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H.L. Smith
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Abstract. Conditions for the existence of a stable equilibrium and for the
existence of an asymptotically stable equilibrium for a strongly order preserv-
ing semiflow are presented. Analyticity of the semiflow and the compactness
of certain subsets of the set of equilibria are required for the latter and yield
finiteness of the equilibrium set. Our results are applied to semilinear para-
bolic partial differential equations and to the classical Kolmogorov competition
system with diffusion.

1. Introduction and Preview of Results. It is well known that the generic
orbit of a strongly order preserving semiflow, all of whose orbits are precompact,
converges to the set E of equilibria and that, under mild additional hypotheses,
it converges to a single equilibrium. See [11, 29, 12, 27]. Furthermore, an omega
limit set not consisting of equilibria, is necessarily unstable in a strong sense. It is
therefore reasonable to expect that there exist equilibria with some stability prop-
erties. The purpose of the present paper is to establish conditions for the existence
of a stable equilibrium for a strongly order preserving semiflow and for the exis-
tence of an asymptotically stable equilibrium under certain additional assumptions.
These additional assumptions require that E, or some closed subset of it, be com-
pact and that a maximal totally ordered subset of E be finite. Such a seemingly
strong assumption may appear to be difficult to verify. However, if the semiflow is
dissipative then E will be compact and, with the additional assumption that the
semiflow is analytic, a result of Jiang and Yu [15] allows one to conclude that an
equilibrium is either isolated as a member of E or belongs to an analytic monotone
arc of equilibria. This arc may be continued to a global analytic monotone arc
but the assumed compactness of E may conflict with the continuability of the arc,
producing a contradiction, enabling us to conclude that our finiteness assumption
holds and therefore, the existence of an asymptotically stable equilibrium. The
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386 M.W. HIRSCH AND H.L. SMITH

analyticity hypothesis was previously used by Smith and Thieme [29] to rule out
the existence of totally ordered connected sets of equilibria and thereby to conclude
that the set of asymptotically stable points is dense for strongly order preserving
semiflows on Banach lattices.

Our results apply to the wide variety of differential equations that generate
monotone semiflows (see e.g. [12, 27]) but they are most useful when the usual
linearization technique becomes unfeasible — that is, for infinite dimensional prob-
lems such as delay-differential equations and systems of quasimonotone reaction
diffusion systems. Many such systems arising in applications are analytic so this
assumption is not so restrictive. See Cosner and Cantrell [1] for examples of re-
action diffusion systems in ecology. For a single reaction diffusion equation with
nonlinearity not depending on the gradient of the unknown function, a great deal
is known about the existence of asymptotically stable equilibria and the behavior
of solutions by monotonicity techniques as well as by variational methods. See for
example Lions [16], Martin [17], Matano [18, 19], Simon [25], Poláčik [24], Du [5],
Zhao [31]. Even more is known in the special case of one spatial variable; see Hale
[8] for a recent review.

In the remainder of this section we preview some of our results, deferring proofs
to a later section. We begin with some examples which are merely intended to
illustrate the kinds of results possible with no intent at generality.

Consider the reaction-diffusion equation for describing the density of a popula-
tion occupying a region Ω ⊂ IRm with smooth lethal boundary (other boundary
conditions and more general elliptic operators can be treated):

ut = d∇2u + uf(x, u), x ∈ Ω (1)
u = 0, x ∈ ∂Ω

Obviously, u = 0 is an equilibrium. Denote by λ the principal eigenvalue of

λu = d∇2u + uf(x, 0), x ∈ Ω (2)
u = 0, x ∈ ∂Ω

Let X = Lp(Ω). The Laplace operator with Dirichlet boundary conditions induces
a closed linear operator A on X which generates an analytic, strongly positive,
compact semigroup eAt. Equation (1) then defines a local semiflow on the fractional
power space Y := Xα where we choose α ∈ (1/2, 1) and p > m such that 2α−m/p >
1 [9]. Xα continuously imbeds in C1(Ω). Y is strongly ordered relative to the cone
Y+ = {u ∈ Xα : u ≥ 0} in the sense that Y+ has non-empty interior in Y . We
write u ≤ v when v − u ∈ Y+, u < v when v − u ∈ Y+ \ {0}, and u ¿ v when
v − u ∈ IntY+. Let E denote the set of (non-negative) equilibria of (1).

Theorem 1. Let f be analytic and assume that there is u0 > 0 such that

f(x, u) < 0, u > u0, x ∈ Ω.

Then E is finite and one of its points is asymptotically stable relative to Y+. In
fact, this same point is asymptotically stable point relative to the positive cone in
C1(Ω).

Remark 1. Under our assumptions, a result of Simon [25] shows that every non-
negative solution converges to an equilibrium.
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Theorem 1, while certainly not surprising in light of results of Lions [16], never-
theless adds significant stability information to our understanding of single-population
dynamics. It and our next result were motivated by the recent book of Cantrell
and Cosner [1] in which we note a lack of results on stability of equilibria for simple
population models.

