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Finding candidate disease SNPs<p>Differential expressed genes are more likely to have variants associated with disease. A new tool, fitSNP, prioritizes candidate SNPs from association studies.</p>

Abstract

Background: Candidate single nucleotide polymorphisms (SNPs) from genome-wide association
studies (GWASs) were often selected for validation based on their functional annotation, which
was inadequate and biased. We propose to use the more than 200,000 microarray studies in the
Gene Expression Omnibus to systematically prioritize candidate SNPs from GWASs.

Results: We analyzed all human microarray studies from the Gene Expression Omnibus, and
calculated the observed frequency of differential expression, which we called differential expression
ratio, for every human gene. Analysis conducted in a comprehensive list of curated disease genes
revealed a positive association between differential expression ratio values and the likelihood of
harboring disease-associated variants. By considering highly differentially expressed genes, we were
able to rediscover disease genes with 79% specificity and 37% sensitivity. We successfully
distinguished true disease genes from false positives in multiple GWASs for multiple diseases. We
then derived a list of functionally interpolating SNPs (fitSNPs) to analyze the top seven loci of
Wellcome Trust Case Control Consortium type 1 diabetes mellitus GWASs, rediscovered all type
1 diabetes mellitus genes, and predicted a novel gene (KIAA1109) for an unexplained locus 4q27.
We suggest that fitSNPs would work equally well for both Mendelian and complex diseases (being
more effective for cancer) and proposed candidate genes to sequence for their association with
597 syndromes with unknown molecular basis.

Conclusions: Our study demonstrates that highly differentially expressed genes are more likely
to harbor disease-associated DNA variants. FitSNPs can serve as an effective tool to systematically
prioritize candidate SNPs from GWASs.

Background
A major goal of biomedical research is to identify genes that
contribute to the molecular pathology of specific diseases.

This process has been accelerated by two types of high-
throughput studies: genome-wide association studies
(GWASs) and gene expression microarray studies. A GWAS
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scans a genome for single nucleotide polymorphisms (SNPs)
associated with disease, whereas microarrays identify genes
that are differentially expressed between disease and control
samples. These methods have been integrated into molecular
profiling to identify expression quantitative trait loci and to
build pathways that are involved in various diseases, includ-
ing type 2 diabetes [1,2], atherosclerosis [3], dystrophic car-
diac calcification [4], metabolic disorders [5], and
cardiovascular disorders [6]. To lower the cost, GWASs are
frequently designed as a two-stage study [7]; first is a stage
involving identification of candidate SNPs, and then a valida-
tion stage is conducted, in which the effect of the candidate
SNPs in a larger population is determined. However, in a
recent two-stage GWAS of prostate cancer, most of the SNPs
determined to be significant were not even ranked in the top
1,000 SNPs in the identification stage [7], which suggests that
existing candidate SNP prioritization methods, which are
largely based on known functional annotations, are inade-
quate.

There are many candidate gene and SNP prioritization meth-
ods, including the use of sequence information [8,9], protein-
protein interaction networks [10,11], literature and ontology
[12,13], and various combination of these methods [14]. For a
detailed description of the available tools, the reader is
referred to comprehensive reviews [15,16]. Gene expression is
often taken into consideration when prioritizing candidate
genes or SNPs, but this is most often within the context of the
specific disease, such as disease-related anatomical regions
and tissue specificity [17-20], conserved co-expression [21],
coherent expression profile with known disease-associated
genes [22], or several expression datasets in model organisms
[23]. These disease-specific gene expression prioritization
methods are somewhat informative, but they are cumber-
some, requiring extensive manual work. Given that there are
more than 200,000 microarray studies included in the
National Center for Biotechnology Information's Gene
Expression Omnibus (GEO) [24] and more than 10,000 dis-
ease-associated DNA variants in the Genetic Association
Database (GAD) [25] and Human Gene Mutation Database
(HGMD) [26], we hypothesize that a more general (and there-
fore more systematic) link exists between a gene's expression
and the likelihood that it is associated with disease.

Recognizing the wealth of gene expression data in public
repositories, we propose an integrative genomics method to
systematically prioritize DNA markers that aims to accelerate
the identification of novel causative genes and variants. Here,
we analyzed every available human microarray study in GEO;
we calculated the frequency of differential expression for
every gene; and we found that the more often a gene was dif-
ferentially expressed, the more likely it was that it contained
disease-associated variants. Based on this discovery, we
derived a list of functionally interpolating SNPs (fitSNPs)
from differential gene expression, and we showed how fit-
SNPs could have been used to successfully prioritize genes

from type 1 and type 2 diabetes mellitus GWASs, as well as
previously identified Online Mendelian Inheritance in Man
(OMIM) loci with unknown molecular basis.

