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Joint Symbol-Level Precoding and Reflecting

Designs for RIS-Enhanced MU-MISO Systems

Rang Liu, Student Member, IEEE, Ming Li, Senior Member, IEEE, Qian

Liu, Member, IEEE, and A. Lee Swindlehurst, Fellow, IEEE

Abstract

Reconfigurable intelligent surfaces (RIS) have emerged as a revolutionary solution to enhance wireless com-

munications by changing propagation environment in a cost-effective and hardware-efficient fashion. In addition,

symbol-level precoding (SLP) technique has attracted considerable attention recently due to its advantages in

converting multiuser interference (MUI) into useful signals. Therefore, it is of interest to investigate the employment

of RIS in symbol-level precoding systems to exploit MUI in a more effective way by manipulating the multiuser

channels. In this paper, we focus on joint symbol-level precoding and reflecting designs in RIS-enhanced multiuser

multiple-input single-output (MU-MISO) systems. Both power minimization and quality-of-service (QoS) balancing

problems are considered. In order to solve the joint optimization problems, we develop an efficient iterative algorithm

to decompose them into separate symbol-level precoding and block-level reflecting design problems. An efficient

gradient-projection-based algorithm is utilized to design the symbol-level precoding and a Riemannian conjugate

gradient (RCG)-based algorithm is employed to solve the reflecting design problem. Simulation results demonstrate

the significant performance improvement introduced by the RIS and illustrate the effectiveness of our proposed

algorithms.
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I. INTRODUCTION

During the past decade, the applications of wireless communications have been growing rapidly and

now affect nearly every aspect of our daily life. Meanwhile, the demands of wireless communication

networks for high data rate and low latency are also continuously increasing. Various technical solutions

have been proposed to meet the requirements of fifth-generation (5G) networks and beyond. Among those

technologies, massive multi-input multi-output (MIMO), millimeter wave (mmWave) communications, and

ultra-dense networks are deemed as three fundamental approaches to enhance the performance along three

basic dimensions: Improving spectral efficiency, utilizing more spectrum, and exploiting spatial reuse [1],

[2]. However, it seems that the performance improvements offered by these approaches are reaching their

limits, and new technologies in different directions are needed to achieve further fundamental advances

in wireless networks. One such technology is the use of reconfigurable intelligent surface (RIS), which

is a potentially revolutionary approach that provides additional degrees of freedom in system design by

intelligently changing the propagation environment [3]-[6].

RIS is a planar array composed of a large number of reconfigurable passive reflecting elements, e.g.,

phase shifters, that can independently introduce certain phase shifts to the incident electromagnetic (EM)

waves. Thus, RIS can intelligently manipulate EM waves by properly adjusting their reflection coefficients

to produce a favorable propagation environment, especially when faced with blockages or severe fading.

New research on micro-electrical-mechanical systems (MEMS) and meta-materials has enabled the RIS

to be configured in real-time, which is necessary for the rapidly changing wireless communication

environment. RIS have the potential for greatly expanding coverage, improving transmission quality, and

enhancing security, etc., in a cost-effective and hardware-efficient fashion. Moreover, these lightweight

devices can be easily attached to the surfaces of buildings or some mobile equipment, which provides

mobility and portability for practical implementation [4], [5].

Attracted by above advantages, researchers have devoted considerable attention to the development of

RIS in recent months. The applications of RIS to different systems have been investigated to enhance

their performance with different performance goals [7]-[24]. By properly designing the phase-shifting

components of the RIS, the reflected signals can be coherently added to the received signals from other



paths at intended receivers, which facilitates minimization of the transmit power [7]-[11], or improving

transmission performance in terms of spectral efficiency [12], quality of service [7], [13], energy reception

[14], ergodic capacity [15], symbol error rate [16], channel capacity [17], received signal power [18], sum-

rate [19], [20], and enhancing the power efficiency [21], etc. RIS-enhanced physical layer security has

also been investigated in [22]-[24]. In [25], the authors show that an RIS-enhanced system exhibits better

rate and energy efficiency performance than a conventional decode-and-forward relay system when the

RIS is relatively large. An analysis of the impact of phase errors in RIS systems was provided in [26],

and free-space path loss models for RIS-enhanced wireless communications was studied in [27], [28].

Precoding design is also of significant importance to facilitate information transmissions in RIS-

enhanced multi-user systems. In existing works, multi-user interference (MUI) is regarded as a harmful

component and suppressed by the precoding and reflecting designs as much as possible. However, recent

research [29]-[32] has found that MUI can often be treated as a useful signal to enhance information

transmissions by means of symbol-level precoding techniques. Specifically, symbol-level precoding utilizes

transmitted symbol information and channel state information (CSI) to design the precoder, which converts

harmful MUI into constructive interference to improve the symbol detection performance compared with

block-level precoding.

Motivated by these findings, we propose to combine symbol-level precoding and RIS in order to enjoy

the advantages of both technologies. The employment of RIS can facilitate the exploitation of MUI in

symbol-level precoding by favorably manipulating the multi-user propagation channels. However, there are

some obstacles that must be tackled. First, the symbol-level precoder changes with each transmitted symbol

vector, while the RIS reflects all of them with the same phase-shift beamforming. Thus, symbol-level

constraints are difficult to implement in the reflecting design. Since both the symbol-level precoding and

reflecting need to consider all possible transmit vectors, the computational complexity will be tremendously

high for large-scale systems and high-level modulation types. To the best of our knowledge, this problem

has not been studied yet, which motivates the work in this paper.

We consider the joint design of symbol-level precoding and RIS transmission design in multi-user

multi-input single-output (MU-MISO) systems. In particular, we consider a multi-antenna base station



(BS) serving a number of single-antenna users with the aid of an RIS, which consists of many reflecting

elements. We aim to design the symbol-level precoding and RIS reflection to enhance the system perfor-

mance by exploiting both MUI and modifications to the propagation environment. The main contributions

in this paper are summarized as follows:

• We investigate, for the first time, the joint design of symbol-level precoding and RIS transmission in

MU-MISO systems.

