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ARTICLE

Event boundaries shape temporal organization of
memory by resetting temporal context
Yi Pu 1✉, Xiang-Zhen Kong2✉, Charan Ranganath 3,4 & Lucia Melloni 1,5✉

In memory, our continuous experiences are broken up into discrete events. Boundaries

between events are known to influence the temporal organization of memory. However, how

and through which mechanism event boundaries shape temporal order memory (TOM)

remains unknown. Across four experiments, we show that event boundaries exert a dual role:

improving TOM for items within an event and impairing TOM for items across events.

Decreasing event length in a list enhances TOM, but only for items at earlier local event

positions, an effect we term the local primacy effect. A computational model, in which items

are associated to a temporal context signal that drifts over time but resets at boundaries

captures all behavioural results. Our findings provide a unified algorithmic mechanism for

understanding how and why event boundaries affect TOM, reconciling a long-standing

paradox of why both contextual similarity and dissimilarity promote TOM.

https://doi.org/10.1038/s41467-022-28216-9 OPEN
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Episodic memory is temporally organized1. In memory, it is
easier to differentiate between items that are far than
items that are close in time (i.e., the temporal distance

effect, e.g.,2). Substantial evidence suggests that the temporal
organization of episodic memory can be influenced by various
types of salient and meaningful changes in ex/internal environ-
ments (i.e., event boundaries)3,4. However, it remains unknown
how and why event boundaries affect temporal order memory
(TOM).

Recent work has shown that TOM is more accurate for items
presented within an event than for items that are separated by an
event boundary, even when controlling for the time elapsed
between items (e.g.,5–7). Yet, how event boundaries shape TOM
remains unknown. According to the Event Horizon Model8–10,
segmenting a continuous experience, such as a fixed-length list
into smaller events separated by event boundaries should result in
less competition among items in an event, but also more com-
petitions among different events. However, it is unclear how the
effects on interference could impact TOM. For instance, it
remains to be examined whether boundaries enhance and/or
impair TOM for items within and across events, respectively; and
how event length (or the number of event boundaries) in a fixed-
length list shapes TOM for within and across-event items.

One defining feature of episodic memory is that when
encoding an experience, individuals link the experience with its
surrounding spatiotemporal context (e.g.,11). As a consequence,
the encoded spatiotemporal context triggers recollection of the
specific experience and vice versa. Building on this observation, a
class of computational models (i.e., temporal context models)
posit that items are associated together through a gradually
changing temporal context, such that the contextual representa-
tions are more dissimilar for items far away than for items close
in time12–14. This class of models have then been used to explain
the temporal distance effect of TOM, i.e., better TOM for a longer
lag than for a shorter lag (e.g.,2,15), by assuming that contextual
dissimilarity facilitates memory differentiation. Consistent with
this account, neuroscientific research shows a gradient of simi-
larity in hippocampal representations across long time periods,
such that hippocampal representations are more dissimilar
for experiences further apart than experiences close in time
(e.g.,16–18). Thus, hippocampal representations are thought to
serve as a neural correlate of temporal context that binds events
together1.

Recently, studies also show that our mental and neural repre-
sentations can change abruptly at event boundaries19,20, leading
to more similar mental and neural representations for within-
event items than for across-event items (e.g.,19). Therefore, the
boundary effect of better within-event TOM than across-event
TOM is explained by assuming that contextual similarity pro-
motes memory5,21,22. Thus, at the computational level, the tem-
poral distance effect and the boundary effect pose a paradox: why
is it that sometimes contextual dissimilarity benefits TOM and
sometimes contextual similarity benefits TOM23? Different the-
oretical and computational models have been put forward to
explain either of the two effects, but none of them, to our
knowledge, can explain both. Therefore, there is a need to
reconcile the disparate accounts and paradoxical findings at the
algorithmic level to account for how spatiotemporal context
influences TOM.

Here we report four experiments aimed at understanding how
event boundaries and temporal distance affect the temporal
organization of memory, and introduce a computational model to
explain behavioural results. In these experiments, we presented
participants with sequences of objects, whose order they were
asked to remember. We subsequently tested their temporal order
memory. We manipulated the presence and the number of event

boundaries (i.e., event length) in a fixed-length list, while con-
trolling for the absolute list position. Event boundaries were
operationalized as perceptual/context shifts (i.e., colour change of
the background frame22).

We find that event boundaries exert a dual effect: they simul-
taneously enhance TOM for items within events and impair TOM
for items across events. We also find that decreasing event length
by increasing the number of event boundaries in a fixed-length
list enhances TOM. Yet, this effect is limited to items occupying
earlier local positions for both within and across-events. We term
this phenomenon the local primacy effect. Finally, we find that
the boundary effect and the temporal distance effect, two effects
thought to be computationally incompatible, can co-exist in the
same experiment, and moreover, that event boundaries affect
TOM above and beyond a mere temporal distance effect.

To account for these results, we have developed a computa-
tional model based on an existing class of temporal context
models12,13,24, in which boundaries reset the temporal context
signal by reinstating a certain proportion of the first contextual
representation. Our model explains both the boundary effect and
the temporal distance effect, reconciling the two paradoxical
effects in memory literature, while also accounting for the local
primacy effect and all the other findings in the present study. Our
model provides two key insights: first, event boundaries do not
cause a random sharp change in contextual representations as
previously hypothesized5,23. Instead, event boundaries cause a
systematic change in temporal context by recovering a certain
proportion of the first contextual representation. Second, the
latent cause for better TOM is not increased contextual similarity
or dissimilarity of the two probed items, as assumed by previous
theoretical and computational models5,21,22; instead, it is driven
by an increased difference between the contextual representations
of the probed items relative to that of the first item in the list.
Overall, the present study reveals important behavioural phe-
nomena and provides a unified account of how and why orga-
nizational processes during encoding structure the temporal
organization of memory.

Results
Event boundaries affect TOM by playing a dual role. Our first
experiment was aimed at examining how event boundaries shape
TOM: do they enhance and/or impair TOM for within and
across-event items? To address this question, we presented par-
ticipants with sequences of objects whose order they had to
memorize. The design for Experiment 1, built on previous studies
(e.g.,6,7), is schematically depicted in Fig. 1a. We exposed parti-
cipants to two sequence types: one in which the coloured frame
changed every six images (i.e., boundary condition), and the other
in which the coloured frame remained constant across all 36
images (i.e., no boundary condition). In the subsequent testing
phase, participants made recency judgments on pairs of objects
chosen from the just-encoded sequence. For the boundary con-
dition, the probed object pairs were either from the same event
(i.e., same background colours, called within-event pairs) or from
two adjacent events (i.e., different background colours, called
across-event pairs, Fig. 1b). Probed pairs in the no boundary
condition matched list positions to those in the boundary con-
dition. The experimental procedure in Experiment 1 was identical
for the rest of experiments, unless otherwise specified.

We had four trial types—in the boundary condition, pairs of
objects were either in the same event or separated by an event
boundary, and in the no boundary baseline condition, pairs of
objects were tested so as to match the same list positions tested in
the boundary condition. The no boundary condition served as a
baseline condition, which enabled us to explicitly investigate the
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effect of boundaries on TOM for within and across-events pairs.
We reasoned that if event boundaries influence TOM, we would
expect an interaction between Condition (boundary vs. no
boundary condition) and List Position ([matched] within-event
position vs. [matched] across-event position). Throughout the
experiments in the paper, our analyses focused on the accuracy of
recency judgments. In Supplementary materials, we reported
results on reaction time (Supplementary Fig. 1) and confidence
ratings (Supplementary Fig. 2) of recency judgments.