Results
Highly differentially expressed genes are more likely to 
harbor disease-associated variants
In order to determine whether differentially expressed genes
are genetically associated with disease, we downloaded all
476 curated human GEO datasets to serve as our human gene
expression set. The probes from these GEO datasets, which
include groups of microarrays organized by experimental var-
iable (for example, time, tissue, agent, temperature, and so
on), were annotated with the latest National Center for Bio-
technology Information Entrez Gene annotations using
AILUN [27]. We conducted 4,877 group-versus-group com-
parisons using significance analysis of microarrays (SAM)
[28] and obtained a list of 19,879 genes that were differen-
tially expressed with q value under 0.05 in one or more exper-
iments. We then created a list of curated human disease-
associated genes by combining GAD [25] and HGMD [26],
resulting in a list of 3,221 genes with disease-associated vari-
ants.

We compared our list of differentially expressed genes with
the list of genes with disease-associated variants, and we
found that 99% of disease-associated genes were differen-
tially expressed in one or more GEO datasets, with 14% spe-
cificity (Additional data file 1). The likelihood of having
variants associated with disease was 12 times higher among
differentially expressed genes than among constantly
expressed genes (P < 0.0001, Fisher's exact test), whereas the
likelihood of having a nonsynonymous coding SNP was 1.6
times higher among differentially expressed genes than
among constantly expressed genes.

In order to characterize better the relationship between DNA
variance and expression in all human genes, we tested
whether genes differentially expressed in multiple microarray
studies are more likely to have disease-associated variants.
For each gene, a differential expression ratio (DER) was cal-
culated as the count of GEO datasets in which it was differen-
tially expressed (q value ≤ 0.05) divided by the count of GEO
datasets in which it was measured. The calculation was
restricted to genes that were measured in at least 5% of all
GEO datasets.

The precision of rediscovering a disease gene was 16% for
genes with a DER greater than 0. This precision improved
gradually to 28% when the DER was greater than 0.62, and
then increased dramatically to 100% when the DER was
greater than 0.72 (Figure 1). As a control, a similar graph is
also plotted in Figure 1 for constantly expressed genes with a
DER less than the cutoffs used. The more GEO datasets in
which a gene was constantly expressed, the less likely it was
Genome Biology 2008, 9:R170
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to contain disease-associated variants. As an additional con-
trol, we randomly shuffled disease labels for all genes 10,000
times, and the precision of rediscovering disease genes
remained at the predicted 16%. Compared with constantly
expressed or randomly shuffled disease genes, the more often
a gene was differentially expressed, the more likely it was that
it contained DNA variants associated with diseases.

In a receiver operating characteristic curve constructed to
rediscover disease genes using the DER values, a DER value ≥
0.55 exhibited the best performance, with 79% specificity and
37% sensitivity. As shown in Figure 2, genes with DER ≥ 0.55
were 2.25 times more likely to harbor disease-associated var-
iants than others (P < 0.0001, Fisher's exact test). Varying the
threshold, we achieved 56% specificity and 65% sensitivity at
DER ≥ 0.50, and 93% specificity and 16% sensitivity at DER ≥
0.60.

DER distinguishes true type 1 diabetes mellitus genes 
from false positive genes in GWASs
The likelihood of harboring disease-associated variants in
genes with high DER values could be used to prioritize candi-
date SNPs from GWASs. To lower the cost, GWASs are often
designed as a two-stage experiment: identifying candidate
SNPs and then validating them in a larger population. Most
often, functionally important genes are manually selected
from the loci around positive SNPs for sequencing or high-
quality genotyping in a larger population. This prior knowl-
edge based gene prioritization method is not only time con-
suming but is also likely to miss novel genes. Indeed,
associations for a large number of candidate genes from iden-
tification stage of GWASs were found to be false positives in
the validation stage. A test to distinguish true disease genes
from these false-positive genes will demonstrate the prioritiz-
ing power of DER in GWASs.

