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Fallibilism and Multiple Paths to Knowledge

(Extended Version)∗

Wesley H. Holliday
University of California, Berkeley

Preprint of October 2014. Published version in Oxford Studies in Epistemology, Vol. 5, 2015, 97-144.

If knowledge required the elimination of all logically possible alternatives, there would be
no knowledge (at least of contingent truths).

– Alvin Goldman (1976, 775)

There are always, it seems, possibilities that our evidence is powerless to eliminate . . . .
If knowledge . . . requires the elimination of all competing possibilities . . . then, clearly we
seldom, if ever, satisfy the conditions for applying the concept.

– Fred Dretske (1981, 365)

1 Introduction

Being a fallibilist isn’t easy. A fallibilist about empirical knowledge, in Lewis’s (1996) sense, holds
that an agent can know a contingent empirical proposition P , even if she has not ruled out every
last way that P could be false.1 In this sense, it seems that most contemporary epistemologists are
fallibilists, at least relative to some way of understanding what it is to “rule out” an alternative. And
with good reason: if knowing a contingent empirical proposition P required ruling out every last
way that P could be false, then we would have little if any empirical knowledge. Radical skepticism
would reign. Yet fallibilism, despite its promise for defending the possibility of knowledge, also faces
problems. To borrow an analogy sometimes applied to philosophical projects, trying to fill in the
details of a fallibilist theory of knowledge is like trying to install an unstretched carpet: flatten a
problematic lump in one place and a new one appears elsewhere. But then again, the alternative of
radical skepticism about knowledge is like having the rug pulled out from under your feet.

The primary goal of this paper is to argue that what I call the standard alternatives picture,
assumed by many fallibilist theories, should be replaced by a new multipath picture of knowledge.
In §2, I identify the problematic lumps in the standard picture: fallibilists working with this picture
∗The extended version differs from the published version only in the extra Appendix B. For helpful feedback on

this paper, I wish to thank Justin Bledin, John Campbell, Peter Hawke, Thomas Icard, Ethan Jerzak, Krista Lawlor,
John Perry, Michael Rieppel, Shane Steinert-Threlkeld, Justin Vlasits, Seth Yalcin, and two anonymous referees for
Oxford Studies in Epistemology. For helpful conversations or correspondence on issues discussed in the paper, I wish
to thank Johan van Benthem, Keith DeRose, John MacFarlane, Sherrilyn Roush, Crispin Wright, and Stephen Yablo.

1The term ‘fallibilism’ means many different things to many different people. I explain in more detail what I mean
by ‘fallibilism’ in §2.1.
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cannot maintain even the most uncontroversial (single-premise, logical) epistemic closure principles
without having to make extreme assumptions about the ability of humans to know empirical truths
without empirical investigation. In §3, I show how the multipath picture, motivated by independent
arguments, saves fallibilism from this problem. The multipath picture is based on taking seriously the
idea that there can be multiple paths to knowing some propositions about the world. An overlooked
consequence of fallibilism is that these multiple paths to knowledge may involve ruling out different
sets of alternatives, which should be represented in our picture of knowledge. In §4, I consider
inductive knowledge and strong epistemic closure principles from this multipath perspective.

In what follows, I presuppose familiarity with the kinds of skeptical hypotheses that motivate
fallibilism about knowledge (see, e.g., Dretske 1970, 1981, 2005). For lack of space, I cannot review
the standard examples here. Instead, I leave it to the reader’s imagination to fill in abstract discus-
sions of skepticism, fallibilism, and epistemic closure with specific scenarios and propositions. Lewis
(1996, 549) said it best: “Let your paranoid fantasies rip – CIA plots, hallucinogens in the tap water,
conspiracies to deceive, old Nick himself – and soon you find that uneliminated possibilities of error
are everywhere. Those possibilities of error are far-fetched, of course, but possibilities all the same.
They bite into even our most everyday knowledge. We never have infallible knowledge.”

1.1 Scenarios and Propositions

Let us begin with some preliminary points of terminology and notation used throughout.
We start with a set W of triples 〈w, a, t〉 where w is a way the world could (or could not) be

including agent a at time t.2 I use ‘w’, ‘v’, ‘u’, etc., for members of W, which I will call scenarios.
For each scenario w, let Ww be the subset of W containing those scenarios that are metaphysically
possible relative to w. Everything in this paper is compatible with the view that Ww = Wv = W for
all w and v, so that no scenarios are metaphysically impossible relative to any others, and compatible
with the rejection of this view. I leave these as parameter choices for the reader. However, for
simplicity I assume that W does not include any “logically impossible” scenarios (see below).

Following standard set-theoretic notation, I use ‘∈’ for the membership relation, ‘ 6∈’ to deny the
membership relation, ‘⊆’ for the subset relation, ‘ 6⊆’ to deny the subset relation, and ‘(’ for the
strict subset relation (A ⊆ B but B 6⊆ A); for any sets A and B, A − B = {w ∈ A | w 6∈ B} is the
complement of B in A, A∪B is the union of A and B, and A∩B is their intersection; given a set X

of sets,
⋃

X (resp.
⋂

X) is the union (resp. intersection) of all members of X; and given an indexed
family {Ai}i∈I of sets,

⋃
i∈I

Ai (resp.
⋂
i∈I

Ai) is the union (resp. intersection) of all the Ai sets.

2In possible-worlds parlance, W would be a set of “centered possible (or impossible) worlds” (see Lewis 1979 on
centered worlds and King 2007 on impossible worlds), but this need not be a context-independent “intended standard
model of super-reality” (Stalnaker, 1986, 122). As Stalnaker remarks, “The formalism of possible worlds semantics
assumes that possible states of the world are disjoint alternatives, and that everything that can be said within a given
context can be said by distinguishing between these alternatives. . . . Nothing in the formalism of possible worlds
semantics, or in the intuitive conception of a way things might be, or a possible state of the world, excludes an
interpretation in which possible worlds are alternative states of some limited subject matter. Possible worlds must
be complete, relative to the distinctions that can be made within the given interpretation, but they might be quite
partial relative to another interpretation, or relative to an external intuitive commentary on the interpretation” (118-
9). Compare Lewis (1996, 552): “we needn’t decide whether they must always be maximally specific possibilities, or
whether they need only be specific enough for the purpose at hand. A possibility will be specific enough if it cannot be
split into subcases in such a way that anything we have said about possibilities, or anything we are going to say before
we are done, applies to some subcases and not to others. For instance, it should never happen that proposition P
holds in some but not all sub-cases; or that some but not all sub-cases are eliminated by S’s evidence.” For simplicity,
I will not relativize the set W to contexts, but these remarks should be kept in mind. The framework developed here
can also be generalized to include what Perry (1986) calls partial ways the world could be (see Holliday 2014c).
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My topic is knowledge of propositions. I use ‘P ’, ‘Q’, ‘S’, etc., for propositions and ‘P’ for the set
of all propositions under consideration. I assume that propositions are true or false at scenarios in
W and that propositions can have truth-functional structure: if P is a proposition, so is the negation
of P , denoted by ‘¬P ’; if P and Q are propositions, so is the disjunction of P and Q, denoted by
‘P ∨Q’; and so on for other truth-functions.3 If P does not have the structure of a truth-function
applied to one or more propositions, call it TF-atomic.4 As usual, an assignment of truth values to
TF-atomic propositions determines a truth value for every proposition; and Q is a TF-consequence
(resp. TF-equivalent) of P iff any such assignment makes Q true if (resp. iff) it makes P true.

For any proposition P , define P = {w ∈ W | P is true at w}, the set of scenarios at which P

is true.5 Given a classical understanding of negation, disjunction, conjunction, etc., and the ban
on logically impossible scenarios, we have ¬P = W − P , P ∨Q = P ∪Q, P ∧Q = P ∩Q, etc.
Let us also define Pw = P ∩Ww, the set of scenarios metaphysically possible relative to w at
which P is true. Relative to w, P is metaphysically necessary (resp. possible) iff Pw = Ww (resp.
Pw 6= ∅), P is metaphysically contingent iff ∅ 6= Pw 6= Ww, and P metaphysically entails Q (resp.
is metaphysically equivalent to Q) iff Pw ⊆ Q (resp. Pw = Qw). According to some non-structured
proposition views (Stalnaker 1981, Lewis 1986), if for all scenarios w based on the way our world is,
Pw = Qw, then P = Q; but for propositions qua objects of knowledge, I do not make this strong
assumption for standard reasons and for a reason specific to fallibilism, discussed in §4.2.

Finally, I use ‘C’, ‘C′’, etc., for contexts of knowledge attribution or assessment. Nothing in what
follows depends on what contexts are, beyond the assumption that contexts play a certain “functional
role” (namely by being something to which the functions in §2.1 are relativized). Following DeRose
(2009, 187), I say that an agent in a scenario w does or does not “count as knowing proposition P in
context C” or “relative to C.” Yet I intend all that follows to be consistent with invariantism as well
as contextualism and relativism; invariantists can assume that there is only one constant context C.

2 The Standard Alternatives Picture

In this section, I introduce a standard alternatives picture of knowledge, show how a family of
fallibilist theories fit into this picture, and then argue that the picture is fundamentally flawed.

2.1 Relevancy Set and Uneliminated Set

The starting point of the standard alternatives picture is the idea that for each proposition to be
known, there is “a set of situations each member of which contrasts with what is [to be] known. . . and
must be evidentially excluded if one is to know” (Dretske, 1981, 373). Dretske proposes that we “call
the set of possible alternatives that a person must be in an evidential position to exclude (when he
knows that P ) the Relevancy Set” (371). Similarly, let us call the set of alternatives for P that the
person has not excluded the Uneliminated Set. According to this picture, there are two functions
r and u, each of which takes as input a proposition P , scenario w, and possibly a context C, and
returns a set of alternatives, which I take to be scenarios (for reasons explained later):

3See King 2011 for a survey of views of structured propositions.
4I deliberately use the term ‘TF-atomic’ instead of ‘atomic’. A proposition that has a complex structure may count

as TF-atomic, because it does not have the structure of a truth-function applied to one or more propositions.
5As explained in §2.4, one may take P = {w ∈W | P is true at w considered as actual}.
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• rC (P,w) = the set of (“relevant”) alternatives such that the agent in scenario w counts as
knowing proposition P relative to context C only if she has eliminated these alternatives;

• uC (P,w) = the set of (“uneliminated”) alternatives that the agent in scenario w has not elimi-
nated as alternatives for P relative to context C.

The reasons for relativizing these sets to a scenario and possibly a context are well-known. First,
since objective features of an agent’s situation in a scenario w may affect what alternatives are
relevant in w and therefore what it takes to know P in w (see Dretske 1981, 377 and DeRose 2009,
30f on “subject factors”), we allow that rC (P,w) may differ from rC (P, v) for a distinct scenario v in
which the agent’s situation is different. Second, if we allow—unlike Dretske—that features of the
conversational context C of those attributing knowledge to the agent (or the context of assessment
of a knowledge attribution, in the sense of MacFarlane 2005) can also affect what it takes to count
as knowing P in w relative to C (see DeRose 2009, 30f on “attributor factors”), then we should allow
that rC (P,w) may differ from rC′ (P,w) for a distinct context C′. Similarly, if we allow that what
counts as eliminating an alternative may vary with context (see DeRose 2009, 30n29) or depend on
the agent’s situation, then our u function should take in a context and scenario as well.

According to the standard alternatives picture,6 an agent in scenario w counts as knowing P
relative to context C if and only if (or at least only if) (the agent believes P and) the following holds:

rC (P,w) ∩ uC (P,w) = ∅. (Knows)

Fig. 1 shows the (Knows) condition violated vs. satisfied. Each of the large circles represents the
set W of scenarios under consideration. The crosshatched region is the set P of scenarios in which
the proposition P is true, including scenario w. The Relevancy Set and Uneliminated Set for P in
w relative to context C are shown in the ellipses with dots and horizontal lines, respectively, in the
blank ¬P -zone. If these sets overlap, as on the left, then the agent in w does not know P relative
to C; if they do not overlap, as on the right, then the agent in w knows P relative to C.7

Pw

rC (P,w)

uC (P,w)

Pw

rC (P,w)

uC (P,w)

Figure 1: (Knows) violated on left vs. satisfied on right

In §2.3, I will show that a family of fallibilist theories fit into this picture as special cases,
distinguished in part by the structural constraints they impose on the r and u functions. Some
theories with more moving parts have another pair of functions r′

C
and u′

C
, also requiring r′

C
(P,w) ∩

u′
C
(P,w) = ∅ for knowledge (see §2.3), but I will concentrate on theories with one pair of functions.
6By calling this picture ‘standard’, I am not claiming that all contemporary views of knowledge fit into it.
7The sizes of the various regions in the diagram are not intended to reflect the sizes of the corresponding sets, and

the locations of the regions are not intended to reflect the “distance” of scenarios from w.
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In virtue of what is an alternative in rC (P,w) or uC (P,w)? For r, one can give “thick” or “thin”
accounts of what it takes for a scenario to be in rC (P,w), depending on whether the account is
independent of epistemic notions like knowledge. In §2.3, we will see some thick accounts with such
independence, but we already have a good thin account in the first bullet point above. Of course,
this pushes us to the question about elimination and uC (P,w).8 But let us first consider the decision
about what our “alternatives” are: scenarios or propositions or something else?

I take alternatives to be scenarios. What really matters is that the set of all ¬P -alternatives
in a context should form a nontrivial partition of the set of ¬P -scenarios, so the alternatives are
disjoint.9 (Recall the quotes from Stalnaker and Lewis in footnote 2.) We could call the cells in
such a partition ‘Alternatives’, and let rA

C
(P,w) and uA

C
(P,w) be sets of Alternatives. But since I

think of elimination in terms of scenarios, I take rC (P,w) and uC (P,w) to be sets of scenarios.10

This approach fits with what I consider the best-developed of previous fallibilist theories, discussed
in §2.3. It also has other advantages, especially over taking the set of ¬P -alternatives to be the set
of all propositions incompatible with P , which violates the disjointness of alternatives in a context.

For example, Vogel’s (1999, 163) argument that probability cannot provide a sufficient condition
for relevance of alternatives depends on assuming the proposition-based view of alternatives (see
footnote 52 in §3.5). Moreover, the puzzling question (see Stine 1976, 258) of whether ¬P is a
relevant alternative to P—and if so, what it takes to “eliminate” ¬P other than knowing P—
suggests that the level of propositions might not be the best level at which to locate alternatives. It
seems that one can give a more substantive account of what it is for a scenario to be (un)eliminated,
since one may refer to the experiences or beliefs of the agent in that scenario, compared to those of
the agent in another scenario. By contrast, accounts of what it is for a proposition to be eliminated
seem not to take us very far from the idea of knowing the negation of the proposition.

According to Lewis (1996), “a possibility [v] is uneliminated iff the subject’s perceptual experience
and memory in [v] exactly match his perceptual experience and memory in actuality” (553). I will
postpone discussion of whether such match is necessary.11 All of the theories I consider seem to
agree on at least this much: for v ∈ W − P , it is sufficient for v ∈ uC (P,w) that v and w are
subjectively indistinguishable, appear the same way, etc., to the agent, given her total experience
and memory, where this requires that the agent’s (“narrow”) beliefs are the same in v and w. Many
theorists would also agree that v and w are subjectively indistinguishable to the agent if she is in
the same physical state in both, so this would provide another sufficient condition for v ∈ uC (P,w).

Given these sufficient conditions, it follows that for many contingent propositions P about the
world external to the agent, uC (P,w) ∩ (Ww − P ) 6= ∅. For given a scenario w, perhaps in which

8Dretske (1981) gives thin accounts of both r and u in terms of knowledge: “let us call the set of possible alternatives
that a person must be in an evidential position to exclude (when he knows that P) the Relevancy Set (RS). In saying
that he must be in a position to exclude these possibilities I mean that his evidence or justification for thinking these
alternatives are not the case must be good enough to say he knows they are not the case” (371). Lawlor (2013)
gives a thicker account of what makes an alternative one that must be eliminated for knowledge, i.e., an alternative in
rC (P,w): it is “an alternative to p that a reasonable person would want ruled out by reasons or evidence before judging
that S knows p” (152), where the notion of a reasonable person is given a substantive independent characterization
(Lawlor, 2013, §5.1).

9Or more generally, the set of alternatives for P in a given context should form a nontrivial partition of W.
10Of course, this is the partition view where each cell contains only one scenario. Another option would be to use

Alternatives, but only from partitions with the property that if one of the scenarios in an Alternative is in uC (P,w),
then all of the scenarios in that Alternative are in uC (P,w), following the quote from Lewis in footnote 2. Then we
could define uA from u: an Alternative is in uAC (P,w) iff all scenarios in that Alternative are in uC (P,w).

11Cf. Goldman’s (1976, 779-784) detailed discussion of the notion of a perceptual equivalent of a state of affairs,
which does not require exact match of perceptual appearances (781).
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the agent believes P , there is another possible scenario v in which the agent is in the same physical
state, or at any rate a scenario that is subjectively indistinguishable, but in which P is false, so
v ∈ uC (P,w) ∩ (Ww − P ).12 This is a reflection of the separation between mind and world.13

Given that uC (P,w) ∩ (Ww − P ) 6= ∅ for so many empirical propositions P , radical skepticism
about empirical knowledge follows from the “infallibilist” assumption that knowing a proposition
P requires ruling out all possible ¬P -scenarios, which in terms of Fig. 1 requires that the dotted
region covers the entire ¬P -zone (at least within Ww, if Ww is a smaller circle than W):

infallibilism – for all w, P , and C: Ww − P ⊆ rC (P,w).14

It follows from infallibilism and uC (P,w)∩ (Ww−P ) 6= ∅ that rC (P,w)∩uC (P,w) 6= ∅, so by (Knows),
P is not known. Thus, in order to avoid radical skepticism, one must at least deny infallibilism:

fallibilism – for some w, P , and C: Ww − P 6⊆ rC (P,w).