• We first aim to minimize the average transmit power as well as guarantee a certain quality-of-service

(QoS) for the information transmissions. In order to solve this joint design problem, an efficient

iterative algorithm is proposed to decompose the problem into separate symbol-level precoding and

reflecting designs, where the gradient-projection-based and Riemannian conjugate gradient (RCG)-

based algorithms are exploited.

• Then, with a given average transmit power constraint, we investigate the QoS balancing prob-

lem, where the symbol-level precoding and reflecting are iteratively updated using similar gradient-

projection-based and RCG-based algorithms after some transformations.

• Finally, we provide extensive simulation results to demonstrate the advantages of applying RIS in

symbol-level precoding MU-MISO systems and the effectiveness of our proposed algorithms.

The rest of this paper is organized as follows. Section II introduces the system model of our proposed

RIS-enhanced MU-MISO system. The considered power minimization and QoS balancing problems are

investigated in Sections III and IV, respectively. The algorithm initialization and complexity analysis are

presented in Section V. Simulation results are presented in Section VI, and finally conclusions are provided

in Section VII.

The following notation is used throughout this paper. Boldface lower-case and upper-case letters indicate

column vectors and matrices, respectively. (·)T , and (·)H denote the transpose and the transpose-conjugate

operations, respectively. C denotes the set of complex numbers. |a| and ‖a‖ are the magnitude of a scalar

a and the norm of a vector a, respectively. ∠a is the angle of complex-valued a. R{·} and I{·} denote the

real and imaginary part of a complex number, respectively. diag{a} indicates the diagonal matrix whose

diagonals are the elements of a. A � 0 indicates that the matrix A is positive semi-definite. Finally, we
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Fig. 1: The RIS-enhanced MU-MISO system.

adopt the following indexing notation: A(i, j) denotes the element of the i-th row and the j-th column

of matrix A, a(i) denotes the i-th element of vector a.

II. SYSTEM MODEL

We consider an RIS-enhanced MU-MISO system as shown in Fig. 1, where a BS equipped with

M antennas serves K single-antenna users with the aid of an RIS. The RIS consists of N passive

reflecting elements, which are implemented by phase shifters and denoted as θ , [θ1, . . . , θN ] that satisfy

|θn| = 1, ∀n. We denote G ∈ CN×M , hk ∈ CM×1, and hrk ∈ CN×1 as the channels from BS to RIS, from

BS to the k-th user and from RIS to the k-th user, respectively. In this paper, we assume that the channel

state information (CSI) of all channels is known perfectly and instantaneously to the BS1.

To facilitate the symbol-level precoding technique, we assume the transmitted symbols are independently

selected from a Ω-phase shift keying (PSK) constellation2 (i.e., Ω = 2, 4, . . .). Therefore, the transmitted

symbol vector sm , [sm,1, . . . , sm,K ] has ΩK combinations, i.e., m = 1, . . . ,ΩK . For different sm, the

BS changes its transmitted precoder vector xm ∈ CM×1 in order to exploit the MUI. Unlike conventional

block-level precoding techniques, the mapping from sm to xm is usually nonlinear.

Through the direct and reflected paths, the compound received signal at the k-th user can be written as

rm,k =
(
hH
k + hH

rkΘG
)
xm + nk, ∀m, (1)

1Channel estimation for RIS-enhanced systems has been studied in [33]-[35].
2We should emphasize that symbol-level precoding is related to the modulation type. Therefore, our designs in this paper are only capable

of exploiting PSK modulation. The design for QAM modulation will be investigated in future work.
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Fig. 2: Constructive region for QPSK symbols.

where Θ , diag {θ} denotes the phase shifts of the RIS, and nk ∼ CN (0, σ2
k) is additive white Gaussian

noise (AWGN) for the k-th user. Moreover, it is noteworthy that, during a coherent time slot with the

same CSI, the BS changes xm according to the transmitted symbols while the RIS phase shifts θ remains

unchanged. Therefore, the reflecting design should consider all possible ΩK precoding vectors. Defining

the precoding matrix X , [x1, . . . ,xΩK ], the average transmit power required to send a given symbol

vector is

Pave =
‖X‖2

F

ΩK
. (2)

With knowledge of symbols to be transmitted, symbol-level precoding makes the MUI constructive

to the information transmissions by elaborately designing xm. In particular, the MUI is converted into

constructive interference if it can push the received signals away from the PSK decision boundaries. In

order to illustrate the idea behind constructive interference, without loss of generality, we take quadrature



phase shift keying (QPSK) as an example (Ω = 4). For simplicity, we also consider
(

1√
2
, 1√

2
j
)

as the

symbol of interest for the k-th user and show the received signal in the complex plane as in Fig. 2(a).

Since the decision boundaries for this symbol of interest are the positive halves of the x and y axes,

as long as the noise-corrupted received signal expressed in (1) is in the first quadrant, the receiver can

correctly detect the desired signal. However, when we design the precoder xm, the noise is unknown and

cannot be predicted beforehand.

Denote the received noise-free signal of the k-th user as

r̃m,k =
(
hH
k + hH

rkΘG
)
xm, (3)

which is illustrated as point D in Fig. 2(a). To reduce the impact of noise on the symbol detection, it

is desirable to design xm such that point D is sufficiently far away from the corresponding decision

boundaries to satisfy the QoS. In order to quantify the QoS requirement, let Γk be the SNR requirement

for the k-th user. If we ignore the impact of MUI and focus on the single-user case, the received noise-free

signal should be at point A to ensure that
|r̃m,k|2

σ2

k

= Γk, i.e.,
−→
OA = σk

√
Γksm(k). Considering the multi-user

signal as in (1), symbol-level precoding aims to design xm such that point D lies in the constructive (green)

region, where the distance between received signal and its decision boundaries, which can be expressed

as σk

√
Γk cosΦ, is guaranteed to satisfy the SNR requirement. Therefore, symbol-level precoding can

achieve better SER performance by converting the MUI into a constructive component.