Consider the equation

ut = d∇2u + F (x, u), x ∈ Ω (3)
u = 0, x ∈ ∂Ω

Theorem 2. Let F be analytic and suppose there are distinct real numbers a ≤ 0 ≤
b such that

F (x, u) > 0, u < a, F (x, u) < 0, u > b, x ∈ Ω.

Then the set E of equilibria in I := {u ∈ Y : a ≤ u(x) ≤ b, x ∈ Ω} is finite and there
exists an asymptotically stable equilibrium relative to I. It is also asymptotically
stable relative to the C1(Ω) norm.

The following example of the nonexistence of an asymptotically stable equilib-
rium for an analytic dissipative system is due to C. Cosner [2]. Suppose the largest
eigenvalue of

λu = ∇2u + au, x ∈ Ω (4)
u = 0, x ∈ ∂Ω

is positive for some a > 0. Then, the logistic equation

ut = ∇2u + u(a− u), x ∈ Ω (5)
u = 0, x ∈ ∂Ω

has a unique positive equilibrium w (see Cantrell & Cosner [1]) which is asymp-
totically stable relative to Y+ by Theorem 1. Now consider the degenerate Lotka-
Volterra competition system:

ut = ∇2u + u(a− u− v), x ∈ Ω
vt = ∇2v + v(a− u− v), x ∈ Ω (6)
u = v = 0, x ∈ ∂Ω

It has a continuum of solutions u = sw, v = (1 − s)w, 0 ≤ s ≤ 1. (These
correspond to the line of equilibria (as, a(1 − s)) for the ODE system.) Note that
this system is analytic, dissipative and strongly monotone (in the usual competitive
sense). It clearly doesn’t have an asymptotically stable equilibrium; instead, it has a
continuum of stable equilibria. Note that w = u+v satisfies (5) hence the manifold
of equilibria attracts all non-trivial initial data. In Theorem 3 below we show that
an attracting continua of equilibria is the only alternative to finiteness of E and
the existence of an asymptotically stable equilibrium for an analytic competitive
system.

We consider the general Kolmogorov competition system

ut = d1∇2u + uf1(x, u, v), x ∈ Ω
vt = d2∇2v + vf2(x, u, v), x ∈ Ω (7)
u = v = 0, x ∈ ∂Ω
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where fi is analytic, di > 0, and

∂fi

∂v
(x, u, v),

∂fi

∂u
(x, u, v) < 0, i = 1, 2. (8)

We assume that the trivial equilibrium E0 = (0, 0) is repelling and that there
exists unique single population equilibria E1 ≡ (ū(x), 0) and E2 ≡ (0, v̄(x)), each of
which attracts all non-trivial solutions starting on their respective coordinate axes.
See [27, 1] for such conditions.

Consider the linearization of (7) about E1. The eigenvalue problem associated
with the variational system at E1 is given by

λu = d1∇2u + u[f1(x, ū(x), 0) + ū(x)
∂f1

∂u
(x, ū(x), 0)] + ū(x)

∂f1

∂v
(x, ū(x), 0)v,

λv = d2∇2v + vf2(x, ū(x), 0), x ∈ Ω (9)
u = v = 0, x ∈ ∂Ω

The second equation decouples from the first and we denote by σ12 the principal
eigenvalue of

λv = d2∇2v + vf2(x, ū(x), 0), x ∈ Ω (10)
v = 0, x ∈ ∂Ω

The following is well known consequence of (8) (see e.g. Thm 8.3.2 [27]) :

(a) σ12 < 0 implies that all eigenvalues of (9) have negative real part and E1 is
asymptotically stable.

(b) σ12 ≥ 0 implies that it is a simple eigenvalue of (9), strictly larger than
any other, and the corresponding eigenspace is spanned by an eigenvector
z := (−U, V ) where U, V > 0 in Ω.

(c) σ12 > 0 implies that E1 is unstable.

(d) E1 is an isolated equilibrium in cases (a) and (c).

Similar considerations apply to the eigenvalue problem associated with E2 and σ21

is the corresponding principal eigenvalue. E denotes the set of equilibria of (7).
The system (6) generates a strictly monotone semiflow Φ on Y+×Y+ with respect

to the order relation ≤K generated by the cone K = Y+ × (−Y+) where, Y = Xα

and Y+ are as in Theorem 1.

Theorem 3. Assume the hypotheses as described above. Namely, the fi are ana-
lytic, E0 is a repeller and there are unique single-population equilibria Ei, i = 1, 2.
Then either

(i) there exists a strongly ¿K-monotone analytic arc C of equilibria connecting
E1 to E2 and E = {E0} ∪ C, or

(ii) E is finite and there exists an asymptotically stable equilibrium.