This is an extremely weak version of fallibilism: in effect, fallibilism about at least one possible case
of knowledge. A stronger, but still extremely weak, version of fallibilism says that there is some
proposition Q that is true in all of the relevant alternatives to P but not in all possible ¬P -scenarios:

e-fallibilism – for some w, P , Q, and C: rC (P,w) ⊆ Q and Ww − P 6⊆ Q.

Here ‘e-fallibilism’ stands for expressible fallibilism, since it says that we can express with Q something
that the relevant alternatives have in common with each other (and perhaps some other scenarios)
but not with all possible ¬P -scenarios. It would be a strange version of fallibilism that denied there
was even one such proposition P for which we could express our fallibilism in this way. Note that if
for every set of scenarios there is a corresponding proposition true in exactly those scenarios, then
fallibilism is equivalent to e-fallibilism, taking Q to be the proposition corresponding to rC (P,w). Also
note that e-fallibilism does not even require that the proposition Q be incompatible with P , i.e.,
Qw ⊆W − P . For that, one could assume what I will call expressible contrast fallibilism:

ec-fallibilism – for some w, P , Q, and C: rC (P,w) ⊆ Q and Qw ( Ww − P .
12I am not claiming (what certain kinds of externalists about perception would deny) that given a scenario w in which

the agent believes P , there is always another possible scenario v in which the agent has the same type of experience
or the same evidence, but in which P is false; for I am not assuming that subjective indistinguishability entails the
same type of experience or evidence. I am also not claiming that if w and v are subjectively indistinguishable, then
uC (P,w) = uC (P, v), i.e., that the agent in w has eliminated exactly the same alternatives as the agent in v.

13 Examples abound in the literature on skepticism, but let us consider another. In the actual scenario w, Jones,
who lives in the U.S., receives a postcard from Smith, who is visiting the U.K. The postcard is signed by Smith in
his unique handwriting, stamped and dated by U.K. postal officials, and so on. Jones recognizes all of this, and
he correctly takes Smith to be a perfectly reliable reporter of his vacation whereabouts. According to everyone but
radical skeptics, on the basis of receiving such a postcard, Jones can know that Smith visited the U.K. some days ago
(P ). Yet everyone must also admit that there are possible scenarios v in which everything appears the same to Jones
(during his whole life up until now) as in w, but the postcard was not sent by Smith, and Smith never visited the
U.K., so v ∈ uC (P,w)∩ (Ww −P ). Some of these scenarios are ones in which skeptical hypotheses incompatible with
P obtain: in some of them, the postcard was forged by a team of deceivers (SH1); in others, all the world and Jones’s
memories were created five seconds before he received the postcard (SH2); and so on. Of course, such deceptive
possibilities arise for a tremendous number of other propositions that Jones believes about the external world.

14 It is sometimes suggested that one has an “infallibilist” conception of knowledge if one accepts the following
principle: if an agent knows that P , then her evidential probability for P is 1. According to the present conception
of infallibilism and fallibilism, that suggestion is incorrect. As defined below, a fallibilist may hold that (i) an agent
knows that P , so (ii) the agent’s evidential probability for P is 1, even though (iii) there may be some scenarios that
are subjectively indistinguishable from the agent’s actual scenario—and in that sense are uneliminated—in which P
is false. The fallibilism is in the conjunction of (i) and (iii). Dretske (1981; 1971) is such a fallibilist who holds that
(i) implies (ii). (Note that such a view is not inconsistent with Dretske’s denial of closure, because he does not hold
that probability 1 is sufficient for knowledge. Some propositions will have probability 1, although they are not known,
because they are entailed by other propositions with probability 1 that are known. See Dretske 2006.)
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The reason for considering such weak principles will become apparent later. I will argue that being
even a weak fallibilist is tricky, although not for the reasons that some philosophers think.15

In addition to satisfying the above fallibilist conditions, all of the theories to be considered in the
standard alternatives framework satisfy two further kinds of conditions. First, following Dretske’s
characterization of the Relevancy Set for a proposition P as “a set of situations each member of
which contrasts with what is [to be] known,” i.e., a set of ¬P -scenarios, we have

contrast/enough – rC (P,w) ⊆W − P ,

which says that the alternatives one must eliminate to know P are ¬P -scenarios. (From now on I
will leave the universal quantification over w, P , and C implicit.) A stronger version is

M-contrast/enough – rC (P,w) ⊆Ww − P ,

which says that the alternatives are all ¬P -scenarios based on ways the world metaphysically could
be (so an agent’s ignorance cannot be witnessed by “impossible worlds”). Second, following Lewis’s
(1996) Rule of Actuality, that “actuality is always a relevant alternative” (554), we have

r-RofA – w 6∈ P implies w ∈ rC (P,w),

which says that whenever w is a ¬P -scenario, it is a relevant alternative that one must eliminate in
order to know P in w. However, it is immediate from the sufficient condition for v ∈ uC (P,w) given
above that an agent cannot eliminate her actual scenario:

u-RofA – w 6∈ P implies w ∈ uC (P,w).

It follows from r-RofA and u-RofA together that if w 6∈ P , then w ∈ rC (P,w) ∩ uC (P,w) 6= ∅, so by
(Knows), P is not known. Hence only truths can be known.

In this framework we can also state necessary and sufficient conditions for epistemic closure.
Let R be some relation that a sequence of propositions can bear to another proposition. Here is a
general schema for an empirical epistemic closure principle with respect to R: if an agent knows
propositions P1, . . . , Pn, which together bear R to proposition Q, then, as MacFarlane (2014, 177)
puts it, the agent “could come to know [Q] without further empirical investigation.”16 This requires
that

rC (Q,w) ⊆
⋃

1≤i≤n

rC (Pi, w), (1)

15Not, for example, for worries about concessive knowledge attributions of the form ‘I know that P , but it’s possible
that ¬P ’ or ‘I know that P , but it might be that ¬P ’ (Rysiew, 2001; Stanley, 2005). I see no reason why a fallibilist
in one of the senses stated above should be committed to the felicity of such claims. Fallibilists hold that an agent
can know P even if uC (P,w) ∩ (W− P ) 6= ∅, but what does this have to do with the semantics/pragmatics of claims
with the epistemic modals ‘possible’ and ‘might’? According to Yalcin (2011, 309), an utterance of ‘it might be that
¬P ’ expresses (roughly) that there is a ¬P -scenario v compatible with what the agent believes, which does not follow
from there being a ¬P -scenario v ∈ uC (P,w). Indeed, it is compatible with there being a ¬P -scenario v ∈ uC (P,w)
that the agent in w believes P with the utmost certainty. It is noteworthy in this connection that Dretske (1981), a
strong fallibilist, remarks: “it does seem reasonable to insist that if S knows that P , he does not believe that he might
be wrong. In other words, if the bird-watcher really believes that the bird he sees might be a grebe, then he does not
know it is a Gadwall” (378n8) (cf. footnote 14). Of course, fallibilists are committed to there being contexts in which
it would be true to say (if it can be said without changing the context) ‘the agent knows P , but the agent has not
eliminated all ¬P -scenarios’. But here ‘eliminated’ is a theoretical term, so we should not conclude that pre-theoretic
intuitions about natural language pose any problem for fallibilism here.

16Something more may be required to know Q, such as “putting two and two together” and inferring Q from
P1, . . . , Pn, or simply coming to believe Q as a result of the same experiences that make the agent believe P1, . . . , Pn,
but no more empirical investigation of the world is required to know Q than to know P1, . . . , Pn (assuming the agent
has already had sufficient experience to enable her to grasp the concepts required for understanding Q).
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to guarantee that if the agent has eliminated enough scenarios to know P1, . . . , Pn, then she has
eliminated enough to know Q. Note, though, that this guarantee assumes that if a scenario v ∈
rC (Pi, w)∩ rC (Q,w) is eliminated as an alternative for Pi, then v is also eliminated as an alternative
for Q. In terms of unelimination:

∀i ≤ n : rC (Pi, w) ∩ rC (Q,w) ∩ uC (Q,w) ⊆ uC (Pi, w). (2)

Together (1) and (2) imply that if (Knows) holds for P1, . . . , Pn, then it holds for Q.17

As for specific closure principles, R could be the relation that the sequence P1, . . . , Pn bears to
Q iff Q is a TF-consequence of {P1, . . . , Pn}, i.e., of P1 ∧ · · · ∧Pn. If n = 1, I call this single-premise
closure under TF-consequence. If n is allowed to be arbitrary, I call this multi-premise closure under
TF-consequence. Sometimes I will not specify R explicitly, and I will write ‘(KP1 & . . .& KPn) ⇒
KQ’ to abbreviate the principle that if an agent knows P1, . . . , Pn relative to C, then she could know
Q relative to C without further empirical investigation. For example, closure under conjunction
elimination, K(P ∧Q)⇒ KQ, says that if an agent knows P ∧Q (P1), then she could come to know
Q without further empirical investigation; closure under known material implication, (KP &K(P →
Q)) ⇒ KQ, says that if an agent knows P (P1) and P → Q (P2), then she could come to know
Q without further empirical investigation; and so on. Note that closure under known material
implication is a multi-premise closure principle.18 In the next section, we will see a crucial pair of
conditions that affect whether this principles holds.

2.2 The RS and RO Parameters

Fallibilists working with the standard alternatives picture face two questions. First, can one say
whether a scenario v is simply “relevant” for the agent in a scenario w, independently of any propo-
sition in question; or must one instead say that v is relevant in w as an alternative for a particular
proposition Q, allowing that v may not be relevant in w as an alternative for a different proposition
P? Second, can one say whether v is simply “eliminated” by the agent in w, independently of any
proposition in question; or must one instead say that v is eliminated in w as an alternative for a
particular Q, allowing that v may not be eliminated in w as an alternative for a different P?

Consider the first question. Dretske’s (1981) idea was that for each proposition, there is a
Relevancy Set for that proposition, motivating the following definition of RS∀∃ theories:

RS∀∃ theories hold that for every context C, for every scenario w, and for every (∀) proposition
P , there is (∃) a set of relevant (in w) ¬P -scenarios, rC (P,w) ⊆W−P , such that in order to
know P relative to C the agent in w has to eliminate the scenarios in rC (P,w).

By contrast, Heller (1999) considers (and rejects) a version of the relevant alternatives (RA) theory
in which “there is a certain set of worlds selected as relevant, and S must be able to rule out the
not-p worlds within that set” (197), which suggests the following definition of RS∃∀ theories:

RS∃∀ theories hold that for every context C and scenario w, there is (∃) a set of relevant (in w)
17Proof : if (Knows) does not hold for Q, then there is some v ∈ rC (Q,w) ∩ uC (Q,w). Since v ∈ rC (Q,w), it follows

by (1) that v ∈ rC (Pi, w) for some 1 ≤ i ≤ n; then since v ∈ rC (Pi, w) ∩ rC (Q,w) ∩ uC (Q,w), it follows by (2) that
v ∈ uC (Pi, w). Thus, rC (Pi, w) ∩ uC (Pi, w) 6= ∅, so (Knows) does not hold for Pi.

18One could treat any multi-premise closure principle as a single-premise principle by loading the other premises
into R, e.g., taking R to be the relation that P bears to Q iff the agent knows P → Q, but this trick is not helpful.
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scenarios, RC (w), such that for every (∀) proposition P , in order to know P relative to C the
agent in w has to eliminate the ¬P -scenarios in RC (w), i.e., the scenarios in RC (w)∩ (W−P ).

As a simple logical point, every RS∃∀ theory is a RS∀∃ theory (take rC (P,w) = RC (w) ∩ (W − P )),
but not necessarily vice versa. From now on, when I refer to RS∀∃ theories, I have in mind theories
that are not also RS∃∀ theories. As I will explain below, this distinction is at the heart of the
disagreement about epistemic closure that pits Dretske (1970) and Nozick (1981), who defend RS∀∃
theories, against Stine (1976) and Lewis (1996), who defend RS∃∀ theories.

To be precise, let us define the following condition on r, of which RS∀∃ is the denial:

RS∃∀ – there is (∃) RC (w) ⊆W such that for all (∀) P : rC (P,w) = RC (w) ∩ (W − P ).

In a contextualist RS∃∀ theory, such as Lewis’s (1996) RA theory, the set of relevant scenarios may
change as context changes. Still, for any given context C, there is a set RC (w) of relevant (in w)
scenarios, which does not depend on a particular proposition in question. The RS∀∃ vs. RS∃∀

distinction is about how theories view the relevant alternatives with respect to a fixed context.
Let us now return to the second question above: can one say, independently of any proposition in

question, that v is eliminated by the agent in w? According to Lewis’s (1996) notion of elimination,
the answer is ‘yes’: whether there is exact match of experience and memory in v and w does
not depend on any proposition in question. Hence for every scenario w, there is a fixed set of
“uneliminated” scenarios UC (w) ⊆ W, singled out independently of any proposition in question.
However, as we shall see in §2.3, according to the notions of elimination implicit in sensitivity and
safety theories of knowledge, the answer is ‘no’; it may be that v is eliminated as an alternative for
a proposition P but not as an alternative for a proposition Q. Parallel to the definition of RS∃∀
above, we define the following RO (for “ruling out”) condition on u, of which RO∀∃ is the denial:

RO∃∀ – there is (∃) UC (w) ⊆W such that for all (∀) P : uC (P,w) = UC (w) ∩ (W − P ).

Fig. 2 shows the difference between RS∀∃ and RS∃∀. Observe that v is a ¬P -scenario and a
¬Q-scenario. On the RS∀∃ side (left), while v is a scenario that must be eliminated in order to know
Q (where Q is the darker semicircle in the lower row), it is not a scenario that must be eliminated
in order to know P (where P is the darker semicircle in the upper row). By contrast, on the RS∃∀

side (right), where the inner circles represent the fixed set RC (w) of relevant scenarios, no such
split-decision on v is possible; so v is a scenario that must be eliminated in order to know P and in
order to know Q. The pictures for RO∀∃ vs. RO∃∀ would be the same if we were to substitute u for
r and U for R. As I will explain in §2.3, the theories of Lewis (1996), Sosa (1999), DeRose (1995),
Dretske (1981), Nozick (1981), and Heller (1999) have the parameter settings in Fig. 3.

I claimed above that the distinction between ∀∃ and ∃∀ parameter settings is at the heart of the
disagreement about epistemic closure. Assuming RS∃∀ and RO∃∀, the (Knows) condition becomes

rC (P,w) ∩ uC (P,w) = ∅

= =

RC (w) ∩ (W − P ) ∩ UC (w) ∩ (W − P ) = ∅,

which is equivalent to
RC (w) ∩ UC (w) ⊆ P . (3)
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Figure 2: RS∀∃ (left) vs. RS∃∀ (right)

Now it is easy to see why ∃∀ settings are hospitable to closure under known material implication.
If the agent knows P and P → Q, then as instances of (3) we have RC (w) ∩ UC (w) ⊆ P and
RC (w)∩UC (w) ⊆ P → Q, which imply RC (w)∩UC (w) ⊆ Q, so the agent has done enough elimination
of scenarios to know Q. Indeed, this is why closure under known implication holds on Lewis’s
(1996) theory. By contrast, if we do not assume RS∃∀ and RO∃∀, then as shown in Fig. 2, a
(¬P ∧¬Q)-scenario v that is relevant (or uneliminated) as an alternative for Q may not be relevant
(or uneliminated) as an alternative for P , even if the agent knows the implication P → Q, which
opens up the possibility of a failure of closure under known implication (recall the end of §2.1).
Indeed, this is why closure under known implication fails on Dretske’s (1970) theory; an agent may
know a mundane proposition P , because uneliminated skeptical scenarios v are not in rC (P,w), and
yet fail to know Q, the denial of the skeptical hypothesis, because those v are in rC (Q,w).19

2.3 Unification

Let us see how some standard fallibilist theories are special cases of the standard alternatives picture.
I will define the r and u functions according to each theory. With the exception of Lewis’s (1996)
theory, each theory requires belief for knowledge: if the agent in w does not believe P , then she does
not know P ; if the agent in w does believe P , then, as the reader can verify, the (Knows) condition
rC (P,w) ∩ uC (P,w) = ∅ coincides with the knowledge condition of the theory. For RS∃∀ theories, I

19Recall the postcard example in footnote 13, and take Q to be ¬(SH1 ∨ · · · ∨ SHn).
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Figure 3: theories classified by RS and RO parameter settings

will simply define RC (w), from which r is derived by rC (P,w) = RC (w) ∩ (W−P ), and similarly for
u. For example, for Lewis’s (1996) RA theory, we have:

RC (w) = the set of scenarios that are not properly ignored in context C when attributing
knowledge to the agent in scenario w;

UC (w) = the set of scenarios in which the agent’s perceptual experience and memory exactly
match that of the agent in w.

By contrast, for Dretske’s (1981) RA theory (recall footnote 8) stated in terms of scenarios, we have:

rC (P,w) = the set of ¬P -scenarios that the agent in w “must be in an evidential position to
exclude” in order to know P (371);

UC (w) = the set of scenarios that the agent in w is not in an evidential position to exclude.