In order to geometrically express this relationship, we project point D on the direction of
−→
OA at point B,

and we define point C to be the intersection of the extension of
−−→
BD and the boundaries of the constructive

region. Then, the received noise-free signal in the green region should satisfy

∣∣∣−−→BC
∣∣∣−

∣∣∣−−→BD
∣∣∣ ≥ 0. (4)

To make this expression clearer, we rotate the diagram in Fig. 2(a) clockwise by ∠sm,k degrees as shown

in Fig. 2(b). Then, the QoS requirement is readily expressed as

[
R
{
r̃m,ke

−j∠sm,k
}
− σk

√
Γk

]
tanΦ−

∣∣I
{
r̃m,ke

−j∠sm,k
}∣∣ ≥ 0, ∀k, ∀m. (5)



In this paper, we consider two typical optimization problems for RIS-enhanced MU-MISO systems: i)

the power minimization problem, which minimizes the average transmit power while guaranteeing the QoS

of the data received by the users; ii) the QoS balancing problem, which aims to maximize the minimum

QoS with a given average transmit power budget. In the following sections, we will formulate and solve

these two problems.

III. ALGORITHM FOR POWER MINIMIZATION PROBLEM

With the previous analysis, the average power minimization problem can be written as

min
X,θ

‖X‖2
F

(6a)

s.t.
[
R
{
r̃m,ke

−j∠sm,k
}
− σk

√
Γk

]
tanΦ−

∣∣I
{
r̃m,ke

−j∠sm,k
}∣∣ ≥ 0, ∀k, ∀m, (6b)

r̃m,k =
(
hH
k + hH

rkΘG
)
xm, ∀k, ∀m, (6c)

Θ = diag{θ}, |θn| = 1, ∀n, (6d)

which is non-convex due to the RIS constraints (6d). Furthermore, the size of X ∈ C
M×ΩK

is huge even

for the relatively small K and Ω. Thus, it is difficult to directly solve this large-scale joint symbol-level

precoding and reflecting problem. In order to tackle this difficulty, we propose to decompose the bivariate

problem into two sub-problems and implement the solutions iteratively.

A. Symbol-Level Precoding Design for Power Minimization Problem

When the RIS phase shifts θ are fixed, the overall channel vector is determined. We denote the combined

channel vector from BS to the k-th user as h̃H
k , hH

k + hH
rkΘG, ∀k. Since the precoder vectors xm, m =

1, . . . ,ΩK , are independent of each other, the power minimization problem (6) can be divided into ΩK

sub-problems. The m-th sub-problem for optimizing xm is given by

min
xm

‖xm‖2 (7a)

s.t.
[
R

{
h̃H
k xme

−j∠sm,k

}
− σk

√
Γk

]
tanΦ−

∣∣∣I
{
h̃H
k xme

−j∠sm,k

}∣∣∣ ≥ 0, ∀k. (7b)

This is a convex optimization problem and can be solved by standard convex tools, e.g. the CVX solver

[36]. In addition, an efficient gradient projection algorithm with low complexity has also been studied in



[30], where this problem was first converted into a real-valued format, then its Lagrangian dual function

was derived to facilitate the gradient projection algorithm. Due to space limitations, details of the algorithm

to solve (7) are omitted.

B. Reflecting Design for Power Minimization Problem

After obtaining the precoder vectors xm, m = 1, . . . ,ΩK , the objective of the original optimization

problem (6) has been determined. This means that, with given xm, the reflecting design of θ could not

directly affect the power minimization objective of (6). Therefore, for the reflecting design, we attempt to

formulate another proper objective function that enhances the reduction of the transmit power for future

iterations.

Since the power minimization problem (7) is convex, the optimal xm usually makes the left-hand side

of constraint (7b) equal to a relatively small positive value, i.e., the QoS requirement is satisfied almost

with equality. In order to further reduce the transmit power in the next iteration, we propose to design the

RIS phase shifts θ using the stricter constraint (8b) in place of (7b), which can introduce an improved

QoS that can provide more freedom for power minimization in the next iteration. To this end, the RIS

reflecting design problem is transformed to

max
θ,αm,k

ΩK∑

m=1

K∑

k=1

αm,k (8a)

s.t.
[
R
{
r̃m,ke

−j∠sm,k
}
− σk

√
Γk

]
tanΦ−

∣∣I
{
r̃m,ke

−j∠sm,k
}∣∣ ≥ αm,k, ∀k, ∀m, (8b)

r̃m,k =
(
hH
k + hH

rkΘG
)
xm, ∀k, ∀m, (8c)

Θ = diag{θ}, |θn| = 1, ∀n, (8d)

where the auxiliary variable αm,k can be viewed as the residual QoS requirement. Then, by defining

am,k , hH
k xme

−j∠sm,k , ∀k, ∀m, (9a)

bm,k , diag
{
hH
rk

}
Gxme

−j∠sm,k , ∀k, ∀m, (9b)

r̂m,k , am,k + θ
Hbm,k, (9c)



problem (8) can be reformulated concisely as

min
θ

ΩK∑

m=1

K∑

k=1

|I {r̂m,k}| −
[
R {r̂m,k} − σk

√
Γk

]
tanΦ (10a)

s.t. |θn| = 1, ∀n. (10b)

Unfortunately, the absolute values in the objective (10a) are non-differentiable, which hinders the algorithm

development. In addition, the unit modulus constraints for the RIS phase shifts in (10b) introduce another

difficulty due to their non-convexity. Thus, we turn to solve above two problems by the log-sum-exp and

manifold-based algorithms in the followings.

In order to handle the absolute value terms, we attempt to convert the objective (10a) into a differentiable

function. It can be observed that (10a) can be concisely expressed as |a| + b, where a and b are scalars.

