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ABSTRACT Multi-omics methods have greatly advanced our understanding of the
biological organism and its microbial associates. However, they are not routinely
used in clinical or industrial applications, due to the length of time required to gen-
erate and analyze omics data. Here, we applied a novel integrated omics pipeline for
the analysis of human and environmental samples in under 48 h. Human subjects
that ferment their own foods provided swab samples from skin, feces, oral cavity,
fermented foods, and household surfaces to assess the impact of home food fer-
mentation on their microbial and chemical ecology. These samples were analyzed
with 16S rRNA gene sequencing, inferred gene function profiles, and liquid
chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics through the
Qiita, PICRUSt, and GNPS pipelines, respectively. The human sample microbiomes
clustered with the corresponding sample types in the American Gut Project (http://
www.americangut.org), and the fermented food samples produced a separate clus-
ter. The microbial communities of the household surfaces were primarily sourced
from the fermented foods, and their consumption was associated with increased gut
microbial diversity. Untargeted metabolomics revealed that human skin and fer-
mented food samples had separate chemical ecologies and that stool was more sim-
ilar to fermented foods than to other sample types. Metabolites from the fermented
foods, including plant products such as procyanidin and pheophytin, were present
in the skin and stool samples of the individuals consuming the foods. Some food
metabolites were modified during digestion, and others were detected in stool in-
tact. This study represents a first-of-its-kind analysis of multi-omics data that
achieved time intervals matching those of classic microbiological culturing.

IMPORTANCE Polymicrobial infections are difficult to diagnose due to the chal-
lenge in comprehensively cultivating the microbes present. Omics methods, such as
16S rRNA sequencing, metagenomics, and metabolomics, can provide a more com-
plete picture of a microbial community and its metabolite production, without the
biases and selectivity of microbial culture. However, these advanced methods have
not been applied to clinical or industrial microbiology or other areas where complex
microbial dysbioses require immediate intervention. The reason for this is the length
of time required to generate and analyze omics data. Here, we describe the devel-
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opment and application of a pipeline for multi-omics data analysis in time frames
matching those of the culture-based approaches often used for these applications.
This study applied multi-omics methods effectively in clinically relevant time frames
and sets a precedent toward their implementation in clinical medicine and industrial
microbiology.

KEYWORDS: 16S rRNA, microbiome, fermented food, metabolome, molecular
networking, rapid response

The omics field is expanding rapidly, driven by the plummeting cost of DNA
sequencing, the widespread availability of DNA sequencers and mass spectrome-

ters, and the seemingly unlimited breadth of its applications. However, generating,
processing, analyzing, and interpreting the data typically takes months and requires
substantial technical expertise in large multidisciplinary teams, in part, due to the
rapidly evolving nature of the component techniques. The speed of mass spectrometry
and nucleic acid sequencing (the tools required to generate omics data) has increased
rapidly in the last decade, and they have separately been applied to clinical diagnostics
in a targeted fashion. For example, high-throughput sequencing for the detection and
typing of single pathogens in complex samples has achieved turnaround times of hours
to days (1–5), and mass spectrometry analysis of metabolites has been performed in the
clinic and laboratory in essentially real time (6, 7). However, the integration of multi-
omics technologies and their application to the microbiome field have not yet achieved
time frames compatible with clinical needs in human health, industrial microbiology, or
routine laboratory experiments.

Multi-omics studies of the human microbiome can have enormous impact, provid-
ing a more comprehensive picture of a microbial community than a single omics
approach on its own (8, 9). These studies have led to an understanding of how
microbial communities in our bodies produce metabolites that affect our health and
transform the drugs we consume (10–13). One of the first integrated omics analysis
related to the human microbiome was by Li et al. (14), who revealed an association
between the gut microbiota and host metabolites in a cohort of Chinese subjects by
using clone library sequencing and nuclear magnetic resonance. This, and more recent
multi-omics studies (15, 16), had multiyear gestation times. Today, when considering
the time between receipt of samples with informed consent and statistical conclusions
from integrated omics data, these studies still require months to years to complete.