For Heller’s (1989; 1999) RA theory, we have the following definitions, “cashing out S’s ability to
rule out a not-p world in terms of her not believing p in that world” (1999, 198):

rC (P,w) = the set of closest ¬P -scenarios according to an ordering20 (dependent on the context
C) of scenarios “according to how realistic they are” (Heller, 1989, 25);

uC (P,w) = the set of ¬P -scenarios where the agent21 believes P .

Thus, for Heller rC (P,w)∩ uC (P,w) = ∅ says that the agent does not believe P in any of the closest
¬P -scenarios according to the ordering. For the similar sensitivity theories in the tradition of Nozick
(1981) (without adherence and with counterfactuals understood following Lewis 197322) we have:

20Heller rejects the idea that rC (P,w) contains only the closest ¬P -scenarios according to a Lewisian similarity
ordering 6Cw (see below in the text for this notation), arguing that any “close enough” ¬P -scenarios must be in-
cluded as well. But since Heller (1999, 201f) holds that the set of possible scenarios that are “close enough” to w,
CloseEnoughC (w), is independent of any proposition in question, Heller’s view is equivalent to the view that rC (P,w)
is the set of closest ¬P -scenarios according to a more coarse-grained ordering �Cw, of which 6Cw is a refinement: define
v �Cw u iff v ∈ CloseEnoughC (w) or v 6Cw u. Then assuming that whenever u ∈ CloseEnoughC (w) and v 6Cw u, we
have v ∈ CloseEnoughC (w), the claimed equivalence follows from the fact that for any set A of scenarios:

Closest�Cw
(A) = Closest6Cw

(A) ∪ (CloseEnoughC (w) ∩A).

21Where w = 〈w, a, t〉, by ‘the agent’ I mean a (recall §1.1). Those who reject “trans-world identity” may substitute
‘a counterpart of a’. Nothing here turns on this subtlety, so I will ignore it in what follows.

22Nozick (1981, 680n8) tentatively proposes alternative truth conditions for counterfactuals. However, he also
indicates that sensitivity may be understood in terms of Lewis’s semantics for counterfactuals. This has become the
standard practice in the literature. For example, see Vogel 1987, Comesaña 2007, and Alspector-Kelly 2011.
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rC (P,w) = the set of closest ¬P -scenarios according to an ordering (possibly dependent on the
context C) of scenarios for evaluating counterfactuals at w;

uC (P,w) = the set of ¬P -scenarios where the agent believes P (by the same method as in
w).23

Theories that add an adherence condition use another pair r′ and u′ of functions such that r′
C
(P,w) =

R′
C
(w) ∩ P where:

R′
C
(w) = the set of scenarios that are “close” or “nearby” to w (relative to C);

u′
C
(P,w) = the set of P -scenarios where the agent does not believe P .24

Thus, r′
C
(P,w) ∩ u′

C
(P,w) = ∅ iff the agent believes P in all of the close P -scenarios.25 Nozick’s

(1981) full tracking theory adds this requirement to the sensitivity requirement above.26

Finally, turning to safety theories in the tradition of Sosa (1999), we have:

RC (w) = the set of scenarios that are “close” or “nearby” to w (relative to C);

uC (P,w) = the set of ¬P -scenarios where the agent believes P (on the same basis as in w).

Thus, rC (P,w)∩uC (P,w) = ∅ iff there are no close scenarios where the agent falsely believes P (on the
same basis on which she believes P in w). Parallel to the fact that Nozick’s tracking theory requires
sensitivity and adherence, DeRose’s (1995) “double safety” theory requires safety and adherence.

One can now check that the above definitions imply the classifications in Fig. 3.
It is important to realize that while safety theories are RS∃∀ theories, which may lead one to

think that they support full epistemic closure, they are also RO∀∃ theories, so it is not at all obvious
that they support full epistemic closure.27 From the fact that in all close scenarios where the agent
believes P ∧ Q, P ∧ Q is true (and in all close scenarios where P ∧ Q is true, the agent believes
P ∧Q), it obviously does not follow that in all close scenarios where the agent believes P , P is true.
So an agent can have a (double) safe belief that P ∧ Q, even though she has an unsafe belief that
P . But an agent who knows P ∧Q knows P , so safety theorists have some explaining to do.28

Now that we have definitions of r and u for each theory, we can investigate the properties of r and
u implied by these definitions. For example, consider the theories according to which rC (P,w) is the
set of closest ¬P -scenarios according to some kind of ordering. We can extract a lot of information
about r from this assumption. First, let us assume (cf. Lewis 1973, §2.3) that for each scenario w,
there is a binary relation 6Cw on Ww that is a total preorder,29 weakly centered on w,30 where we

23Here I follow Luper-Foy’s (1984, 29) statement of the sensitivity condition with “methods,” which differs slightly
from Nozick’s, which we could write down as well. For simplicity I omit “methods” for adherence below.

24One may not wish to call this a set of “uneliminated” scenarios, but there is nonetheless a structural analogy
between r′C and u′C on the one hand and rC and uC on the other.

25Nozick (1981, 680n8) suggests interpreting adherence counterfactuals P � BP with true antecedents in such a
way that the sphere over which P → BP needs to hold may differ for different propositions P . By contrast, I am
interpreting adherence as a kind of ∃∀ condition, in a sense that generalizes that of §2.2: there is a fixed set R′C (w) of
scenarios such that for all propositions P , to know P one needs to meet an epistemic success condition in the P -worlds
in R′C (w). A ∀∃ interpretation of adherence that, e.g., allows the adherence sphere for P ∨Q to go beyond that of P ,
would create yet another source of closure failure in Nozick’s theory.

26Nozick used the term ‘variation’ for what I call ‘sensitivity’ and used ‘sensitivity’ to cover both variation and
adherence; but the narrower use of ‘sensitivity’ is now standard.

27For those safety theorists who propose only necessary conditions for knowledge, see Remark 4.2 in Holliday 2014a
on the relation between closure failures for necessary conditions for knowledge and closure failures for knowledge.

28For discussion of closure failures for safety, see Murphy 2005, 2006, Alspector-Kelly 2011, and Holliday 2014a.
29I.e., reflexive, transitive, and such that for all u, v ∈Ww, either u 6Cw v or v 6Cw u.
30I.e., w ∈Ww and for all v ∈Ww, w 6Cw v.
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read ‘v 6Cw u’ as “v is at least as close to w as u is.” Let us also assume that 6Cw is well-founded,
which means that for every set A ⊆W of scenarios, if A ∩Ww is nonempty, then

Closest6Cw(A) = {v ∈ A | ∀u ∈ A ∩Ww : v 6Cw u},

the set of closest scenarios to w among those in A, is also nonempty. This implies that for any
proposition P , if P is possible relative to w (P ∩Ww 6= ∅), then there is a set of closest P -scenarios
to w (Closest6Cw(P ) 6= ∅), as epistemologists working with ordering-based theories typically assume.
With this setup, we can completely characterize the properties of r for the ordering-based theories.

Theorem 1. Given a family {6Cw}w∈W of orderings as above for each context C, the function r

defined by rC (P,w) = Closest6Cw(Ww − P ) satisfies all of the following conditions:

M-equiv – if Pw = Qw, then rC (P,w) = rC (Q,w);

M-contrast/enough – rC (P,w) ⊆Ww − P ;

r-RofA – w 6∈ P implies w ∈ rC (P,w);

noVK – Pw 6= Ww implies rC (P,w) 6= ∅;

alpha – rC (P ∧Q,w) ⊆ rC (P,w) ∪ rC (Q,w);

beta – if Pw ⊆ Q and rC (P,w) ∩ rC (Q,w) 6= ∅, then rC (Q,w) ⊆ rC (P,w).

Conversely, given any function r satisfying these conditions, there is a family {6Cw}w∈W of orderings
for each C such that for all P and w, rC (P,w) = Closest6Cw(Ww − P ).31

I omit the proof of Theorem 1, since it is essentially a variation on a well-known result of Arrow
(1959), but here formulated using analogues of Sen’s (1971) α and β conditions applied to r.32 With
the possible exception of beta, all of the conditions should be self-explanatory. Most important for
our purposes in the next section will be the condition noVK for no vacuous knowledge.

2.4 The Problems of Vacuous Knowledge and Containment

All of the fallibilist theories developed so far in the standard alternatives picture have at least one
of two serious problems, depending on whether they are RS∃∀ theories or RS∀∃ theories.

Assuming RS∃∀, fallibilism implies that the set RC (w) of relevant/nearby scenarios is a strict subset
of Ww. Thus, there can be contingent propositions Q (Qw 6= Ww) true throughout RC (w) (RC (w) ⊆
Q), as shown on the left of Fig. 4 at the end of this section, where Q is the region with diagonal lines
and RC (w) is the region with stars. But then RS∃∀ implies rC (Q,w) = RC (w) ∩ (W −Q) = ∅; and
if rC (Q,w) = ∅, then as long as the agent believes Q, she knows it, for any u function! No matter

31For all x, y ∈Ww, define x 6Cw y iff either (i) for all propositions P , y 6∈ rC (P,w), or (ii) there is some proposition
Q such that x ∈ rC (Q,w) and y ∈W −Q.

32I have written alpha in the equivalent form that Sen (1971, §9, n1) calls α∗ and beta in the form given by Bordes
(1976, §2). My conditions look different than theirs at first because my r function picks the “best” ¬P -scenarios,
whereas the economist’s choice function picks the best P -scenarios. Another minor difference is that the r function
takes in a proposition, whereas a choice function takes in a set. A proof of Theorem 1 in the case where the input to
r is a set is in Holliday 2012, §3.A, and the proof there can be easily adapted for the present setup.
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what (lack of) experience the agent has, and no matter what experience and beliefs the agent would
have had under other circumstances, the agent supposedly knows the contingent proposition Q.33

For example, according to Lewis’s RS∃∀ theory, even if the agent has never opened her eyes or
ears, she knows any contingent Q that is true throughout the set RC (w) of relevant scenarios; and
according to the RS∃∀ safety theory, no matter how insensitive an agent’s beliefs are to reality, she
knows (or at least safely believes) any contingent Q that is true throughout the set RC (w) of nearby
scenarios, provided she believes it. Vogel (1999) recognizes this problem for some versions of the RA
theory, observing that if we allow “for detailed empirical knowledge without evidence, then anyone
who happens to arrive at the appropriate belief, no matter how, will enjoy that knowledge. This
outcome is wrong; knowledge is dearer than that” (171f). I call this problem the problem of vacuous
knowledge, following Heller (1999), who also realizes that the RS∃∀ assumption is to blame.

However, Heller and I view the problem differently. For Heller, the problem seems to be that
when a contingent Q is true throughout RC (w), RS∃∀ theories do not place a requirement on the
agent to eliminate any ¬Q-scenarios in order to know Q. In my view, the problem is that RS∃∀
theories do not place on the agent any requirement to eliminate any scenarios in order to know Q.
This distinction will come up again in the Answer to the First Reply below and in §3.3 and §4.1.

It will not help here to claim that Kripke (1980) has given examples of a priori knowable con-
tingent truths. For one thing, we can take Q to be the set of scenarios v such that Q is true at v
considered as actual, so ∅ 6= Qw 6= Ww means that Q is deeply contingent (see Davies and Humber-
stone 1980). Then RS∃∀ theories allow knowledge of deeply contingent truths with no requirement
of eliminating scenarios. But even if one thinks there are some special counterexamples to Evans’s
(1979) famous claim that “it would be intolerable for there to be a statement which is both knowable
a priori and deeply contingent” (161), such examples are as much beside the point here as Kripke’s.

The main point is this: RS∃∀ theories imply that every proposition Q with RC (w) ⊆ Q is knowable
with no requirement of eliminating scenarios, and there is no guarantee that every such Q fits the
mold of one of the recherché examples of (deeply) contingent but a priori knowable propositions.
Instead, RS∃∀ theorists tell us that such Q may include the denials of skeptical hypotheses, not
only what I call self-side skeptical hypothesis about how we are hooked up to the world (BIVs,
etc.), but also world-side skeptical hypotheses about which objects there are and what they are like
in particular locations in the external world (disguised mules, etc.). But if a theory implies that
propositions about which objects there are and what they are like in particular locations in the
external world are knowable with no requirement of eliminating scenarios—that’s intolerable.34

33According to what Vogel (1999, 168) calls “Backsliding” RA theories, which blur the roles of the r and u functions,
alternatives can become “irrelevant” when one has good evidence against them. A Backsliding RA theorist might
claim that rC (Q,w) = ∅ holds only if the agent has done a lot of empirical investigation. But this is not how the r
function works for any of the theories discussed here. See Vogel 1999 for arguments against Backsliding accounts.

34I am not objecting to the view that one may be entitled, in the sense of Wright (2004), to accept contingent
empirical propositions, such as the negations of skeptical hypotheses, without doing empirical work for them—provided
the view does not add that one thereby knows the propositions; Wright (2004) is careful not to make this further
claim. Relatedly, I am not objecting to the view that one may justifiably take for granted, in the sense of Sherman
and Harman (2011), contingent empirical propositions, such as the negations of skeptical hypotheses, without doing
empirical work for them; Sherman and Harman are explicit that one cannot come to know a proposition just by
justifiably taking it for granted. Turning from justified taking for granted to justified belief, White (2006, §9) argues
that we have a priori “default” justification for believing, or that we are “entitled” to believe, the negations of skeptical
hypotheses; but he does not claim that we have a priori knowledge of the negations of skeptical hypotheses. Contrary
to White, Schiffer (2004, 178) argues that “There is nothing in the concept of a priori justified belief to warrant the
claim that we’re a priori justified in disbelieving skeptical hypotheses.” Although Schiffer proposes a revised concept
of justification∗ according to which we are a priori justified∗ in disbelieving skeptical hypothesis, he also does not
claim that we have a priori knowledge of the negations of skeptical hypotheses. Thanks to an anonymous referee for
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As perhaps the first epistemologist to postulate the RS∃∀ condition, Stine (1976) seemed to em-
brace the vacuous knowledge consequence that I take to be damning; but since then epistemologists
have recognized that there appears to be a serious problem that must be addressed.35 I will now
consider three replies to the vacuous knowledge objection to RS∃∀, answering each.

First Reply – knowledge of deeply contingent empirical truths does require epistemic work,
but this “epistemic work” may involve something less than eliminating scenarios. Vogel (1999, 159
- 159n12) considers and rejects something like this reply: the RA theory that assumes RS∃∀ “is
committed to the thesis that one can know that an irrelevant alternative is false even though one
can’t rule it out. . . . The RA theorist might still require that you have some minimal evidence against
irrelevant alternatives in order to know that they are false. However, holding onto this scruple will
make it more difficult, if not impossible, for the RA theorist to resist skepticism.”

Answer – in addition to the problem of skepticism noted by Vogel,36 there is another problem.
While having “minimal evidence” may not require eliminating ¬P -scenarios, where P is the proposi-
tion to be known, does it not require eliminating some scenarios, perhaps as alternatives to related
propositions? (Cf. §4.1 on inductive knowledge.) If it does, then we must reject RS∃∀, since it allows
agents to know deeply contingent truths with no requirement of eliminating scenarios.

Second Reply – the “double safety” theory is an RS∃∀ theory that avoids the problem of vacuous
knowledge. For even if one’s belief that Q is vacuously safe, in virtue of the fact that Q is true
throughout the set RC (w) of nearby scenarios, it is not vacuously adherent, since it is an epistemic
achievement that in all of the nearby scenarios where Q is true, the adherent agent believes Q.37

Answer – adherence doesn’t help. Kripke (2011) showed that if an agent’s belief that P is
sensitive, then normally her belief that P and I believe that P will be both sensitive and adherent.
Kripke rightly concludes that adherence “is almost without force, a broken reed. What can be the
point of a condition whose rigor can almost always be overcome by conjoining ‘and I believe (via
M) that p,’. . . ?” (184). A similar point applies to the adherence part of double safety. Suppose an
agent’s belief that P is vacuously safe, since there are no ¬P -scenarios among the nearby scenarios.
It follows by an argument similar to Kripke’s that the agent’s belief that P and I believe that P
will normally be double-safe, even if her belief that P is not. So on the double safety theory, it is
normally sufficient to know that P and I believe that P that one has a vacuously safe belief that P .
Thus, double safety does not solve the problem of vacuous knowledge, but only relocates it.

Third Reply – allowing knowledge of deeply contingent empirical propositions with no require-
ment of eliminating scenarios may seem bad, but it’s alright, because “[s]imply mentioning any
particular case of this knowledge, aloud or even in silent thought, is a way to . . . create a context in
which it is no longer true to ascribe the knowledge in question to yourself or others” (Lewis, 1996).

Answer – there are a number of problems with this reply, three of which I will discuss:

posing the question of how what I claim is intolerable relates to the views of Wright, White, and Schiffer.
35About Dretske’s (1970) zebra case, Stine (1976, 258) writes: “[O]ne does know what one takes for granted in

normal circumstances. I do know that it is not a mule painted to look like a zebra. I do not need evidence for such
a proposition . . . . [I]f the negation of a proposition is not a relevant alternative, then I know it—obviously, without
needing to provide evidence.” Cohen (1988, 99) responds: “Here, I think Stine’s strategy for preserving closure becomes
strongly counter-intuitive. Even if it is true that some propositions can be known without evidence, surely this is not
true of the proposition that S is not deceived by a cleverly disguised mule.” The key point is to consider the kinds of
propositions that RS∃∀ theories imply can be known with no requirement of eliminating scenarios.

36And by Cohen (1988, 111): “Radical skeptical hypotheses are immune to rejection on the basis of any evidence.
There would appear to be no evidence that could count against the hypothesis that we are deceived by a Cartesian
demon. . . . Radical skeptical hypotheses are designed to neutralize any evidence that could be adduced against them.”