Then, the non-differentiable absolute value function can be replaced by

|a|+ b = max {a+ b,−a + b} . (11)

We then exploit the well-known log-sum-exp method and obtain

max {a + b,−a + b} ≈ ε log

[
exp

(
a + b

ε

)
+ exp

(−a+ b

ε

)]
, (12)

where ε is a relatively small positive number to maintain the approximation. Thus, the optimization

problem (10) can be reformulated as

min
θ

g ,

KΩK∑

i=1

ε log

[
exp

(
f2i−1

ε

)
+ exp

(
f2i
ε

)]
(13a)

s.t. |θn| = 1, ∀n. (13b)

For simplicity, in (13) we define fi, i = 1, 2, . . . , 2KΩK , as

f2i−1 , I {r̂m,k} −
[
R {r̂m,k} − σk

√
Γk

]
tanΦ = R{θH}a2i−1 + I{θH}b2i−1 + c2i−1, (14a)

f2i , −I {r̂m,k} −
[
R {r̂m,k} − σk

√
Γk

]
tanΦ = R{θH}a2i + I{θH}b2i + c2i, (14b)



where i = K(m− 1) + k and

a2i−1 , I{bm,k} −R{bm,k} tanΦ, (15a)

b2i−1 , R{bm,k}+ I{bm,k} tanΦ, (15b)

c2i−1 , I{am,k} −R{am,k} tanΦ + σk

√
Γk tanΦ, (15c)

a2i , −I{bm,k} −R{bm,k} tanΦ, (15d)

b2i , −R{bm,k}+ I{bm,k} tanΦ, (15e)

c2i , −I{am,k} −R{am,k} tanΦ + σk

√
Γk tanΦ. (15f)

While the objective of (13) is smooth and differentiable, the unit modulus constraints (13b) are non-

convex, which still makes the problem difficult to solve. Two popular methods for handling this type of

constraint include non-convex relaxation and alternating minimization. However, the non-convex relaxation

method always suffers a performance loss since the solution is based on a relaxation of the original

problem. On the other hand, the alternating minimization method may have slow convergence due to the

large number of variables involved. In order to deal with these difficulties, we adopt the Riemannian-

manifold-based algorithm, which can achieve a locally optimal solution of the original optimization

problem with very fast convergence [37].

Before the algorithm development, we need to introduce some related concepts. On a manifold, each

point has a neighborhood homeomorphic to Euclidean space, and the directions in which the point can

move are its tangent vectors, which compose the tangent space. Similar to the Euclidean space, the

tangent space has one tangent vector in the direction where the objective function decreases fastest,

which is referred to as the Riemannian gradient. Furthermore, the Riemannian gradient is the orthogonal

projection of the Euclidean gradient onto its corresponding tangent space. Therefore, efficient algorithms

used in Euclidean space, e.g., the conjugate gradient (CG) and the trust-region methods, are suitable on the

Riemannian manifold after several operations. In the following, we apply the conjugate gradient algorithm

on the Riemannian manifold to solve our problem.

Denoting Θ̃ , [R{θ}, I{θ}]T , the unit modulus constraints (13b) form a 2N-dimensional smooth

Riemannian manifold



M =
{
Θ̃ ∈ R

2×N : [Θ̃(:, n)]T Θ̃(:, n) = 1, ∀n
}
, (16)

whose tangent space is

T
Θ̃
M =

{
P ∈ C

2×N : [Θ̃(:, n)]TP(:, n) = 0, ∀n
}
. (17)

In order to facilitate the conjugate gradient algorithm, the Euclidean gradient is required to determine the

corresponding Riemannian gradient. Let θ̃n be the n-th column of Θ̃, so that the Euclidean gradient of

g(Θ̃) can be expressed as

∇
Θ̃
g =

[
∂g

∂θ̃1

, . . . ,
∂g

∂θ̃N

]
. (18)

Following the chain rule, the n-th column of the Euclidean gradient is calculated as

∂g

∂θ̃n

=
∂R{θH}

∂θ̃n

(
∂g

∂R{θH}

)T

+
∂I{θH}
∂θ̃n

(
∂g

∂I{θH}

)T

. (19)

According to the previous definition, it is obvious that

∂R{θH}
∂θ̃n

= [en, 0]
T ,

∂I{θH}
∂θ̃n

= [0, en]
T , (20)

where en ∈ R
N×1 is defined by en(n) = 1, en(i) = 0, ∀i 6= n. Based on (13a) and (14), we have

∂g

∂R{θH} =

KΩK∑

i=1

exp(f2i−1/ε)a
T
2i−1 + exp(f2i/ε)a

T
2i

exp(f2i−1/ε) + exp(f2i/ε)
, (21a)

∂g

∂I{θH} =

KΩK∑

i=1

exp(f2i−1/ε)b
T
2i−1 + exp(f2i/ε)b

T
2i

exp(f2i−1/ε) + exp(f2i/ε)
. (21b)

Then, the Euclidean gradient can be readily calculated by substituting (20) and (21) into (19). The

Riemannian gradient is thus given by

grad
Θ̃
g = P

Θ̃

(
∇

Θ̃
g
)
= ∇

Θ̃
g − Θ̃diag

{
Θ̃T∇

Θ̃
g
}
, (22)

where P
Θ̃
(·) denotes the projection onto the tangent space.

With the Riemannian gradient, the conjugate gradient algorithm can be employed onto Rienmannian

space, and is referred to as the Riemannian conjugate gradient (RCG) algorithm. Considering the char-



Algorithm 1 RCG-based RIS Reflecting Design

Input: g(Θ̃), Θ̃0 ∈ M, Nmax, δth.

Output: θ
∗.

1: Initialize p = 0, δ = ∞, d0 = −grad
Θ̃
g(Θ̃0).

2: while p ≤ Nmax and δ ≥ δth do

3: Calculate Riemannian gradient grad
Θ̃
g(Θ̃p) by (22).

4: Choose Polak-Ribiere parameter βp [38].

5: Calculate search direction dp by (23).

6: Calculate Armijo backtracking line search step size αp [38].

7: Obtain Θ̃p by (24).

8: δ =
∥∥∥gradΘ̃g(Θ̃p)

∥∥∥
2

9: p = p+ 1.

10: end while

11: Θ̃∗ = Θ̃p.