In line with our hypothesis, a repeated measures ANOVA on the
accuracy of recency judgments revealed a significant interaction
between Condition and List Position (F (1, 25)= 18.05, p < 0.001,
η2= 6.364%, Fig. 1c), as well as a main effect of List Position
(F(1,25)= 5.339, p= 0.0294, η2= 3.452%). No other significant
effect was observed. In follow-up planned contrasts (FDR corrected
for multiple comparisons), we first examined whether we could
replicate previous findings that TOM was significantly better for
within than across-event pairs in the boundary condition (5,25). In
line with previous findings, we found that TOM was significantly
better for within than across-event pairs in the boundary condition
(t(25)= 5.216, p < 0.001, two-sided, q < 0.05, 95% Confidence

Interval (CI)= 6.208 to 14.31). We noted that the absolute list
positions were not perfectly matched between within and across
event pairs. In particular, within-event pairs took both first and last
positions in the long list. As such, the primacy and recency
positions might have memory advantages in the long list (e.g.,
primacy and recency effect26), and directly comparing the within vs.
across-event TOM might bias the results in favour of within-event
TOM. To rule out this potential confound, we excluded the first and
last pairs from within-event pairs and re-ran the previous analysis.
The result remained significant (t(25)= 3.022, p= 0.0057, two-
sided, 95% CI= 2.702 to 14.26), indicating that the boundary effect
is robust to list position, and does not merely reflect the primacy
and recency effect in a long list. Then, we compared TOM in the
matched positions in the no-boundary condition. However, no
differential effect was present (t(25)=−1.009, p= 0.3225, two-
sided, 95% CI=−5.607 to 2.494), suggesting that event boundaries
do play a role in affecting TOM. Next, we compared TOM in the
boundary condition against TOM in the no boundary condition,
controlling for list position. We found that TOM was significantly
better for within-event pairs (t(25)= 2.418, p= 0.0232, two-sided,
q < 0.05, 95% CI= 0.7042 to 8.805) and significantly worse for

Fig. 1 Experimental paradigm. a Experimental task. 36 grey-scaled trial-unique object images embedded in a coloured frame were sequentially presented
to participants. In the boundary condition, the colour of the frame was consistent for six consecutive images before switching to another one, while in the
no boundary condition, the colour of the frame was consistent for all 36 objects. Each object image was presented to participants for 2.5 s, preceded by
0.5 s fixation cross and followed by 2 s inter-trial interval, during which the coloured frame stayed on the screen. In the boundary condition, event
boundaries were defined as the trial in which the colour of the frame updated with the co-occurring object. Immediately after encoding the 36 images,
participants made recency judgments on pairs of items from the just-encoded sequence. Each recency judgment was then followed by a confidence rating
for each decision on a four-point scale. Participants had a self-paced short break after finishing each sequence. The images used were taken from publicly
available dataset (Bank of Standardized stimuli, BOSS, https://sites.google.com/site/bosstimuli/, © 2010 Brodeur et al. & © 2014 Brodeur et al.)49,50.
b Schematic diagram of the task in Experiment 1. Numbers in red depict event boundaries. There were two pair types marked by yellow and blue square
brackets, denoting within-event pairs and across-event pairs respectively (short for Boundary Within and Boundary Across in the figure respectively). The
two pair types were separated by the same number of intervening items. In the no boundary condition, item pairs took identical list positions as in the
boundary condition (short for No Boundary Within and No Boundary Across respectively). c Group averaged temporal order memory for within and across-
event pairs in the boundary vs. no boundary conditions in Experiment 1 (n= 26). A repeated measures ANOVA on the accuracy of recency judgments
showed a significant interaction between Condition and List Position (F (1, 25)= 18.05, p < 0.001, η2= 6.364%), as well as a main effect of List Position
(F(1,25)= 5.339, p= 0.0294, η2= 3.452%). Simple effect analyses showed that TOM was significantly better for within than across-event pairs in the
boundary condition (t(25)= 5.216, p < 0.001, two-sided, q < 0.05, FDR corrected for multiple comparisons), and was significantly better for within-event
pairs (t(25)= 2.418, p= 0.0232, two-sided, q < 0.05, FDR corrected) and significantly worse for across-event pairs (t(25)=−4.022, p < 0.001, two-sided
q < 0.05, FDR corrected) in the boundary condition compared to matched pairs in the no boundary condition. The boxes in box plots show the inter-quartile
range (IQR) and the median. Whiskers in box plots represent the minimum and maximum in the dataset. The asterisk (*) represents statistical significance
at p < 0.05. Source data are provided as a Source Data file.
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across-event pairs (t(25)=−4.022, p < 0.001, two-sided q < 0.05,
95% CI=−9.554 to -1.453) in the boundary condition compared
to matched pairs in the no boundary condition. These results
demonstrate that event boundaries exert a dual influence on TOM,
simultaneously enhancing TOM for within-event pairs and
impairing TOM for across-event pairs.

Decreasing event length also yields a robust boundary effect,
which can co-exist with the temporal distance effect in the
same experiment. Having established a dual role of event
boundaries in affecting TOM, we next examined (1) whether
decreasing event length by increasing the number of event
boundaries in a list could also generate a robust boundary effect;
and (2) whether the boundary effect and the temporal distance
effect, two effects thought to be computationally incompatible
could co-exist in the same experiment. A schematic diagram of
the task is depicted in Fig. 2a. In this experiment, the colour of the
frame changed after every four images. Thus, each event was
shorter and there were more event boundaries in this experiment
compared to Experiment 1.

To investigate the boundary effect and the temporal distance
effect, we probed within and across-event pairs separated by one
intervening item (lag1), as well as across-event pairs separated by
three intervening items (lag3). A one-way repeated measures
ANOVA on the accuracy of recency judgments revealed a
significant effect of Pair Type (F(1.448, 37.64)= 18.63, p < 0.001,
R2= 25.47%) (Fig. 2b). To determine the robustness of the
boundary effect to event size, we compared TOM for within
against across-event pairs at lag1. TOM was significantly better
for within-event pairs than across-event pairs (t(26) = 4.820,
p < 0.001, two-sided, q < 0.05, 95% CI= 12.87 to 31.99). The
result should not be confounded with list position, since a
significant effect of boundary still held, even when excluding the
first and the last two pairs from the within-event pairs
(t(26)= 4.283, p < 0.001, two-sided, 95% CI= 10.92 to 31.07).
These results above demonstrate a robust boundary effect with
events of a smaller size.

We next examined the temporal distance effect, comparing
TOM for across-event pairs at lag3 against lag1. TOM was
significantly better for across-event pairs at lag3 than for across-
event pairs at lag1 (t(26)= 2.941, p < 0.001, two-sided, q < 0.05,
95% CI= 2.987 to 16.84), replicating the well-established
temporal distance effect. To explore whether event boundaries
affect TOM beyond the temporal distance, we compared TOM
for within-event pairs at lag1 against across-event pairs at lag3.
TOM was significantly better for within-event pairs at lag1 than
for across-event pairs at lag3 (t(26)= 4.524, p < 0.001, two-sided,
q < 0.05, 95% CI= 6.825 to 18.19). The significant result held
when the first trial and the last two trials were excluded from the
within-event pairs (t(26)= 3.784, p < 0.001, two-sided, 95%
CI= 4.997 to 16.88). These results indicate that event boundaries
structure the temporal organization of memory above and beyond
a mere temporal distance effect; and provide the important
insight that the boundary effect and the temporal distance effect,
two effects thought to be computationally incompatible, can co-
exist in the same experiment, aligning with previous studies
showing the co-existence of the two effects (e.g.,25).

Decreasing event length enhances TOM due to the local pri-
macy effect caused by event boundaries. Having observed a
robust boundary effect even when event length decreases, in
Experiment 3, we further investigated whether and how event
length affects TOM performance. When holding the number of
list items constant, decreasing the length of each event necessarily
increases the number of events (and event boundaries) in a list.

