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SOME CONSIDERATIONS IN PLANNING FOR SUPERHILAC TIMESHARE OPERATION 
WITH BOTH HEAVY AND LIGHT ION BEAMS"*-

Frank B. Selph 

Lawrenee Radiation Laboratory 
University of California 

Berkeley, California 94720 

Abstract 

One of the important problems to be solved for any 
accelerator, with the exception of those intended for 
a single purpose such as injection, is providing ade­
quately for multiple use of the machine. Of particular 
importance is the possibility of timeshare operation, 
in which two or more experimental setups can be sup­
plied with beam at the same time. The SuperHilac will 
accelerate ions of all mass numbers, with final energy 
continuously variable from 2.6 to 8.5 MeV/nucleon. 
Normally, to change particle and energy in the Hilac 
requires a careful retuning of many machine parameters 
and (optimistically) an hour of machine time. For the 
SuperHilac it is proposed to provide particles of dif­
ferent char~-to-mass ratio on alternate pulses, so 
that, for example, half of the pulses would be light 
ions, delivered to one experimental area, and the other 
half heavy ions, delivered to another experimental 
area. Consequently a number of new problems need to be 
solved. These occur at injection, with accelerating 
and focusing the beams in the linac, in the stripper 
area, and at the exit from the machine. 

Introduction 

1~e SuperHilac, a major renovation of the Berkeley 
Hilac, has been described in a recent report.! It has 
two injectors, prestripper. and poststripper tanks with 
strong focusing, with a stripper and charge-analysis 
area between tanks. A switchyard distributes the beam 
to several experimental caves. In Fig. 1 are shown 
the major elements that are required for beam trans­
port, with the exception of the drift tube quadrupoles. 
Of these, the prestripper has 137 and the poststripper 
70. The possible operating configurations of this 
machine are many. and cannot be fully discussed here. 
Attention will be directed to the acceleration of two 
hypothetical beams. 

1) Uranium 11+, provided by injector 1, is accel­
erated by the prestripper, stripped, then diverted 
through an analyzing m.gnet 1<1'here a slit allows charge 
state +40 to pass through and be accepted by the post­
stripper. The ions are then accelerated to 8.5 MeV/n. 

2) Carbon 2+, provided by injector 2, is accel­
erated by the prestripper, is not stripped, and in the 
poststripper is accelerated to some intermediate energy 
bet1wen 2.6 and 8.5 MeV/n. _ 

Outside the linae tanks, the two beams are kept 
apart, using the 4 pulsed bending magnets PMl through 
PM4. This permits the majority of transport elements 
to be operated de. The pulsing rate of the SuperHilac 
will be about 40 Hz. Pulsed elements will be capable 
of switching from one beam to the other between pulses, 

Prestripper Injection 

Injection energy is 0.113 MeV/n. Injector 1 is 
capable of 3 MV, and for ull+, with charge-to-mass 
ratio E = ,ol~, requires 2.5 MV. Injector 2 is capa­
ble of 0.75 MV, and for c2+ with € ~ .17 is run at 
0.66 MV, Heavy ion sources must be replaced frequently, 
and for this and other reasons the beam emerging from 
an injector is liable to change its position, direction 
and focal properties from time to time. The transport 
lines consequently contain steering magnets to permit 
small adjustments in beam aligrur.ent. Targets for de­
termining the beam position will be installed in 

several places in the transport lines, and at two 

positions (PSM) in the prestripper. Viewing screens 
and beam-reading collimators positioned near the pre­
stripper entrance will be used to monitor focal proper­
ties. More complete but slower measurements will be 
made with emittance-measuring slits at the exit of 
each injector. 

Pre strip~ 

Ions with different charge-to-mass ratio E will 
be accelerated with the same synchronous phase ~ if 
the product of E€ is kept constant. E is the av~rage 
rf gradient. The transverse focusing forces will be 
different, however. Because of the large duty factor 
(up to 50i) and the large quadrupole gradients 
required, pulsing the drift-tube quadrupoles is not 
feasible and they are to be run de. A+-+- focusing 
pattern (N = 1) has been chosen, because a wide region 
of stability is needed. Figure 2 sbows the transverse 
stability Hmits tha;t are applicable for this case.2 
Both the ordinate, eG, and abGcissa, 6, are dimension-
less and given by 0 

-

which is proportional to quadrupole strength (i.e., 
gradient times effective length) B'£ and 

(1) 

(2) 

which is proportional to the gap-defocusing field. \ is 
the rf wavelength, T the transit time factor, (Bp) the 
rigidity of a proton moving with the ion velocity,PS, 
mpc2 the proton rest mass. The operating point for 
each case is shown at a cell apout one betatron wave­
length from the entrance. The quadrupole strength used 
is 61 kG, the maximum value which can be achieved in­
side the prestripper drift tubes. This determines 
~ = .78 for the heavy ions; for the light ions e2 is 
h~gher by the ratio .17/.046 = 3.7. The quadrupo~e 
pattern+--+ (N = 2) was also considered as it lowers 
both stability limits and results in a lower quadru­
pole strength. However the width of the stability 
region is only slightly wider than the separation of 
operating points, which causes the N = 2 case to result 
in considerably less acceptance for the light ion beam. 