12: Construct θ∗ by (25)

acteristics of the Riemannian space, this line search method works in a different way than the standard

CG algorithm. In the p-th iteration of RCG, the search direction dp is determined by the Riemannian

gradient grad
Θ̃
g(Θ̃p) and the (p − 1)-th search direction dp−1. Since these two vectors lie in different

tangent spaces, they cannot be directly combined. Thus, the Riemannian transport operation is needed to

map dp−1 into the tangent space of grad
Θ̃
g(Θ̃p). Then, the search direction dp is given by

dp = −grad
Θ̃
g(Θ̃p) + βpd

t
p−1, (23)

where βp is the Polak-Ribiere parameter [38] and the superscript “t” indicates the Riemannian transport

operation. The step size αp is chosen by the Armijo backtracking line search method [38] and the p-th

update is thus expressed as

Θ̃p = Retr
Θ̃

(
Θ̃p−1 + αpdp

)
, (24)

where Retr
Θ̃
(·) indicates the retraction operation, and it maps the point on the tangent space to the

manifold.

After obtaining Θ̃∗, the optimal θ∗ can be constructed as

θ
∗ = [Θ̃∗(1, :)]T + j[Θ̃∗(2, :)]T . (25)

The RCG algorithm to obtain θ
∗ is summarized in Algorithm 1, where Nmax is the maximum number of



Algorithm 2 Joint Symbol-Level Precoding and Reflecting Design for the Power Minimization Problem

Input: hk, hrk, G, Ω, σk, Γk, B, Nmax, δth.

Output: θ
∗, X∗.

1: Initialize θ0 by (41), iter = 0, δ = ∞, pt = 0.

2: while iter ≤ Nmax and δ ≥ δth do

3: ppre = pt.
4: Calculate precoder xm, m = 1, . . . ,ΩK , by (7).

5: Obtain infinite resolution RIS phase shifts θ using Algorithm 1.

6: Calculate θd by (26) for the low-resolution RIS phase shifts case.

7: pt = ‖X‖2
F

.

8: δ =
∣∣∣pt−pre

pre

∣∣∣.
9: iter = iter + 1.

10: end while

11: θ
∗ = θ or θd, X∗ = X.

iterations and δth is the threshold to judge convergence.

In the realistic RIS implementation, low-resolution digital phase shifters are more hardware-efficient

and practical. The discrete phase-shift θd for the RIS using B bits of resolution can thus be calculated

by direct quantization, i.e.,

θd(n) = round

{
θ
∗(n)

2π/2B

}
× 2π

2B
, ∀n, (26)

where round{·} indicates rounding to the nearest integer.

Now, with the previous developments, the joint symbol-level precoding and reflecting design for the

power minimization problem is straightforward. Given an initial value θ0, the symbol-level precoders

xm, m = 1, . . . ,ΩK , and the RIS phase shifts θ are iteratively updated by solving (7) and (8) until con-

vergence is found. This joint symbol-level precoding and reflecting algorithm for the power minimization

problem is summarized in Algorithm 2. Selection of an initial θ0 will be addressed in Section V.

IV. ALGORITHM FOR QOS BALANCING PROBLEM

In this section, we first formulate the QoS balancing problem for the considered RIS-enhanced MU-

MISO system. Then, a similar algorithm is proposed to iteratively solve the symbol-level precoding and

reflecting design problems.

As discussed in Section II, the distance between the received noise-free signal and its decision boundaries

essentially determines symbol detection performance; larger distances provide stronger robustness against

noise, and thus a lower SER. Therefore, we use this distance as the QoS metric and aim at maximizing



the minimum QoS among users with a given power budget. From Fig. 2, we observe that the distance

between point D and its decision boundaries (i.e., the positive halves of the x and y axes in this case)

can be expressed as

cosΦ
[
R{r̃m,ke

−j∠sm,k} tanΦ−
∣∣I{r̃m,ke

−j∠sm,k}
∣∣] . (27)

Thus, after ignoring the constant term cosΦ, the QoS balancing problem can be formulated as

max
X,θ

min
m,k

R
{
r̃m,ke

−j∠sm,k
}
tanΦ−

∣∣I
{
r̃m,ke

−j∠sm,k
}∣∣ (28a)

s.t. r̃m,k =
(
hH
k + hH

rkΘG
)
xm, ∀k, ∀m, (28b)

Θ = diag{θ}, |θn| = 1, ∀n, (28c)

‖X‖2 ≤ PΩK , (28d)

where P is the preset average transmit power budget. Similarly, we propose to decompose this bivariate

problem into separate symbol-level precoding design and the reflecting design problems, and solve them

iteratively.

A. Symbol-Level Precoding Design for QoS Balancing Problem

With given RIS phase shifts θ, the combined channel vector from BS to the k-th user is h̃H
k ,

hH
k + hH

rkΘG. Then, the QoS balancing problem for designing the precoder X can be rewritten as

max
X,t

t (29a)

s.t. R{h̃H
k xme

−j∠sm,k} tanΦ−
∣∣∣I{h̃H

k xme
−j∠sm,k}

∣∣∣ ≥ t, ∀k, ∀m, (29b)

‖X‖2 ≤ PΩK , (29c)

which is a convex problem and can be solved by standard convex optimization tools, e.g. CVX. However,

since the variable to be optimized X has a large dimension of NΩK , the complexity is unaffordable. In

order to deal with this difficulty, we decompose this problem into ΩK sub-problems, where xm, ∀m, is

individually designed. To facilitate the algorithm development, we propose the following proposition.

Proposition 1. Let x∗
1, . . . ,x

∗
ΩK be the optimal solution of the QoS balancing problem (29). Let x⋆

1, . . . ,x
⋆
ΩK



be the optimal solution of the power minimization problem (7), where the QoS requirement for all users

equals t0 = σk

√
Γk tanΦ, ∀k. Then, x∗

m is a scaled version of x⋆
m, i.e., x∗

m =
√
Pmx⋆

m

‖x⋆
m‖ , where Pm ≥ 0 is

the transmit power allocated to the m-th precoder,
∑ΩK

m=1 Pm = PΩK . Furthermore, the minimum QoS

that x∗
m can achieve is

√
Pmt0
‖x⋆

m‖ .

Proof. See Appendix A.