Thus, having shorter events might have the beneficial effect of
decreasing the interference among items within each event.
However, it may also negatively impact TOM by increasing the
competition among different events during retrieval.

To address this question, we created two sequences of fixed
length: one containing four items per event (Event 4) and another
containing six items per event (Event 6). The Event 4 condition
contained more event boundaries than the Event 6 condition
(Fig. 3a). To allow for a fair comparison across the two sequences,
we created three types of probed pairs controlling for the absolute
list positions. The different pair types are marked by the colour-
coded square brackets in Fig. 3a. Pair type 1 were within-event
pairs, which took both identical list positions and local event
positions (2–4) in the two sequences, yet differed by the amount
of event boundaries in the long list. Pair type 2 were also within-

Fig. 2 Design and results of Experiment 2. a Schematic diagram of the task
in Experiment 2. The sequence of 36 images was segmented as 4 items per
event. Three pair types were tested for recency judgments, marked by red,
light blue, and blue square brackets, representing within-event pairs with
one intervening item (short for Within Lag1 in the figure), across-event
pairs with three intervening items (short for Across Lag3 in the figure) and
across-event pairs with one intervening item (short for Across Lag1 in the
figure), respectively. b Box plots of group averaged temporal order memory
for within and across-event pairs for lag1 and lag3 (n= 27). A one-way
repeated measures ANOVA on the accuracy of recency judgments showed
a significant effect of Pair Type (F(1.448, 37.64)= 18.63, p < 0.001,
η2= 25.47%). Simple effect analyses showed that TOM was significantly
better for within-event pairs than across-event pairs (t(26)= 4.820,
p < 0.001, two-sided, q < 0.05, FDR corrected for multiple comparisons), for
within-event pairs at lag1 than for across-event pairs at lag3 (t(26)= 4.524,
p < 0.001, two-sided, q < 0.05, FDR corrected), and for within-event pairs at
lag1 than for across-event pairs at lag3 (t(26)= 4.524, p < 0.001, two-
sided, q < 0.05, FDR corrected). Numbers in red denote event boundaries.
The boxes show the inter-quartile range (IQR) and the median. Whiskers in
box plots represent the minimum and maximum in the dataset. The asterisk
(*) represents statistical significance at p < 0.05. Source data are provided
as a Source Data file.
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event pairs, which took identical list positions, but earlier local
positions (2–4) for the Event 4 condition and later local positions
(4–6) for the Event 6 condition. Pair type 3 were across-event
pairs, matched by the average list positions in the two sequences.
Because of different segmentation of the two sequences, the local
positions were always earlier in the Event 4 condition compared
to the Event 6 condition (i.e., 3’-3 in Event4 vs. 5’-3 in Event6).

A repeated measures ANOVA on the accuracy of recency
judgments revealed a significant interaction between Condition and
Pair Type (F (1.967, 60.96)= 5.079, p= 0.0094, η2= 2.084%)
(Fig. 3b) and a main effect of Condition (F(1,31)= 11.72,
p= 0.0018, η2= 2.823%) and Pair Type (F (1.411, 43,73)= 15.24,
p < 0.0001, η2= 10.37%). A follow-up planned contrast (FDR
corrected for multiple comparisons) revealed no significant difference
between the Event 4 condition and the Event 6 condition for pair
type 1 (t(31) = 0.06437, p= 0.9491, two-sided, q= 0.3322, 95%
CI=−4.842 to 4.545). That is, TOM was comparable when
sequences were matched both for list positions and local serial
positions within an event. However, if local serial positions in events
differed across conditions (i.e., for pair types 2 and 3), TOM was

significantly better for the Event 4 than for Event 6 condition for both
pair type 2 (t(31)= 2.334, p= 0.0262, two-sided, q < 0.05, 95%
CI= 0.5638 to 8.362) and pair type 3 (t(31)= 3.93, p < 0.001, two-
sided, q < 0.05, 95% CI= 4.632 to 14.63).

As shown in Fig. 3b, event length affected TOM only when the
pairs consisted of items at earlier serial positions in the Event 4
condition, as compared to those at later serial positions in the
Event 6 condition. This pattern of results has not been predicted
based on the Event Horizon Model10. Based on our results, we
put forward a new hypothesis that event boundaries cause an
advantage in TOM for earlier local event positions, such that
TOM is better for items taking earlier vs. later local event
positions, controlling for absolute list positions. Since the absolute
list positions in Experiment 3 could not be perfectly matched for
across-event pairs in the Event 4 condition and in the Event 6
condition, we run a follow up experiment to directly test this
hypothesis while addressing this confound.

A schematic diagram of Experiment 4 is shown in Fig. 3c. We
created two types of sequences that contained an identical
number of event boundaries but differed in the sequences by

Fig. 3 Design and results of Experiment 3 & 4. a Schematic diagram of the task in Experiment 3. Two conditions were tested: one with events containing
four items (Event 4) and the other containing six items (Event 6). Three matched pair types were tested: Pair type 1 marked by the red and yellow square
brackets, Pair type 2 marked by green and light green square brackets and Pair type 3, marked by blue and light blue square brackets in the two conditions.
b Box plots of group averaged temporal order memory for the three pair types (n= 32). No significant difference was found between the Event 4 condition
and the Event 6 condition for pair type 1 (t(31)= 0.06437, p= 0.9491, two-sided, q= 0.3322, FDR corrected for multiple comparisons); however, TOM
was significantly better for the Event 4 than for Event 6 condition for both pair type 2 (t(31)= 2.334, p= 0.0262, two-sided, q < 0.05, FDR corrected) and
pair type 3 (t(31)= 3.93, p < 0.001, two-sided, q < 0.05, FDR corrected). c Schematic diagram of the task in Experiment 4. Two sequence types were tested
containing the same number of event boundaries but segmented differently, e.g., 336336… vs. 633633… items per event. Three pair types were tested:
within-event pairs taking earlier and later local positions (matched by absolute list positions) denoted by the red and yellow square brackets (short for
Within Early and Within Late respectively). Across-event pairs taking earlier and later local positions (matched by absolute list positions) denoted by the
blue and light blue square brackets (short for Across Early and Across Late respectively). Across-event pairs with a longer lag than pairs marked by blue
and light blue square brackets, are marked by light grey square brackets. d. Box plots of group averaged temporal order memory for within and across-
event pairs taking earlier and later positions shown in Fig. 3c (n= 30). TOM was significantly better for within vs. across-event pairs (F(1,29)= 8.217,
p= 0.0076, η2= 4.657%), and for early vs. late pairs (F(1,29)= 8.933, p= 0.0057, η2= 2.503%). Planned contrasts further confirmed that TOM was
significantly better for earlier vs. later pairs for both pair types (for within event pairs: t(29)= 2.256, p= 0.0318, two-sided, q < 0.05, FDR corrected; for
across-event pairs: t(29)= 3.839, p < 0.001, two-sided, q < 0.05, FDR corrected). The boxes show the inter-quartile range (IQR) and the median. Whiskers
in box plots represent the minimum and maximum in the dataset. The asterisk (*) represents statistical significance at p < 0.05. Numbers in red denote
event boundaries in Fig. 3a, c. Source data are provided as a Source Data file.
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which the events were formed. I.e., in one sequence, event
sequences took the form of 3-3-6-3-3-6-3-3-6; while in the other
sequence, it was 6-3-3-6-3-3-6-3-3. Thereby, the coloured frame
remained constant for either three or six objects before changing
to a different one. This experimental manipulation allowed us to
create pairs taking earlier vs. later local event positions in the two
sequences, while keeping their absolute list positions and the total
number of event boundaries identical (Fig. 3c).