In order to develop rapid multi-omics pipelines with broad applicability, they must
first be tested using subjects and samples that are strongly influenced by their
exposure to microbes and microbial chemical products. The subjects in this study are
tightly linked to their microbial partners through their active involvement with fer-
mented foods. This mutualistic relationship is believed to have existed since the
Paleolithic era (17) and continues around the globe today. Modern human evolution is
intertwined with the influence of microbial fermentation processes in the foods we eat
and within our own bodies. Depending on the type of food and conditions used during
fermentation, different types of microbial communities form, composed of various
bacterial and fungal species (18), and the metabolic products of these communities can
impact human health (19). Previous studies found that species originating from micro-
bially diverse fermented foods, such as cheese and salami, are able to colonize the
gastrointestinal tract (19). Furthermore, with the significant effects of antibiotics and a
processed food-based diet on our microbiomes (13, 20, 21), there is an interest in the
health benefits of fermented foods as alternatives. Here, we present the results from a
simple, robust multi-omics platform integrating analyses of human, environmental, and
animal samples in the clinically relevant time frame of less than 48 h. This pipeline is
now possible because of rapid advances in the development of software for the
analysis and integration of omics data and standardized protocols that allow stream-
lined insertion of matched samples into multi-omics pipelines. We demonstrate how
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individuals commonly exposed to fermented foods show influences of these microbes
on and in their bodies.

RESULTS AND DISCUSSION
General description of the 48-h analysis and multi-omics pipeline. Samples were
collected by seven volunteers (two families and two individuals, designated households
1 to 4) who regularly prepare and eat fermented foods (specifics of the fermented foods
are presented in Table S1 in the supplemental material) and who were recruited to the
American Gut Project (AGP; http://www.americangut.org) via word-of-mouth through
the Second Annual San Diego Fermentation Festival in San Diego, CA. The AGP is an
IRB-approved citizen science project comprising more than 7,000 samples from more
than 6,500 individuals. Consenting participants received an AGP sampling kit after they
gave consent and took a survey online, and the data were stored in a secure database.
The deidentified metadata were then immediately downloaded into a file formatted for
use in Qiita (https://qiita.ucsd.edu/). Due to the infrastructure surrounding the process,
participant consent and sample-associated metadata were obtained before the sam-
ples arrived in the laboratory, facilitating immediate preparation for sample processing
upon arrival. Notably, the metadata can be used for both 16S rRNA gene sequencing
and metabolomics analyses, further streamlining the multi-omics approach. Samples
were collected by cotton swab and subjected to DNA and metabolite extraction to
describe the composition and activity of the corresponding microbial communities.
Samples were subjected to a streamlined, high-throughput process involving prepara-
tion for 16S rRNA gene (variable region 4 [V4]) sequencing via the Earth Microbiome
Project protocols (22, 23) and for liquid chromatography-tandem mass spectrometry
(LC-MS/MS) (24). The first description of both the microbial communities and mole-
cules, including alpha and beta diversity, and specific effects of fermented foods on the
microbial and chemical ecology of the subjects, occurred within 48 h after samples
were delivered to the laboratory (Fig. 1). Computational resources, including the
Barnacle cluster available through the UCSD center for microbiome innovation con-
nected to the Comet supercomputer located at the San Diego Supercomputer Center,
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FIG 1 Timeline of the multi-omics analysis of samples from four households and their fermented food
products.
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allowed �50 central processing unit (CPU) h of processing in �11 h of wall time (note
that some of the component steps are not parallelized), giving results back to the
researchers fast enough to interpret the data in a timely manner.