If (i) holds, then every orbit except E0 converges to a single equilibrium in C. If
either σij 6= 0, then (ii) holds. If σij > 0, i 6= j, then there exists an asymptotically
stable equilibrium (u∗, v∗) ∈ Y+ × Y+ with u∗(x) > 0, v∗(x) > 0, x ∈ Ω.
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By a strongly monotone analytic arc C of equilibria, we mean there is an analytic
mapping g : [0, 1] → Y+ × Y+, satisfying g(0) = E2, g(1) = E1, s < t ⇒ g(s) ¿K

g(t), and C = {g(t) : 0 ≤ t ≤ 1} is contained in E.
The result should extend to abstract two-species competition dynamics as treated

by Hsu et al. [13] and Smith & Thieme [30].
For related results on the existence, uniqueness and stability of positive solutions

of competitive systems with diffusion see [4, 1, 6, 5].
The flavor of our abstract results can be seen from the following result (Corol-

lary 2 in the next section) providing conditions for the existence of a stable (asymp-
totically stable) equilibrium of a monotone semiflow.

Theorem 4. Let Y be an ordered Banach space and X ⊂ Y either a nonempty
open set, a closed order interval, or a closed subcone of Y +. Let Φ be a strongly
order preserving semiflow on X with every orbit closure compact and let E denote
the set of equilibria. Assume that some maximal totally ordered subset R ⊂ E is
nonempty and compact, and that one of the following two statements holds:

(a) Y is normally ordered
(b) Y is strongly ordered, X is open in Y , Φ is strongly monotone, and every

equilibrium has a neighborhood attracted to a compact set.
Then there exists a stable equilibrium, and an asymptotically stable equilibrium when
R is finite.

See the following section for definitions. We note that the existence of a maximal
totally ordered subset R of E follows from Zorn’s Lemma and the compactness
assumption on R follows if E is compact, which in turn will follow from dissipativity
of Φ.

2. Main Results.

2.1. Existence of asymptotically stable equilibria. We assume, unless explic-
itly mentioned, that X is an ordered metric space with closed order relation ≤.
We write x < y if x ≤ y and x 6= y and x ¿ y if u ≤ v for all u in some neigh-
borhood of x and all v in some neighborhood of y. Order intervals are defined by
[u, v] = {x ∈ X : u ≤ x ≤ v} and [[u, v]] = {x ∈ X : u ¿ x ¿ v}.

The metric space X is normally ordered if there exists a normality constant κ > 0
such that d(x, y) ≤ κd(u, v) whenever u, v ∈ X and x, y ∈ [u, v]. In a normally
ordered space order intervals are bounded and the diameter of [u, v] goes to zero
with d(u, v).

Let Φ : [0,∞) × X → X be a semiflow on X. The orbit of z, denoted by
O(z), consists of {Φt(z) : t ≥ 0} and its omega limit set is denoted by ω(z). Let
E = {x ∈ X : Φt(x) = x, t ≥ 0} be the set of equilibria. Φ is monotone if x ≤ y
implies Φt(x) ≤ Φt(y), t ≥ 0. It is strictly (strongly) monotone if x < y implies
Φt(x) < Φt(y) (Φt(x) ¿ Φt(y)) for t > 0. Φ is strongly order-preserving (SOP) if Φ
is monotone and whenever x < y there exist neighborhoods U, V of x, y respectively,
and t0 ≥ 0, such that Φt0(U) ≤ Φt0(V ).

We assume, unless explicitly mentioned to the contrary, that Φ is an SOP semi-
flow on the ordered metric space X with the property that all orbits have compact
closure.

The diameter of a set Z is diamZ := supx,y∈Z d(x, y).
We now introduce some familiar stability notions. A point x ∈ X is stable

(relative to R ⊂ X) if for every ε > 0 there exists a neighborhood U of x such that
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diamΦt(U∩R) < ε for all t ≥ 0. In case R = X, the set of stable points is denoted
by S. x is stable from above (respectively, from below) if x is stable relative to the
set R of points ≥ x (resp., ≤ x). The set of points stable from above (resp., below
is denoted by S+ (resp., S−).

The basin of x in R is the union of all subsets of R of the form V ∩ R where
V ⊂ X is an open neighborhood of x such that

lim
t→∞

diam Φt(V ∩ R) = 0

Notice that ω(x) = ω(y) for all y in the basin. If the basin of x in R is nonempty,
we say x is asymptotically stable relative to R. This implies x is stable relative to
R. If x is asymptotically stable relative to X we say x is asymptotically stable. The
set of asymptotically stable points is an open set denoted by A. x is asymptotically
stable from above (respectively, below) if it is asymptotically stable relative to the
set of points ≥ x (resp., ≤ x). The basin of x relative to this set is called the upper
(resp., lower) basin of x. The set of such x is denoted by A+ (resp., A−).

Continuity of Φ implies that asymptotic stability relative to R implies stability
relative to R. In particular, A ⊂ S, A+ ⊂ S+ and A− ⊂ S−.

These stability notions for x depend only on the topology of X, and not on the
metric, provided the orbit of x has compact closure.

We state without proof several results proved in [12]. The next two results record
useful stability properties of SOP dynamics in normally ordered spaces. A point x
is accessible from below (above) in X if there is a sequence xn → x with xn < x
(xn > x).