In line with our hypothesis, a repeated measures ANOVA on
the accuracy of recency judgments with within-subjects factors of
Pair Type (within vs. across-event pairs) and Position (earlier vs.
later local positions) revealed a significant main effect of Pair
Type (F(1,29)= 8.217, p= 0.0076, η2= 4.657%) and Position
(F(1,29) = 8.933, p= 0.0057, η2= 2.503%), with TOM being
significantly better for within than across-event pairs as well as
for earlier than later pairs (Fig. 3d). No significant interaction was
found. Planned contrasts further confirmed that TOM was
significantly better for earlier vs. later pairs for both pair types
(t(29)= 2.256, p= 0.0318, two-sided, q < 0.05, 95% CI= 0.2964
to 6.053 for within-event pairs, t(29) = 3.839, p < 0.001, two-
sided, q < 0.05, 95% CI= 2.384 to 8.141 for across-event pairs).

To replicate the temporal distance effect, we compared TOM for
across-event pairs separated by more intervening items (Fig. 3c,
marked by grey square brackets) vs. across-event pairs separated by
fewer intervening items, collapsing over earlier and later positions
(i.e., those across-event pairs used in our main hypothesis testing
above). As expected, pairs with a longer lag were better
remembered than those with a shorter lag (t(29)= 3.671,
p < 0.001, one-tailed, 95% CI= 1.941 to 6.826. One-tailed test
was used, since we had a strong a priori about the directionality of
this comparison). Of note, list positions cannot be perfectly
matched for this contrast, and thus a residual uncertainty as to the
effect of list position for this comparison remains.

Altogether, Experiment 3 and 4 uncovered a behavioural
phenomenon, which we termed the local primacy effect. This
phenomenon explains why varying event length affects TOM.

Computational modelling. Our behavioural experiments
demonstrated three basic findings: (1) Boundaries play a dual role
in shaping TOM by both enhancing within-event TOM and
impairing across-event TOM, such that TOM is better for pairs of
items within the same event than for pairs in separate events (the
boundary effect); (2) TOM is better for items that are farther
apart in time, than for items close together in time (the temporal
distance effect), which could co-exist with the boundary effect in
the same experiment, although the two effects were thought to be
computationally incompatible; (3) TOM is better for pairs of
items that occur closer to the beginning of an event than for pairs
of items that occur later in the event, when the absolute list
positions are kept identical (the local primacy effect). These
results, however, pose a challenge to mechanistic accounts of
TOM. The previous models5,21 have been put forward to account
for the boundary effect, yet none, to our knowledge, aim to
simultaneously account for both the boundary effect and the
temporal distance, nor for the local primacy effect.

To address this challenge, we developed an algorithmic model
aimed at capturing the three effects described above. Our model was
built on a class of temporal context models12,13,24,27, in which items
are associated with each other via a context signal. The context signal
changes gradually from moment to moment (i.e., slow drift),
reflecting subtle changes in the environment or in the subjects’
mental state12. Since recent neuroimaging and psychophysics studies
have shown that event boundaries can cause a sharp change (i.e.,
shift) in brain/mental state (e.g.,19,20), it has been hypothesized that
such a sharp shift is caused by a faster random change in temporal

context at event boundary (e.g.,23). Our model, however, assumes
that the shift in temporal context is not a random process, but instead
is based on reinstatement of the pre-experimental context.

This assumption fits with existing theories of event cognition9,
which postulate that following an event boundary participants
generate a new event model. Forming an event model is not
simply random, instead it is an attempt to make sense of the
information that is being processed28,29. In complex, real life
events, building a new event model often relies on memory
retrieval28–31. For instance, when crossing a doorway en route to
a particular location, it makes sense to reinstate information from
the beginning of the journey, in order to recall what made us
leave the room in the first place. If mental context randomly
shifted at each event boundary, one would possibly forget one’s
destination after crossing the first doorway. In our and other
temporal order memory experiments, events are much simpler,
but it is nonetheless sensible to reinstate information from the
beginning of the experiment, when participants first learned
about the structure of the task (i.e., changing colour frames,
sequential structure, etc.), as well as any other schematic
information which may facilitate learning of the sequence.

In our model, we operationalized such a systematic change at
event boundaries by assuming that a certain proportion of the
initial contextual information is reinstated at each event boundary
and that the initial contextual information contains both pre-
experimental contextual representation (e.g., the task structure)
and the first contextual representation of the list. In a later
analysis, we compared our model with a model in which a
random sharp change occurs at event boundary5, in the absence
of any reinstatement of past contextual states.

Following Estes13, we operationalized context as a set of binary
elements with 100 features (e.g.,5). At non-boundary time points,
context fluctuates gradually, with active elements (1) turning
off and inactive elements (0) turning on with probability p, such
that

Ct ¼ ð1� pÞCt�1 þ pCIN ð1Þ
where Ct represents contextual representation at time point t, CIN

represents random noise. When a boundary occurs, the context
signal resets at rate λ (Fig. 4a), such that

Ct ¼ ð1� λÞðð1� pÞCt�1 þ pCINÞ þ λC1 ð2Þ
meaning that a proportion (λ) of the first contextual representa-
tion is reinstated at event boundaries. As shown in Fig. 4b, c,
contextual representations, as operationalized in our model, are
clustered, such that contextual representations are more similar
for pairs of items in the same event than for pairs of items in
different events, and they are more similar for temporally
proximal items than for temporally distant items.

To operationalize the recency judgment process, we first
assumed that participants retrieve the learning contexts asso-
ciated with each of the probed items32. Next, we assumed that the
outcome of the recency judgment is based on the sign of the
subtraction between the distances of the two retrieved contexts to
the first context which serves as a common reference point (i.e.,
d2-d1, Fig. 4d). Accuracy would be expected to increase as a
function of the difference between d2 and d1 (see Methods).

Simulations showed that the model outputs mirrored the
pattern of the group averaged behavioural results in each
experiment (Fig. 5a–d, with a drift rate p= 0.02, and a reset
rate λ= 0.2; 1000 different simulation iterations; see Methods for
details). Statistically, the model outputs significantly explained the
behavioural data across experiments (R2= 0.64, p < 0.001, a
generalized linear model (GLM); Fig. 5e). The significance also
held (R2= 0.88, p < 0.001) when fitting a generalized linear mixed
model (GLMM), in which experiments/sequences were set as a
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random factor to control for a potential clustering effect due to
data independency. We repeated the procedure above using a
range of parameter values of p (from 0.01 to 0.4, with steps of
0.01) and λ (from 0.05 to 1, with steps of 0.01), and found that
our model can explain our behavioural data across a range of
parameter values (Fig. 6a, b, see also Supplementary materials
(Supplementary Figure 7) for another example of the model
fitting with a different set of parameter values), indicating the
robustness of the model to parameter values. Note that the model
is not insensitive to parameter values, as only a range of
parameter values produce model outputs that can both correctly
recover all the behavioural effects (indicated by the red line in
Fig. 6a, b) and significantly correlate with all the behavioural data
across experiments (indicated by the black line in Fig. 6a, b). In
Supplementary materials (Supplementary Figure 8), we also show
two examples of model simulations which could not account for
the behavioural data.

Next, we examined whether using the last contextual
representation during encoding as the reference as opposed to
the first contextual representation improves the model’s accuracy.
Results showed that under many parameter value combinations,
model outputs significantly correlate with the behavioural data,
but cannot correctly recover all the effects in the behavioural
experiments (Fig. 6c, d).