There are four main components that enabled the development of this rapid
multi-omics pipeline and its implementation in less than 48 h (Fig. 1). First, subjects
easily and efficiently enrolled themselves as part of an already existing, IRB-approved
project (the AGP), enabling the use of on-the-spot informed consent and standardized
metadata collection. Second, the protocols used to collect metadata and process
samples have been extensively benchmarked and standardized (http://www.earthmi-
crobiome.org/emp-standard-protocols/), allowing rapid assimilation with existing da-
tasets and facilitating meaningful comparisons with other cohorts. Third, community
analysis infrastructures, including Qiita, the microbial analysis infrastructure that houses
microbiome analysis tools, and GNPS, a crowdsourced analysis infrastructure and public
metabolomics knowledge repository (http://gnps.ucsd.edu), allowed rapid data pro-
cessing and interpretation. And fourth, the servers that host Qiita and GNPS are linked,
enabling normalization, processing, and cross-platform analysis of multi-omics data in
an integrated fashion. Both these analysis platforms enable rapid comparisons to
existing data in the public domain and are publicly available, facilitating data upload
and analysis from any sequencer or tandem mass spectrometer, so long as the file
formats are compatible. Linking the two platforms limits the need to move gigabytes
or terabytes of data, making local analysis on one’s own computer and integration with
existing knowledge possible, rather than needing to download public data and new
data to a personal computer first (e.g., the AGP data repository contains over 216
million reads). Tools available through this pipeline and utilized in this study include
operational taxonomic unit (OTU) clustering of reads and generation of tables for
multivariate statistical analysis of microbiome data, including alpha diversity, principle
component analysis (PCoA) visualization through EMPeror, cluster significance testing
with analysis of similarity (ANOSIM), and others. This pipeline also allows immediate
integration of data with the data in the AGP repository to visualize the relationships of
samples with a large reference data set, which can provide context to the microbiome
data generated. Metabolomics tools include library searching of the GNPS libraries (the
largest currently available in the mass spectrometry field) (25), molecular network
visualization to allow metabolite tracking, and metabolome abundance matrix gener-
ation to allow similar multivariate statistical analysis, including PCoA and EMPeror-
based visualization of sample relationships.

Microbiome relationships. Bacterial marker gene sequencing revealed rich mi-
crobial communities in most fermented food samples as judged by Faith’s phylogenetic
diversity (PD) metric (26), a biodiversity measure incorporating phylogenetic differences
between the taxa present in a sample. The three most diverse samples were pickles,
beet kvass, and port wine (PD values of 23.0, 16.6, and 16.2, respectively), while dairy
kefir and “symbiotic colony of bacteria and yeast” (SCOBY) samples were the least
diverse (average PD values of 2.21 and 1.91, respectively). The average PD of all
fermented foods in the data set was 9.89, compared to 21.6, 11.9, and 18.5 for human
skin, oral, and fecal samples, respectively. Surface microbiomes were also rich, with an
average PD of 11.5. The unweighted UniFrac matrix (27) visualized via principle
component analysis (PCoA) using EMPeror clustered the samples closely by type
(ANOSIM R statistic � 0.477, P � 0.001; see Fig. S1 in the supplemental material), and
the human sample types matched their corresponding AGP sample types (Fig. 2a).
While mouth, stool, and right and left hand samples each formed relatively tight
clusters, as expected (28), fermented food and indoor surface samples formed a looser
cluster together, largely distinct from human sample clusters, although a few food and
surface samples clustered near hand and fecal samples (Fig. 2a). Combining these
samples with a subset of the AGP cohort revealed that there was an increase in gut
bacterial diversity that correlated with an increase in fermented food consumption (R2

� 0.034, P � 0.02373) (Fig. 2b). Nonparametric Kruskal-Wallis tests corrected for
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multiple comparisons (false discovery rate [FDR]) identified 219 OTUs differing signifi-
cantly in relative abundance across sample types. No OTU was significantly higher in
fermented food samples than in any other sample type, though several were higher
(FDR corrected P � 0.05) in stool (including OTUs classified as Blautia, Varibaculum,
Bacteroides, Peptoniphilus, and Corynebacterium), hand (Corynebacterium, Staphylococ-
cus, Neisseria, Haemophilus, and Rothia), and mouth (Prevotella, Neisseria, Lautropia, and
Leptotrichia) samples. SourceTracker (29) analysis revealed that the microbial commu-
nities of items on or in which fermented foods were prepared (i.e., from surfaces, such
as cutting boards, to containers, such as fermenters) were largely sourced from the
foods and specific to the location in which the foods were prepared. Except for one
household, where small percentages (9 to 30%) of hand microbial communities were
sourced from food, no obvious patterns linked microbial source communities to human
skin, mouth, or fecal microbiomes (Fig. 2c).