Proposition 1. Assume X is normally ordered.
(a) x ∈ S+ (respectively, S−) provided there exists a sequence yn → x such that

yn > x (resp., yn < x) and limn→∞ supt>0 d(Φt(x),Φt(yn)) = 0.
(b) x ∈ S provided x ∈ S+ ∩ S− and x is accessible from above and below
(c) x ∈ A provided x ∈ A+ ∩A− and x is accessible from above and below.
(d) Suppose a < b and ω(a) = ω(b). Then a ∈ A+ and b ∈ A−. If a < x < b then

x ∈ A and the basin of x includes [a, b] \ {a, b}.
In particular, (d) shows that an equilibrium e is in A+ if x > e and Φt(x) → e

(provided X is normally ordered); and dually for A−.

Proposition 2. Assume X is normally ordered, p ∈ E, and {Kn} is a sequence of
nonempty compact invariant sets such that Kn < p and dist(Kn, p) → 0. Then:

(a) p is stable from below
(b) If z is such that ω(z) = p, then z is stable from below.

In particular, if p is the limit of a sequence of equilibria < p then p is stable from
below.

Many Banach spaces arising in applications are not normally ordered. Function
spaces with norms involving derivatives of the functions (such as Xα) are notable
examples. We would like to extend our stability results for normal spaces to the
strongly ordered Banach space Y . The order topology on Y is the topology generated
by open order intervals. An order norm on the topological vector space Ŷ is defined
by fixing u À 0 and assigning to x the smallest ε such that x ∈ [−εu, εu]. It is easy
to see that Ŷ is normally ordered by the order norm, with normality constant 1.



ASYMPTOTICALLY STABLE EQUILIBRIA 391

Every order neighborhood of p in Ŷ contains [p− εu, p+ εu] for all sufficiently small
numbers ε > 0.

The induced topology on any subset Z ⊂ Y is also referred to as the order
topology, and the resulting topological space is denoted by Ẑ. A neighborhood in
Ẑ is an order neighborhood. Every open subset of Ẑ is open in Z, i.e., the identity
map of Z is continuous from Z to Ẑ since the latter topology is generated by the
open (in Y ) order intervals [[u, v]]∩Z. Therefore Ẑ = Z as topological spaces when
Z is compact. As shown below, if Ψ is a monotone local semiflow in Z, it is also
a local semiflow in Ẑ, denoted by Ψ̂. Evidently Ψ and Ψ̂ have the same orbits and
the same invariant sets.

Lemma 1. Let Ψ be a monotone local semiflow in a subset X of a strongly ordered
Banach space Y that extends to a monotone local semiflow in an open subset of Y .
Then:

(a) Ψ̂ is a monotone local semiflow.
(b) If Ψ is a strongly monotone, then Ψ̂ is SOP.

Lemma 1 and the following results are proved in [12].
A set K is said to attract a set S if for every neighborhood U of K there exists

t0 ≥ 0 such that t > t0 =⇒ Ψt(S) ⊂ U . An equilibrium p for semiflow Ψ :
IR+×X → X is order stable (respectively, asymptotically order stable) if p is stable
(respectively, asymptotically stable) for Ψ̂.

Proposition 3. Let Ψ be a monotone local semiflow in a subset X of a strongly
ordered Banach space Y that extends to a monotone local semiflow in some open
subset of Y . Assume p is an equilibrium having a neighborhood W that is attracted
to a compact set K ⊂ X. If p is order stable (respectively, asymptotically order
stable), it is stable (respectively, asymptotically stable).

The following corollary of the above results will help in finding asymptotically
stable equilibria.

Corollary 1. e ∈ E is asymptotically stable if there exists a, b ∈ X satisfying
ω(a) = ω(b) = {e} and

(a) X is normally ordered and a < e < b or a = e = inf X < b, or

(b) If X is an open subset of a strongly ordered Banach space, e has a neighborhood
attracted to a compact set, and a ¿ e ¿ b or a = e = inf X ¿ b.

Proof. Part (a) follows from Proposition 1; part (b) is proved by first using part
(a) and Lemma 1 to conclude that e is asymptotically order stable. Proposition 3
implies e is asymptotically stable.

Obviously, there is a parallel result to part (b) with b = e = sup X replacing
a = e = inf X.

A point x is quasiconvergent if ω(x) ⊂ E and the set of all quasiconvergent points
is denoted by Q. It is well known that Q is dense (even open and dense) for an
SOP semiflow under suitable hypotheses. See e.g. Theorem 1.22 of [12]. Below are
some simple consequences.

Proposition 4. Assume Q is dense. Let p, q ∈ E be such that p < q, p is accessible
from above, and q is accessible from below. Then there exists z ∈ X satisfying one
of the following conditions:
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(a) p < z < q, and Φt(z) → p or Φt(z) → q
(b) p < z < q and z ∈ E
(c) z > p and p ∈ O(z), or z < q and q ∈ O(z)

We can now state one of our main results.