37Heller (1999, 207) considers and rejects this reply. By contrast, DeRose (2000, 135) endorses a similar position.
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First, there is a motivation problem. When Stine (1976) first posited RS∃∀, the motivation was
clear: defend closure from Dretske. But then when faced with the problem that RS∃∀ leads to
vacuous knowledge, Lewis (1996) appeals to a super-shifty version of contextualism, according to
which whenever you try to claim the vacuous knowledge that is rightly yours according to closure,
context change invariably prevents you from truly claiming it (so Lewis concedes that “Dretske gets
the phenomenon right” (564) after all). Sure, you can endorse a fixed-context closure principle
in the abstract, but be careful not to instantiate it with any specific propositions and trigger an
instant, irresistible change in context! But with closure made impotent in this way, was it worth
getting into this vacuous knowledge mess to defend it? As Dretske (2005, 19) observes of super-shifty
contextualism, “it is a way of preserving closure for the heavyweight implications while abandoning its
usefulness in acquiring knowledge of them,”38 or rather, while abandoning its usefulness in reasoning
about agents’ knowledge of them—a bad trade for the problem of vacuous knowledge. Moreover, if
one wants to stick with super-shifty contextualism and fixed-context closure, one can do so without
being committed to vacuous knowledge, using the multipath picture proposed below (see §4.2).

Second, there is a mechanism problem. Most contemporary contextualists do not think that
sayings or thinkings invariably introduce relevant counter-possibilities as Lewis claims.39 So it is
unclear what general mechanism would prevent those who have vacuous knowledge from sometimes
truly claiming that they do. If this is so, then Lewis’s “unclaimable knowledge” reply collapses.

Third, there is a missing the point problem. What is problematic about vacuous knowledge is not
just that agents could truly claim to have it—which they probably could according to post-Lewisian
contextualism—but rather that they could have it at all. Cohen (2000, 105) correctly sees this:
“it looks as if the [RS∃∀] contextualist is committed to the view that we have contingent a priori
knowledge. And of course, these cases do not fit the structure of the reference-fixing cases called to
our attention by Kripke. Of course, I am not entirely happy with this result.” Cohen concludes that
this is a “bullet” he is “prepared to bite” (106). But contextualists need not bite this bullet if they
opt for a contextualist version of the multipath picture of knowledge to be introduced in §3.

So much for RS∃∀ theories then. On to RS∀∃ theories. RS∀∃ theories that take rC (P,w) to be
the set of closest ¬P -scenarios according to some kind of ordering avoid the problem of vacuous
knowledge. In fact, they satisfy the general noVK (no vacuous knowledge) principle in Theorem 1,
which says that if P is (deeply) contingent, then knowing P requires eliminating some scenarios.
This is one of Heller’s (1999) main arguments for his RS∀∃ theory over RS∃∀ theories.

Unfortunately, the ordering-based RS∀∃ theories that avoid the problem of vacuous knowledge
face what I call the problem of containment. While it may be a virtue that these theories invalidate
controversial multi-premise closure principles like closure under known implication, it is not a virtue
that they allow closure failures to spread far beyond those controverial principles, to uncontroversial
single-premise closure principles. Nozick (1981, 228) was well aware that even such a weak closure
principle as K(P ∧ Q) ⇒ KP is invalid according to his theory. He resisted the idea that KP ⇒
K(P ∨Q) is invalid, but his theory clearly invalidates it (see Holliday 2014a and Appendix A).

In Holliday 2014a, I systematically investigate this problem of containment for a family of what
I call “subjunctivist-flavored” theories, including basic version of the RA, sensitivity/tracking, and

38To put it this way is misleading, since a closure principle is not something that agents use in acquiring knowledge
(except about other agents’ knowledge). It is something that we use in reasoning about agents’ knowledge.

39Cohen (1998, 303n24) suggests that Lewis’s Rule of Attention may need to be defeasible; Ichikawa (2011, §4) dis-
avows it; and Blome-Tillman (2009, 246-247) argues that it is too strong. DeRose (2009, Ch. 4) suggests that members
of a conversation may resist context changes by sticking to their own “personally indicated epistemic standards.”
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safety theories. The main Closure Theorem gives an exact characterization of the closure properties
of knowledge according to these theories. Surprisingly, it turns out that despite the differences within
the family of subjunctivist-flavored theories, the valid epistemic closure principles are essentially the
same for these different theories. The problem is that these theories allow egregious failures of single-
premise closure, failures of principles as weak as K(P ∧Q)⇒ K(P ∨Q) and (KP & KQ)⇒ K(P ∨Q).

The source of the problem with the ordering-based RS∀∃ theories is that they do not satisfy a
necessary condition for single-premise closure under TF-consequence (recall (1) above):

TF-cover – if Q is a TF-consequence of P , then rC (Q,w) ⊆ rC (P,w),

which says that the empirical work needed to know P covers the empirical work needed to know
Q. One can easily check that if rC (S,w) is always the set of closest ¬S-scenarios according to an
ordering, then r does not satisfy TF-cover, which explains the failures of single-premise closure.

Is there any way to avoid these problems of containment and of vacuous knowledge?

w

RC (w)

Q

Ww

w

rC (P,w)

Q

Ww

P

Figure 4: vacuous knowledge given RS∃∀ (left) and a diagram for Proposition 1 (right)

2.5 An Impossibility Result

In the standard alternatives picture, it is impossible to avoid both problems from §2.4, even if we
restrict our attention to a limited domain of propositions. Call a set Σ of propositions an area iff
whenever P ∈ Σ and Q is a TF-consequence of P , then Q ∈ Σ. Then we have the following result.

Proposition 1. For any scenario w, context C, and area Σ, the following principles are inconsistent
in the standard alternatives picture:

contrast/enoughΣ – ∀P ∈ Σ: rC (P,w) ⊆W − P ;

e-fallibilismΣ – ∃P ∈ Σ ∃Q ∈ P: rC (P,w) ⊆ Q and Ww − P 6⊆ Q;

noVKΣ – ∀P ∈ Σ: Pw 6= Ww implies rC (P,w) 6= ∅;

TF-coverΣ – ∀P,Q ∈ Σ: if Q is a TF-consequence of P , then rC (Q,w) ⊆ rC (P,w).

Here is the essence of the proof: by e-fallibilismΣ there are propositions P and Q as on the right
side of Fig. 4 (where Q may overlap with P ). Consider P ∨ Q and the set P ∨Q, which is the
union of the two regions, P and Q, with diagonal lines. Where should we draw rC (P ∨Q,w)? Since
P ∨Q is a TF-consequence of P , TF-coverΣ requires that rC (P ∨Q,w) be a subset of rC (P,w); but
contrast/enoughΣ requires that rC (P ∨Q,w) be a subset of the blank region. The only way both can
hold is if rC (P ∨Q) = ∅. But this contradicts noVK, given that P ∨Q does not include all of Ww.
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Proof. By e-fallibilismΣ, there are propositions P ∈ Σ and Q ∈ P such that

rC (P,w) ⊆ Q (4)

and
Ww − P 6⊆ Q. (5)

Since P ∨Q is a TF-consequence of P , P ∈ Σ implies P ∨Q ∈ Σ, and TF-coverΣ implies

rC (P ∨Q,w) ⊆ rC (P,w), (6)

which with (4) implies
rC (P ∨Q,w) ⊆ Q ⊆ P ∪Q. (7)

However, contrast/enoughΣ implies

rC (P ∨Q,w) ⊆W − (P ∨Q) = W − (P ∪Q), (8)

which with (7) implies
rC (P ∨Q,w) = ∅. (9)

Finally, (5) implies
(P ∨Q)w 6= Ww, (10)

which with noVKΣ implies
rC (P ∨Q,w) 6= ∅, (11)

which contradicts (9).

Note that Proposition 1 does not use the full strength of TF-cover, but only its instance KP ⇒
K(P ∨ Q). Also note that we could get the same result using KP ⇒ K((P ∨ Q) ∧ (P ∨ ¬Q)) and
K(S ∧ R) ⇒ KS. In any case, I agree with Dretske (1970, 1009), Kripke (2011, 202), and Nozick
(1981, 230n64) (not what his theory says, but what he says) that KP ⇒ K(P ∨Q) should not fail.40

40I am assuming that the agent grasps the concepts needed to understand the new disjunct Q (cf. Williamson 2000,
283). Also recall the meaning of the notation KP ⇒ KP ′ from §2.1. Although I agree with Dretske, Kripke, and
Nozick in endorsing KP ⇒ K(P ∨Q) so understood, not everyone does. According to Yablo’s (2011; 2012; 2014) view
of closure, knowing P ∨ Q relative to a context C may require more empirical investigation than knowing P relative
to C, since the subject matter of P ∨ Q is not in general included in that of P . Although I take Yablo’s move to
connect subject matter and epistemic closure to be deep and important (see footnote 58), I disagree with the specifics
of his view of the connection (see Holliday 2014c). While I cannot do justice to his view here, I will briefly register
points of disagreement. On one way of developing Yablo’s view (based on “reductive truthmaking” and the relation
of “content-parthood”), K(P ∧ Q) ⇒ K(P ∨ Q) does not hold—so an agent may know a conjunction and yet have
more empirical work to do to know the disjunction of the conjuncts—and although K(P ∧ Q) ⇒ KP holds when
P and Q are TF-atomic, it does not hold in general for arbitrary P and Q—so an agent may know a conjunction
without knowing the conjuncts—which is hard to swallow. (Note that the propositions in the consequents of those
closure principles do not seem to “change the subject” relative to the complements in the propositions.) On another
way of developing his view (based on “recursive truthmaking” and the relation of “inclusive entailment”), the principle
K(P ∧ Q) ⇒ K(P ∨ ¬Q) does not hold, which is also hard to swallow. Indeed, so is the denial of KP ⇒ K(P ∨ Q),
even though this principle—apparently unlike the previous ones—has something new appear in its consequent. One
must be careful to distinguish two ideas: first, the less radical idea that in a context C relative to which an agent
has done enough empirical work to count as knowing P , someone’s raising the issue of Q by bringing up P ∨Q may
change the context to a C′ relative to which the agent has not done enough empirical work to count as knowing P ∨Q
(or P ); second, the more radical idea that knowing P ∨ Q relative to a context C may require more empirical work
than knowing P relative to C. The second idea, like the denial of the conjunctive closure principles, strikes me as
unnecessary and undesirable (admittedly, we are in near-bedrock territory here).
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The only principle in Proposition 1 that I have not yet defended is contrast/enough. All of
the theories discussed in §2.3 satisfy this principle, but can we escape Proposition 1 by giving up
constrast/enough? Not in the standard alternatives picture (but see §3.3). The reason is that in
the standard alternatives picture, giving up contrast/enough means claiming that there are some
propositions P such that it is necessary in order to know P that one eliminate some P -scenarios.
But if anything is sufficient for knowing P (as far as empirical work goes), it is eliminating all ¬P -
scenarios, a kind of epistemic supererogation. Suppose I were to say, “I agree that you’ve ruled out
every possible way in which P could be false, but that’s not enough for you to know that P is true;
you also have to rule out such-and-such ways in which P could be true.” This seems absurd.41

I take the impossibility result in Proposition 1 to show that there is something seriously wrong
with the standard alternatives picture. Remember that it is not enough to escape this result to
argue that there are some cases in which knowing a deeply contingent empirical proposition imposes
no requirement of empirically eliminating scenarios. Rather, to escape this impossibility result, one
would have to argue that there is no area of propositions knowledge of which requires empirical
investigation and with respect to which we are very weak fallibilists maintaining a very weak closure
principle. This strikes me as an incredible claim. Until a credible argument for this claim appears,
I conclude that fallibilists must seek a replacement for the standard alternatives picture.

3 The Multipath Picture of Knowledge

In this section, I propose a new framework for fallibilism that solves the problems raised for the
standard alternatives picture in §2. I call it the multipath picture of knowledge.

Recall the starting point of the standard alternatives picture: for each proposition to be known,
there is “a [single] set of situations each member of which contrasts with what is [to be] known. . . and
must be evidentially excluded if one is to know” [emphasis added] (Dretske, 1981, 373). Against
these single alternative set and contrast assumptions, I will argue:

• In some cases, there is no set of situations all of which must be excluded if one is to know a
proposition P ; instead, there are multiple sets of situations (scenarios), such that if one is
to know P , one must exclude all of the situations in at least one of those sets.

• In some cases, it is sufficient (as far as empirical investigation goes) for an agent to know a
proposition P that she only eliminates non-contrasting scenarios in which P is true.

A key observation will be that while the single alternative set and contrast assumptions may seem
plausible for propositions that are “atomic” from a truth-functional or quantificational perspective
(but see §4), fallibilists should reject these assumptions for logically complex propositions.

41Some might think that Gettier cases show we should reject contrast/enough. For example: not having any idea
what time it is, you check a clock that—unbeknownst to you—has been stopped for weeks on 5:43; as it happens,
the time is now 5:43; but you do not come to know this from the stopped clock. Where F is the proposition that
the time is 5:43 and S is the proposition that the clock has stopped, one might think this is a case in which knowing
F requires ruling out (F ∧ S)-possibilities, which would explain your ignorance of F (since you have not ruled those
out) and violate contrast/enough. But this is a mistake. What explains your ignorance of F is that since you have
only looked at a stopped clocked, you have not ruled out various relevant scenarios in which F is false and the time
is something other than 5:43. If by some other means you had ruled out every scenario in which F is false, then it
would be absurd to say “I agree that you’ve ruled out every scenario in which the time is something other than 5:43,
but you still don’t know the time is 5:43 unless you rule out such-and-such scenarios in which the time is 5:43.”
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3.1 Against the Single Alternative Set Assumption

Suppose that an agent wants to know whether P ∨Q is true, where P and Q are contingent empirical
propositions. Further suppose that P ∨ Q is in fact true. Then there are at least three paths by
which the agent could come to know it: she could start eliminating ¬P -scenarios, and if she comes
to know P , then she is done (at least with empirical investigation); or she could start eliminating
¬Q-scenarios, and if she comes to know Q, then she is done (with empirical investigation); or she
could come to know P ∨Q without coming to know which disjunct is true, perhaps by eliminating
all (¬P ∧¬Q)-scenarios without eliminating any (¬P ∧Q)-scenarios or any (P ∧¬Q)-scenarios. This
is hardly a novel observation. But it raises the question of why any fallibilist should think that for
a proposition like P ∨Q, there is a single set of scenarios that must be evidentially excluded if one
is to know P ∨Q. It seems instead that there may be at least three sets of scenarios such that if one
is to know P ∨ Q, one must evidentially exclude all of the scenarios in at least one of those three
sets, corresponding to the three paths to knowledge of P ∨Q described above.

If we were infallibilists, there would be no need for these multiple “alternative sets” for P ∨ Q.
According to infallibilism, coming to know P requires eliminating all (¬P ∧ ¬Q)-scenarios; so does
coming to know Q; and so does coming to know P ∨ Q without coming to know which disjunct is
true. Moreover, as argued in §2.5, eliminating all contrasting scenarios should be enough to know a
proposition. Thus, infallibilists need only consider one alternative set for P ∨Q: to know P ∨Q it is
necessary and sufficient (as far as empirical work goes) that one eliminate all (¬P ∧ ¬Q)-scenarios.

But we are fallibilists. According to fallibilism, coming to know P might not require eliminating
all (¬P ∧ ¬Q)-scenarios, at least not for every Q. Indeed, it might not require eliminating any
(¬P ∧¬Q)-scenarios.42 But then since it is enough to know P ∨Q that one eliminate all (¬P ∧¬Q)-
scenarios, it is immediate that we need multiple alternative sets for P ∨ Q, corresponding to the
multiple paths to knowing P ∨Q above: the scenarios that one must eliminate in order to know P

may be different from those that one must eliminate in order to know Q, which may be different
from those that one must eliminate in order to know P ∨Q without knowing either disjunct.

3.2 Multiple Alternative Sets

What §3.1 shows is that we should replace the r function of the standard alternatives picture, which
assigns to each triple of a context C, proposition P , and scenario w, a single set rC (P,w) ⊆ W of
scenarios, with a new “multipath” r function that assigns to each such C, P , and w, a set

rC (P,w) = {A1,A2, . . . }

of sets Ai ⊆ W of scenarios. For example, for P ∨ Q we may have r(P ∨ Q,w) = {A1,A2,A3},
where A1 is the set of scenarios to be eliminated in the path to knowing P ∨Q via P ; A2 is the set
of scenarios to be eliminated in the path to knowing P ∨Q via Q; and A3 is the set of scenarios to
be eliminated in the path to knowing P ∨Q without knowing either P or Q individually.

The foregoing points about disjunctive propositions apply to existential propositions as well.
Assuming propositions can have quantificational structure as well as truth-functional structure, one

42The claim that for every Q, knowing P requires eliminating some (¬P ∧¬Q)-scenario (if there is one) is essentially
equivalent to infallibilism; and if for every set of scenarios there is a proposition true in exactly those scenarios, then
the claim is exactly equivalent to infallibilism.
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could come to know ∃xP (x) by coming to know P (a), or by coming to P (b), etc., or by coming to
know ∃xP (x) without coming to know P (c) for any c. As a consequence of fallibilism, the alternative
sets for these different paths to knowing ∃xP (x) may be different. In this paper I concentrate on
truth-functional structure, but a full treatment would include quantificational structure as well.