FIG 2 (a) PCoA of the abundance of unique OTUs per sample from the 16S marker gene sequencing data from the AGP data repository (small spheres)
and the San Diego Fermentation Festival volunteer samples collected for this study (large spheres). (b) Alpha diversity as measured using 16S rRNA marker
gene sequencing counts of OTUs in a subset of the American Gut Project data for which consumption of fermented foods is reported. (c) SourceTracker
analysis of surface samples from households 3 and 4. SourceTracker measures the proportions of OTUs sourced from the fermented foods on the
household surfaces where they were prepared. (d) PCoA clustering of microbiome data after metagenomic prediction with the PICRUSt algorithm.
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PICRUSt metagenome predictions revealed a slightly dissimilar clustering pattern to
that observed with 16S marker gene sequencing data based on sample type when the
Bray-Curtis distance metric was applied to the BIOM table containing KEGG pathways.
While fermented food and surface samples still formed a loose cluster, with body types
more tightly clustered, oral samples clustered close to fecal samples based on KEGG
pathways but not 16S marker gene data (Fig. 2d). Nonparametric Kruskal-Wallis tests
corrected for multiple comparisons (FDR) identified 119 KEGG pathways differing
significantly across sample types. KEGG pathways that were significantly higher (FDR-
corrected P value of �0.05) in fermented foods than on surfaces included aminosugar
and nucleotide sugar metabolism, starch and sucrose metabolism, galactose metabo-
lism, RNA transport, glycolysis/gluconeogenesis, and methane metabolism; KEGG path-
ways that were significantly higher on surface samples than in food samples included
bacterial secretion systems, phenylalanine metabolism, fluorobenzoate degradation,
aminobenzoate degradation, glycan biosynthesis and metabolism, tryptophan metab-
olism, and caprolactam degradation. Several KEGG pathways were also differentially
abundant between fermented foods and stool or mouth samples. For example, ami-
nobenzoate degradation, retinol metabolism, naphthalene degradation, ethylbenzene
degradation, tyrosine metabolism, and butanoate metabolism pathways were all sig-
nificantly higher (FDR-corrected P value of �0.05) in fermented food samples than in
stool samples, while glycosaminoglycan degradation, other glycan degradation, meth-
ane metabolism, transcription machinery, sporulation, sphingolipid metabolism, and
sporulation pathways were significantly higher in stool samples than in fermented food
samples. In mouth samples, n-glycan biosynthesis, translation factors and proteins,
amino acid-related proteins, and lipopolysaccharide biosynthesis and biosynthesis
proteins were significantly (FDR-corrected P value of �0.05) higher than in fermented
food samples. Conversely, chloroalkane degradation, ethylbenzene degradation, ami-
nobenzoate degradation, tyrosine metabolism, bisphenol degradation, naphthalene
degradation, benzoate degradation, xylene degradation, butanoate metabolism, and
several other pathways were significantly higher in fermented food samples than in
mouth samples.

Metabolome relationships. PCoA of Bray-Curtis distances for the presence/
absence of metabolites by sample showed that skin and mouth samples were distinct
from other sample types and that fermented food samples clustered with biofilm
samples from their containers (Fig. 3). Stool samples, however, were mixed with other
sample types, unlike the tight clustering seen using the 16S rRNA sequencing data
(Fig. 3; see also Fig. S1 in the supplemental material). These clustering relationships
showed that the chemistry of fermented foods and their associated human and
environmental samples was more variable than the microbial profiles among sample
types, likely due to the dynamic nature of metabolite production from microbial
communities and the direct input of the foods themselves in stool chemistry.