Theorem 5. Suppose X is normally ordered and the following three conditions
hold:

(a) Q is dense
(b) if e ∈ E and e is not accessible from above (respectively, below) then e = sup X

(resp., e = inf X)
(c) there is a maximal totally ordered subset R ⊂ E that is nonempty and compact

Then R contains a stable equilibrium, and an an asymptotically stable equilibrium
if R is finite.

Proof. It is easy to see that sup R (inf R) exists and is a maximal (minimal) element
of E (see e.g., Lemma 1.1 of [12]). We first prove that every maximal equilibrium q
is in A+. This holds vacuously when q = sup X. Suppose q 6= sup X. If q is in the
orbit of some point > q then q ∈ A+ by Proposition 1. Hence we can assume:

t ≥ 0, y > q =⇒ Φt(y) > q

By hypothesis we can choose y > q. By SOP there is an open neighborhood U of q
and s > 0 such that Φs(y) ≥ Φs(U). By hypothesis we can choose z ∈ U such that
Φs(y) 6= Φs(z) and z > q. Set x2 = Φs(y), x1 = Φsz. Then x2 > x1 > q and by
SOP and the assumption above there is a neighborhood V2 of x2 and t0 ≥ 0 such
that

t > t0 =⇒ q < Φt(x1) ≤ Φt(V2)
Choose v ∈ V2 ∩ Q. Then q < Φt(v) for t ≥ t0, hence q ≤ ω(v) = ω(Φt0(v)) ⊂ E.
Therefore Φt(v) → q by maximality of q, so Proposition 1(d) implies q ∈ A+, as
required. The dual argument shows that every minimal equilibria is in A−.

Assumption (c) and previous arguments establish that q = sup R and p = inf R
satisfy p ≤ q and q ∈ A+, p ∈ A−.

Suppose p = q; in this case we prove q ∈ A. As q is both maximal and minimal
in E, we have q ∈ A+ ∩A−. If q is accessible from above and below then q ∈ A by
Proposition 1(c). If q is not accessible from above then by hypothesis q = sup X, in
which case the fact that q ∈ A− implies q ∈ A. Similarly, q ∈ A if q is not accessible
from below.

Henceforth we assume p < q. As R is compact and R ∩ S− 6= ∅ because p ∈ R,
R contains the equilibrium r := sup(R∩S−). Note that r ∈ S−, because this holds
by definition of r if r is isolated in {r′ ∈ R : r′ ≤ r}, and otherwise r ∈ S− by
Proposition 2(a). If r = q a modification of the preceding paragraph proves q ∈ S.

Henceforth we assume r < q; therefore r is accessible from above.
If r is not accessible from below then r = p = inf X so r ∈ S and we are done;

so we may as well assume r is accessible from below as well as from above. If r is
the limit of a sequence of equilibria > r then r ∈ S+ by the dual of Proposition 2,
hence r ∈ S by Proposition 1(b). Therefore we can assume R contains a smallest
equilibrium r1 > r. Note that r1 /∈ S− by maximality of r. We apply Proposition 4
to r, r1: among its conclusions, the only one possible here is that z > r and Φt(z) →
r (and perhaps r ∈ O(z)). Therefore r ∈ S+ by Proposition 1(a), whence r ∈ S
by Proposition 1(b). When R is finite, a modification of the preceding arguments
proves max(R ∩A−) ⊂ A.
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Assumption (b) in Theorem 5 holds for many subsets X of an ordered Banach
space Y , including open sets, subcones of Y+, closed order intervals, and so forth.
This result is similar to Theorem 10.2 of Hirsch [11], which establishes equilibria
that are merely order stable, but does not require normality.

Assumption (c) holds when E is compact, and also in the following situation:
X ⊂ Y where Y is an Lp space, 1 ≤ p < ∞, and E is a nonempty, closed, and order
bounded subset of X; then every order bounded increasing or decreasing sequence
converges.

We now extend Theorem 5 to spaces that are not normally ordered.

Theorem 6. Assume X is an open subset of a strongly ordered Banach space Y
such that each equilibrium has a neighborhood attracted to some compact set. Let Φ
be a strongly monotone semiflow in X such that hypotheses (a), (b), (c) of Theorem
5 hold; let R ⊂ E be as in part (c). Then R contains a stable equilibrium, and an
asymptotically stable equilibrium when R is finite.

Proof. Apply Theorem 5 to the semiflow Φ̂ on X̂ with the metric coming from an
order norm on Ŷ ; this makes X̂ normally ordered and Φ̂ is SOP by Lemma 1.
Consequently, by Theorem 5 R contains a stable equilibrium p for Φ̂. This means p
is order stable for Φ, whence Proposition 3 shows that p is stable for Φ. The final
assertion follows similarly.

Putting together Theorem 5 and Theorem 6, we have the following result (The-
orem 4 in the introduction).

Corollary 2. Let Y be an ordered Banach space and X ⊂ Y either a nonempty
open set, a closed order interval, or a closed subcone of Y +. Assume that some
maximal totally ordered subset R ⊂ E is nonempty and compact, and that one of
the following two statements holds:

(a) Y is normally ordered
(b) Y is strongly ordered, X is open in Y , Φ is strongly monotone, and every

equilibrium has a neighborhood attracted to a compact set.
Then there exists a stable equilibrium, and an asymptotically stable equilibrium when
R is finite.