According to the multipath picture of knowledge, to know a proposition P , it is necessary and
sufficient (as far as empirical elimination goes) that one eliminate all of the alternatives in at least
one of the alternative sets for P (as on the right side of Fig. 5 with A2):

∃A ∈ rC (P,w) : A ∩ uC (P,w) = ∅, (Knows)

where u is the same function as before.43,44 As we shall see, this is just the generalization that
fallibilists need in order to avoid the problems raised for them in the standard alternatives picture.

In explaining the multipath picture, I deliberately use the term ‘path to knowing’ instead of ‘way
of knowing’. There are often multiple “ways of knowing” a proposition in the sense that one can come
to know it by eliminating a single set of alternatives in a number of ways: by sight, sound, smell, etc.
I reserve the idea of multiple “paths to knowing” for the case in which for a given proposition there
are multiple sets of alternatives such that in order to know the proposition, it suffices to eliminate
all of the alternatives in one of those sets, which one may often do in a number of ways.

Pw

A2

A1

uC (P,w)

A3

Pw

A2

A1

uC (P,w)

A3

Figure 5: (Knows) violated on left vs. satisfied on right

The standard alternatives picture is equivalent to a special case of the multipath picture. As-
suming

singlepath – |rC (P,w)| = 1,

according to which each proposition has only one alternative set, we can move back and forth between
43For reasons of space, I cannot go into the theory of the u function here. For simplicity (but not in the final

analysis), one may assume that for each w and C there is a set UC (w) of uneliminated scenarios such that for all P ,
uC (P,w) = UC (w). Note that this is not the same as RO∃∀ from §2.2, since it does not imply an analogue of contrast
for u. This will be important given the argument of §3.3.

44 An r function may contain some eliminable redundancy in the following sense. Given rC (P,w), define

−rC (P,w) = {A ∈ rC (P,w) | there is no A′ ∈ rC (P,w) : A
′ ( A}.

−rC (P,w) may contain fewer alternative sets than rC (P,w), but (Knows) holds for r iff (Knows) holds for −r.
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the singlepath r function and multipath r function as follows:

rC (P,w) = {rC (P,w)}; (12)

rC (P,w) =
⋃

rC (P,w). (13)

It follows from these equations and singlepath that rC (P,w) ∩ uC (P,w) = ∅ iff there is some
A ∈ rC (P,w) such that A ∩ uC (P,w) = ∅, so (Knows) would be equivalent to (Knows).

Having rejected singlepath with the argument from disjunctive and existential propositions, let
us consider multipath generalizations of singlepath principles. First, the singlepath principle

r-RofA – w 6∈ P implies w ∈ rC (P,w)

from §2.1 generalizes to the multipath principle

r-RofA – w 6∈ P implies w ∈
⋂

rC (P,w),

which says that if P is false at w, then w is in every alternative set for P . As before, since w is
always uneliminated for the agent in w, i.e., w ∈ uC (P,w) by u-RofA, only truths can be known.

Second, the singlepath principle

ec-fallibilism – for some P and Q: rC (P,w) ⊆ Q and Qw ( Ww − P

from §2.1 generalizes to the multipath principle

ec-fallibilism – for some P , Q, and A: A ∈ rC (P,w), A ⊆ Q, and Qw ( Ww − P ,

according to which there are propositions P and Q and a path to knowing P that only requires
eliminating Q-scenarios, rather than all ¬P -scenarios, giving us expressible fallibilism.

3.3 Against the Contrast Assumption

Next recall the contrast/enough assumption stated in the standard alternatives framework:

contrast/enough – rC (P,w) ⊆W − P .

In §2.5, I argued that the standard alternatives framework requires contrast/enough, because it
should always be enough to know a proposition P that one eliminates all ¬P -scenarios.

In the multipath alternatives framework, contrast/enough splits into two principles:

contrast – ∀A ∈ rC (P,w): A ⊆W − P ;

enough – ∃A ∈ rC (P,w): A ⊆W − P .

As before, fallibilists should accept enough, which ensures that it is enough to know P that one
eliminates all ¬P -scenarios. Yet fallibilists should reject contrast and even the weaker principle

semi-contrast – ∀A ∈ rC (P,w): A 6= ∅ implies A ∩ (W − P ) 6= ∅,

which says that every nonempty alternative set for P contains a ¬P -scenario. Instead, we should
allow a dotted alternative set in Fig. 5 to overlap or even be inside the crosshatched P -region.
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The argument is simple. By ec-fallibilism,45 there are propositions P and Q such that knowing
P only requires eliminating Q-scenarios, where Qw ( Ww − P and hence (P ∨Q)w 6= Ww. But
then since one path to knowing the contingent proposition P ∨Q is via knowing P , and since knowing
this P only requires ruling out Q-scenarios, which are of course (P ∨ Q)-scenarios, it follows that
there is a path to knowing P ∨Q that only requires eliminating (P ∨Q)-scenarios.46 This contradicts
contrast and semi-contrast.

What may have fooled some fallibilists into assuming contrast for all propositions is that it may
seem plausible when applied to logically atomic propositions. However, when we turn to the study
of epistemic closure, we must consider logically complex propositions, for which universal contrast
is not plausible from a fallibilist perspective. See Appendix A for further discussion of the relation
between contrast and complex propositions.

In the disjunction counterexample to contrast assuming ec-fallibilism, one reason it makes
sense for an alternatives set A for P ∨Q to overlap with P ∨Q (i.e., A∩P ∨Q 6= ∅) is that A is also
an alternative set for a stronger proposition, P , with which A does not overlap (i.e., A ∩ P = ∅).
One might think this is always the case when an alternative set for a proposition S overlaps with S:

overlap – ∀A ∈ rC (S,w): A∩S 6= ∅ implies ∃P ∈ P: Pw ( S, A∩P = ∅, and A ∈ rC (P,w).

Nothing in my arguments turns on fallibilists accepting overlap, but it is noteworthy that overlap
is consistent with all of the other principles I propose, as shown in the following section.

3.4 Problem Solved

Given the general arguments above, the multipath picture of knowledge should be attractive to all
fallibilists. But I have yet to give one of the strongest arguments in its favor: it solves the problem
represented by the impossibility result of Proposition 1.

First, observe that the singlepath principle

noVK – Pw 6= Ww implies rC (P,w) 6= ∅

from §2.3 - 2.4 generalizes, following equation (12), to the multipath principle

noVK – Pw 6= Ww implies ∅ 6∈ rC (P,w),

which also says that if P is (deeply) contingent, then knowing P requires eliminating scenarios.47

Second, observe that the singlepath principle

TF-cover – if Q is a TF-consequence of P , then rC (Q,w) ⊆ rC (P,w)

from §2.4 generalizes to the multipath principle
45Or even a weaker e-fallibilism generalizing e-fallibilism.
46Here is a trickier argument using existential propositions. Start with a standard fallibilist view according to which

there are many propositions P that Jones can know by eliminating ¬P -scenarios, without having to eliminate the
¬P -scenarios that a radical skeptic would raise against him, such as subjectively indistinguishable scenarios in which
Jones is a brain in a vat (BIV ). One such proposition P that Jones can know, just by getting a good look at Smith’s
body, is that Smith is not a BIV. (Knowing that someone else is not a BIV is less of a problem!) Now where Q is the
proposition that someone is not a BIV, surely if Jones knows P , then with a step of logic he can know Q. Finally,
noticing that our initial assumption implies that Jones can know P by eliminating only scenarios in which Q is true
(for they are scenarios in which Jones is not a BIV and hence someone is not a BIV), it follows that Jones can know
Q by eliminating only scenarios in which Q is true. Notably, this argument is compatible with noVK in §3.4.

47Note that if rC (P,w) = ∅, then P cannot be known, given the existential character of (Knows).
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TF-cover – if Q is a TF-consequence of P , then ∀A ∈ rC (P,w) ∃B ∈ rC (Q,w): B ⊆ A,

which says that the empirical work for knowing P via any path covers the empirical work for knowing
Q via some path. This principle is necessary for single-premise closure under TF-consequence.48

It is now provable that all of the principles I have recommended for fallibilists are consistent in
the multipath picture. Compare the negative Proposition 1 with the following positive result.

Proposition 2 (The Five Postulates). In the multipath picture, the following Five Postulates (for
all w, P , and C) are jointly consistent with ec-fallibilism:

r-RofA – w 6∈ P implies w ∈
⋂

rC (P,w);

enough – ∃A ∈ rC (P,w): A ⊆W − P ;

noVK – Pw 6= Ww implies ∅ 6∈ rC (P,w);

TF-cover – if Q is a TF-consequence of P , then ∀A ∈ rC (P,w) ∃B ∈ rC (Q,w): B ⊆ A;

overlap – ∀A ∈ rC (P,w): A∩P 6= ∅ implies ∃Q ∈ P: Qw ( P , A∩Q = ∅, and A ∈ rC (Q,w).

Proof. The proposition holds as a corollary of Theorem 2 below, as explained in §3.5.

Although ec-fallibilism only says that we are fallibilists for at least one proposition, an r function
can satisfy the Five Postulates while being fallibilistic for (infinitely) many propositions, as shown
by Theorem 2 below. (Theorem 2 also shows that for enough, we could require A ⊆Ww − P .)

It is important to understand why the multipath picture avoids an analogue of Proposition 1.
Recall that the proof forced us to conclude in (11) that knowing the contingent proposition P ∨Q
does not require eliminating any scenarios; for if it did, then by contrast/enough it would require
eliminating (¬P ∧ ¬Q)-scenarios; but that would contradict TF-cover, because knowing P did not
require eliminating any ¬Q-scenarios, by the very choice of Q as a proposition true in all of the
relevant ¬P -scenarios. Fortunately, the multipath picture does not lead to this contradiction. By
enough, one path to knowing P ∨Q is by eliminating all of the scenarios in some set of (¬P ∧¬Q)-
scenarios, which is nonempty by noVK. But in line with TF-cover, another path to knowing P ∨Q
is via knowing P , which may involve eliminating only (¬P ∧ Q)-scenarios (note that here we use
our rejection of both the single alternative set and contrast assumptions). All of these paths require
eliminating scenarios, so we respect noVK. We have no problem of vacuous knowledge.

Contrast this account with those of Nozick (1981) and Lewis (1996). Let P be a mundane con-
tingent proposition about the external world and S your favorite skeptical hypothesis incompatible
with P . Recall that Nozick’s tracking theory has the following problematic consequences: according
to the theory, the logically weaker P ∨ ¬S may be much harder to know than the logically stronger
P ; and the logically weaker ¬S may be much harder to know than the logically stronger P ∧ ¬S.
The reason is that on Nozick’s theory, knowing P does not require eliminating skeptical (¬P ∧ S)-
scenarios, but knowing the weaker P ∨ ¬S does (where “elimination” for Nozick is understood as
in §2.3); and knowing P ∧ ¬S does not require eliminating skeptical S-scenarios, but knowing the
weaker ¬S does. This leads to the kind of extreme epistemic closure failures that illustrate the
problem of containment from §2.4. As Vogel (2007, 76) explains: “It seems hard to deny that one’s
epistemic position with respect to a logically weaker proposition (X or Y) is at least as good as one’s

48And it is sufficient together with certain assumptions on u, such as that of footnote 43.
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epistemic position with respect to a logically stronger proposition X . . . . The tracking condition T
improperly inverts that relation by making the conditions for knowing (X or Y) more stringent than
the conditions for knowing X. . . . [S]atisfying T with respect to (X or Y) can require that one is
right over a greater region of logical space than is required to satisfy T with respect to X. Therefore,
one’s epistemic position with respect to (X or Y) may be inferior to one’s epistemic position with
respect to X.” While Nozick thereby makes knowing something like P ∨ ¬S too hard, Lewis (1996)
makes it too easy. On Lewis’s theory, there will be many contexts in which an agent can know
the contingent P ∨ ¬S without any requirement of eliminating scenarios, simply because it is true
throughout the fixed set of relevant possibilities (recall §2.4). Nozick and Lewis are pushed to these
extreme positions by their assumption that for each proposition Q, there is only a single alternative
set for Q, containing only contrasting ¬Q-scenarios. By making such a single alternative set for
P ∨¬S nonempty, Nozick avoids the problem of vacuous knowledge but saddles us with the problem
of containment, whereas by making such a single alternative set for P ∨¬S empty, Lewis avoids the
problem of containment but saddles us with the problem of vacuous knowledge.

We need not accept the Nozick-Lewis dilemma. In the multipath picture presented above, none
of the alternative sets for the contingent P ∨¬S are empty, so there is no vacuous knowledge, and one
of the alternative sets for P ∨¬S is from the path to knowing P via eliminating (¬P ∧¬S)-scenarios,
so there is no problem of containment arising from P ∨ ¬S. Nor is there a problem of containment
arising from P ∧ ¬S. Like Lewis’s theory but unlike Nozick’s, in the multipath picture presented
above, an agent who knows P ∧ ¬S has done enough empirical work to know ¬S.

By establishing the consistency of fallibilism, noVK, TF-cover, and the other principles, Propo-
sition 2 shows that by adopting the multipath picture of knowledge, fallibilists can avoid the problems
raised in §2.5, a significant positive result. Of course, fallibilists who adopt the multipath picture
must address the question: where do the possibly multiple alternative sets for a proposition come
from? It may seem that fallibilists working with the standard alternatives picture have an easier time
saying where their single set of alternatives for a proposition comes from, e.g., by using a relevance
or similarity ordering of scenarios to pick out the set of close(st) scenarios where the proposition is
false. However, in §3.5 I show that the standard picture does not have an advantage in this respect.

3.5 From Singlepath to Multipath

The reason is that any standard alternatives function r determines a natural multipath alternatives
function rr; and if r satisfies a few conditions, which are satisfied by any r based on orderings of
scenarios as in §2.3, then rr satisfies the Five Postulates of Proposition 2 and is fallibilistic in a way I
will make precise. The alternative sets in rr

C
(P,w) will depend on the structure of P . To keep things

simple, I will first derive rr from r for propositions in an easy-to-handle normal form; then we can
immediately derive rr for all propositions, using the fact that every proposition is TF-equivalent to
one in normal form. To set this up, we need to review some basic logical concepts:

First, some notation and terminology. Assuming the structured propositions view of §1.1, let us
write ‘p’, ‘q’, r’, etc., for TF-atomic propositions. A TF-basic proposition is a TF-atomic proposition
or the negation thereof. Let basic-singlepath and basic-contrast be the conditions singlepath
and contrast from §3.2 and §3.3 applied to TF-basic propositions only. A clause is a disjunction of
TF-basic propositions: e.g., (p∨¬q∨ r). I assume that permutation and repetition of disjuncts does
not matter, so ‘(p ∨ ¬q ∨ r)’ and ‘(¬q ∨ p ∨ p ∨ r)’ represent the same clause. A clause is nontrivial
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if it does not contain both p and ¬p for any p. If a clause C ′ can be obtained by adding zero or
more disjuncts to C, then C ′ is a superclause of C, and C is a subclause of C ′: e.g., (p∨¬q ∨ r) is a
superclause of (p ∨ ¬q) and a subclause of (p ∨ ¬q ∨ ¬s ∨ r). The set sub(P ) of TF-subpropositions
of P is defined recursively: sub(p) = {p} for p a TF-atomic proposition; sub(¬P ) = sub(P )∪ {¬P};
sub(P#Q) = sub(P )∪ sub(Q)∪{P#Q} for any binary truth-functional connective #, and so on for
n-ary connectives. Finally, let at(P ) be the set of TF-atomic propositions in sub(P ).

Second, a fact: each proposition P (that is not a TF-tautology) is TF-equivalent to a proposition
P ′ in canonical conjunctive normal form (CCNF), which is a conjunction of nontrivial clauses such
that for each q ∈ at(P ′), each clause in P ′ contains q or ¬q. Here is one way to calculate a CCNF
of a proposition P . First, make a truth table for at(P ). Second, for each row of the truth table that
makes the proposition false, write down a conjunction of TF-basic propositions describing that row;
for example, the rows that make p∧q false are described by: (¬p∧¬q), (¬p∧q), and (p∧¬q). Third,
write down a conjunction saying that we are not in any of those rows that make the proposition false:
¬(¬p∧¬q)∧¬(¬p∧ q)∧¬(p∧¬q). Finally, drive the negations inside: (p∨ q)∧ (p∨¬q)∧ (¬p∨ q).
Thus, we obtain a CCNF equivalent of p ∧ q. What is important for our purposes is that each
proposition P (that is not a TF-tautology) is TF-equivalent to a P ′ in CCNF with at(P ) = at(P ′)

that is unique up to reordering of the conjuncts and disjuncts (see Theorem 1.29 of Cori and Lascar
2000). Since order will not matter, let us associate with each such P a unique CCNF(P ) in CCNF.
If P is a TF-tautology, let us stipulate that CCNF(P ) = (p ∨ ¬p) for some atomic p.

Third, a definition using the notions above: for P in CCNF (not a TF-tautology), define c(P ) to
be the set of all subclauses C of conjuncts in P such that every nontrivial superclause C ′ of C with
at(C ′) = at(P ) is a conjunct of P . This implies that every conjunct of P is in c(P ), but there may
be other clauses in c(P ). For example, if P is (p ∨ q) ∧ (p ∨ ¬q), then c(P ) = {(p ∨ q), (p ∨ ¬q), p};
and if P is the conjunction of (p ∨ q ∨ r), (¬p ∨ q ∨ r), (p ∨ ¬q ∨ r),(p ∨ q ∨ ¬r), and (p ∨ ¬q ∨ ¬r),
then c(P ) contains all of the conjuncts of P as well as (p ∨ q), (p ∨ r), (q ∨ r), and p. It turns out
that c(P ) is the set of all nontrivial clauses C with at(C) ⊆ at(P ) that are TF-consequences of P .