Use of differentially and constantly expressed genes to rediscover disease genesFigure 1
Use of differentially and constantly expressed genes to rediscover disease genes. The DER was calculated as the count of GEO datasets in which a gene 
was differentially expressed divided by the count of GEO datasets in which it was measured. For any cutoff x, differentially expressed genes were defined 
as genes with DER > x, whereas constantly expressed genes were defined as genes with DER <x. The precision/recall graphs show that the likelihood of 
harboring disease mutations for a gene increases when its DER value increases. For the control, we shuffled disease labels 10,000 times among all genes 
and obtained a predicted precision of 16%. DER, differential expression ratio; GEO, Gene Expression Omnibus.
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We first evaluated the performance in type 1 diabetes mellitus
(T1DM). Within the top seven T1DM loci (6p21, 12q24, 12q13,
16p13, 18p11, 12p13, and 4q27) identified from the Wellcome
Trust Case Control Consortium (WTCCC) GWAS [29], 21
genes were reported with genotyping results in two follow-up
studies [30,31]. Table 1 lists their DER values along with their
validation results. As shown in Figure 3, the DER values of
T1DM genes were significantly higher than those for false-
positive genes (P = 0.003, t-test), with clear separation of the
25th to 75th percentile ranges. Among the ten genotyped can-
didate genes with DER ≥ 0.55, all but ITPR3 were validated as
true T1DM genes. Of the 11 genotyped genes with DER < 0.55,
all but three (HLA-DPB1, C12orf30, and KIAA0350) were
found to be unassociated with T1DM. We successfully distin-
guished true T1DM genes from false positives with 89% spe-
cificity and 75% sensitivity (P = 0.02, Fisher's exact test). If

we only genotype genes with DER ≥ 0.50, then we identify all
true T1DM genes, with a 56% false discovery rate.

DER distinguishes true type 2 diabetes mellitus genes 
from false-positive genes in GWASss
To validate the robustness of this method, we applied it to
another disease, namely type 2 diabetes mellitus (T2DM),
which had been studied in six large-scale GWASs [29,32-36]
and tens of targeted association studies in more than 20 pop-
ulations. We extracted all significant T2DM genes described
in the abstracts, and limited the list to those with significant
association in at least three different populations, and derived
15 widely accepted T2DM genes (Table 2). We also retrieved
SNPs that were reported to exhibit significant association in
the identification stage but no association in the validation
stage in a large-scale T2DM GWAS [32]. We annotated these

Performance of rediscovering disease genes by DERFigure 2
Performance of rediscovering disease genes by DER. Genes with DER ≥ 0.55 were predicted to be disease genes, and compared with genes with disease-
associated DNA variants listed in GAD and HGMD. P values were calculated using Fisher's exact test. DER, differential expression ratio; GAD, Genetic 
Association Database; GEO, Gene Expression Omnibus; HGMD, Human Gene Mutation Database.
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negative SNPs with their associated genes using Entrez
dbSNP, and we removed those without gene annotations, and
derived 13 negative genes. As shown in Table 2, DER ≥ 0.55
successfully distinguished T2DM genes from negative genes
with 85% specificity and 60% sensitivity (P = 0.02, Fisher's
exact test).

FitSNPs predicts T1DM genes directly from the top 
seven WTCCC T1DM loci
The robustness of DER to distinguish disease genes from false
positives in T1DM and T2DM GWASs led us to hypothesize
that it may also be used to predict disease genes directly from
the loci identified from GWASs. To facilitate the visualization
of DER values along with GWAS results on the human
genome, we created a tool called functionally interpolating
SNPs (fitSNPs) [37]. It is a list of human SNPs with DER val-

ues assigned according to their associated genes. It can be
easily loaded into the University of California Santa Cruz
(UCSC) genome graph [38] and visualized on the human
genome along with a wealth of preloaded or user-defined
genomic data, such as GWAS results. We called the tool 'func-
tionally interpolating SNPs' because it not only infers the like-
lihood of disease association for all human SNPs but also
suggests potential diseases to guide functional studies. In the
Gene page of the FitSNPs server, clicking the DER value for
any gene will display all biologic and clinical conditions in
which it was found to be differentially expressed, with statis-
tical comparisons and filter/sort functions [39].

We therefore examined each of the top seven WTCCC T1DM
loci on the UCSC genome browser to evaluate whether we
could predict T1DM genes using fitSNPs. The hypothesis is

Distinguishing T1DM genes from false positives in the top seven loci from GWASs using DERFigure 3
Distinguishing T1DM genes from false positives in the top seven loci from GWASs using DER. Genes in the top seven loci from the WTCCC T1DM 
GWASs are reported with validation results. False-positive genes were shown as positive in the initial scan but found to be unassociated with T1DM in the 
follow-up validation studies. T1DM genes had significantly higher DER values than did false positive genes (P = 0.003). The mean DER values for T1DM and 
false-positive genes were 0.59 and 0.50, respectively. DER, differential expression ratio; GWAS, genome-wide association study; T1DM, type 1 diabetes 
mellitus; WTCCC, Wellcome Trust Case Control Consortium.
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that a gene with a significantly higher DER value than other
genes in the vicinity will probably explain the observed dis-
ease association from the locus.