Proof. The assumptions on X imply the hypothesis of Theorem 1.22 of [12], so Q
is residual and thus dense in X. They also imply assumption (b) of Theorem 5,
whence the conclusion follows by Theorems 5 and 6.

2.2. Analyticity and finiteness of E. The following result of Jiang and Yu [15]
will be useful in showing that R is finite. A totally ordered arc in an ordered Banach
space Y is the image of a strictly increasing mapping of an open interval of IR. For
the remainder of this section we suspend our default assumptions mentioned at the
beginning of the section.

Proposition 5. [Jiang & Yu] Let Y be a real ordered Banach space such that Y +

has nonempty interior and X ⊂ Y is order open. Suppose that T : X → X is
analytic and order compact. If p is a fixed point of T and DT (p) is strongly positive
with ρ(DT (p)) = 1, then there exists a neighborhood U of p and a totally ordered
arc C ⊂ U containing p such that either C consists of fixed points of T or p is
a unique fixed point of T in U . In the latter case, if p is order-stable, then it is
asymptotically order stable.
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Remark 2. The proof of Proposition 5 uses the hypothesis that DT (p) is strongly
positive only to conclude (1) the simplicity of the eigenvalue ρ(DT (p)) = 1, (2)
that all other eigenvalues have strictly smaller modulus, and (3) that the associ-
ated eigenvector is positive, i.e., DT (p)v = v À 0. Therefore, the result holds if
we replace this hypothesis with these three consequences. In addition, the proof
establishes that the set of fixed points in some neighborhood of p are contained in
the arc C and that C is the image of an analytic mapping.

Corollary 3. Let X be an order-open subset of a strongly ordered Banach space
Y , Φ is an order-compact, analytic semiflow on X, and let R be a maximal totally
ordered subset of E that is non-empty and compact in X. Suppose that DΦt(x) is
strongly positive at each x ∈ X. Then R is finite.

Proof. Let a = sup R and b = inf R. If R is not finite, then it has a limit point
p = lim xn, xn ∈ R, xn 6= p. We may assume that xn > p for all n. Using

Φt(xn) = Φt(p) + DΦt(p)(xn − p) + o(‖xn − p‖)
and the compactness of DΦt(p), we find that a subsequence of {(xn− p)/‖xn− p‖}
converges to v > 0 such that DΦt(p)v = v. It follows from strong positivity that
ρ(DΦt(p)) = 1 for t > 0.

Fix t > 0. By Proposition 5 applied to Φt, there is a neighborhood U of p and an
analytic arc C ⊂ U , containing p and consisting of fixed points of Φt. Furthermore,
every fixed point of Φt in U belongs to C. For each s ∈ (0, t), ΦsC also consists of
fixed points of Φt and so ΦsC ∩U ⊂ C. Therefore, for all x ∈ C sufficiently near p,
Φsx ∈ C for all s ∈ (0, t). But C is totally ordered so either Φsx = x or Φsx < x
or Φsx > x. The latter two alternatives are impossible since a periodic orbit of a
strongly monotone semiflow cannot have two related points. We conclude that, by
shrinking the arc C and neighborhood U if necessary, we may assume that C ⊂ E
and all fixed points of Φt in U belong to C. We claim that C ⊂ R. We show that
if x ∈ R and y ∈ C then x and y are related, which proves the claim since R is
maximal. If x ∈ U , then x ∈ C and obviously it is related to y. If x /∈ U then x < p
or p < x. If x < p, observe that {z ∈ C : x < z} = {z ∈ C : x ¿ z} is nonempty
and relatively open in C. It is also relatively closed in C since x /∈ C. Therefore it
coincides with C and we are done. A similar argument applies if p < x.

Maximality of R implies p 6= a, p 6= b. Now R is compact so the endpoints of C,
inf C and sup C, exist in R (see Lemma 1.1 of [12]) and are also limit points of R
and consequently Proposition 5 applies to these points as well, extending C to a
larger analytic arc contained in R. Let S ⊂ R be the maximal (with respect to set
inclusion) analytic arc in R, which exists by Zorn’s Lemma. But R being compact
implies the endpoints of S (its infimum and supremum) are limit points of R and
thus S can be extended, contradicting maximality of S. This contradiction shows
that R is finite.

It is useful to define [a,∞] = {x ∈ Y : x ≥ a}, [[a,∞]] = {x ∈ Y : x À a},
similarly for [−∞, a] and [[−∞, a]] and [−∞,+∞] = [[−∞, +∞]] = Y .