Of the 7,425 unique MS/MS spectra detected, 100 were matched to reference
libraries using GNPS molecular networking (30, 31). This 1.3% match rate is similar to
the 1.8% match rates for all metabolomics data in GNPS (32). Most spectral matches
were plant natural products associated with the fermented foods, including flavonoids,
lipids, and plant sterols. Other, non-plant-related molecules were observed, including
cholesterol and its derivatives on skin and avobenzone, an active ingredient in sun-
screen. Gingerol, the spicy flavorant in the ginger root (Zingiber officinale), was found
in samples of fermented foods and the indoor surfaces of two households. Similarly, the
spicy pepper plant (Piper nigrum) alkaloid piperine was found in fermented food, stool,
indoor surface, and skin samples. The metabolite polanrazine B, isolated from Lepto-
sphaeria maculans, a fungal pathogen of canola and rapeseed plants (Brassica spp.) (44),
was prevalent in two of the four households sampled, including in food and stool
samples. Spectral matching also identified the flavonoid procyanidin B2 (m/z 579.149),
an antioxidant associated with many plants, such as apples, beans, grapes, and tea, and
molecular networking detected an altered form with an additional pentose sugar
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(neutral loss of m/z 132.04 [33] [Fig. 4a]). Procyanidin B2 was present in the biofilm,
fermented food, indoor surface, human skin, and stool samples. This metabolite was
present in all sample types from a single subject, including the foods the person ate,
surfaces in the household, the person’s body, and stool (Fig. 4b). Although fermented
foods from all four households contained procyanidin B2, only two of them had this
molecule in their stool, indicating differential metabolism in different individuals. The
modified form of procyanidin (m/z 711.189) was found in the same sample types except
stool, suggesting that consumption of this metabolite from a fermented food resulted
in removal of the sugar or the absorption of the molecule as it passed the digestive
tract. Pheophytin A, chlorophyll a without its metal ion, was only detected in samples
of fermented foods of vegetable origin (except beer), their containers, and stool,
indicating that this molecule remained intact through digestion (Fig. 4a and b). Related
metabolites, including bacteriopheophytin and pyropheophytin, were detected only in
kimchi (Fig. 4a). In sum, analysis of metabolites from human samples revealed mole-
cules from fermented foods modified by human or microbial enzymes, molecules
produced by organisms pathogenic for components of the fermented food, molecules
from fermented food that passed completely through the volunteers’ digestive tracts
without alteration, and differential metabolism of fermented food metabolites in
different people.

Microbiome and metabolome integration. Using Procrustes analysis (34) to get
an integrated look at metabolome and microbiome relationships, we mapped the
principal coordinate analysis matrices of the 16S rRNA data to the metabolomics data.
The overall patterns matched, except that two samples (kombucha and pickles) clus-
tered with fecal microbiome samples in the microbiome space but with other fer-
mented foods in the metabolomics space (Fig. 5). These results underscore that
microbial communities and their activities are environment specific and that the
metabolite output of the sample type is consistent with the microbial community that
produced it.

FIG 3 PCoA of the metabolomics data from a presence/absence matrix of unique MS/MS spectra in
all samples using the Bray-Curtis distance metric.
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Conclusions. Rather than multi-omics analysis being an arduous and highly tech-
nical procedure, this study demonstrates that it can be performed on a rapid time scale
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with a small team of people (six authors of the manuscript contributed to data analysis).
A major advantage to this pipeline is the ability to compare data to large data
repositories, such as the AGP and GNPS, for sample relationships and metabolite
identification. This more easily facilitates the identification of microbiome dysbiosis or
metabolome changes that indicate disease. Context is required in any clinical or
industrial application of multi-omics data, to better determine how the current struc-
ture of a microbial community compares to previous states or sample types, enabling
diagnosis of an active dysbiosis. The present study focused on fermented foods and
their effects on the people who prepared and consumed them. These foods are of
enormous medical importance given that yogurt, a fermented food, is the single food
most correlated epidemiologically with weight loss in the U.S. population (35), and they
are of economic importance due to the billions of dollars per year that fermented foods
contribute to the economy. Although this sample cohort did not require rapid data
analysis, such as that required in a medical emergency or the potential loss of a large
industrial fermentation, this study shows that consent could be obtained, samples
collected, and data generated on microbiome-related samples collected from people
located up to 100 miles away from the laboratory in a time frame matching that of
classic microbiological culturing of common pathogens (approximately 2 days). The
ability to do rapid-response multi-omics analysis and systems biology will have far
reaching implications, from monitoring industrial fermentation processes, to guiding oil
and gas drilling and fracking decisions, to providing rapid molecular analysis for patient
care in infectious diseases and guiding the use of microbiome-based therapies, such as
fecal microbiota transplant (FMT) (36) and probiotics. The combination of standardized
protocols for subject recruitment and consent, sample collection, metadata capture,
DNA sequencing, mass spectrometry, molecular networking, and data analysis and
visualization now puts this technology in the hands of a broad spectrum of users.
Broader and more rapid use of multi-omics methods will begin a sea change towards
their implementation in clinical medicine.