In 12q13, ERBB3 is the only gene with high scores in both the
WTCCC T1DM GWAS and fitSNPs, and this gene was indeed
found to contain rs2292239, which is the only confirmed
T1DM marker within this region. In 18p11, PTPN2 is the only
gene suggested by fitSNPs (DER = 0.64), and it was con-
firmed to explain the association with T1DM for this region.
In 16p13, we predicted SOCS1 to be the most significant gene
(DER = 0.64), and the follow-up study showed that it con-

tains the validated marker rs243329 (-log10P = 4.19). How-
ever, we missed KIAA3350 (DER = 0.5) from 16p13, which
has a confirmed association with T1DM and a higher -log10P
than SOCS1. In 12p13, no gene has a high score in both GWAS
and fitSNPs, which is consistent with the fact that no associa-
tion was found in the follow-up parent-child trio study [31].

Within 12q24, SH2B3 and ALDH2 have high scores in both
T1DM and fitSNPs, and indeed SH2B3 was confirmed to con-
tain a mutation in R262W that explains the association with
T1DM in this region in the follow-up study [31]. The associa-
tion of SH2B3 with T1DM is somewhat fortuitous because it
was originally excluded based on data quality. Only upon
recovering additional, poorly clustered nonsynonymous
SNPs was it screened for association. This highlights an inad-
equate prioritization approach, which currently is based on
existing functional annotations. This gene prioritization
problem is addressed by fitSNPs because it is not biased by
existing functional annotations. It is not clear whether there
was any follow-up study on mitochondrial aldehyde dehydro-
genase 2 (the protein encoded by ALDH2), which detoxifies
aldehydes generated by alcohol metabolism and lipid peroxi-
dation in the mitochondrial matrix. The association of inac-
tive ALDH2 genotype with maternal inheritance of T1DM,
previously reported in a Japanese population [40], suggests
that it may also play a role in T1DM.

Within 4q27, IL2, IL21, and TENR were selected for deep
sequencing in the T1DM follow-up study because of the asso-
ciation of T1DM susceptibility with IL2 in nonobese diabetic
mice. However, no T1DM marker had been found in these
three genes, and the T1DM association of 4q27 remains unex-
plained. Figure 4 shows the fitSNPs DER values along with
T1DM GWAS -log10P at 4q27 on the UCSC genome browser
[38]. We found that KIAA1109's DER value (0.63) is much
greater than those for all other genes in 4q27, including IL2
(0.48), IL21 (0.46), and TENR (0.54). It is flanked by two
most significant T1DM GWAS SNPs, and is highly likely to be
associated with T1DM. The -log10P curve within KIAA1109
was missing because it was not listed in the genotyping array
used in the WTCCC T1DM GWAS (Affymetrix 500K SNP
array; Affymetrix Inc., Santa Clara, CA, USA).

Interestingly, the 4q27 region has also been found to be asso-
ciated with celiac disease [41] and rheumatoid arthritis [42],
suggesting that it might be a general risk factor for multiple
autoimmune diseases. It has been reported that rs13119723 in
KIAA109 has the most significant association with celiac dis-
ease outside the HLA region (P = 2 × 10-7) [41]. By examining
our annotated microarray database of disease versus normal
gene expression datasets [43], we found that KIAA1109 was
significantly downregulated in peripheral blood cells in juve-
nile rheumatoid arthritis in two independent studies [44,45].
Additionally, the GNF SymAtlas lists it as being highly
expressed in T cells [46]. Therefore, KIAA1109 is a valuable
gene for further investigation in T1DM and other autoim-

Table 1

DER values for T1DM and false positive genes in the top 7 
WTCCC T1DM loci

Loci Genea Associated?b DER Correct?c

4q27 TENR No 0.54 True negative

4q27 IL2 No 0.48 True negative

4q27 IL21 No 0.46 True negative

6p21 HLA-DQB1 Yes 0.68 True positive

6p21 HLA-DRB1 Yes 0.61 True positive

6p21 HLA-B Yes 0.59 True positive

6p21 HLA-A Yes 0.59 True positive

6p21 HLA-DPB1 Yes 0.54 False negative

6p21 TAP2 Yes 0.58 True positive

6p21 CFB Yes 0.59 True positive

6p21 MICA No 0.5 True negative

6p21 MICB No 0.53 True negative

6p21 MASIL No 0.35 True negative

6p21 UBD No 0.48 True negative

6p21 ITPR3 No 0.62 False positive

12p13 CLEC2D No 0.51 True negative

12q13 ERBB3 Yes 0.63 True positive

12q24 C12orf30 Yes 0.52 False negative

12q24 SH2B3 Yes 0.58 True positive

16p13 KIAA0350 Yes 0.5 False negative

18p11 PTPN2 Yes 0.64 True positive

aThe positive candidate genes from WTCCC GWAS with reported 
validation results. bValidated to be associated or unassociated with 
T2DM in the high-quality genotyping. cThe predicted result using DER 
≥ 0.55. DER, differential expression ratio; GWAS, genome-wide 
association study; T1DM, type 1 diabetes mellitus; WTCCC, 
Wellcome Trust Case Control Consortium.
Genome Biology 2008, 9:R170
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Table 2