Acceptance 

In Fig. 3 the acceptance of the prestripper, 
avera~d over accelerating bucket width, is shown as a 
functidn of eg, calculated with the computer program 
PARMILA. The solid curve shows the acceptance ex­
pected from the machine when misalignments are 
neglected. The expected injector emittance is 2rr for 
heavy ions and 4rr for light ions. If beam is to be 
accelerated without loss, it is necessary to match the 
emittance to the ac~eptance figure, taking into account 
the changes in shape and orientation of the acceptance 

.figure with phase. In Figs. l1- and 5 acceptance figures 
are shown for heavy and li~1t ions, respectively, for 
several values of cp0 • With q1s = -20°, acceptance area 
is nearly constant from ~0 = -4oo to cp0 = 20° and neg­
ligible outside this range. 1'he area common to all 
figures is considerably less than A for the heavy ion 
beam, not so much less for the light ion beam, 
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Misalignments 

Misalignment of quadrupoles causes the beam to 
wander from the axis. ·This not only can reduce the 
acceptance but causes the emergent beam to be dis­
placed from, and at an angle to, the axis. To mini­
mize this wandering, careful alignment of the quad­
rupoles is necessary. However, it is anticipated that 
a quadrupole placement error no smaller than 5 mils rms 
can be achieved. The behavior of beams in the pre­
stripper with quadrupoles randomly misaligned has been 
studied with PARMILA; F!gure 6 shows. typical results 
with 5.mils rms misalignment. In these calculations 
a symmetrical distribution of particles is traced 
through the machine; at each drift tube centerline the 
average particle displacement X , and the absolute 
maximum displacement lxl area¥ound. These quanti­
ties can be regarded as ~~ beam center and the enve­
lope size, respect! vely. It' quadrupoles are not mis­
aligned, X remains coincident with the axis. With 
misalignme~ls of 5 mils rms, the displacement of Xay 
builds up to a maximum of about 0.8 em (for the light 
ions). A striking feature of the X curves is their 
fairly regular oscillatory behavior~v The oscillation 
wavelength corresponds roughly to the betatron wave­
length. A different choice of random errors produces 
curves that are different in detail, but with approx­
imately the same wavelength and amplitude. The ampli­
tude increases along the machine; it is shown in 
Ref. 2 that growth is at least proportional to the 
square root of the cell number. To acco=date this 
growth, the ape·rture has been progressively increased 
along the machine, but misalignments still reduce the 
acceptance to some extent, The average acceptance 
with 5 mils rms misalignment is indicated as a dotted 
curve in Fig. 3. 

If a steering magnet is placed at the point where 
the X curve crosses the axis (Fig. 6), the beam can 
be al~~ed with the axis and the effect of ~ubsequent 
misalignments reduced. TWo sets of steering magnets 
(PSM1 Fig. l and 6) have been included for this pur­
pose. They must be pulsed because the steering cor­
rection required for eech beam will be different. 
Targets placed at these locations will indicate the 
position of the beam. If it is not centered on the 
axis, focusing parameters can be changed to make it so. 

Stripper Area 

The heavy ion beam is stripped immediately upon 
leaving the prestripper ih order to make bending and 
focusing easier. The light ion beam is not stripped. 
The beams must be independently focused in order to 
achieve matching to the poststripper acceptance. This 
is made easier by the fact that the heavy ion beam is 
switched through a siding for charge analysis, while 
the light ion beam goes straight through (see Fig·. 1). 
Elements loce.tE'd in the lines that the two beams share 
at either end of the stripper area must, of course, be 
pulsed. 

Poststripper 

In the poststripper both beams Will have approx­
imately the same €j so in the first section at least 
all beams will be near the same region of the stability 
diagram. However, e~ergy for either beam can be varied 
from 2.6 to 8.5 MeV. Since the quadrupole focusing 
is de, and B' £ is set for 0~1 = const for the full 
energy beam, e52 will be higher for a lower energy 
beam. Making use of Eq. 1, near the exit, we can have 

This range of stability required for focusing is 

much less than was required for the prestripper, which 
was 3.7. Consequently N = 2 focusing can be employed 
without any danger of exceeding the stability limits 
(Fig. 7). 

Adequate aperture has been provided in the drift 
tubes to allow for beam wandering due to quadrupole 
misalignment. In the poststripper, the difficult 
tuning problems are likely to be associated with par­
tial energy beams. The method for obtaining partial 
energy was dlscussed in Ref. 3· For these beams, the 
most important parameters to measure and control are 
energy, energy spread and phase. The final energy and r 
energy spread wHl be measured with a calibrated bend-
ing magnet in the beam swi tchyard. If phase probes are ( 
used, they must be placed inside the poststripper tank. • 
Room has been provided by omitting quadrupoles from the 
drift tubes at the rf diaphragm locations (labeled ''U" 
in Fig. 1). There is enough space inside these empty 
drift tubes to also install steering magnets if beam 
wandering is more troublesome than anticipated. 

?xPerimental Area Switchyard 

At the exit of the poststripper several tasks must 
be carried out before a beam of known properties is 
delivered to an experiment. 

l) A fast switching magnet separates the two beams. 

2) Beant energy is determined with a bending magnet 
having a calibrated field. 

3) Beams must be properly focused. This requires 
a pulsed quadrupole doublet as the first transport line 
element. 

To save space, the pulsed-switching magnet and 
pulsed doublet are placed within the last t~ro drift 
tubes of the posLstripper (Fig. 1). 
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Fig. 1. Schematic plan of SuperHilac showing 
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Stability limits 
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E = .046 {Heavy Ions) 
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Fig. 2. Transverse stability limits for N = 1, 
showing prestripper operating points after one 
betatron wavelength for heavy and light ion beams. 
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Fig. 3. Prestripper averaged accep­
tance as a function of el . 
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Fig. 6. Prestripper beam envelopes and beam 
centersowith quadrupoles randomly misaligned 
by 5 mils rms. 
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N = 2 showing operating region for post­
stripper beams. 
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