Corollary 4. Let Y be a strongly ordered Banach space and let X = [a, b] for some
a, b with a ¿ b, where we allow a = −∞ and/or b = +∞. Let Φ be an order-
compact semiflow on X that is analytic on [[a, b]], a ∈ Y ⇒ a ∈ E and similarly
for b. Let R be a maximal totally ordered subset of equilibria that is non-empty and
compact in X and R \ {a, b} ⊂ [[a, b]]. Suppose that DΦt(x) is strongly positive at
each x ∈ [[a, b]].
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If a, b ∈ E and either a or b is an isolated equilibrium, then R is countable with
no accumulation point except possibly a or b, whichever is nonisolated. If both a, b
are isolated equilibria, then R is finite.

R is finite if a ∈ E is an isolated equilibrium and b = +∞ or if a = −∞ and
b ∈ E is an isolated equilibrium or if a = −∞ and b = +∞.

Proof. Assume a is an isolated equilibrium. We can assume that R′ := R ∩ [[a, b]]
is non-empty. We claim that no point of R′ is a point of accumulation of R′. If
false, there is an accumulation point p ∈ R′. Since p ∈ [[a, b]] we may argue as
in Corollary 3 to obtain an totally ordered arc C containing p, itself contained in
R. Let C− := C ∩ [a, p]. Observe that inf C− belongs to R and it is a point of
accumulation of R distinct from a by the isolatedness of a. The argument now
proceeds exactly as in the proof of Corollary 3 to obtain a maximal totally ordered
arc S ⊂ R∩[a, p]. Since R is compact, inf S exists and belongs to R but cannot be a.
Hence we can extend S using Proposition 5 to get a contradiction to the maximality
of S. This contradiction proves that no point of R′ is a point of accumulation of R′

and, of course, a is not a point of accumulation of R′. This proves the result.

For related results on stable equilibria see Jiang [14], Mierczyński [20, 21], and
Hirsch [10].

3. Proofs.

Proof of Theorem 1. Our assumptions imply that (1) defines a strongly monotone
semiflow Φ on the positive cone Y+ (see [23]) which has a compact attractor K in
Y+ (see [7, 24]). Indeed, if D := {u ∈ Y : 0 ≤ u(x) ≤ u0, x ∈ Ω}, then Φt(D) is
precompact in Y [24]. Thus the set E of equilibria is compact. Furthermore, strong
monotonicity implies that if w ∈ E, w 6= 0, then w À 0.

The map Φt|IntY+
is analytic by our assumption on f and Corollary 3.4.5 of

Henry.
According to Corollary 4, if 0 is an isolated equilibrium and R is a maximal totally

ordered subset of E, then R is finite. In that case, if R = {0} then 0 is asymptotically
stable by Lemma 1 since it is the omega limit set of some nontrivial orbit. If R is not
trivial then it contains a smallest nonzero element u. An application of the Dancer-
Hess trichotomy [3] to Φ on [0, u] implies that either all orbits in [0, u] converge to
0 except u, or all orbits converge to u except 0. The former case implies that 0 is
asymptotically stable by Lemma 1. In the latter case, Theorem 6, with X = IntY+,
implies the existence of an asymptotically stable equilibrium, which of course is
nontrivial. Therefore, the existence of an asymptotically stable equilibrium and the
finiteness of every maximal totally ordered subset of E follows from the isolatedness
of 0.

Suppose that 0 is not isolated. Equilibria of (1) satisfy

0 = Au + F (u),

where F (u)(x) := u(x)f(x, u(x)), and can be viewed as fixed points

u = Tλ(u) := (λI −A)−1[F (u) + λu]

of an analytic map of some open order interval [[a, b]] ⊂ Y containing 0. The
resolvent operator is compact and strongly positive for λ > 0 and F + λI is strictly
increasing on [[a, b]] for large enough λ. Furthermore, as we assume 0 is a nonisolated
fixed point of Tλ relative to Y+, it follows that ρ(DTλ(0)) = 1. Thus, Tλ satisfies
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the hypotheses of Proposition 5 and we conclude that there is a totally ordered arc
C of fixed points of Tλ containing 0. C+ := C ∩ Y+ is a totally ordered arc-with-
end-point 0 consisting of equilibria for Φ. But because Φ is dissipative, this leads
to a contradiction just as in the proof of Corollary 3. Therefore, 0 is isolated as
asserted.

As every maximal totally ordered subset of E is finite, E itself must be finite.
If not it has a nonzero point w of accumulation since it is compact. But then the
hypotheses of Proposition 5 hold at p = w and there must be a totally ordered arc
containing w, contradicting that every totally ordered subset of E is finite.

The finiteness of E and the fact that (1) generates a strongly monotone, com-
pletely continuous semiflow on the positive cone in C1(Ω) (see [22]) and that
Y+ ⊂ C1

+(Ω) is dense implies that we may use the same arguments (Lemma 1 and
Dancer-Hess trichotomy) as above to prove that the asymptotically stable equilib-
rium relative to Y+ is also asymptotically stable relative to the positive cone in
C1(Ω).

Proof of Theorem 3. We restrict Φ to the order interval I := [E2, E1]K containing
the equilibria E0 ≡ (0, 0) and the Ei. I contains the set E of equilibria [13].
Restricted to I, Φ has a global attractor so E is compact. The restriction of Φ to
[[E2, E1]]K is analytic and strongly monotone. Furthermore, if e ∈ E is distinct
from E0, E1, E2, then e ∈ [[E2, E1]]K . See e.g. [13].