Proposition 1 indicates that we can first find the precoder x⋆
m by individually solving the power

minimization problem (7) with a given QoS requirement t0, and then scaling x⋆
m appropriately to obtain

the optimal x∗
m by finding the optimal power allocation Pm. With given x⋆

m, the power allocation problem

to optimize QoS balancing can be formulated as

max
Pm,∀m

t (30a)

s.t. t ≤
√
Pmt0

‖x⋆
m‖

, ∀m, (30b)

ΩK∑

m=1

Pm ≤ PΩK . (30c)

While (30) is convex and can be solved by CVX, we attempt to find a more efficient solution to reduce

the complexity. Denoting p ,
[√

P1, . . . ,
√
PΩK

]T
, the power allocation problem (30) can be rewritten as

max
p,t

t (31a)

s.t. t ≤ eTmp, ∀m, (31b)

‖p‖2 ≤ PΩK , (31c)

where em is a vector of all zeros except the m-th element which is t0
‖x⋆

m‖ . Motivated by Proposition 1,

we first find p⋆, which is the optimal solution for the following power minimization problem with an

arbitrary given t′0 ≥ 0:

min
p

‖p‖2 (32a)

s.t. eTmp ≥ t′0, ∀m. (32b)



This problem can be efficiently solved using the same method for problem (7), based on the Lagrangian

dual problem and exploiting the gradient projection algorithm. Then, the optimal p∗ for (32) can be

obtained by p∗ =
√
PΩKp⋆

‖p⋆‖ .

With the above analysis, the symbol-level precoing algorithm for the QoS balancing problem can be

summarized as: i) obtain the precoder x⋆
m by solving the power minimization problem (7) with a certain

QoS requirement t0 ≥ 0; ii) solving the power allocation problem (30) to obtain Pm, ∀m; iii) scaling x⋆
m

to obtain the optimal solution of (29) as x∗
m =

√
Pmx⋆

m

‖x⋆
m‖ .

B. Reflecting Design for QoS Balancing Problem

With fixed precoders x1, . . . ,xΩK , the reflecting design problem is given by

max
θ

min
m,k

R{r̃m,ke
−j∠sm,k} tanΦ−

∣∣I{r̃m,ke
−j∠sm,k}

∣∣ (33a)

s.t. r̃m,k =
(
hH
k + hH

rkΘG
)
xm, ∀k, ∀m, (33b)

Θ = diag{θ}, |θn| = 1, ∀n. (33c)

Using the definitions in (9), the reflecting design problem is more compactly formulated as

min
θ

max
m,k

|I {r̂m,k}| −R {r̂m,k} tanΦ (34a)

s.t. |θn| = 1, ∀n. (34b)

As before, (34a) is non-differentiable due to the max and absolute value functions and (34b) is non-convex,

which leads us to exploit the RCG algorithm. To facilitate the RCG algorithm, the same idea used to

solve (10a) is employed here in three steps: i) replacing the absolute value function, ii) smoothing the

max function, iii) calculating its Euclidean gradient. We briefly describe these three steps below.

The absolute value function is replaced using (11), and the problem is further rearranged as

min
Θ̃

max
i

fi (35a)

s.t. [Θ̃(:, n)]T Θ̃(:, n) = 1, ∀n, (35b)



where fi is defined in (14) with the auxiliary vectors a2i−1, b2i−1, a2i b2i in (15a), (15b), (15d), (15e),

and

c2i−1 , I{am,k} −R{am,k} tanΦ, (36a)

c2i , −I{am,k} −R{am,k} tanΦ. (36b)

We smooth the max function by exploiting the log-sum-exp algorithm, which introduces the approxi-

mation

max{f1, f2, . . . , f2ΩK} ≈ g(Θ̃) , ε log





KΩK∑

i=1

[
exp

(
f2i−1

ε

)
+ exp

(
f2i
ε

)]
 , (37)

where ε is a small positive number.

After obtaining the smooth and differentiable g(Θ̃), its Euclidean gradient can be derived by substituting

(20) into (19), where we need to calculate

∂g

∂R{θH} =

∑KΩK

i=1

[
exp(f2i−1/ε)a

T
2i−1 + exp(f2i/ε)a

T
2i

]
∑KΩK

i=1 [exp(f2i−1/ε) + exp(f2i+1/ε)]
, (38a)

∂g

∂I{θH} =

∑KΩK

i=1

[
exp(f2i−1/ε)b

T
2i−1 + exp(f2i/ε)b

T
2i

]
∑KΩK

i=1 [exp(f2i−1/ε) + exp(f2i+1/ε)]
. (38b)

Then, the RCG-based reflecting design in Algorithm 1 can be applied to solve the QoS balancing problem.

The optimal RIS phase shifts θ
∗ and low-resolution phase shifts θd have the same format as in (25) and

(26).

Finally, the joint symbol-level precoding and reflecting design for the QoS balancing problem is

straightforward. With an initial reflecting value θ0, the symbol-level precoding matrix X and the RIS

phase shifts θ are iteratively updated by solving (29) and (33) until convergence is found.

V. INITIALIZATION AND COMPLEXITY ANALYSIS

A. Initialization

Since the RCG algorithm in general will find a locally optimal solution, an initial value that is close

to the optimal solution can provide better performance and accelerate convergence. In this subsection, we

propose a heuristic method to obtain the initial θ0.