MATERIALS AND METHODS
Participant recruitment and sample collection. For the first application of the pipeline, we chose a
situation that, while time sensitive, was not necessary for clinical decisions. All participants are members
of a local fermenter’s club and ferment at home or operate a fermented food business; they learned
about the study through the fermenter’s club. Participants willing to sample their own bodies, their
fermented foods, and the surfaces that their foods are prepared on or in (i.e., kitchen counters, cutting
boards, and fermenters) consented to be a part of the American Gut Project (AGP), the largest
crowd-sourced, crowd-funded citizen science project in existence today. A total of seven people (two
families and two individuals, designated households 1 to 4) received barcoded, dual-headed sterile
cotton sampling swabs (BD Swube; Becton, Dickinson and Company, Franklin Lakes, NJ) and were
instructed to sample their skin (right and left hands), mouths, stool, their fermented foods, and the
surfaces touched by those foods. Some participants chose to sample alternative body sites (i.e., vagina
and forehead), and one participant sampled the mouth of a pet cat. The food samples collected included
beer, port wine, pickled cucumbers, pickled jalapenos, cottage cheese, curtido, kefir, kimchi, sauerkraut,
miso, beet kvass, and fermented soda (see Table S1 in the supplemental material). The surface samples
collected included cutting boards, countertops, refrigerator surfaces, skillets, kegerator parts, and fer-
mentor parts. Samples were collected by subjects on 25, 26, and 27 January 2016, with the first sample
in the data set collected at 8:05 a.m. on 25 January and the last sample in the data set collected at
12:05 p.m. on 27 January, for a total of 61 samples. Samples from six participants were delivered by hand
to the laboratory, while one participant mailed their samples to the laboratory via overnight priority mail
(FedEx). All samples were received in the laboratory by 1:07 p.m. on 27 January 2016 (Fig. 1). Upon arrival,
one swab head from each dual-headed swab was immediately placed into a MoBio PowerSoil DNA
extraction kit bead plate (MoBio, Inc., Carlsbad, CA) for bacterial DNA extraction. The second swab head
was stored overnight at �20°C before preparation for metabolomics analysis using mass spectrometry.

Bacterial DNA extraction and generation of 16S rRNA V4 amplicons. Bacterial genomic DNA
extraction, 16S rRNA gene variable region 4 (V4) amplicon generation, and amplicon preparation for
sequencing were performed according to protocols benchmarked for the Earth Microbiome Project
(EMP) that can be found on the EMP website (http://www.earthmicrobiome.org/emp-standard-proto-
cols/). Briefly, bacterial genomic DNA was extracted from samples using the PowerMag DNA isolation kit
optimized for KingFisher (Mo Bio Laboratories, Carlsbad, CA), and then the V4 region of the 16S rRNA
gene was amplified in triplicate from each sample and combined as follows. The PCR mixtures contained
13 �l Mo Bio PCR water, 10 �l 5 Prime HotMasterMix, 0.5 �l each of the barcoded forward and reverse
primers (515f and 806rB; 10 �M final concentration), and 1.0 �l genomic DNA. The reaction mixtures
were held at 94°C for 3 min (denaturation), with amplification proceeding for 35 cycles at 94°C for 45 s,
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50°C for 60 s, and 72°C for 90 s, followed by a final extension for 10 min at 72°C. After amplification, the
DNA concentration was quantified using PicoGreen double-stranded DNA (dsDNA) reagent in 10 mM Tris
buffer (pH 8.0). A composite sample for sequencing was created by combining equimolar ratios of
amplicons from the individual samples, followed by ethanol precipitation to remove any remaining
contaminants and PCR artifacts.

16S rRNA marker gene sequencing. Pooled amplicons were sequenced at the Institute for Genomic
Medicine at the University of California, San Diego, using the Illumina MiSeq platform. The library
concentration was measured using the HiSens Qubit dsDNA HS assay kit (Thermo Fisher Scientific). A
total of 6 pM of 16S library combined with 0.9 pM (15%) PhiX sequencing control version 3 was
sequenced with 150-bp paired-end (PE) reads on an Illumina MiSeq sequencing system using a MiSeq
reagent kit version 2 (300 cycle). Fastq files for reads 1 and 2 and the index read were generated using
the BCL-to-FASTQ file converter bcl2fastq version 2.17.1.14 (Illumina, Inc.).