If E = {E0, E1, E2}, then one of the Ei is asymptotically stable since one of
them attracts all initial data w satisfying E2 <K w <K E1. See Theorem B of [13].
Lemma 1 implies asymptotic stability of the attracting Ei. We are done in this case
so we assume the existence of an equilibrium w distinct from E0, E1, E2. It follows
that E2 <<K w <<K E1.

We claim that E1 is either an isolated equilibrium or there is a unique analytic
arc C1 ⊂ E containing E1 (part of which extends outside of Y+ × Y+) tangent at
E1 to the eigenvector z ¿K 0 identified in (b) above, and monotone with respect
to the strong ordering ¿K . We may as well assume that σ12 = 0 since otherwise
E1 is isolated by (d). The claim follows from Remark 2 following Proposition 5 and
(b) applied to the mapping

T (u, v) := ((λI −A1)−1u[f1(·, u, v) + λ], (λI −A2)−1v[f2(·, u, v) + λ]),

defined in some open order interval [[y, z]]K ⊂ Y × Y containing E1, where λ > 0
and Ai is a realization of di∇2 on Xα as in Theorem 1. Fixed points of T are
equilibria of (6). Indeed, it follows from (b) and σ12 = 0 that ρ(DT (E1)) = 1,
that one is a simple eigenvalue strictly larger in modulus than any other and with
eigenspace spanned by z. Similarly, E2 is either an isolated equilibrium or there
is a unique analytic arc C2 ⊂ E containing E2, tangent to a vector z̄ ÀK 0 and
monotone with respect to the strong order ¿K .

Now, clearly the hypotheses of Proposition 5 are satisfied at p = inf C1, where
now the relevant mapping is the time t map Φt having p as a fixed point, implying
that the analytic arc C1 can be extended in a unique way to an analytic, strictly
monotone arc C ′1. There exists a maximal extension C of C1 as a strictly monotone
analytic arc of equilibria contained in I, which is unique due to the local uniqueness
assertion mentioned in Remark 2. As E2 ≤K C, inf C exists and belongs to E.
If inf C = p ÀK E2, then as it is an accumulation point of E, we may again
apply Proposition 5 to obtain a contradiction to the maximality of C. Therefore,
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inf C = E2 which is not an isolated equilibrium. Hence C2 ∩ I ⊂ C and C is an
analytic, strictly monotone arc connecting E1 to E2.

We conclude that E1 is a nonisolated equilibrium if and only if E2 is, in which
case, there exists an analytic strictly monotone arc C connecting E1 and E2. When
they are both nonisolated, then E = C ∪ {E0}. Suppose w ∈ E but w /∈ C ∪ {E0}.
As E2 ¿K w ¿K E1, we may find ei ∈ C such that e2 ≤K w ≤K e1 with the
property that e2 is maximal and e1 is minimal. As both inequalities are strict,
strong monotonicity implies e2 ¿K w ¿K e1, a contradiction to the maximality
of e2 and minimality of e1. A similar argument shows that every nontrivial orbit
converges to C. This is obvious if its omega limit set ω is contained in E. If ω is not
contained in E, then it must satisfy E2 ≤K ω ≤K E1 and, by strong monotonicity, it
must contain some point (u, v) with E2 ¿K (u, v) ¿K E1. Therefore, by the Non-
ordering of omega limit sets, E1 <K ω <K E2, and then by strong monotonicity,
E2 ¿K ω ¿K E1. Choose e1, e2 ∈ C such that e2 ≤K ω ≤K e1 and such that e2 is
maximal and e1 is minimal with this property. Equality cannot hold by the Non-
ordering of omega limit sets so strong monotonicity again produces the contradiction
e2 ¿K ω ¿K e1. We conclude there is no such omega limit set, proving our claim.
The omega limit set of any orbit other than E0 not only belongs to C but consists
of a single point of C, by the Non-ordering of omega limit sets.

Hereafter, we may assume that both Ei are isolated equilibria but not the only
nontrivial equilibria. The finiteness of E follows from Corollary 4. There are equi-
libria ei satisfying E2 ¿K e2 and e1 ¿K E1 where e2 is minimal and e1 is maximal.
Either Φt(x) → E1 for all x ∈ [[e1, E1]]K or Φt(x) → e1 for all x ∈ [[e1, E1]]K by the
Dancer-Hess trichotomy (also see Prop. 2.2 [13]) since there are no other equilibria
in [e1, E1]K . If E1 is the attractor, then it is asymptotically stable by Lemma 1
and we are done. An analogous dichotomy holds on [E2, e2]; if E2 is the attractor,
then it is asymptotically stable by Lemma 1. If, on the other hand, e1 and e2 are
the attractors on their respective order intervals, then the existence of an asymp-
totically stable equilibrium follows from Theorem 6 applied to the restriction of Φ
to [[E2, E1]]K .
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