We also ran a comparable analysis on the reaction time (RT)
data. We found that RT significantly correlates with the memory
index (MI) in our model across a range of parameter (p and λ)
values (see Supplementary Fig. 19). The correlation pattern across
parameter values is similar to the correlation pattern between
accuracy and the MI; albeit the R2 value was generally smaller for
RT than for accuracy. This result is however not surprising,
considering that participants were instructed to prioritize
accuracy. As such, the RT measurements are noisier than
accuracy to index TOM performance.

Finally, we compared our model to a previous model5, which
postulates a random sharp shift in context signals at event
boundaries (e.g., the rate of context change increased from 0.01 to
0.08). Note that in this model, the sharp change at event
boundaries is random, in the sense that a random set of elements
in the context vector changes (0 will change to 1, 1 will change to
0) at event boundaries. However, the magnitude of the change at
event boundaries is not random, but depends on how much
change occurs in the internal/external environment5. In their
model, Horner, Bisby5 used the contextual similarity of the two
probed items as the index for the accuracy of TOM. Simulation
results showed that Horner, Bisby5’ model does not licence the
co-existence of the boundary effect and the temporal distance
effect (see Methods and Supplementary Fig. 5). Since there is no
metric for recency judgments in their model, we combined
Horner, Bisby’s5 model with our proposed metric. Simulation
results showed that across parameter values, their model
explained the data less well than our model (Supplementary
Figs. 10 & 11).

Taken together, our computational model explained our
findings on TOM and revealed two key points. First, event
boundaries do not cause a random sharp change as previously
proposed (5); Instead, it resets temporal context by recovering a
certain proportion of the first contextual representation. Second,
the latent cause for better TOM is not increased contextual
similarity/dissimilarity of the two probed items themselves, which
has been the focus and assumption of previous theories and
computational models (e.g.,5,21,22). Instead, the latent cause for
better TOM is increased magnitude of d2–d1, in which d refers to
the distance between the context of the probed item and the first
context. By combining these two propositions, our model not
only resolved the theoretical and computational conundrum of
why both contextual similarity and dissimilarity have been
observed to promote TOM in previous empirical studies

Fig. 4 Computational model. a Schematic of the model. The context signal was defined as a vector of binary elements, which drifts at rate p when there is
no event boundary and resets at rate λ at event boundaries. b, c shows representational dissimilarity (1-R) for each time point relative to all the other time
points averaged over 1000 iterations of the simulation of the model containing no event boundaries (b) and the model containing 5 event boundaries (i.e.,
event boundary occurred every 6 time points, c), respectively. d Schematic of the memory index (MI) used to quantify recency judgments. To make a
recency judgment, the learning contexts of each probed object is reinstated, and compared to the contextual representation of the first time point during
encoding (i.e., d1 and d2, which refer to the representation dissimilarity between each of the probed items and the reference item). The one more dissimilar
with the reference point (quantified by d2-d1) is judged as the item presented later. arb. units refers to arbitrary units. Source data are provided as a Source
Data file.
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(e.g.,25,33), but also captured all the other boundary-related effects
found in the present study.

Discussion
The present study investigated how and why event boundaries
structure the temporal organization of memory. Across four
empirical experiments, we unraveled a number of behavioural
phenomena: event boundaries exert a dual role, both enhancing
and impairing TOM for within and across-event TOM respec-
tively; event boundaries cause an advantage in TOM for earlier
local event positions (the local primacy effect), such that
decreasing event length by increasing the number of event
boundaries in a list enhances TOM for both within and across-
event pairs at earlier event positions, even when controlling for the
absolute list positions; the boundary effect can co-occur with the
temporal distance effect, although they were thought to be com-
putationally incompatible. We then developed a parsimonious
algorithmic model to mechanistically account for all these results.
Our model shows that event boundaries reset temporal context
signal, and the latent cause for better TOM is increased difference
between the contextual representations of the probed items rela-
tive to the first contextual representation (i.e., increased magnitude
of d2–d1, Fig. 4d). Our model thus provides a unified mechanistic
account of how organizational factors (e.g., temporal distance,
context) during encoding affect TOM.

Based on the Event Horizon Model10, we reasoned that event
boundaries might benefit within-event TOM, since event
boundaries should decrease competition among items chunked in

the same event. However, event boundaries might also increase
the competition among different events, and therefore might
impair across-event TOM. Our data showed that compared to the
no boundary condition, TOM for within-event pairs was
enhanced and TOM for across-event pairs was impaired in the
boundary condition, pointing to a dual role of event boundaries
in structuring TOM. These results also provide behavioural evi-
dence for the idea that event boundaries promote integration for
items in the same event and separation in different events (see34

for a review). We further investigated how TOM is affected if
event length was decreased by adding more event boundaries in a
list. To our surprise, decreasing event size does not cause a
generic TOM improvement for within-event pairs and impair-
ment for across-event pairs, as predicted based on the idea of
decreased competition among items and increased competition
among events in a list chunked by more event boundaries10.
Instead, we found that TOM was comparable if list positions and
local event positions were identical; and was enhanced both for
items within and across-event pairs that took earlier local event
positions in shorter events, relative to items that took later local
event positions in longer events. We termed this phenomenon the
local primacy effect. The local primacy effect differs from pre-
vious reports of memory improvement when introducing more
event boundaries6,35–37. The local primacy effect describes a
phenomenon in which improvements in memory are strongest at
the beginning of an event and gradually decrease as event posi-
tions move away from the event boundary. In contrast, the
memory improvements reported in previous studies are either

Fig. 5 Model results. a–d. Model outputs as quantified by our memory index (MI, i.e., d2-d1 as shown in Fig. 4d.) for Experiments 1-4, when the drift rate
and reset rate were set at p= 0.02 and λ= 0.2. e Pearson correlation between model outputs shown in Fig. 5a–d and the corresponding group averaged
behavioural results pooled together across behavioural experiments. The shaded area represents 95% confidence interval of the regression line. arb. units
refers to arbitrary units. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28216-9

8 NATURE COMMUNICATIONS |          (2022) 13:622 | https://doi.org/10.1038/s41467-022-28216-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


restricted to event boundaries or show no gradual change as a
function of the proximity to the event boundary6,35–37. In addi-
tion, those memory improvements are in the domain of non-
temporal memory, such as an increase in item memory or source
memory6,38, whereas the local primacy effect reported here refers
to TOM. Overall, these results demonstrate complex scenarios of
how event boundaries affect TOM than previously hypothesized,
and therefore pose a new challenge to theoretical and computa-
tional models.

Moreover, the rebound in TOM for items across an event that
are separated by more vs. fewer intervening items replicates the
well-established temporal distance effect, while also helps rule out
confounds as the root of impaired performance for across-event
pairs, e.g., participants might simply not link different events at
all. If participants did not try to remember the order of across-
event items as instructed, this would lead to a generic low per-
formance (e.g., chance level) for all across-event pairs regardless
of the number of intervening items.

