays which, in the side lobe directions,
produces beams in exact opposite phase. Vice versa, in Fig. 5c, when the sub-array cross-polar components are
summed, the main beam cancels and only the side lobes remain. Because the slots of the two sub-arrays are tilted
in opposite directions, they radiate main beam cross-polar fields in opposite phase; the lateral cross-polar lobes
remain because the sub-array side lobes now have the same phase. This shows that the cross-polar lobes are oriented
along directions coincident with the odd-order FWs (q = −1, 1). Increasing the observer distance, the main beam
becomes more prominent, the valleys become deeper, with the cancellation effects intact.

4.2. Use of the AGF in a full-wave array analysis

The rectangular AGF can be used as the basic constituent for structuring a full-wave analysis of practical arrays.
The usual perturbation approximation, using the windowing scheme [1,2], may lead to inaccuracies in predicting
the effects of truncation, especially when studying aperture arrays on ground planes. A more rigorous scheme, not
affected by a priori assumptions and proposed in [26,27], is based on the method of moments (MoM) solution of
two decoupled integral equations (IEs). The first IE is that pertinent to the infinite array (IAIE). The second IE,
denoted by Fringe IE (FIE) is obtained by subtracting the infinite array IE from the IE of the actual, finite array. The
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Fig. 6. Global basis functions for expanding the unknown of the FIE. The basis functions are shaped as FW induced edge diffracted rays which
modulate resonant functions on the slots.

total solution is obtained by the superposition of the solution of the IAIE plus the solution of the FIE. In solving
the IAIE one can use an accurate representation of the periodic AGF, including a large number of EFW. However,
the solution of the IAIE does not require substantial computational effort because of the periodicity hypothesis.
The unknown function of the FIE is the difference between the exact solution of the finite array and that of the
associated infinite array. This unknown function has an intrinsic diffractive nature, thus allowing its simple and
efficient representation in terms of diffracted rays associated with truncated FWs. The forcing term in this FIE is the
field radiated by the complementary portion of the actual array with currents equal to those of the infinite array. In
this context, the high-frequency AGF formulation exhibits a double advantage. First, it allows substantial saving of
calculation time in describing the forcing term of the FIE. Next, it provides the guideline for defining global basis
functions, in terms of which to efficiently expand the FIE unknown, thus providing reduction of the matrix size to
be inverted. The basis functions for the FIE unknowns are defined using the analytic expressions of the diffracted
ray to modulate resonant type functions defined on the slots (see Fig. 6). The number of unknowns of the problem is
therefore like the number of significant FW-modulated edge diffracted rays, which in most cases are those excited
by the propagating and the first EFW. This means that the FIE-matrix to be inverted is usually 8 × 8 regardless of
the number of elements of the rectangular array.

For illustration, consider a resonant-slot array on an infinite ground plane. The array is comprized of 20 ×
20y-oriented slots with length 0.5λ and width 0.005λ. The interelement periods are dx = 0.5λ and dy = 0.7λ and

Fig. 7. Normalized amplitude of the magnetic currents versus the slit index for an array of 20 × 20 slots: d1 = 0.7λ, d2 = 0.5λ, broadside beam.
Dots: element-by-element MoM solution; solid curve: asymptotic AGF-based solution. (a) 10th row, (b) 10th column.
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the slots are fed with uniform amplitude and phase. The curves show the amplitude of the normalized magnetic
currents as a function of the slot index on a central row (Fig. 7a) or column (Fig. 7b) of the array. The solid
curve pertains to the method described above, while the dotted curve states results obtained from a conventional
element-by-element MoM, assuming a single resonant-type basis function on each slot. Since the slots are thin,
the global distribution is adequately described by only one sample per slot; the samples are connected by straight
segments to highlight the slot-by-slot oscillation around the solution for the infinite array (which is unity due to the
normalization). This oscillation, already observed by Hansen and Gammon [28], who described it on the basis of a
Gibbsian model, is established by the interference between each FW aperture field and its corresponding diffracted
ray. We emphasize that although the FW-diffraction method implies the solution of an 8 × 8 linear system versus
the 400 × 400 linear system for the element-by-element MoM approach, the results are almost coincident.

5. Conclusion

In this paper, a high-frequency formulation for the AGF of a periodic rectangular array of linearly phased parallel
dipoles has been developed and utilized as the base for an array-matched generalized GTD which extends the
concepts of conventional GTD for smooth configurations. The rectangular array has been parameterized in terms of
the phenomenologies of the constituent infinite sectoral arrays. Each sectoral array has been decomposed into the
SIAs corresponding to the two non-truncated sector edges, and the vertex contribution. The AGF is obtained first
by direct summation over the contributions from the individual radiators, and is then globally restructured via the
2D Poisson sum formula into spatial domain integrals which are asymptotically dominated by critical points in the
integration domain. These points are categorized depending on the FWs and of the corresponding FW-modulated
diffracted rays, which arise from FW diffraction at the sectoral array edges and vertex. The spectral domain version
of the 2D Poisson formula can be similarly parameterized in terms of critical spectral points and relevant wave
contributions. Different species of spectral poles define the various species of propagating and EFWs. The other
critical points in the double spectral integral define the asymptotic behavior of the edge and vertex-diffracted rays,
and the confluence of these critical points determines a variety of locally uniform transition regions for truncated
edge diffracted and vertex-diffracted waves. The uniform asymptotics governing this phenomenology is physically
appealing, numerically accurate, and efficient, owing to the rapid convergence of both the FW series and the series
of corresponding FW-modulated diffracted fields away from the array plane. The use of this asymptotic construct
not only speeds up the AGF calculations, but also provides the basic guidelines for the formulation of a hybrid
method where FW-modulated diffracted rays are used as basis functions in an MoM scheme.
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