Both the power minimization and QoS balancing problems depend on the quality of the users’ channels,

which can be manipulated by RIS. Therefore, without considering the precoding, we can simply design

the RIS phase shifts to maximize the minimum channel gain for all users:

max
θ0

min
k

∥∥hH
k + hH

rkΘ0G
∥∥2

(39a)

s.t. Θ0 = diag{θ0}, |θn| = 1, ∀n. (39b)

By introducing two auxiliary variables β and µ, (39) can be rearranged as

max
θ0

β (40a)

s.t. β ≤ θ
H

0 Rkθ0 + ‖hk‖2 , ∀k, (40b)

∣∣θ0(n)
∣∣ = 1, n = 1, . . . , N + 1, (40c)

where θ0 , [θ0;µ], Gk , diag{hrk}G, and Rk ,



GkG

H
k Gkhk

hH
k G

H
k 0


. It is noted that (40) is a quadratically

constrained quadratic program (QCQP) problem, which can be solved by the semidefinite relaxation (SDR)

algorithm [39]. In particular, defining Θ0 , θ0θ
H

0 , (40) is converted to

max
Θ0

β (41a)

s.t. β ≤ trace
{
RkΘ0

}
+ ‖hk‖2 , ∀k, (41b)

Θ0(n, n) = 1, n = 1, . . . , N + 1, (41c)

Θ0 � 0, rank{Θ0} = 1. (41d)

Ignoring the rank-one constraint, (41) is a semidefinite program (SDP) problem and can be solved using

standard convex optimization tools such as the CVX solver [36]. If the obtained solution satisfies the

rank-one constraint, θ0 can be calculated via an eigenvalue decomposition. Otherwise, the Gaussian

randomization algorithm is applied to provide an approximate solution.
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Fig. 3: Simulation setup for multiuser case.

B. Complexity

In this subsection, we provide a brief complexity analysis for the proposed joint symbol-level precoding

and reflecting design algorithms. The complexity to obtain the initial θ0 is at most O{
√

K(N + 1)[K3(N+

1)2 +K2(N +1)3]} using the CVX solver. For the power minimization problem, the complexity to solve

for precoder xm by the gradient projection algorithm is O{M3}, and the worst-case computation for the

RCG algorithm is of order O{(2N)1.5}. Therefore, the total computational complexity of Algorithm 2

is O{
√

K(N + 1)[K3(N + 1)2 +K2(N + 1)3] +Nmax[Ω
KM3 + (2N)1.5]}. The symbol-level precoding

algorithm for the QoS balancing problem is derived by solving the corresponding power minimization

problem, and the reflecting designs for these two problems are similar. Thus, the complexity to solve the

QoS balancing problem is the same as the power minimization problem.

VI. SIMULATION RESULTS

In this section, we provide extensive simulation results to illustrate the effectiveness of our proposed

algorithms. For simplicity, we assume QPSK modulation (Ω = 4) is used. The QoS requirement and

the noise power for K = 3 users is the same, i.e., Γ = Γk, ∀k, σ2 = σ2
k = −80dBm, ∀k. The transmit

antenna array at the BS is assumed to be a uniform linear array with antenna spacing given by λ/2.

The distance-dependent path loss modeled as PL(d) = C0

(
d
d0

)−α

, where C0 = −30dB is the path loss

for the reference distance d0 = 1m, d is the link distance, and α is the path-loss factor. In addition, the

small-scale Rician fading channel model for all channels is assumed, which consists of line of sight (LoS)

and not line of sight (NLoS) components. The channels from the BS to the RIS can be expressed as

G =

√
κ

κ+ 1
GLoS +

√
1

κ + 1
GNLoS, (42)
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Fig. 4: Average transmit power versus the number of iterations (K = 3 users, N = 64 reflecting elements,

M = 6 transmit antennas, Γ = 10 dB).

where κ is the Rician factor set as 3dB, GLoS is the LoS component depends on the geometric settings,

and GNLoS is the NLoS Rayleigh fading component. The MISO channels hk and hrk, k = 1, . . . , K, have

the similar model, which consist of LoS and NLoS components.

The geometric location for the following simulations is shown in Fig. 3, where the top of view is plotted.

In general, RIS is deployed far away from the BS to provide significant performance improvement for

its nearby users, who may suffer from blockage and serve attenuation. Therefore, we set the distance

between the BS and the RIS dBR = 50m, the distance between the RIS and the users dRU = 3m, and

the distance between the BS and each user dBU lies in the interval [dBR − dRU, dBR + dRU]. The users

are randomly distributed on the dashed circle line in Fig. 3. Considering the link distance, the path-loss

factors for hk, hrk and G are set as 3.5, 2.8, and 2.5, respectively, to simulate a more practical scenario.

A. Power Minimization Problem

In this subsection, we illustrate the simulation results for the power minimization problem. We first

show in Fig. 4 the convergence of our proposed algorithm for the cases where the RIS has continuous,

1-bit, 2-bit, and 3-bit phase shifters, i.e., B = ∞, 1, 2, 3, respectively. It can be observed that our proposed

algorithm converges very quickly, particularly for the low-resolution cases. These convergence results are

encouraging for a low complexity implementation.
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Fig. 5: Average transmit power versus QoS requirement Γ (K = 3 users, N = 64 reflecting elements,

M = 6 transmit antennas).

In Fig. 5, we show the average transmit power versus the QoS requirement Γ. In order to demonstrate

the effectiveness of our proposed joint symbol-level precoding and reflecting design, we also include: i)

Symbol-level precoding without the aid of the RIS (denoted as “SLP, w/o RIS”); ii) block-level precoding

with the aid of RIS and continuous phase shifters [10] (denoted as “BLP, w/ RIS, B = ∞”). It can

be seen from Fig. 5 that our proposed scheme requires less transmit power than the “SLP, w/o RIS”

approach, which validates the effectiveness of RIS in the symbol-level precoding systems. We can also

observe that the proposed joint symbol-level precoding and reflecting algorithm outperforms the “BLP,

w/ RIS, B = ∞” approach, which verifies the performance improvement due to symbol-level precoding.

In addition, it is noted that with the increasing B, better system performance can be achieved. Moreover,

the 3-bit scheme can provide satisfactory performance as the ideal unquantized solution, which indicates

that the 3-bit scheme can provide a favorable trade-off between cost and performance. Beyond B = 3

bits, the extra cost and complexity associated with using higher-resolution RIS are not warranted given

the very marginal increase in system performance.

Next, we present the average transmit power versus the number of reflecting elements N in Fig. 6.