DER values for T2DM and false positive genes from GWAS

Locus or SNP Gene Associated in populations DER Correct?a

2q37.3 CAPN10 Finish. [55], Korean [56], Mexican. [55], Tunisian [57] 0.57 True positive

3p25 PPARG Caucasian. [58], Finish. [59], German. [60], Indian Sikhs. [61], Japanese. [62], Mexican. [63] 0.53 False negative

3q27.2 IGF2BP2 Asian. [64], Caucasian. [33], Chinese [65], Danish. [66], French. [67], German. [60], Hispanic. [68], 
Indian Sikhs. [61], Japanese. [69], Norwegian. [70]

0.54 False negative

6p22.3 CDKAL1 Asian. [64], Ashkenazi Jewish. [71], Caucasian. [33], Chinese [65], German. [60], Hispanic. [68], 
Japanese. [69], Norwegian. [70]

0.55 True positive

8q24.11 SLC30A8 Asian. [64], African. [68], Caucasian. [33], Chinese [65], Hispanic. [68], Japanese. [69], Norwegian. 
[70]

0.42 False negative

9p21 CDKN2A Asian. [64], Caucasian. [34], Chinese [65], Danish. [66], French [72], Japanese. [69] 0.59 True positive

9p21 CDKN2B Asian. [64], Caucasian. [33], Chinese [65], Danish. [66], French [72], Japanese. [69], Norwegian. 
[70]

0.49 False negative

10q23 HHEX Asian. [64], Caucasian. [33], Chinese [65], Danish. [66], German. [60], Japanese. [69], Norwegian. 
[70]

0.58 True positive

10q23 IDE Caucasian. [73], Chinese [65], Danish. [66], Japanese. [74], Korean. [75] 0.61 True positive

10q24 KIF11 Caucasian, Chinese [65], Danish. [66], Japanese. [74] 0.54 False negative

10q25.3 TCF7L2 African. [76], Ashkenazi Jewish. [71], Asian. [64], Caucasian. [33], Chinese. [77], German. [60], 
Hispanic. [78], Indian Sikhs. [61], Japanese. [79], Spanish, UK white. [80]

0.64 True positive

11p15.1 KCNJ11 Arab. [81], Caucasian. [33], Czech [82], Japanese. [69] 0.39 False negative

11p15.5 KCNQ1 Singaporean. [35], European. [35], Japanese. [35] 0.6 True positive

16q12.2 FTO Asian. [64], Caucasian. [34], Indian Sikhs. [61], German. [60], Japanese. [83], Norwegian. [70] 0.55 True positive

20q12 HNF4A Amish. [84], Ashkenazim [85], Danish. [86], Finish. [87], Swedish. [87], Mexican. [88], Norwegian. 
[89], UK Caucasian. [90]

0.63 True positive

rs11078674 NLGN2 No 0.53 True negative

rs2866016 TSPAN5 No 0.53 True negative

rs12629276 RFTN1 No 0.54 True negative

rs8101509 ZNF649 No 0.4 True negative

rs945384 FAM69B No 0.53 True negative

rs2050831 VPS13A No 0.63 False positive

rs6670163 RYR2 No 0.55 False positive

rs859101 SLC44A3 No 0.5 True negative

rs11084127 ZNF615 No 0.46 True negative

rs7950175 KIRREL3 No 0.48 True negative

rs13064991 SLC6A20 No 0.45 True negative

rs6541240 TTC13 No 0.51 True negative

rs2278419 ZNF350 No 0.45 True negative

aThe predicted result using DER ≥ 0.55. DER, differential expression ratio; GWAS, genome-wide association study; T2DM, type 2 diabetes mellitus.
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Interpreting T1DM GWAS findings at 4q27 using fitSNPsFigure 4
Interpreting T1DM GWAS findings at 4q27 using fitSNPs. The region 4q27 has been identified as a risk factor area for T1DM, celiac disease, and 
rheumatoid arthritis. IL2, IL21, and TENR were selected based on prior knowledge for sequencing in the follow-up studies, but no association was found. 
KIAA1109 has a much higher fitSNPs DER value than all other genes in the region, and is flanked by two significant T1DM GWAS SNPs (-log10P >5). We 
predicted that this gene may explain the T1DM association in this region. The GWAS -log10P curve for KIAA1109 is missing because it was not listed in the 
Affymetrix 500 K SNP array used for the GWAS. DER, differential expression ratio; fitSNPs, functionally interpolating single nucleotide polymorphisms; 
GWAS, genome-wide association study; SNP, single nucleotide polymorphism; T1DM, type 1 diabetes mellitus.
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mune diseases, and we predict that it is likely to explain the
T1DM association in 4q27.