16S rRNA marker gene data analysis. Sequencing data were prepared and analyzed using the
online tool Qiita (https://qiita.microbio.me) and the QIIME pipeline (37) version 1.9. Illumina read 1 was
quality filtered and demultiplexed according to the QIIME default parameters, as follows: no ambiguous
bases allowed, only one bar code mismatch allowed, and a minimum required Phred quality score of 3.
Quality filtering resulted in 6,830,655 high-quality reads, with the average number of sequences per
sample being 84,329. Quality-filtered sequences were clustered using the closed-reference OTU picking
workflow against the August 2013 release of the Greengenes database (DeSantis et al. [38]), with a
sequence identity of 97% and sortmeRNA (39) as the underlying clustering algorithm. After OTU picking,
5 samples (forehead, water, vaginal, fermented grape soda, and fermenter inner wall samples) were
removed from the data set because they had sequence counts lower than the rarefaction cutoff (2,053
sequences per sample); thus, a total of 54 microbiome samples were included in downstream analyses.

The AGP team has identified a group of bacterial bloom sequences that increase during sample
transit back to the laboratory, and in order to avoid a study bias, those sequences were filtered out of
the data (code available at https://github.com/biocore/American-Gut/blob/master/ipynb/primary-
processing/02-filter_sequences_for_blooms.md). To facilitate direct comparisons and reduce study bias
between data obtained from the fermentation cohort and the AGP cohort, fermentation cohort stool
sample data were also filtered for blooms.

Five of the seven fecal samples from the fermentation cohort passed quality and sequencing depth
filtering. The bacterial diversity levels observed in these five samples were compared to those in a subset
of 122 randomly selected fecal samples from other AGP participants of a similar age group for whom data
on the frequency of fermented food intake were available. Alpha diversity (measured as Faith’s phylo-
genetic diversity [26]) was calculated for each sample from a rarefied OTU table of 2,053 sequences per
sample. Barplots were generated in R (https://www.r-project.org/) to visualize the distribution of diversity
values across the various groups, and a linear regression model was fitted to the AGP portion of the data.

We used SourceTracker (29), a tool that uses a Bayesian model jointly with Gibbs sampling to quantify the
amount of taxa that a set of source environments contributes to a sink environment, to determine the
proportions of human and surface microbes that were sourced from fermented food microbiomes. Fer-
mented food samples were designated “sources,” while human and surface samples were designated “sinks.”

Statistical analyses were applied to determine the significance of groups by sample type on the PCoA
plot (ANOSIM, 999 Monte Carlo permutations) and to identify OTUs with significantly different relative
abundances (Kruskal-Wallis, 999 Monte Carlo permutations) across sample groups. Nonparametric tests
were used to appropriately deal with microbiome data, which were not normally distributed. The
significance cutoff for P values (ANOSIM) and FDR-corrected P values (Kruskal-Wallis) was set at 0.05.

PICRUSt metagenome predictions were performed using the Galaxy implementation of PICRUSt 1.0.0
(40). The resulting BIOM table was then categorized by KEGG pathways (i.e., KEGG Orthology groups
[KOs] were placed into functional categories). All eukaryote-specific pathways were removed from the
table, and the table was rarefied to 572,338. The Bray-Curtis distance metric was then applied and
visualized using EMPeror (34). A Kruskall-Wallis test with 999 Monte Carlo permutations was applied to
determine significant differences in KEGG pathway abundances between groups of samples.

Metabolomics data analysis. The metabolomics data for this project are available under MassIVE
data set ID MSV000079485 at http://gnps.ucsd.edu. To generate metabolomes, the swabs were added to
a solution of 70% methanol in water and allowed to extract for 2 h at room temperature. The methanol
extract was then dried down in a centrifugal evaporator and redissolved in 100% methanol. Samples
were transferred into 2-ml vials with inserts and diluted 1:2. MS analysis was performed on a QExactive
(Thermo Scientific) mass spectrometer with a heated electrospray ionization (HESI-II) probe source,
controlled by Xcalibur 3.0 software. MS spectra were acquired in positive ion mode over a mass range
of 100 to 1,500 m/z. An external calibration with Pierce LTQ Velos electrospray ionization (ESI) positive
ion calibration solution (Thermo Scientific) was performed prior to data acquisition, with an error rate of
less than 1 ppm. The following probe settings were used for flow aspiration and ionization: spray voltage
of 3,500 V, sheath gas (N2) pressure of 53 lb/in2, auxiliary gas (N2) pressure of 14 lb/in2, ion source
temperature of 270°C, S-lens radio frequency (RF) level of 50 Hz, and auxiliary gas heater temperature at
440°C. Data acquisition parameters were as follows. Minutes 0 to 0.5 were sent to waste. Minutes 0.5 to
12 were recorded with data-dependent MS/MS acquisition mode. Full scan at MS1 level was performed
with resolution of 35,000 in profile mode. The 10 most intense ions with 1 m/z isolation window per MS1