Finally, some new notions related to fallibilism: a multipath function r is fallibilistic in C at w
with respect to P iff there is some A ∈ rC (P,w) with A ( Ww −P ; a standard alternatives function
r is fallibilistic in C at w with respect to P iff rC (P,w) ( Ww − P ; and r is plurally fallibilistic in C at
w with respect to a set {P1, . . . , Pn} of clauses iff there are subclauses P ′1, . . . , P ′n of P1, . . . , Pn such
that the union of all rC (P ′i , w) sets is a strict subset of Ww − (P1 ∧ · · · ∧ Pn).

We are now ready to derive a multipath function rr from each standard alternatives function r.
I will present the construction and the main result about the construction at the same time:

Theorem 2 (Multipath Theorem). Given a standard alternatives function r, define a multipath
alternatives function rr as follows: for any clause C, define

rr
C
(C,w) = {rC (C ′, w) | C ′ is a subclause of C}; (14)

for any CCNF conjunction C1 ∧ · · · ∧ Cn of clauses with c(C1 ∧ · · · ∧ Cn) = {D1, . . . , Dm}, define

rr
C
(C1 ∧ · · · ∧ Cn, w) = {A ⊆W | ∃A1 ∈ rr

C
(D1, w) . . . ∃Am ∈ rr

C
(Dm, w) : A =

⋃
1≤i≤m

Ai}; (15)
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and if P is not in CCNF, define

rr
C
(P,w) = rr

C
(CCNF(P ), w).49 (16)

Then rr satisfies basic-singlepath and TF-cover; if r satisfies r-RofA, then rr satisfies r-RofA;
if r satisfies contrast, then rr satisfies basic-contrast, enough, and overlap; if r satisfies noVK,
then rr satisfies noVK; for any clause P , if r is fallibilistic in C at w with respect to P , then rr is
fallibilistic in C at w with respect to P ; and for any P in CCNF, if r is plurally fallibilistic in C at
w with respect to c(P ), then rr is fallibilistic in C at w with respect to P .

Proof. See Appendix B.

The idea behind the definition of rr
C
is simple: (14) says that any path to knowing a subclause of a

clause is a path to knowing the clause, a generalization of the idea that any path to knowing a disjunct
of a disjunction is a path to knowing the disjunction; and (15) says that knowing a conjunction of
clauses requires doing enough epistemic work to know each of the clauses that are TF-consequences
of the conjunction. Note that for TF-basic propositions L, (14) implies rr

C
(L,w) = {rC (L,w)}, so

the derived multipath function rr differs from the input function r only for complex propositions.
For complex propositions P , it is not guaranteed that rC (P,w) ∈ rr

C
(P,w). To see this, one

can check that for all A ∈ rr
C
(p ∧ q, w), rC (p, w) ∪ rC (q, w) ⊆ A, whereas there is no guarantee that

rC (p, w)∪ rC (q, w) ⊆ rC (p∧ q, w), especially if r is based on orderings of scenarios. This is the source
of the notorious problem for sensitivity theories that an agent may know that the building is a barn
and the building is red (p ∧ q), despite not knowing that the building is a barn (p). By contrast,
according to rr, an agent knows a conjunction only if she has done enough to know each conjunct.

The definition of rr is best understood by example. Let us calculate the alternatives sets for
p∨ (q ∧ r). First, we calculate CCNF(p∨ (q ∧ r)) as above. The rows of the truth table for p, q, and
r in which p ∨ (q ∧ r) is false are described by (¬p ∧ ¬q ∧ r), (¬p ∧ q ∧ ¬r), and (¬p ∧ ¬q ∧ ¬r), so

CCNF(p ∨ (q ∧ r)) = (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ r) ∧ (p ∨ q ∨ r).

One can then verify using the definition of c that

c(CCNF(p ∨ (q ∧ r))) = {(p ∨ q ∨ ¬r), (p ∨ ¬q ∨ r), (p ∨ q ∨ r), (p ∨ q), (p ∨ r)}.

Call the members of this set D1 - D5. By (15), every A ∈ rr
C
(p ∨ (q ∧ r)) is of the form A1 ∪ A2 ∪

A3 ∪ A4 ∪ A5, where by (14) each Ai is rC (Ci, w) for some subclause Ci of Di.50 The important
choices of the subclauses C1 - C5 of D1 - D5 are: each Ci is p; each Ci is q or r; each Ci is (p∨ q) or
(p∨ r). These yield the following alternative sets in rr

C
(p∨ (q∧ r)): rC (p, w) for the path via knowing

p; rC (q, w) ∪ rC (r, w) for the path via knowing q ∧ r; and rC (p ∨ q) ∪ rC (p ∨ r) for a path to knowing
the disjunction without necessarily knowing either disjunct individually.

If r is based on orderings of scenarios, as in §2.3, then taking the rC (p∨ q)∪ rC (p∨ r) path means
eliminating the closest (¬p ∧ ¬q)-scenarios and the closest (¬p ∧ ¬r)-scenarios. By contrast, the

49Note that neither (14) nor (15) depend on the order of the disjunct or conjuncts, so the particular choice of
CCNF(P ) among equivalent but permuted CCNFs does not matter for rrC (P,w).

50In this case, there are 73 × 32 ways of choosing C1 - C5. But this does not mean that there are 73 × 32 distinct
sets in rrC (p∨ (q ∧ r)), since many ways of choosing the Ci may result in the same union A1 ∪A2 ∪A3 ∪A4 ∪A5, and
even distinct unions may be redundant because they contain others (see footnote 44).
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singlepath picture with r says that there is only one path to knowing p ∨ (q ∧ r), by eliminating the
closest ¬(p ∨ (q ∧ r))-scenarios, i.e, the closest (¬p ∧ (¬q ∨ ¬r))-scenarios. Note that each of these
scenarios is either a closest (¬p ∧ ¬q)-scenario or a closest (¬p ∧ ¬r)-scenario, so rC (p ∨ (q ∧ r)) ⊆
rC (p ∨ q) ∪ rC (p ∨ r). This illustrates a general point: if r is based on orderings, then while it is not
guaranteed that rC (P,w) ∈ rr

C
(P,w), it is guaranteed that for some A ∈ rr

C
(P,w), rC (P,w) ⊆ A.51

Let us now prove Proposition 2. Recall from Theorem 1 that if r is such that for all C, P , and
w, rC (P,w) is the set of closest ¬P -scenarios according to an ordering 6Cw as in §2.3, then r satisfies
r-RofA, contrast, and noVK. Hence by Theorem 2, rr satisfies the Five Postulates of Proposition
2. Moreover, rr is highly fallibilistic if r is (not with respect to every proposition that r is, but
with respect to those that meet the conditions in the theorem). To establish expressible contrast
fallibilism, ec-fallibilism, let us make an extremely weak assumption about expressibility: for some
TF-basic proposition L and proposition Q, Q entails ¬L, but not vice versa: Qw ( Ww − L.
Then there exists an ordering 6Cw such that Closest6Cw(¬L) = Qw ( Ww − L; so by the fact that
Closest6Cw(¬L) = rC (L,w) ∈ rr

C
(L,w), Q is a witness for the fact that rr satisfies ec-fallibilism.

Although I have focused on the idea of deriving rr from a function r based on the familiar
qualitative orderings of scenarios, it is not necessary that the input function r be based on such
orderings. If w 6∈ P , then we can assume rC (P,w) = {{w}}, so r-RofA is satisfied. If w ∈ P , then
perhaps rC (P,w) is some function of the probability, or cost-weighted probability, or other value of
each ¬P -scenario, so that the ¬P -scenarios with relatively substantial probability, or cost-weighted
probability, or whatever, relative to other ¬P -scenarios, are in rC (P,w), where what ‘relatively
substantial’ means may depend on C, P , or w.52 These options would also satisfy contrast and
noVK,53 so the resulting rr would have the properties given by Theorem 2. I will not go into the
details here. My main point in this section is that the multipath picture is not at a disadvantage
relative to the singlepath picture with respect to having more alternative sets for which to account.

In my view, the construction of rr from r above provides a kind of “lower bound” on what a
multipath function should look like if derived from a singlepath function r: if A ∈ rr

C
(P,w), then A

should be an alternative set for P in w relative to C according to any reasonable multipath function
51The reason is that each of the closest ¬(C1 ∧ · · · ∧ Cn)-scenarios is a closest ¬Ci-scenario for some i:

Closest6Cw
(¬(C1 ∧ · · · ∧ Cm)) ⊆

⋃
1≤i≤m

Closest6Cw
(¬Ci),

so
rC (C1 ∧ · · · ∧ Cm, w) ⊆

⋃
1≤i≤m

rC (Ci, w),

and it is easy to check from (15) and (14) that that there is some A ∈ rrC (C1 ∧ · · · ∧ Cm) such that⋃
1≤i≤m

rC (Ci, w) ⊆ A.

52It would be more natural to think in terms of the probability of something more coarse-grained than scenarios,
such as the Alternatives mentioned in §2.1 and footnote 10, but I skip over these details here. I also skip over the
kind of probability in question, whether probability on the agent’s evidence—in which case the suggestion in the text
might blur the roles of the r and u functions (recall footnotes 33 and 14)—or a kind of objective probability or, in
the spirit of contextualism, probability for the attributors. It is noteworthy here that Vogel (1999, 163) argues that
probability cannot provide a sufficient condition for relevance. Roughly, the argument runs as follows: if a proposition
S is an irrelevant “alternative” to P , but a proposition Q is probable enough to be a relevant “alternative” to P , then
of course Q∨ S is also probable enough to be a relevant “alternative” to P ; but then since on Vogel’s view, ruling out
Q ∨ S requires ruling out S, it follows that S is a relevant “alternative” that must be ruled out for knowledge of P
after all. Contradiction. Of course, this argument assumes the propositional view of alternatives that I rejected in
§2.1 because it violates the disjointness condition on alternatives in a context.

53They would satisfy noVK because there are always some ¬P -scenarios with maximal probability, cost-weighted
probability, or whatever, relative to other ¬P -scenarios.
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derived from r. In §4, I will consider whether a reasonable multipath function should provide even
more alternative sets—even more paths—for knowing some propositions.

4 More Paths?

In §3, we saw what might be called the “conservative” version of the multipath picture. On the
conservative version, the source of additional paths to knowledge of a proposition is the structure of
the proposition itself; this is why the single alternative set and contrast assumptions are rejected for
complex propositions. Let us now consider the questions: Are there additional paths to knowledge of
a proposition that do not come from the structure of the proposition? Should the single alternative
set and contrast assumptions be rejected in general, not just for complex propositions?

4.1 Inductive Closure

Recall that my motivating examples for the multipath picture in §3.2 involved cases where some of the
multiple paths to knowing a complex proposition—such as a disjunctive or existential proposition—
went via knowing logically stronger propositions—a disjunct or an instance. Might there be multiple
paths to knowing a proposition via knowing logically weaker propositions? Anyone who thinks that
inductive knowledge is possible is committed to an affirmative answer. Although so far I have
concentrated on closure principles where the relation R (recall §2.1) is a deductive relation, one can
also consider closure with respect to inductive relations, asking whether an agent who knows the
empirical premises of a “good” inductive argument has thereby done enough empirically to know the
conclusion. Let us see how the multipath picture of knowledge bears on this issue.

To use a standard (oversimplified) example of enumerative induction, let E = {e1, . . . , en} be the
set of the first n emeralds, by distance, from some location; for any e ∈ E, let Ge be the proposition
that e is green; and let G be

∧
e∈E

Ge, a conjunctive version of all emeralds in E are green. According

to some fallibilists, for large n one can come to know G by observing just the emeralds in some strict
subset E1 ( E. Since the proposition

∧
e∈E1

Ge is logically weaker than G, this answers the second part

of the question above; but what about the multiplicity of paths? Presumably believers in inductive
knowledge do not think that G can only be known by observing the emeralds in just one set E1 ( E;
instead, there should be many sets Ei ( E (with Ei 6⊆ Ej for i 6= j) such that if the agent observes
all of the emeralds in one of them, she has done enough to know G. Hence for each such Ei, there
will be an alternative set Ai ∈ rC (G,w) such that for every e ∈ Ei there is some Be ∈ rC (Ge, w) with
Be ⊆ Ai. Assuming Ai 6⊆ Aj for i 6= j, this gives us the multiple alternative sets, answering the first
part of the question above. Indeed, this provides another reason to accept the multipath picture for
fallibilists who wish to make room for the possibility of knowledge by enumerative induction.

Note that on the assumption of closure under single-premise TF-consequence, someone who
comes to know G by observing the emeralds in some Ei should also be able to know that the so-
far-unobserved emerald b ∈ E in my back pocket is green by observing those other emeralds in Ei

(b 6∈ Ei). If this is correct, then it seems there may be multiple paths to knowing even the TF-atomic
proposition Gb: by eliminating the ¬Gb-scenarios in rC (Gb, w) or by eliminating the scenarios in some
Ai ∈ rC (G,w). These paths will be genuinely distinct if rC (Gb, w) 6⊆ Ai 6⊆ rC (Gb, w) (see footnote
44). If so, then basic-singlepath cannot hold for r. Moreover, if Ai contains some Gb-scenarios,
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e.g., (Gb ∧ ¬Ge)-scenarios for some e ∈ Ei, then basic-contrast cannot hold for r either. Thus,
fallibilists who wish to maintain the possibility of inductive knowledge and single-premise logical
closure may be lead to reject basic-singlepath and basic-contrast. One may then wonder whether
such fallibilists can extend a singlepath function r to a multipath function r as in §3.5. To do so, they
must modify (14) in the construction for Theorem 2 in order to allow for some extra inductive paths
to knowing some TF-basic propositions.54 In the current example, to say just how many or which
emeralds must be observed in the various paths to knowing Gb inductively, to determine the extra
alternative sets in rC (Gb, w), is a topic for a theory of inductive knowledge. In general, presumably
only propositions involving certain kinds of objects and (“projectible”) properties admit such extra
inductive paths, which is again a topic for a theory of inductive knowledge to explain.55

4.2 Metaphysical and Multi-Premise Closure

Theorem 2 shows how closure under single-premise TF-consequence fits with the conservative view
that additional paths to knowledge of a proposition come from the structure of the proposition
itself. However, in order to guarantee more controversial closure principles, consistently with the
Five Postulates of §3.4, one must go beyond the conservative view. This is easiest to see in the case
of closure under single-premise metaphysical entailment, which requires the following assumption:

M-cover – if Pw ⊆ Q, then ∀A ∈ rC (P,w) ∃B ∈ rC (Q,w): B ⊆ A,

which is the multipath generalization of

M-cover – if Pw ⊆ Q, then rC (Q,w) ⊆ rC (P,w).

M-cover says that if P entails Q as a matter of (deep) metaphysical necessity, then any path to
knowing P covers a path to knowing Q, regardless of the structures of P and Q or what kinds of
objects and properties they involve. Since the construction of rr in Theorem 2 only looks at the
structure of P for extra paths to knowing P other than rC (P,w), it does not guarantee that M-cover
will hold for rr if M-cover does not hold for r. Moreover, by the impossibility result in Proposition 1,
M-cover cannot hold for r together with the other conditions in the theorem, since M-cover implies
TF-cover. In order to guarantee M-cover, along with the Five Postulates in §3.4, one must modify
rr to allow extra paths to knowing P , not given by the structure of P or by rC (P,w).

Before discussing modifications, let us consider the desirability of the M-cover assumption.
Dretske (1970; 2005) famously argues that it can take more epistemic work to know a Q metaphys-
ically entailed by P than to know P itself, when Q has a “heavyweight” status compared to the

54Note that if for each e ∈ E, the inductive path to knowing Ge by observing the emeralds in the set Ei is included
in rrC (Ge, w) by a modified version of (14), then the inductive path to knowing the conjunction G by observing the
emeralds in the set Ei will be included in rrC (G,w) by (15).

55It is important that Vogel’s (1999, §4) arguments, according to which a certain version of the standard alternatives
picture cannot handle inductive knowledge, do not apply to the multipath picture. In short, Vogel attacks a view
according to which knowing a proposition like G involves eliminating a single set of ¬G-worlds that resemble the
actual world. On such a view, it seems difficult to explain why after observing a few emeralds, one has not eliminated
the right ¬G-worlds resembling the actual world, but after observing more emeralds, one has. The solution in the
multipath picture is to reject the view that the only path to knowing a proposition like G involves eliminating “close”
¬G-scenarios; instead, an agent can take one of the Ai paths described above, which involves coming to know Ge

for each e ∈ Ei, where this may involve eliminating close ¬Ge-scenarios. One might object that this response just
assumes inductive knowledge is possible, rather than deriving its possibility from first principles. But I do not see this
as an objection. It is just an observation that the multipath picture by itself is not a theory of inductive knowledge.
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“lightweight” status of P .56 One of the Dretskean concerns is that M-cover/M-cover will lead to
radical skepticism about knowledge. Let us try to derive this result in the standard alternatives
picture and the multipath picture. As discussed in §2.1, for many empirical propositions P ,

uC (P,w) ∩ (Ww − P ) 6= ∅, (17)

so there are some uneliminated ¬P -scenarios. Hence it is reasonable to assume that there is some
proposition S (think of a “skeptical counter-hypothesis”) such that

∅ 6= S ⊆ uC (P,w) ∩ (Ww − P ). (18)

If for every set of scenarios there is a proposition true in exactly that set of scenarios, then (18) is
immediate from (17). Now let us suppose that for at least one of the propositions S as in (18), ¬S is
what could be called a semi-contrast proposition, in the sense that knowing ¬S requires eliminating
at least one S-scenario:57

rC (¬S,w) ∩ S 6= ∅; (19)

∀B ∈ rC (¬S,w) : B ∩ S 6= ∅. (20)

It follows from S ⊆Ww − P in (18) that Pw ⊆ ¬S, so M-cover/M-cover implies

rC (¬S,w) ⊆ rC (P,w); (21)

∀A ∈ rC (P,w)∃B ∈ rC (¬S,w) : B ⊆ A. (22)

Together (21) and (19) imply rC (P,w) ∩ S 6= ∅, which with (18) implies rC (P,w) ∩ uC (P,w) 6= ∅.
Thus, by (Knows), the agent in w does not know P relative to C. Similarly, (22) and (20) imply that
for every A ∈ rC (P,w), A ∩ S 6= ∅, which with (18) implies A ∩ uC (P,w) 6= ∅. Since this holds for
every A ∈ rC (P,w), by (Knows) the agent in w does not know P relative to C. Since P , w, and C
were arbitrary, we seem to be left with radical skepticism about empirical knowledge.