Our algorithmic model could account for all behavioural
effects, including the boundary effect and the temporal distance
effect, two effects seemingly computationally incompatible, as
well as the local primacy effect observed in the present study. In
our model, in the absence of an event boundary, context signals
drift gradually over time. At event boundaries, context signals
shift sharply via a resetting process, whereby a certain propor-
tion of the first context signal, which contains both pre-
experimental context and the first context in a list is reinstated.
To operationalize recency judgments, we developed a metric,
i.e., during retrieval, the learning contexts associated with the
two objects are reinstated32 and compared to the absolute first

contextual representation during encoding. The item more/less
similar to the first contextual representation (quantified by d2-
d1, Fig. 4d) is judged as the one presented earlier/later24. This
model reveals key insights that allow accounting for all the
effects. One of those insights is that the resetting process at
event boundaries increases the difference between the contextual
representations of the probed items relative to that of the first
contextual representation (i.e., larger magnitude of d2–d1)
across multiple conditions: for within vs. across-event pairs, for
pairs separated by more vs. fewer intervening items, as well as
for pairs at earlier vs. later local event positions. It might be less
intuitive to understand how the resetting mechanism at event
boundary increases the magnitude of d2-d1 for earlier vs. later
local event positions, given the constant drift rate. This is
because while the drift rate, which defines the rate of change
between one context and its neighbours, is constant, the amount
of change between two neighbouring contexts relative to the first
context (i.e., Δd= dt+1-dt) is not constant across positions. In
fact, the more dissimilar the contextual representation to the
first one is, the smaller Δd becomes. This is because reinstating a
certain proportion of the first context at event boundaries makes
the contextual representation of each event boundary more
similar to the first context compared to the contextual repre-
sentations of pre-boundary items, leading to larger Δd between
event boundary and its next item. Hence, the accumulated Δd
between two items (e.g., the accumulated Δd between item t+ 2
and item t is (dt+2 - dt+1) + (dt+1 - dt) = dt+2-dt) is larger for
earlier event positions versus later event positions. Since the
accumulated Δd between two items is the contextual difference
of the two probed items relative to the first one (i.e., d2-d1 in

Fig. 6 Correlation between model outputs and the behavioural results under different parameter values. a Explained variance (R2) of the behavioural
results by the model outputs, fitted with a generalized linear model. b Explained variance (R2) of the behavioural results by the model outputs, fitted with a
generalized linear mixed model. In a, b, the first contextual signal was used as the reference point for recency judgments. c, d are identical to a, b, except
that the last contextual signal was used as the reference point for recency judgments. The black line in images indicates the significance threshold of
p= 0.05, and the red line indicates the parameter values that yield model outputs which can recover all the effects in the four behavioural experiments.
Source data are provided as a Source Data file.
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Fig. 4d, see above the example formulas on why Δd between
item t+ 2 and item t is dt+2-dt), this explains why our model
can account for the local primacy effect.

Our model also predicts a primacy effect in the long list i.e.,
better TOM for early than late list positions), since Δd is larger for
earlier positions than for later positions (see why this is the case
in the previous paragraph). Our model further predicts that the
magnitude of the decrease in TOM accuracy should be larger for
the no boundary condition than for the boundary condition. This
is because in the boundary condition, the resetting process at
event boundaries increases Δd. To test this prediction, we cal-
culated the average TOM for early and late [matched] within-
event TOM (see Supplementary Fig. 3a) for both boundary
condition and no boundary condition. We then ran a two
(Conditions: boundary condition vs. no boundary condition) by
two (Positions: early vs. late) repeated measures ANOVA. Fol-
lowing the model predictions, we expected a Condition by Posi-
tion interaction. In line with this prediction, a significant
Condition by Position interaction was found (F (1, 25)= 4.601,
p= 0.0419, see Supplementary Fig. 3b). That is, in both condi-
tions, there was a decrease in TOM accuracy from early to late
positions (early vs. late position in the boundary condition:
t(25)= 2.392, p= 0.0246, two-sided and in the no boundary
condition: t(25)= 5.425, p < 0.001, two-sided). Critically, and
consistent with our model predictions, TOM was significantly
worse for late position in the no boundary condition compared to
in the boundary condition (boundary vs. no boundary for late
position: t(25)=3.156, p= 0.0041, while t(25)= 0.1222,
p= 0.9037, two-sided for early position).

Taken together, our model provides a unified solution to
explain a range of effects found in the present study. It demon-
strates that the latent cause for better TOM is the increased
magnitude of d2–d1, instead of the contextual similarity or dis-
similarity of two probed items (see Supplementary Fig. 6 for a
demonstration that contextual similarity fails to explain the local
primacy effect). The latter is often an assumption made by pre-
vious models and the focus of many neuroimaging studies, which
inevitably leads to paradoxical observations in empirical studies
(e.g., sometimes contextual similarity promotes TOM and
sometimes contextual dissimilarity promotes TOM23). Therefore,
our model resolves the long-standing paradox in memory lit-
erature on TOM, and provides a unified algorithm to mechan-
istically account for how organizational processes during
encoding influence TOM.

Notably, our simulation results showed that substituting the
resetting process with a random sharp shift as proposed in
Horner, Bisby5’s model, substantially decreased the models’
ability to explain the empirical data. This result gives independent
support to the hypothesis that event boundaries do not cause a
random change, and instead a resetting process might underlie
how event boundaries affect the temporal organization of mem-
ory. As a consequence of such a resetting process, one important,
yet untested, prediction from our model is that boundary items
will become more similar to the first items in a sequence con-
taining event boundaries vs. not containing event boundaries.
This testable prediction is worth investigating in future studies.

Moreover, there remains a key question for future studies. That
is, what information is contained in the beginning to be carried
over to each of the following events. We speculate that there must
be some abstract, schematic and generalizable information that is
activated in the beginning and recovered at the event boundaries.
Recent work based on computational modeling and recordings
from rodents during spatial navigation39 suggests that structural
information is preserved across boundaries. It remains to be
tested whether this is also the case in humans with an appropriate
experimental design. What’s more, it worth noting that one

limitation of the current study is that the structure of each
individual event is identical (e.g., every event contains six
sequentially presented items sequentially). It should be tested
whether similar effects found in the present study will also be
found when the structure of each event in the long list is not
the same.

We acknowledge other classes of models. However, those are
challenged by our behavioural results. For instance, rehearsal-
based models (e.g.,40–42) assume that associations are formed
directly between items that are rehearsed successively, with
association strength increasing as a function of the number of
rehearsals. This model could not explain why TOM is better for
items taking earlier vs. later local positions, since the number of
rehearsals those item pairs might receive is identical (e.g., items
2–4 in the Event 4 condition vs. items 4–6 in the Event 6 con-
dition in Experiment 4, Fig. 3a). Moreover, this model would even
predict that items 2–4 in the Event 6 condition are remembered
better than items 2–4 in the Event 4 condition, as there should be
more rehearsals for items 2–4 in an event with more items. A
prediction that runs contrary to our empirical data. Another
influential model, the Event Horizon Model (10), which attributes
the benefits of event segmentation to reduced interference also
does not easily explain the increase in TOM for across-event pairs
taking earlier vs. later positions. This is because interference is
comparable for within and across local events when the number
of items in local events and the number of total events in the long
list are identical (e.g., across-event pairs in Experiment 4).

Other studies (e.g.,43) have proposed that recency judgments
may rest on item strength, such that items with stronger memory
are judged as more recent. However, evidence supporting such an
item strength-based mechanism (ISBM) in recency judgments is
mixed (e.g.,32,43–46). More critically, predictions based on ISBM
run contrary to our empirical observations. For instance, ISBM
would predict better memory for Across Lag1 than for Across
Lag3 and Within Lag1 in Experiment 2. This would be expected,
since Across Lag1 includes probed pairs spanning boundary
items, which are known to be remembered better and thus have
stronger memory strength (see34 for a review), and also happen to
be the more recent item.

Previous studies have shown that event boundaries may also
alter perceived temporal distance between two items (e.g.,47).
Naturally, extending our model to account for such a related
phenomenon would be a next step. Our model uses d2-d1 as the
metric for temporal order memory, assuming that a reference
point is necessary to make recency judgments. Assuming that
temporal distance judgments are based on a similar decision-
making process, our model would predict longer perceived tem-
poral distance for within-event than across-event pairs. However,
judgments of temporal distance might not need to rely on a
reference point, but instead may rely on the contextual similarity
of the two probed items. Here, two items with higher contextual
similarity would be judged as closer together than items with
lower contextual similarity. If so, perceived temporal distance
would be expected to be shorter for within-event than across-
event pairs. Results from empirical studies (e.g.,21,47,48) support
both contradictory predictions, stressing the need for further
studies to fully understand how event boundaries affect temporal
distance estimates.