scan were selected and subjected to normalized collision-induced dissociation with 30 eV. MS2 scans
were performed at 17,500 resolution with maximum injection time of 60 ms in profile mode. The MS/MS
active exclusion parameter was set to 5.0 s. The injected samples were chromatographically separated
using a Vanquish ultrahigh-performance liquid chromatography (UHPLC) instrument (Thermo Scientific)
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controlled by Thermo SII for Xcalibur software (Thermo Scientific), with a 30- by 2.1-mm, 2.6 �M, C18,
100-Å Kinetex chromatography column (Phenomenex) with 40°C column temperature, 0.5 ml/min flow
rate, mobile phase A consisting of 99.9% water (LC-MS grade; J.T. Baker)– 0.1% formic acid (Fisher
Scientific, Optima LC/MS), and mobile phase B consisting of 99.9% acetonitrile (LC-MS grade; J.T.
Baker)– 0.1% formic acid (Fisher Scientific, Optima LC/MS), using the following gradient: 0 to 1 min, 5%
B; 1 to 8 min, 100% B; 8 to 10.9 min, 100% B; 10.9 to 11 min, 5% A; and 11 to 12 min, 5% B. Raw data
files were converted to the .mzXML format using ProteoWizard (http://proteowizard.sourceforge.net/)
and uploaded to the GNPS-MassIVE mass spectrometry database. The list of annotations from the search
can be found at http://gnps.ucsd.edu/ProteoSAFe/result.jsp?task�efc4f1031f73471cbdfddcde0cc
181a6&view�view_all_annotations_DB.

Molecular networking was performed to identify spectra shared between different sample types and
to identify known molecules in the data set. All annotations are at level 2 according to the proposed
minimum standards in metabolomics (41). The molecular networking parameters were as follows: a
minimum matched-peak threshold of 4, a cosine similarity score cutoff of 0.65, a minimum cluster size
of 2, and a parent and ion tolerance of 0.5 Da. GNPS library search parameters were the same except that
a cosine threshold of 0.7 was used. A feature table of metabolite presence and absence in each sample
was generated from GNPS spectral alignments and downloaded. Similarity of metabolomes was deter-
mined using the Bray-Curtis distance metric, projected with principal coordinate analysis and visualized
with EMPeror (Fig. 1) through the in-house tool ClusterApp. Molecular networks were visualized and
mined using the Cytoscape software (42).

16S-metabolomics multivariate comparisons. Using the OTU table and the metabolite table, we
generated a distance matrix for each, using unweighted UniFrac for 16S and Bray-Curtis for the
metabolomics. We performed principal coordinate analysis on the two matrices separately and used
Procrustes analysis as implemented in QIIME 1.9.1 to rotate, translate, and scale the matrices. The
resulting transformed matrices were plotted using EMPeror (34).

Microarray data accession numbers. Mapping files and preprocessed data for human samples are
available at https://qiita.ucsd.edu under Qiita study identification number (ID) 10317 (AGP), and se-
quences are publicly available in EMBL-EBI (accession number ERP012803) under accession numbers
ERS1048817, ERS1048818, ERS1048819, ERS1048820, ERS1048821, ERS1048822, ERS1048823,
ERS1048824, ERS1048825, ERS1048826, ERS1048827, ERS1048828, ERS1048829, ERS1048832,
ERS1048833, ERS1048834, ERS1048835, ERS1048836, ERS1048837, ERS1048838, ERS1048839,
ERS1048840, ERS1048841, ERS1048842, ERS1048843, ERS1048844, and ERS1048845. Mapping files and
preprocessed data for food, environment, and cat samples are available at https://qiita.ucsd.edu under
Qiita study ID 10395, and sequences are publicly available in EMBL-EBI (accession number ERP015077).
The 16S amplicon analyses outlined in this paper were conducted using the Knight laboratory’s
supercomputer Barnacle, using 26 CPU hours.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSystems.00038-16.

Figure S1, PDF file, 0.1 MB.
Table S1, DOCX file, 0.04 MB.
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