Essentially the same argument for skepticism can be given using other closure principles. I will
demonstrate this in the multipath picture, leaving the singlepath case as an exercise for the reader.
First, consider closure under metaphysical equivalence and the principle K(P ∧Q)⇒ (KP & KQ):58

56In one of Dretske’s (2005) examples, P is the proposition that there are cookies in the jar, and Q is the proposition
that idealism is false. As Dretske quips, “Looking in the cookie jar may be a way of finding out whether there are
any cookies there, but it isn’t – no more than kicking rocks – a way of refuting Bishop Berkeley” (15).

57It follows from (18) that ¬S is not deeply necessary, ¬Sw 6= Ww, which with noVK implies ∅ 6∈ rC (¬S,w),
which with semi-contrast implies (20).

58 A similar argument is given by Hawthorne (2004, 41), employing a principle similar to M-equiv, namely closure
under a priori equivalence, though Hawthorne uses the argument for different dialectical purposes. See Sherman and
Harman 2011 for an argument against Hawthorne’s equivalence principle, which also applies to M-equiv. Another
reason to worry about the equivalence principle and M-equiv is that these principles seem to commit the mistake of
what Perry (1989) calls “losing track of subject matter”: losing track of what propositions are about, considering only
the possibilities in which they are true. Barwise and Perry (1983) have argued that losing track of subject matter
leads to serious problems in semantics, and the same may be true in epistemology. If the range of alternatives that
one must eliminate in order to know a proposition may depend not only on the structure of the proposition, as I
have argued, but also on what the proposition is about, then it is not clear why knowing P ∧ ¬S, from the example
below in the text, should not require eliminating more alternatives than knowing P—even if (it is a priori that) P
metaphysically entails P ∧ ¬S. Given a typical skeptical hypothesis S, an ordinary proposition P does not, in the
terminology of Barwise (1981, 395), strongly imply P ∧ ¬S, i.e., it is not the case that every situation that supports
P supports P ∧ ¬S, since supporting P ∧ ¬S requires supporting ¬S, which brings in extra subject matter (nor, of
course, is P ∧¬S a truth-functional consequence of P ). (By contrast, P ∧Q strongly implies P , and P strongly implies
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M-equiv – if Pw = Qw, then ∀A ∈ rC (P,w) ∃B ∈ rC (Q,w): B ⊆ A;

concover – ∀A ∈ rC (P ∧Q) ∃B ∈ rC (P,w) ∃B′ ∈ rC (Q,w): B ∪ B′ ⊆ A.

M-equiv says that if P and Q are equivalent as a matter of (deep) metaphysical necessity, then
any path to knowing P covers a path to knowing Q; and concover, which follows from TF-cover,
says that any path to knowing a conjunction covers paths to knowing each conjunct. It follows from
S ⊆ Ww − P in (18) that Pw = (P ∧ ¬S)w, which with M-equiv and concover implies (22).59

The rest of the skeptical argument goes exactly as before.
Finally, the argument can be given with closure under multi-premise TF-consequence:

Multi – if Q is a TF-consequence of {P1, . . . , Pn}, then ∀A1 ∈ rC (P1, w) . . . ∀An ∈ rC (Pn, w)

∃B ∈ rC (Q,w): B ⊆
⋃

1≤i≤n
Ai,

so any paths to knowing P1, . . . , Pn together cover a path to knowing Q. It follows from S ⊆Ww−P
in (18) that (¬P ∨ ¬S)w = Ww, so the disjunction ¬P ∨ ¬S is a (deeply) necessary truth. Some
would conclude that knowing (¬P ∨ ¬S) does not require empirically eliminating scenarios, i.e.,
∅ ∈ rC (¬P ∨ ¬S), but let us only make the weaker assumption that there is a path to knowing
(¬P ∨¬S) that does not require eliminating alternatives for ¬S,60 i.e., some A1 ∈ rC (¬P ∨¬S) that
does not overlap with any B ∈ rC (¬S,w). Since ¬S is a TF-consequence of (¬P ∨¬S) together with
P , Multi with P1 = (¬P ∨ ¬S) and P2 = P implies that for every A2 ∈ rC (P,w), there is some
B ∈ rC (¬S,w) such that B ⊆ A1 ∪A2 and hence B ⊆ A2 by the choice of A1; and this implies (22).

What are our options for avoiding this kind of argument for radical skepticism?
I have already mentioned the Dretskean option of denying closure under single-premise meta-

physical entailment. The same considerations about lightweight propositions entailing heavyweight
propositions suggest that Dretske would reject closure under metaphysical equivalence as well; for if
¬S is a heavyweight proposition compared to the lightweight P , then surely P ∧¬S is heavyweight
as well. The construction in Theorem 2 is compatible with this view: without further assumptions
about r or about how rr arises from r, there may be an alternative set in rr

C
(P,w) that does not cover

any in rr
C
(P ∧¬S,w),61 even if P and P ∧¬S are metaphysically equivalent. If we had assumed that

propositions are sets of metaphysically possible scenarios or worlds, then M-equiv would basically
be unavoidable, but for generality I have not assumed such a view (recall §1.1).

As for multi-premise closure, without further assumptions about r or about how rr arises from r,
Theorem 2 does not guarantee that rr satisfies Multi or, as a special case, (KP & KP ′)⇒ K(P ∧P ′).
The reason is that someone who knows P according to rr, so has done enough work to know every
C ∈ c(P ),62 and knows P ′ according to rr, so has done enough work to know every C ′ ∈ c(P ′),
has not necessarily done enough work to know P ∧ P ′ according to rr, because there may be some

P ∨ Q.) The move to a framework that includes partial situations is fully compatible with the multipath picture of
knowledge, though I cannot go into details here (see Holliday 2014c). The general idea that the range of alternatives
that one must eliminate in order to know some Q depends on what Q is about, contrary to Hawthorne’s equivalence
principle, is due to Yablo (2011; 2012; 2014). However, his specific view of the connection between closure and subject
matter disagrees with some of the views about closure in this paper (recall footnote 40).

59This argument (like that of Hawthorne 2004, 41) reflects the fact, which should be obvious to students of modal
logic, that together the principles (KP &�(P ↔ Q))⇒ KQ and K(P ∧Q)⇒ (KP &KQ) (or KP ⇒ K(P ∨Q)) suffice
to derive (KP &�(P → Q))⇒ KQ, where � is a normal modal operator.

60Epistemologists typically assume that knowing a conditional P → ¬S, where P is a ordinary proposition and S
is a metaphysically incompatible skeptical hypothesis, does not require eliminating skeptical S-scenarios.

61One can easily verify this by comparing the the CCNFs of p and p ∧ ¬s for TF-atomic p and s.
62Here I mean c(CCNF(P )), but I will write ‘c(P )’ for convenience.
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D ∈ c(P ∧P ′) that is not a superclause of anything in c(P ) or c(P ′); in Dretskean terms, D may be
a new “heavyweight” TF-consequence of P ∧ P ′, which neither P nor P ′ had individually. Theorem
2 does guarantee that if an agent knows two TF-atomic (or TF-basic) propositions p and p′, then
she has done enough empirically to know p ∧ p′; every D ∈ c(p ∧ p′) is a superclause of something
in c(p) or c(p′), so the problem of new heavyweight consequences does not arise.63 But if P and P ′

are complex, then the aggregation principle is not guaranteed without further assumptions, given
the possibility of new heavyweight consequences coming from the combination of P and P ′. On this
view, it is not necessarily harmless to combine P and P ′ with ∧; the impression that nothing more
is required to know P ∧ P ′ (“just put the ∧ in between!”) may be an illusion induced by too much
focus on syntax. The same points apply to closure under known implication:64 p and p→ q together
have what may be a heavyweight TF-consequence, q, that neither has individually.65

Much more could be said about views that limit the scope of closure. But let us change gears:
is it possible to reject the skeptical argument while defending the strong closure principles? The
only real way to do so is to maintain that for every S as in (18) for a known P , ¬S can be known
without a requirement of eliminating S-scenarios. In the standard alternatives picture, this would
force defenders of strong closure to say that every such contingent ¬S can be known without any
requirement of eliminating scenarios, i.e., rC (¬S,w) = ∅, which is the problem of vacuous knowledge
from §2.4. For if any scenarios had to be eliminated, they would be S-scenarios according to the
contrast/enough condition that I have argued is built in to the standard alternatives picture (§2.5).

However, in the multipath picture, defenders of strong closure can say that knowing ¬S does
require eliminating scenarios: a hard path to fulfilling this requirement is to eliminate some nonempty
set of skeptical S-scenarios, in line with enough and noVK from §3.3 - §3.4; but another path
is to go via an ordinary proposition P that entails ¬S, eliminating all of the scenarios in some
set A ∈ rC (P,w) of (¬P ∧ ¬S)-scenarios, rejecting semi-contrast for ¬S, but consistently with
overlap from §3.3. That’s why not just anyone gets to know the contingent ¬S, but someone
who did the epistemic work to know an ordinary P that entails ¬S can.66 This is certainly an
improvement over the vacuous knowledge story. What it shows, I think, is that the issue of how
far closure holds ultimately comes down to the question of how far contrast/semi-contrast fails.
In particular, since there is no guarantee that S will be complex, defenders of strong closure must
reject basic-contrast, basic-semi-contrast, and basic-singlepath.

We have seen that defenders of strong closure benefit from the multipath picture. Can they also
view a multipath function rr as arising from a singlepath function r? The simplest way to do so is

63This assumes that p and p′ do not have further structure, ignored by the truth-functional analysis given here,
such that p ∧ p′ has new heavyweight consequences.

64Of course, there is a close connection between the multi-premise principles of closure under known implication,
(KP &K(P → Q)) ⇒ KQ, and (KP &KP ′) ⇒ K(P ∧ P ′). First, the former essentially guarantees the latter: by
closure under known implication, an agent who knows P and the tautology P → (P ′ → (P ∧ P ′)) has done enough
empirical work to know P ′ → (P ∧P ′), so if the agent also knows P ′, then by closure under known implication again
she has done enough empirical work to know P ∧ P ′. Second, the latter guarantees the former assuming TF-cover:
if (KP &KP ′)⇒ K(P ∧ P ′) holds, then an agent who knows P and knows P → Q must have done enough empirical
work to know P ∧ (P → Q), which by TF-cover requires that she has done enough empirical work to know Q. Thus,
assuming single-premise logical closure, the two multi-premise principles stand or fall together.

65Can a TF-consequence Q of P have a “heavyweight” status compared to the “lightweight” status of P , requiring
more epistemic work to know? I don’t think so. See Appendix A for a related discussion.

66This is compatible with the super-shifty contextualist view (recall §2.4) that whenever we mention or think about
S, we shift the context from C to a C′ relative to which the agent does not count as knowing ¬S. The benefit to
super-shifty contextualists of adopting the multipath picture is that they are no longer forced to say that relative to
C, the agent counted as knowing ¬S no matter what epistemic work she had done; instead, the reason she could count
as knowing ¬S relative to C is that she did the epistemic work required to know the P that entails ¬S.
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to replace
rr
C
(C,w) = {rC (C ′, w) | C ′ is a subclause of C} (14)

from Theorem 2 with
rr
C
(P,w) = {rC (P ′, w) | P ′

w is a subset of P }.67 (23)

Then clearly rr satisfies M-cover; if r satisfies r-RofA, then rr satisfies r-RofA; if r satisfies contrast,
then rr satisfies enough and overlap; if r satisfies noVK, then rr satisfies noVK; and if r satisfies
alpha (recall §2.3), then rr satisfies the analogous multipath principle,

alpha – ∀A1 ∈ rC (P,w) ∀A2 ∈ rC (Q,w) ∃B ∈ rC (P ∧Q,w): B ⊆ A1 ∪A2.

for (KP & KP ′)⇒ K(P ∧ P ′). It follows that rr guarantees full single- and multi-premise closure.
I will not try to decide here between the two positions on closure outlined above. In essence,

defenders of strong closure think that knowledge is easier to come by than do defenders of limited
closure. Does the former camp make knowledge too cheap? Without answering this question, we
can say this much: at least in the multipath picture, no fallibilist need be committed to the cheapest
knowledge of all—the vacuous knowledge of the standard alternatives picture in §2.4.

5 Conclusion

There are multiple paths to knowing some propositions about the world. This sounds like a tru-
ism, but it has yet to be fully appreciated in the theory of knowledge. According to the standard
alternatives picture assumed in so much fallibilist epistemology, knowing a proposition involves elim-
inating a single set of alternatives. Proposition 1 in §2.5 suggests that this picture is fundamentally
flawed. In its place, I proposed a multipath picture of knowledge for fallibilists, according to which
knowing a proposition involves eliminating all of the alternatives in one of the proposition’s alter-
native sets, of which there may be many. Proposition 2 in §3.4 showed that this picture solves the
problems raised by Proposition 1 for the standard alternatives picture. Moreover, the Multipath
Theorem in §3.5 showed how the multiple alternative sets for a proposition may emerge out of the
standard alternatives picture in a way that depends on the structure of the proposition. Unlike the
standard alternatives picture, the multipath picture allows fallibilists to maintain uncontroversial
(single-premise, logical) epistemic closure principles without having to make extreme assumptions
about the ability of humans to know empirical truths without empirical investigation. It also offers
benefits to those who endorse more controversial (multi-premise and metaphysical) closure princi-
ples, thereby taking a more liberal attitude about paths to knowledge. Hard questions remain about
how far fallibilists should claim that closure goes. But nobody ever said being a fallibilist was easy.

67This way of achieving strong closure bears some resemblance to the more sophisticated recursive tracking theory
of Roush (2005; 2012). So does the recursive definition in Theorem 2, although in Theorem 2 the alternative sets for
a proposition P are determined by the structure of the proposition itself and the alternative sets for its parts, rather
than the alternative sets for all propositions that (are known to) entail P .

34



Appendix A: Negation, Contrast, and Closure

The rejection of the single alternative set assumption in §3.1 and the contrast assumption in §3.3
can help us make sense of an otherwise puzzling feature of Nozick and Dretske’s views on closure,
concerning the following closure principles:

KP ⇒ K¬(¬P ∧ S); (24)

K¬P ⇒ K¬(P ∧ S). (25)

Beginning with Nozick (1981, 228f), he explicitly rejects (24): “it is possible for me to know p yet
not know the denial of a conjunction, one of whose conjuncts is not-p. I can know p yet not know
. . . not-(not-p & SK). . . . However, we have seen no reason to think knowledge does not extend across
known logical equivalence.” Only a page later Nozick (1981, 230) writes: “It seems that a person can
track ‘Pa’ without tracking ‘there is an x such that Px’. But this apparent nonclosure result surely
carries things too far. As would the apparent result of nonclosure under the propositional calculus
rule of inferring ‘p or q’ from ‘p’. . . .”68 Let us write the latter principle as KP ⇒ K(P ∨Q). What
is interesting is that Nozick’s views in these passages are inconsistent.69 Surely Nozick knows that
P ∨¬S is logically equivalent to ¬(¬P ∧S), so given his endorsement of closure under known logical
equivalence, if he knew P ∨ ¬S then he would know ¬(¬P ∧ S). But he says he does not know
¬(¬P ∧S), so he must not know P ∨¬S. But he also says he knows P and accepts KP ⇒ K(P ∨Q),
so he should know P ∨ ¬S. (We can assume Nozick makes the relevant inferences.)

I do not think this inconsistency was simply a mistake. Instead, I suspect that it reflects an
intuition that Nozick shares with others, including Dretske. While Nozick explicitly endorses KP ⇒
K(P ∨Q) and explicitly rejects (24), Dretske explicitly endorses KP ⇒ K(P ∨Q) and is committed to
rejecting (25). First, Dretske (1970) says that “it seems to me fairly obvious that if someone . . . knows
that P is the case, he knows that P or Q is the case” (1009). Second, Dretske (1970, 1015-1016)
claims in his famous zebra case that the zoo visitor does not know that the animal in the zebra cage
is not a mule (M) disguised to look like a zebra (D): ¬K¬(M ∧D). But I assume that as a strong
fallibilist, Dretske will allow that in ordinary cases of observing zebras at the zoo, people who know
the difference between zebras and mules know that the zebras are not mules: K¬M . But together
these commitments force Dretske to deny (25). Then since Dretske endorses KP ⇒ K(P ∨ Q), an
instance of which is K¬M ⇒ K(¬M ∨ ¬D), Dretske must deny K(¬M ∨ ¬D)⇒ K¬(M ∧D).