In conclusion, the present study reveals behavioural phenom-
ena of how event boundaries structure the temporal organization
of memory: It provides behavioural evidence for the dual-role
hypothesis of event boundaries in affecting TOM, and reveals a
primacy effect caused by event boundaries, explaining why
varying event length by varying the number of event boundaries
in a fixed-length list affects TOM. By proposing a reset of tem-
poral context signals at event boundaries, we provide a unified
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algorithmic mechanism for understanding how organizational
processes during encoding influence TOM. This model not only
reconciles a long-standing paradox of why sometimes contextual
similarity and sometime contextual dissimilarity promotes TOM,
but also makes testable predictions for future studies.

Methods
Experimental paradigm across experiments. The paradigm used in present
study was adapted from previous studies6,7. In this task, participants remembered
lists of grey scaled pictures. Each list contained 36 trial-unique object images,
sequentially presented to participants. The object images used in the present study
were taken from the bank of the standardized stimuli (49,50), which were nor-
malized for name, category, familiarity, visual complexity, object agreement,
viewpoint agreement, and manipulability. Each image was resized to 350 by 350
pixels. Images were embedded on a coloured frame (e.g., Fig. 1a), whose colour
switched after a certain number of objects depending on the specific experimental
manipulation. Frame colours did not repeat within one sequence and were
distinguishable.

Each object image was presented on the screen for 2.5 s, followed by 2 s’ inter-
trial interval (ITI) where the colour frame remained on the screen. Following the
ITI, a fixation cross embedded on the colour frame was presented for 0.5 s before
presentation of the next object. At boundary trials, the colour of the frame updated
with the co-occurring object. Event boundaries were operationalized as such
perceptual shifts.

The task consisted of an encoding and a retrieval phase. In the encoding phase,
participants were instructed to imagine the object in the colour of the frame, and
quickly indicate their liking for such a combination by pressing a button during the
presentation of each picture. In the meantime, they also needed to remember the
order of all the 36 pictures. To promote memory performance, they were
encouraged to imagine vividly neighbouring items interacting with each other
regardless of the colour change (e.g.,51). In the retrieval phase, participants made
self-paced recency judgments on pairs of objects chosen from the just-encoded
sequence. They were instructed to respond as accurately as possible (i.e., prioritize
decision accuracy over reaction time), and once they had decided which picture to
choose, they pressed the button as fast as possible. Each object appeared only once
during the test trials. Each recency judgment trial was followed by a confidence
rating, in which participants rated their previous decision on a four-point scale
(1= low confidence and 4= high confidence). The object pairs from the first half
of the learned sequence were tested first. After finishing the encoding and testing of
each sequence, participants took a short self-paced break.

Participants recruitment. The participants were recruited from Frankfurt am
Main and its neighbouring areas. All participants had normal-to-corrected-to-
normal vision and normal colour perception. They had no past or present psy-
chiatric disorders, and did not take any psychoactive or hormonal medications at
the time of testing by self-report. All experiments were approved by the Ethics
Council of Max Planck Society. All participants gave their written informed con-
sent and were compensated financially for their participation. A minimal sample
size of 26 for each experiment was decided based on a power analysis (significance
level 0.05, statistical power 0.80) of a previous paper (7) on a similar boundary-
related memory effect (i.e., better TOM for within vs. across-event items).

Experiment 1
Participants. 26 right-handed male and female naive participants (females= 18;
mean age= 25 years; range= 20–33 years) participated in Experiment 1. Two
additional participants were excluded from data analyses because they did not
finish the task.

Experimental design and procedure. Participants encoded and were tested on
14 sequences. Half of the sequences contained a frame whose colour changed after
every 6 images (i.e, boundary condition) and half of the sequences contained a
frame whose colour was kept constant across all 36 images in one sequence (i.e., no
boundary condition), but changed across different sequences. 24 unique colours
were used in the boundary condition and were recycled after every four sequences.
7 colours from a subset of the 24 colours were used in the no boundary condition.
Two random sequences of object images were generated for each condition and
randomly assigned to each condition. The sequences of object images were
counterbalanced between conditions across participants.

In the testing phase, participants made recency judgments on two pair types in
the boundary condition, i.e., within-event pairs and across-event pairs (Fig. 1b). In
the no boundary condition, we tested pairs taking identical list positions as in the
boundary condition. Although there was no within vs. across-event difference
between those pairs in the no boundary condition, for convenience, we named
those pairs as matched within-event or matched across-event pairs according to
their corresponding list positions in the boundary condition. In total, there were
7 sequences × 6 pairs= 42 within-event pairs and 7 sequences × 5 pairs= 35
across-context pairs in each condition.

The experiment was a two by two within-subject design, with the factors being
Condition (boundary vs. no boundary condition) and List Position ([matched]
within vs. [matched] across-event pairs). The two conditions were presented to
participants in blocks of 3–4 sequences in an interleaved fashion and were
counterbalanced across participants. Participants practiced on two additional
sequences (one for each condition) to familiarize themselves with the task before
the main experiment. All experiments reported were controlled via Presentation
software on a Fujitsu Celsius M730 computer running on Windows 7 (64 bit). The
experiment was carried out in a dimly lit, soundproof booth. Due to a technical
problem, only 12 sequences were recorded in one participant and 13 sequences in
two participants.

Experiment 2
Participants. A total of 27 right-handed male and female naive participants
(females= 18; mean age= 24 years; range= 18–32 years) participated in
Experiment 2.

Experimental design and procedures. Participants encoded and were tested on
14 sequences of 36 images and practiced on two additional sequences before the
main experiment. We generated two random orders for the images presented in the
14 sequences in the main experiment and randomly assigned them to participants.

Three types of item pairs were tested after encoding each sequence, i.e., within-
event pairs (items 2–4) with one intervening item (within lag 1), across-event pairs
(items 3′-1) with one intervening item (across lag 1) and across-event pairs (items
3′-3) with three intervening items (across lag3, see Fig. 2c). In total, there were
14 sequences × 9 pairs= 126 within-event pairs, 14 sequences × 8 pairs= 112
across-event pairs with each half (i.e., 112/2 pairs) containing pairs separated by
one intervening item and three intervening items respectively.

The experiment was a one-way within-subject design, with the factor being pair
types (within-event pairs at lag 1 vs. across-event pairs at lag 1 vs. across-event
pairs at lag 3).

Experiment 3
Participants. A total of 31 right-handed male and female naive participants
(females= 18; mean age= 26 years; range= 20–35 years) participated in Experi-
ment 3. Data from two additional participants were not recorded due to a technical
problem.

Experimental design and procedures. Participants were exposed to 14 sequences of
images. In half of the sequences (7), the colour of the frame changed after every 4
images (the Event 4 condition). In the other half (7), the colour of the frame
changed after every 6 images (the Event 6 condition) (Fig. 3a). Due to a technical
problem, only 13 sequences were recorded in one participant and 8 sequences in
another participant.

Three pair types were tested in the two conditions (Event 4 vs. Event 6, Fig. 3a).
Pair type 1 was within-event pairs, taking identical list positions and identical local
event positions in both conditions. Pair type 2 was also within-event pairs, which
took identical list positions, but earlier local positions in the Event 4 condition and
later local positions for the Event 6 condition. Pair type 3 was across-event pairs.
Due to different number of event boundaries in the two conditions, they could only
be matched for the average list positions in the two conditions, and the local
positions were always earlier in the Event 4 condition than the Event 6 condition.
In total, there were 7 sequences × 3 pairs= 21 pairs for pair type 1 and 2
respectively, and 7 sequences × 4 pairs= 28 pairs for pair type 3 in each condition.
The two conditions were presented to participants in blocks of 3–4 sequences in an
interleaved fashion. The order of the two conditions were counterbalanced across
participants.