Comparing DER values among different types of 
disease genes
The success of these three validation studies demonstrates
that fitSNPs could be used not only to prioritize different loci
from GWASs but also to prioritize genes from each locus.
Before applying fitSNPs to all diseases, one important ques-
tion is whether genes associated with different type of dis-
eases have different DER values. We downloaded lists of
disease genes for Mendelian diseases (highly penetrant dis-
eases caused by a single mutation), complex diseases, and
cancer, which were compiled by Ran Blekhman and cowork-
ers [47]. As shown in Table 3, no significant DER difference
were observed between Mendelian and complex disease
genes (0.53 versus 0.54; P = 0.2, t-test). Cancer genes exhib-
ited significantly higher DER values (0.56) than did both
Mendelian (P < 0.0001, t-test) and complex disease genes (P
= 0.001, t-test). Furthermore, all types of disease genes exhib-
ited significantly higher DER values than did nondisease
genes (P < 0.0001, t-test). These findings suggest that fitSNPs
could be used to prioritize disease genes for both Mendelian
and complex diseases, and would be even more effective in
prioritizing cancer genes.

FitSNPs predicts disease genes in OMIM loci with 
unknown molecular basis
FitSNPs could be used not only to prioritize disease genes
from GWASs for multiple disease types, but also to predict
disease associations for genes with high DER values. There
are 5,253 human genes with DER ≥ 0.55. Of these, 23% have
known variants for various diseases according to GAD and
HGMD. The remaining 4,052 genes have not yet been shown
to associate with any diseases through mutations or polymor-
phisms, making them promising leads. To systematically pre-
dict disease associations for them, we searched OMIM and
found that 830 diseases and syndromes have been linked to
cytogenetic locations but not specific genes. From these
cytogenetic locations, we predicted 3,331 highly differentially

expressed genes with DER ≥ 0.55 in 610 diseases. From this
group, 2,586 genes, which are currently not associated with
any disease according to GAD and HGMD, were predicted to
be associated with 597 diseases [48].

For example, systemic lupus erythemetosus (SLE) is an
autoimmune disease with multiple organ involvement and a
genetic predisposition. Renal disease occurs in 40% to 75% of
SLE patients and up to 90% of childhood SLE patients, and
significantly contributes to morbidity and mortality. A
genome scan was performed with more than 300 microsatel-
lite markers in the 75 pedigrees that had SLE with nephritis,
and linkage was identified at 2q34-q35 with P = 0.000001
(SLEN2; OMIM %607966). To date, no gene in 2q34-q35 has
been associated with SLEN2. The DER for the gene OBSL1
(obscurin-like 1; DER = 0.71) is significantly greater than that
for all other genes (Figure 5). Actually, it has the second high-
est DER value among all human genes without known dis-
ease-associated variants. By examining our annotated
microarray database of disease versus normal gene expres-
sion datasets [43], we found that OBSL1 was significantly dif-
ferentially expressed in juvenile idiopathic arthritis (GEO
series 8650) and several kidney diseases, such as kidney can-
cer (GEO dataset 9) and kidney transplant rejection (GEO
dataset 724). Therefore, we suggest that OBSL1 might be
associated with SLEN2. Similarly, we suggest that the 2,586
genes predicted with DER values are top candidate genes for
the 597 syndromes in question.

Discussion
We analyzed 476 human GEO datasets and calculated the fre-
quency of differential expression for every gene, which we
called the differential expression ratio (DER). The enrich-
ment analysis on a comprehensive list of curated disease
genes revealed a positive association between DER values and
the likelihood of harboring disease-associated mutations. We
were able to rediscover all disease genes with 79% specificity
and 37% sensitivity using a simple threshold of DER ≥ 0.55.
These highly differentially expressed genes were 2.25 times

Table 3

DER value comparisons among Mendelian, complex, cancer, all disease genes and nondisease genes

P valuea Mendelian 
(mean = 0.53, n = 931)

Complex 
(mean = 0.54, n = 70)

Cancer 
(mean = 0.56, n = 324)

All diseases 
(mean = 0.53, n = 3,178)

Nondisease 
(mean = 0.50, n = 16,698)