The same relationship can be observed as in Fig. 5. We observe that as the number of reflecting elements

increases, the average transmit power is greatly reduced, and the reduction is more pronounced for our



20 25 30 35 40 45 50 55 60

Number of reflecting elements N

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

A
v
e
ra

g
e
 t
ra

n
s
m

it
 p

o
w

e
r 

(d
B

m
)

Proposed, B = 

Proposed, B = 1

Proposed, B = 2

Proposed, B = 3

SLP, w/o RIS

BLP, w/ RIS, B = 

Fig. 6: Average transmit power versus the number of reflecting elements N (K = 3 users, M = 6 transmit

antennas, Γ = 10 dB).

2 4 6 8 10 12 14

Number of iterations

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

M
in

im
u
m

 Q
o
S

10-5

Proposed, B = 

Proposed, B = 1

Proposed, B = 2

Proposed, B = 3
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proposed SLP algorithms compared with block-level precoding. This supports the main idea of our paper,

that the combination of SLP and RIS provides symbiotic benefits.

B. QoS Balancing Problem

In this subsection, we present simulations for the QoS balancing problem. The convergence performance

is similar to that observed for the power minimization problem in Fig. 7. It is seen that all schemes have
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very fast convergence, which provides favorable computational complexity.

In Fig. 8, we plot the worst-case performance t achieved for the QoS balancing problem versus the

transmit power P . As the transmit power increases, the minimum QoS of all methods increases, which

means that the distance between the received noise-free signal and its decision boundaries becomes larger.

The minimum QoS achieved by our proposed joint symbol-level precoding and reflecting algorithm is

dramatically larger than the other two competitors, which further supports the benefit of using RIS together

with symbol-level precoding.

In order to demonstrate the QoS improvement in a more intuitive and natural way with a familiar metric,

in Fig. 9 we present the average SER versus the transmit power. Obviously, the larger QoS requirement

(i.e., Γ), which results in the larger distance between the received signal and its decision boundaries, leads

to better performance in terms of a lower SER. This relationship can be verified by comparing Figs. 9

and 8. More importantly, the improvement in the SER performance of our proposed algorithm is also very

remarkable. When the 3-bit RIS can offer close to 10−4 SER, the symbol-level precoding system without

RIS provides only 10−2 SER. Therefore, utilizing the QoS requirement Γ as the performance metric for

optimizing the RIS-enhanced symbol-level precoding systems is reasonable and effective.

Next, we show the average SER versus the number of reflecting elements N in Fig. 10. Since the
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larger RIS can provide larger beamforming/reflecting gains, we observe that the average SER decreases

for all schemes with increasing N . Moreover, our proposed schemes always achieve significantly better

SER performance for different RIS sizes.
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C. Impact of RIS Location

Finally, in order to demonstrate the impact of RIS location, we simulate a case where the position of

one of the users changes along a horizontal line parallel to the line between the BS and RIS. As shown

in Fig. 11, user 3 moves along the dashed line and the vertical distance between it and the BS-RIS link

is dv = 0.5m. Let dm be the horizontal distance between the BS and user 3. The other two users are still

located 3m from the RIS. In Figs. 11 and 12, we show the system performance as a function of dm. We

observe that the RIS-enhanced system has the best performance when the user moves closest to the RIS

and the other two users, i.e., dm = 50m, since a larger reflection gain is obtained when the user is closest

to the RIS. Moreover, when the users move closer together, MUI may become stronger, which can be

effectively exploited by symbol-level precoding.
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VII. CONCLUSIONS

In this paper, we investigated RIS-enhanced wireless networks, where an IRS is deployed to assist the

multi-user MISO communication system, which employs symbol-level precoding to exploit the multi-

user interference. In particular, we considered the joint symbol-level precoding and reflecting design

problems for RIS-enhanced MU-MISO systems. Efficient iterative algorithms were proposed to solve

the power minimization and QoS balancing problems. The gradient-projection-based and Riemannian

conjugate gradient (RCG)-based algorithms were used to design symbol-level precoding and RIS phase

shifts, respectively. The simulation results illustrated that our proposed algorithms exhibit remarkably

better performance in terms of power-savings and SER-reductions. These positive results have confirmed

that the employment of RIS in symbol-level precoding systems can provide more efficient multi-user

interference exploitation by intelligently manipulating the multi-user channels.

APPENDIX A

Proof of Proposition 1. We assume the optimal solution of the QoS balancing problem (29) is x∗
m, ∀m,

and t∗, and we denote the transmit power allocated to the m-th precoder as Pm , ‖x∗
m‖2. If the power



allocations Pm, ∀m, are known, the QoS balancing problem can be divided into ΩK sub-problems and

the m-th sub-problem is written as

max
xm,tm

tm (43a)

s.t. R{h̃H
k xme

−j∠sm,k} tanΦ−
∣∣∣I{h̃H

k xme
−j∠sm,k}

∣∣∣ ≥ tm, ∀k, (43b)

‖xm‖2 ≤ Pm. (43c)

It can be easily verified that the inequality constraint (43c) holds with equality at the optimal x∗
m. Moreover,

x∗
m is also the the optimal solution for the following power minimization problem:

min
xm

‖xm‖2 (44a)

s.t. R{h̃H
k xme

−j∠sm,k} tanΦ−
∣∣∣I{h̃H

k xme
−j∠sm,k}

∣∣∣ ≥ t∗m, ∀k. (44b)

To prove this statement by contradiction, we start by assuming that x∗
m is not optimal for (44) and there

exists another xm satisfying (44b) and requiring less power, i.e. ‖xm‖ < Pm. Then, we can scale up xm

to let the power constraint (43c) become equal and provide a higher tm in (43), in which case x∗
m is not

optimal any more, and this results in contradiction.

If we use an arbitrary t0 > 0 as the QoS requirement in (44b) instead of t∗m, the optimal solution x⋆
m

of this power minimization problem is the scaled version of x∗
m, since the constraint (44b) is a linear

function. More specifically, x∗
m =

√
Pmx⋆

m

‖x⋆
m‖ with the optimal power Pm.

If we set the QoS requirement as t0 = σk

√
Γk tanΦ, then (44) has the same format as (7), which implies

that the optimal x⋆
m for the power minimization problem (7) is also a scaled version of the optimal x∗

m

for the QoS balancing problem (29). Proposition 1 is therefore proved.
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