The experiment was a two by two within-subject design, with the factors being
conditions (Event 4 vs. Event 6) and pair types (pair type 1 vs. 2 vs. 3).

Experiment 4
Participants. 30 right-handed male and female naive participants (females= 22;
mean age= 24 years; range= 18–30 years) participated in Experiment 4. Data
from two additional participants were excluded from data analyses since they did
not finish the task due to drowsiness.

Experimental design and procedures. Participants were exposed to 14 sequences of
images. 36 unique RGB colours were chosen for the background frames, and were
recycled after every four sequences. We created two types of lists, in which patterns
of the colour change were 3-3-6-3-3-6-3-3-6 (for 7 sequences) and 6-3-3-6-3-3-6-
3-3 (for the other 7 sequences), meaning that the colour of the frame was constant
for either 3 or 6 objects (see Fig. 3c). The total number of event boundaries was
identical in the two types of lists. The frame colour used in the two list types were
counterbalanced across participants.

Three types of pairs were tested for recency judgments: within-event pairs,
across-event pairs of a shorter lag and across-event pairs of a longer lag (Fig. 3c).
The within-event pairs and across-event pairs of a shorter lag were the critical
testing pairs for examining the hypothesis in the present experiment. Each pair
type consisted of two sub-types, i.e., earlier and later pairs, with the ordinal
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positions of the two sub-types in the long list being kept identical. In total, there
were 42 within-event pairs taking earlier and later event positions respectively
(marked by red and yellow squared brackets), 35 across-event pairs of a shorter lag
taking earlier and later event positions respectively (marked by dark blue and light
blue squared brackets respectively), and 70 across-event pairs of a longer lag
(marked by grey squared brackets). Due to a technical problem, only 13 sequences
were recorded in three participants.

Computational modelling. We built our model based on a class of temporal context
models (e.g.,12,13), in which items are associated with each other via a context
signal. Mathematically, context was defined as a set of binary elements with 100
features. At non-boundary time point, context fluctuates from moment to moment,
with active elements (1) turning off and inactive elements (0) turning on with
probability p, such that

Ct ¼ ð1� pÞCt�1 þ pCIN ð3Þ
where Ct represents context representation at time point t, CIN represents random
noise. When a boundary occurs, context signal resets at rate λ, such that

Ct ¼ ð1� λÞðð1� pÞCt�1 þ pCINÞ þ λC1 ð4Þ
We simulated 36 time points, matching the object number in our experiments.

Event boundaries occurred after every certain number of time points according to
specific experimental design. The similarity between two context signals was
quantified using Dice similarity coefficient. We developed a metric, termed
memory index (MI) to quantify recency judgments (Fig. 4d). MI= (1-R2) – (1-R1),
where R2 refers to the similarity of the context signals between the more recent
item and the first item, and R1 refers to the similarity of the context signals between
the more distant item and the first item. The first contextual representation was
used as a strategical reference point, in a similar fashion adopted in52). 1-R2 and 1-
R1 are referred to as d2 and d1 in Fig. 4d respectively.

Previous studies (e.g.,5,21) used contextual similarity of the probed items as a
proxy for temporal order judgments. However, considering only the context
similarity of the probed items allow neither temporal order judgments of the two
items, nor the coexistence of the boundary effect and temporal distance effect at the
computational level (see Supplementary Fig. 5 for simulation results based on
Horner, Bisby5’s model). Moreover, we did not implement a scanning mechanism
in our metric, as adopted in previous models (e.g.,46) to account for internal time
estimate and recency judgments. This is because in our task we did not find clear
behavioural evidence supporting a backward or forward sequential scanning
process, i.e., we did not find that reaction time of recency judgements decreases as a
function of the proximity of the most recent item in the probed pairs of items to
the last item in the list (Supplementary Fig. 4), as shown in some earlier
studies53–55. Since these earlier studies are more likely to tap into short-term
memory, the discrepancy between our study and these earlier studies might be due
to differential retrieval mechanisms in short and long-term memory. There is no
clear evidence supporting sequential scanning in most tasks tapping into long-term
memory (see56 for a review). In addition, DuBrow and Davachi25 suggest that
intervening items between two probed items might be sequentially activated during
recency judgments. However, closer inspection of their decoding evidence based on
the functional magnetic resonance imaging (fMRI) data revealed that such a
process is most apparent only in no switch condition (equivalent to within-event
pairs in our experiment); No conclusive evidence was found in switch condition.
Moreover, no clear evidence based on their behavioural data (e.g., reaction time)
supporting sequential scanning. That is, they did not find a significant difference in
reaction time during recency judgments between long lag pairs and short lag pairs.
In our data, we did not find evidence supporting such a process either. For
instance, reaction time was not significantly longer for Across Lag3 than for Across
Lag1 (see Supplementary Fig. 1b). Therefore, we did not include a sequential
activation process in recency judgments in our model.

We ran 1000 differently seeded iterations of the model according to our
experimental manipulations under a range of parameter values of drift rate
p= 0.01 to 0.4 (step size of 0.01) and λ= 0.05 to 1 (step size 0.01). We then fit a
generalized linear model (GLM) and a generalized linear mixed model (GLMM, in
which, experiments/sequences were set as a random factor to control for a potential
clustering effect due to dependency of group averaged behavioural data from the
same experiment/sequence) to examine whether our model outputs could still
significantly explain our behavioural data.

We also applied a similar analysis for reaction time (RT) as for accuracy above,
to examine whether our model outputs could significantly explain RT. Note that
our task was not setup for participants to respond as accurately and as fast as
possible, but instead to prioritize accuracy at the expense of speed (see Methods).
Although RT might be much nosier than accuracy to reflect TOM performance, it
might be able to reflect the difficulty of TOM judgment. Therefore, we examined
whether the model outputs negatively correlated with RT.

Finally, we compared our model to a previous model5. Horner, Bisby5’s model
implemented a random sharp shift in temporal context at event boundaries, e.g.,
context change rate increased from 0.01 to 0.08 at boundaries, but not a resetting
process. As shown in Supplementary Fig. 5, their model could not recover both the
boundary effect and the temporal distance effect, partly because the metric they
used to index the accuracy of TOM failed to do so. We therefore combined Horner,
Bisby5’s model with our proposed metric (i.e., d2–d1 for recency judgment index),

to estimate how well the outputs of their model explained the behavioural data,
fitted with both the GLM and the GLMM.

Statistical analysis. To test for the statistical significance of the results from
empirical experiments 1–4, ANOVA followed by false discovery rate (FDR) mul-
tiple comparison tests was performed in GraphPad Prism 8. The data were first
tested for equal variance of differences. If the data do not meet equal variance, the
Geisser-Greenhouse was used for correction. In the computational modelling
section, fitting a generalized linear model (GLM) and a generalized linear mixed
model (GLMM) was performed in matlab (Mathwork R2019b).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed data for the analyses and underlying figures have been deposited in an
Open Science Framework database (https://doi.org/10.17605/OSF.IO/UK4DH), and can
be found in the Source data file that is provided with this paper. Raw data cannot be
shared publicly, as informed consent for data sharing was not obtained from participants
at the time of data collection. Interested researchers may request raw data and obtain a
de-identified, minimal dataset pending ethical approval from the authors’ institute. Data
requests can be sent to Dr. Yi Pu (yi.pu@ae.mpg.de). Source data are provided with
this paper.

Code availability
The Matlab code for simulation is available from the following link: https://doi.org/
10.17605/OSF.IO/NW36Q.
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