Mendelian 0.2 <0.0001 0.4 <0.0001

Complex 0.001 0.3 <0.0001

Cancer <0.0001 <0.0001

All diseases <0.0001

Nondisease

*P values were calculated using t-test. DER, differential expression ratio.
Genome Biology 2008, 9:R170
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Prediction that OBSL1 is associated with systemic lupus erythematosus with nephritis through 2q34-q35Figure 5
Prediction that OBSL1 is associated with systemic lupus erythematosus with nephritis through 2q34-q35. Systemic lupus erythemetosus with nephritis 
(SLEN2; OMIM %607966) was identified to be associated with 2q34-q35 but without identification of specific genes. OBSL1 has a much higher DER value 
(0.71) than those of all other genes from 2q34-q35. It was also found to be differentially expressed in juvenile idiopathic arthritis, kidney cancer, and kidney 
transplant rejection. Therefore, we suggest that it should be sequenced for its potential association with SLEN2.
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more likely to harbor disease-associated variants than others.
The positive association between DER and our precision to
rediscover disease genes was consistently observed across
ranges of DER values, in spite of variable adjustments,
including adjusting the q value cutoff from 0.005 to 0.2, and
the removal of genes measured in fewer than 0% to 30%
microarray studies. Additionally, we analyzed disease genes
from three different human genetic association databases,
namely GAD, HGMD, and OMIM, individually and observed
the same DER-related increase in precision. We also used the
absolute GEO dataset counts instead of the DER to rediscover
disease genes and observed the same pattern. The majority of
476 GEO datasets are genome-wide experiments; 98% of
GEO datasets contained more than 5,000 probes, and 89%
contained more than 10,000 probes, which are unlikely to be
targeted arrays. These results demonstrated a robust associa-
tion between differential expression and disease variants.

Based on the observed associations, we created a tool called
fitSNPs to prioritize disease genes from candidate GWAS loci.
First, we successfully distinguished true disease genes from
false positives (positive SNPs from initial scan subsequently
found to be negative during validation) for T1DM GWASs
with 89% specificity and 75% sensitivity, and T2DM GWASs
with 85% specificity and 60% sensitivity. We then directly
rediscovered true T1DM genes by analyzing the top seven loci
of WTCCC GWAS initial scan results using fitSNPs. Further-
more, in an unexplained locus (4q27), fitSNPs predicted that
a novel gene, KIAA1109, may explain the association for
T1DM and several autoimmune diseases. We also examined
the findings of a segmental copy number variation (CNV)
study [49], which was performed using a whole-genome til-
ing-path bacterial artificial chromosome array to detect a gain
or loss of more than 40 kilobases in 93 human samples. The
results were uploaded into the UCSC genome browser as a
custom track. Using the custom track, we found a CNV in
KIAA1109, suggesting that CNV might play a role in T1DM.

Although there are existing gene prioritization methods, this
is the first to describe the use of differential expression to sys-
tematically prioritize candidate genes or SNPs. We acknowl-
edge that no single gene prioritization method is perfect and
suggest that fitSNPs can also be used in a complementary
manner with other prioritization methods. Given that there
are more than 100 published GWASs, we believe that fitSNPs
can serve as an effective tool to systematically prioritize can-
didate SNPs from them.

In theory, FitSNPs can also be used to design SNP arrays for
GWASs. It has been shown that tagSNPs could lower costs by
53% while capturing 80% of common SNPs in the African
population [50]. In comparison, a DER of 0.48 achieved sim-
ilar sensitivity; 57% of genes in the genome have a DER value
larger than 0.48. They comprise 74% of genes known to have
disease-associated variants. A GWAS focusing on these genes
could lower experimental costs by 43% while covering at least

74% of disease genes. Therefore, fitSNPs could reduce GWAS
costs in a way comparable to that of tagSNPs, but with the
additional advantages of gene prioritization and direct link-
age to functional experiments. Furthermore, fitSNPs could be
combined with tagSNPs in the design of GWASs to further
reduce costs and to expedite the discovery of causative genes
and DNA variants.

To facilitate the use of fitSNPs, we developed a web server [51]
that retrieves DER values, and a comprehensive list of vali-
dated and predicted disease associations for all human genes
and their underlying microarray study results.

Conclusion
This study demonstrates that highly differentially expressed
genes are more likely to harbor disease-associated variants.
FitSNPs successfully distinguished true disease genes from
false positives of GWASs for multiple diseases, and can serve
as a powerful and convenient tool to prioritize disease genes
from GWASs. We further proposed 2,586 genes to sequence
for 597 syndromes with unknown molecular basis. With the
wealth of genomic, genetic, and disease databases in public
international repositories, we are now able to investigate sys-
tematically the molecular and genetic mechanisms of dis-
eases, make predictions, and validate them using commercial
kits and core facilities. To maximize their value, these molec-
ular measurements must be placed within the context of
physiology. A public repository of de-identified clinical meas-
urements will greatly accelerate this process [52].

Materials and methods
GEO datasets
The GEO contains gene expression profiles for more than
200,000 individual microarray samples. They are assembled
into biologically meaningful and comparable GEO datasets
with manually annotated experimental details, such as varia-
bles that were studied in the experiment. All samples within a
GEO dataset were measured on the same platform with the
same background processing and normalization, and their
values were directly comparable. We downloaded, processed,
and annotated all GEO datasets from GEO, and obtained 476
human GEO datasets, in which both the GEO platform and
the GEO dataset were annotated as human.