Thus, Dretske must deny the “De Morgan” closure principle K(±P ∨ ±Q) ⇒ K¬(∓P ∧ ∓Q),70

and there is pressure for Nozick to do the same to resolve the inconsistency in his views.
In my view, (24) and (25) seem problematic because their consequents claim knowledge that

something is not the case, and this negation brings with it the idea of contrast that I have argued
fallibilists should not accept in general. In particular, I argued that contrast can fail for disjunctions
like P ∨ ¬S; for I agree with Dretske, Nozick, and Kripke that one path to knowing P ∨ ¬S is via
knowing P , and I agree with fallibilists in general that coming to know P may not require eliminating
(¬P ∧ S)-scenarios. But can one come to know ¬(¬P ∧ S) without eliminating (¬P ∧ S)-scenarios?

With the negated conjunction, I expect some people’s intuitions to shift in favor of contrast,
68The second quoted sentence is from the footnote to the first sentence.
69Kripke (2011, 199) also discusses the inconsistency, pointed out to him by Assaf Sharon and Levi Spectre.
70Notation: ±P is either P or ¬P ; if ±P is P , then ∓P is ¬P ; if ±P is ¬P , then ∓P is P .
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perhaps because the processing of negations in non-epistemic contexts in natural language involves
the construction of contrast classes (see Oaksford and Stenning 1992). In Dretske’s example, when
considering a disjunction like ¬M ∨ ¬D, one may recognize that knowing ¬M provides a path to
knowing the disjunction; but when considering the equivalent ¬(M∧D), one might have a competing
intuition in favor of contrast and the thought that (M ∧D)-scenarios must be eliminated, which
fallibilists would not insist on for knowing ¬M . (One might also have the mistaken intuition that ¬D
follows from ¬(M ∧D), so D-scenarios must be eliminated.71) There are three ways the explanation
might go from here, depending on the kind of significance assigned to these intuitions:

1. Epistemic: K(±P ∨ ±Q) ⇒ K¬(∓P ∧ ∓Q) is not a valid principle even for a fixed context,
because contrast may apply to rC (¬(∓P ∧ ∓Q), w) without applying to rC (±P ∨ ±Q,w).

2. Pragmatic: K(±P∨±Q)⇒ K¬(∓P∧∓Q) is valid, but when an attributor claims that an agent
knows a negated proposition N , this has a tendency to pragmatically trigger the (mistaken)
intuition that contrast must hold for rC (N,w).

3. Contextual : K(±P ∨±Q)⇒ K¬(∓P ∧∓Q) is valid for a fixed context, but when an attributor
claims that an agent knows a negated proposition N , this has a tendency to change the context
to one in which contrast holds for rC′ (N,w) (cf. DeRose 1995).

In my view, the pragmatic or contextual explanations are more plausible than the epistemic, although
I will not argue for this here.72 The point I wish to make is that the multipath picture has the
potential to explain divergent intuitions concerning knowledge of disjunctions and knowledge of
equivalent negated conjunctions in terms of the keys ideas of §3.1 and §3.3.

Appendix B: Proof of the Multipath Theorem

In this appendix, I prove the Multipath Theorem of §3.5. To do so, we need two preliminary lemmas.
For any proposition P and truth assignment v : at(P )→ {T, F}, let v(P ) ∈ {T, F} be the truth

value of P calculated from v in the usual recursive way.

Lemma 1. For any proposition P that is not a TF-tautology:

CCNF(P ) =
∧

v:at(P )→{T,F}&v(P )=F

 ∨
p∈at(P ) & v(p)=F

p ∨
∨

p∈at(P ),v(p)=T

¬p

 .

Recall that for P in CCNF (not a TF-tautology), C ∈ c(P ) iff C is a subclause of a conjunct of
P such that every nontrivial superclause C ′ of C with at(C ′) = at(P ) is a conjunct of P .

71Wright (2014) also warns his reader not to confuse the likes of ¬D and ¬(M ∧ D): “we don’t have a visual
warrant for thinking that those animals have not been cleverly disguised in a visually undetectable way, but we do,
in the relevant circumstance, have a visual warrant for thinking that those animals are not mules that have been so
disguised. Maybe we are confused by the operation of some kind of implicature here: maybe saying, or thinking, ‘It is
not the case that those animals are cleverly disguised mules’ somehow implicates, in any context of a certain (normal)
kind, that ‘Those animals have not been cleverly disguised’. But anyway, it doesn’t entail it: not-(P&Q), dear reader,
does not entail not-Q!” (234-5).

72See Roush 2010 for arguments to the effect that if an agent knows ±P , then she can know ¬(∓P ∧ S) for any S
you like, and that intuitions to the contrary can be explained away.

36



Lemma 2. For any proposition P in CCNF (not a TF-tautology), the following are equivalent:

1. C ∈ c(P );

2. C is a nontrivial TF-consequence of P with at(C) ⊆ at(P ).

Proof. Since P is not a TF-tautology, every conjunct of CCNF(P ) is a nontrivial clause, all of whose
subclauses are nontrivial. Thus, any C ∈ c(P ) is nontrivial and obviously at(C) ⊆ at(P ). Let us
now show that if C ∈ c(P ), then C is a TF-consequence of P , by showing that any truth assignment
v : at(P )→ {0, 1} that makes C false also makes P false. First, define

C ′ = C ∨
∨

p∈At(P )−At(C) & v(p)=F

p ∨
∨

p∈At(P )−At(C) & v(p)=T

¬p.

Note that since v makes C false, v makes C ′ false by construction. Also note that since C ′ is a
nontrivial superclause of C with at(C ′) = at(P ), it follows from C ∈ c(P ) that C ′ is a conjunct of
P . Thus, since v makes C ′ false, v makes P false.

Let us now show that if C is a nontrivial TF-consequence of P with at(C) ⊆ at(P ), then C ∈ c(P ).
For a C as described, every truth assignment v : at(P )→ {T, F} that makes C false makes P false.
Since C is nontrivial, there is such a v that makes C false. Thus,

C =
∨

p∈at(C) & v(p)=F

p ∨
∨

p∈at(C) & v(p)=T

¬p. (26)

Since P is in CCNF and v makes P false,

C∗ :=
∨

p∈At(P ) & v(p)=F

p ∨
∨

p∈At(P ) & v(p)=T

¬p (27)

is a conjunct of P by Lemma 1. Since at(C) ⊆ at(P ), it follows from (26) and (27) that C is a
subclause of C∗, so C is a subclause of a conjunct of P . It only remains to show that every nontrivial
superclause C ′ of C with at(C ′) = at(P ) is a conjunct of P . Since C is a TF-consequence of P , so is
C ′. Thus, every v that makes C ′ false makes P false. Since C ′ is nontrivial, there is such a v. Thus,

C ′ =
∨

p∈at(C′) & v(p)=F

p ∨
∨

p∈at(C′) & v(p)=T

¬p. (28)

Since P is in CCNF and v makes P false,

C? :=
∨

p∈At(P ) & v(p)=F

p ∨
∨

p∈At(P ) & v(p)=T

¬p (29)

is a conjunct of P by Lemma 1. But since at(C ′) = at(C), C ′ = C?, so C ′ is a conjunct of P .

Theorem 2 (Multipath Theorem). Given a standard alternatives function r, define a multipath
alternatives function rr as follows: for any clause C, define

rr
C
(C,w) = {rC (C ′, w) | C ′ is a subclause of C}; (30)
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for any CCNF conjunction C1 ∧ · · · ∧ Cn of clauses with c(C1 ∧ · · · ∧ Cn) = {D1, . . . , Dm}, define

rr
C
(C1 ∧ · · · ∧ Cn, w) = {A ⊆W | ∃A1 ∈ rr

C
(D1, w) . . . ∃Am ∈ rr

C
(Dm, w) : A =

⋃
1≤i≤m

Ai}; (31)

and if P is not in CCNF, define

rr
C
(P,w) = rr

C
(CCNF(P ), w). (32)

Then rr satisfies basic-singlepath and TF-cover; if r satisfies r-RofA, then rr satisfies r-RofA;
if r satisfies contrast, then rr satisfies basic-contrast, enough, and overlap; if r satisfies noVK,
then rr satisfies noVK; for any clause P , if r is fallibilistic in C at w with respect to P , then rr is
fallibilistic in C at w with respect to P ; and for any P in CCNF, if r is plurally fallibilistic in C at
w with respect to c(P ), then rr is fallibilistic in C at w with respect to P .

Proof. Given (32), we need only consider propositions in CCNF. For any TF-basic L, (30) implies

rC (L,w) = {rC (L,w)}, (33)

which establishes basic-singlepath and basic-contrast given contrast for r.
For r-RofA, suppose w 6∈ P . Then for some conjunct of P labeled as Di in c(P ), w 6∈Di, which

implies that for every subclause D′i of Di, w 6∈D′
i, which with r-RofA implies that w ∈ rC (D

′
i, w). It

follows by (30) that w ∈ Ai for every choice of Ai in (31), so w ∈
⋂

rC (P,w).
For enough, consider P with c(P ) = {D1, . . . , Dm}. For 1 ≤ i ≤ m, (30) implies

rC (Di, w) ∈ rC (Di, w), (34)

which with (31) implies ⋃
1≤i≤m

rC (Di, w) ∈ rC (P,w). (35)

Hence for enough it suffices to show ⋃
1≤i≤m

rC (Di, w) ⊆W − P . (36)

For 1 ≤ i ≤ m, since Di ∈ c(P ), Di is a TF-consequence of P , which implies W−Di ⊆W−P ; and
given contrast, rC (Di, w) ⊆W −Di, so rC (Di, w) ⊆W − P . Hence (36) holds.

For noVK, consider P of the form C1 ∧ · · · ∧ Cn. If Pw 6= Ww, i.e., Ww 6⊆ P , then for some
conjunct Ci = L1 ∨ · · · ∨ Lk of P , Ww 6⊆ Ci. It follows that for any X ⊆ {1, . . . , k},

Ww 6⊆
∨
i∈X

Li, (37)

which with noVK implies
rC (

∨
i∈X

Li, w) 6= ∅. (38)

It follows by (30) that ∅ 6∈ rC (Ci); and since Ci ∈ c(P ), it follows from (31) that if ∅ 6∈ rC (Ci, w),
then ∅ 6∈ rC (P,w), because any A ∈ rC (P,w) must contain some Ai ∈ rC (Ci, w). Hence ∅ 6∈ rC (P,w).
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For overlap, consider P with c(P ) = {D1, . . . , Dm}, where Di = Li
1 ∨ · · · ∨ Li

ni
. Suppose there

is some A ∈ rC (P,w) with A ∩ P 6= ∅. It follows by (31) and (30) that there are X1, . . . , Xm with
Xi ⊆ {1, . . . , ni} such that

A =
⋃

1≤i≤m

rC (
∨

j∈Xi

Li
j , w). (39)

Given contrast, for all 1 ≤ i ≤ m, we have

rC (
∨

j∈Xi

Li
j , w) ⊆W −

∨
j∈Xi

Li
j . (40)

Then where
Q =

∧
1≤i≤m

(
∨

j∈Xi

Li
j), (41)

it follows from (39) and (40) that A ∩Q = ∅. One can also check that

c(CCNF(Q)) = {
∨

j∈Xi

Li
j | 1 ≤ i ≤ m}, (42)

which with (31), (30), and (39) implies A ∈ rC (Q,w). Finally, since for every conjunct C of P , there
is a subclause C ′ of C that is a conjunct of Q, P is a TF-consequence of Q, so Q ⊆ P . Putting this
together with A ∩Q = ∅ and A ∩ P 6= ∅, we have Q ( P . Hence overlap holds.

For TF-cover, we first prove that for any P , Q in CCNF, if P and Q are TF-equivalent, then

∀A ∈ rC (P,w) ∃B ∈ rC (Q,w) : B ⊆ A; (43)

∀A ∈ rC (Q,w) ∃B ∈ rC (P,w) : B ⊆ A. (44)

If at(P ) = at(Q), then by the CCNF uniqueness result cited in §3.5, P and Q are the same up to
reordering of conjuncts and disjuncts, which implies rC (P,w) = rC (Q,w). If at(P ) 6= at(Q), then
suppose without loss of generality that there is some q ∈ at(Q) − at(P ). Suppose P is of the form
C1 ∧ · · · ∧ Cn. Then given the equivalence of Ci and (Ci ∨ q) ∧ (Ci ∨ ¬q), we can use the fact that
P is TF-equivalent to a P q in CCNF of the form Cq

1 ∧ · · · ∧ C
q
2n, where for 1 ≤ i ≤ 2n:

Cq
i =

C i+1
2
∨ q if i is odd;

C i
2
∨ ¬q if i is even.

(45)

Suppose c(P ) = {D1, . . . , Dj}. It follows from the definitions of c and P q that

c(P q) = {E1, . . . , Ek} = c(P ) ∪ {D1 ∨ q,D1 ∨ ¬q, . . . ,Dj ∨ q,Dj ∨ ¬q}.73 (46)
73For 1 ≤ i ≤ k:

Ei =


Di if i ≤ m
D (i−m)+1

2

∨ q if i > m and i is odd;

D i−m
2
∨ ¬q if i > m and i is even.
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Now let us prove the following:

∀A ∈ rC (P,w) ∃B ∈ rC (P
q, w) : B ⊆ A; (47)

∀A ∈ rC (P
q, w) ∃B ∈ rC (P,w) : B ⊆ A. (48)

For (47), consider some A ∈ rC (P,w), so by (31),

∃A1 ∈ rC (D1, w) . . . ∃Aj ∈ rC (Dj , w) : A =
⋃

1≤i≤j

Ai. (49)

By (30), for all 1 ≤ i ≤ m, Ai ∈ rC (Di, w) implies Ai ∈ rC (Di∨ q, w) and Ai ∈ rC (Di∨¬q, w), which
with (46) and (49) implies

∃B1 ∈ rC (E1, w) . . . ∃Bk ∈ rC (Ek) : A =
⋃

1≤i≤k

Bi.
74 (50)

Hence A ∈ rC (P
q, w) according to (31). So taking B = A establishes (47).

For (48), consider some A ∈ rC (P
q, w), so by (15),

∃A1 ∈ rC (E1, w) . . . ∃Ak ∈ rC (Ek, w) : A =
⋃

1≤i≤k

Ai, (51)

where c(P q) = {E1, . . . , Ek} as above. Given {D1, . . . , Dm} ⊆ {E1, . . . , Ek}, (31) and (51) imply

∃A1 ∈ rC (D1, w) . . . ∃Am ∈ rC (Dm, w) :
⋃

1≤i≤m

Ai ∈ rC (P,w) and
⋃

1≤i≤m

Ai ⊆ A, (52)

so taking B =
⋃

1≤i≤m
Ai establishes (48).

The point of proving (47) and (48) is that we can repeat the process for any other atomic
proposition that is in Q but not P , obtaining P qq′ , P qq′q′′ , etc., until we obtain a final PQ in CCNF
such that (47) and (48) hold for P and PQ (in place of P q) and such that at(PQ) = at(Q), so
rC (P

Q, w) = rC (Q,w). Together these results imply our original goals of (43) and (44) for P and Q.
We can now prove that TF-cover holds. If Q is a TF-consequence of P , then P is TF-equivalent

to P ∧ Q; and Q is TF-equivalent to (Q ∧ P ) ∨ (Q ∧ ¬P ). Let R = CCNF(P ∧ Q) and S =

CCNF((Q ∧ P ) ∨ (Q ∧ ¬P )). It follows by the argument for TF-equivalents above that

∀A ∈ rC (P,w) ∃B ∈ rC (R,w) : B ⊆ A; (53)

∀A ∈ rC (S,w) ∃B ∈ rC (Q,w) : B ⊆ A. (54)

Since at(R) = at(S), we can construct a joint truth table for R and S. Each conjunct of R cor-
responds to a row of the truth table that makes R false, and similarly for S; and since S is a
TF-consequence of R, every row of the truth table that makes S false makes R false. Hence every

74For 1 ≤ i ≤ k:

Bi =


Ai if i ≤ m
A (i−m)+1

2

if i > m and i is odd;

A i−m
2

if i > m and i is even.
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conjunct of S must be a conjunct of R, modulo reordering of its disjuncts. It follows that c(S) ⊆ c(R),
which with (31) implies

∀A ∈ rC (R,w) ∃B ∈ rC (S,w) : B ⊆ A. (55)

Together (53), (54), and (55) imply

∀A ∈ rC (P,w) ∃B ∈ rC (Q,w) : B ⊆ A, (56)

which establishes TF-cover.
For the final part of the theorem about fallibilism, if r is fallibilistic in C at w with respect to a

clause P , so rC (P,w) ( Ww−P , then since (30) implies rC (P,w) ∈ rC (P,w), there is an A ∈ rC (P,w)

such that A ( Ww−P , so r is fallibilistic in C at w with respect to P . For the case of P in CCNF,
if r is plurally fallibilistic in C at w with respect to c(P,w) = {D1, . . . , Dm}, then by definition,⋃

1≤i≤m

rC (D
′
i, w) ( Ww − (D1 ∧ · · · ∧Dm) (57)

for some subclauses D′1, . . . , D′m of D1, . . . , Dm. Then since D1 ∧ · · · ∧Dm is TF-equivalent to P ,⋃
1≤i≤m

rC (D
′
i, w) ( Ww − P . (58)

Finally, by (31) and (30), ⋃
1≤i≤m

rC (D
′
i, w) ∈ rC (P,w), (59)

which with (58) implies that r is fallibilistic in C at w with respect to P .
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