Differentially expressed genes
Each GEO dataset was categorized into subsets annotated
with one of the 24 types, including disease state, genotype/
variation, strain, infection, development stage, age, time,
agent, dose, tissue, cell type, cell line, metabolism, stress,
growth protocol, protocol, gender, individual, isolate, shock,
species, specimen, temperature, and others. We performed
all possible subset-versus-subset comparisons in each com-
parison type in every GEO dataset, ignoring subsets with
fewer than three samples. For every comparison, we identi-
Genome Biology 2008, 9:R170
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fied all differentially expressed probes using two class
unpaired analysis in the R package of SAM (SAMR) with ver-
sion 1.25 [28]. We used all default parameters with standard
t-statistics: nperms = 50, fold > 0, and delta < 0.4. All differ-
entially expressed probes with q ≤ 0.05 were recorded and
annotated with the latest Entrez Gene IDs using AILUN [27].
For 4,552 out of 4,877 comparisons, at least one gene exhib-
ited a significant difference.

DER
The DER was calculated for each Entrez Gene ID as the count
of GEO datasets in which it was differentially expressed
divided by the count of GEO datasets in which it was meas-
ured. Genes measured in fewer than 5% of GEO datasets were
removed.

Disease genes
Human genes with known disease-associated variants were
downloaded from HGMD Professional (Biobase) and GAD.
HGMD gene symbols were related to Entrez Gene IDs using
AILUN [27]. Entrez Gene IDs were retrieved from GAD
entries with validated disease associations, and compared
with the latest Entrez Gene ID list to replace or remove out-
dated Gene IDs and nonhuman genes.

Differentially expressed genes versus disease genes
For a cutoff from 0 to 1 with an increment of 0.02, differen-
tially expressed genes with DER values greater than the cutoff
were compared with the list of disease genes to calculate the
precision and recall. Constantly expressed genes with DER
less than the cutoff were similarly evaluated. For the control,
the label of disease genes was also shuffled 10,000 times
within all human genes and compared with differentially
expressed genes.

Comparison of DER values for T1DM genes with those 
of false positives in GWASs
For each of top seven loci described in the WTCCC T1DM
GWAS [31], all genes with described validation results were
manually extracted from the paper and supplementary mate-
rials [30,31]. The DER values were compared between T1DM
and non-T1DM genes in accordance with the validation
result.

Comparison of DER values for T2DM genes with those 
of false positives in GWASs
T2DM genes were extracted from six T2DM GWASs [29,32-
36] and tens of association studies. Of them, genes associated
with T2DM in three or more populations were recorded as
true T2DM genes. False-positive SNPs were extracted from
Table S7 of the report of a T2DM GWAS [32], which were
found to be positive in the stage 1 GWAS but found to be unas-
sociated with T2DM during the validation phase, with p value
from permutation larger than 0.05. They were annotated with
Entrez Gene IDs using Entrez dbSNP [53]. All SNPs without
gene annotations were removed.

FitSNPs
FitSNPs [39] is a list of human Entrez Gene IDs with DER val-
ues. Genes with disease-associated variants and correspond-
ing diseases were retrieved from HGMD [26] and GAD [25].
To facilitate integration between fitSNPs and GWASs on the
human genome, all reference SNPs were downloaded from
dbSNP [53] and assigned DER scores according to their asso-
ciated genes. For SNPs mapping to multiple genes, the high-
est DER value was selected. FitSNPs can be loaded into the
UCSC genome graph, in accordance with the instructions in
the GWAS page of the FitSNPs server [37]. It will automati-
cally show up as a custom track in the UCSC genome browser
that can be compared with a wealth of genomic data, includ-
ing multiple GWAS study results.

Predicting T1DM genes from the top seven loci of 
GWASs
Both DER values and WTCCC T1DM GWAS -log10P were vis-
ualized in UCSC genome browser [54] for the top seven loci.
Genes with DER value ≥ 0.55 and -log10P >5 were predicted to
be T1DM genes, and compared with the validation findings.

Mapping diseases without known molecular basis to 
lead genes
All diseases in OMIM morbid map with a percentage preced-
ing their MIM numbers were considered to be Mendelian dis-
orders without known molecular association. Cytogenetic
locations of these diseases and all human genes were
retrieved from the OMIM morbid map and the Human Gene
Nomenclature Committee, respectively. Highly differentially
expressed genes with DER ≥ 0.55 were identified from the
cytogenetic location for each disease. Within them, genes that
have not been known to have disease-associated variants
were predicted to be associated with a corresponding disease.
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